1 /*
2 * The copyright in this software is being made available under the 2-clauses
3 * BSD License, included below. This software may be subject to other third
4 * party and contributor rights, including patent rights, and no such rights
5 * are granted under this license.
6 *
7 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8 * Copyright (c) 2002-2014, Professor Benoit Macq
9 * Copyright (c) 2001-2003, David Janssens
10 * Copyright (c) 2002-2003, Yannick Verschueren
11 * Copyright (c) 2003-2007, Francois-Olivier Devaux
12 * Copyright (c) 2003-2014, Antonin Descampe
13 * Copyright (c) 2005, Herve Drolon, FreeImage Team
14 * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
15 * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
16 * Copyright (c) 2017, IntoPIX SA <support@intopix.com>
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
29 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 #include <assert.h>
42
43 #define OPJ_SKIP_POISON
44 #include "opj_includes.h"
45
46 #ifdef __SSE__
47 #include <xmmintrin.h>
48 #endif
49 #ifdef __SSE2__
50 #include <emmintrin.h>
51 #endif
52 #ifdef __SSSE3__
53 #include <tmmintrin.h>
54 #endif
55 #ifdef __AVX2__
56 #include <immintrin.h>
57 #endif
58
59 #if defined(__GNUC__)
60 #pragma GCC poison malloc calloc realloc free
61 #endif
62
63 /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
64 /*@{*/
65
66 #ifdef __AVX2__
67 /** Number of int32 values in a AVX2 register */
68 #define VREG_INT_COUNT 8
69 #else
70 /** Number of int32 values in a SSE2 register */
71 #define VREG_INT_COUNT 4
72 #endif
73
74 /** Number of columns that we can process in parallel in the vertical pass */
75 #define PARALLEL_COLS_53 (2*VREG_INT_COUNT)
76
77 /** @name Local data structures */
78 /*@{*/
79
80 typedef struct dwt_local {
81 OPJ_INT32* mem;
82 OPJ_SIZE_T mem_count;
83 OPJ_INT32 dn; /* number of elements in high pass band */
84 OPJ_INT32 sn; /* number of elements in low pass band */
85 OPJ_INT32 cas; /* 0 = start on even coord, 1 = start on odd coord */
86 } opj_dwt_t;
87
88 typedef union {
89 OPJ_FLOAT32 f[4];
90 } opj_v4_t;
91
92 typedef struct v4dwt_local {
93 opj_v4_t* wavelet ;
94 OPJ_INT32 dn ; /* number of elements in high pass band */
95 OPJ_INT32 sn ; /* number of elements in low pass band */
96 OPJ_INT32 cas ; /* 0 = start on even coord, 1 = start on odd coord */
97 OPJ_UINT32 win_l_x0; /* start coord in low pass band */
98 OPJ_UINT32 win_l_x1; /* end coord in low pass band */
99 OPJ_UINT32 win_h_x0; /* start coord in high pass band */
100 OPJ_UINT32 win_h_x1; /* end coord in high pass band */
101 } opj_v4dwt_t ;
102
103 static const OPJ_FLOAT32 opj_dwt_alpha = 1.586134342f; /* 12994 */
104 static const OPJ_FLOAT32 opj_dwt_beta = 0.052980118f; /* 434 */
105 static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /* -7233 */
106 static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /* -3633 */
107
108 static const OPJ_FLOAT32 opj_K = 1.230174105f; /* 10078 */
109 static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
110
111 /*@}*/
112
113 /**
114 Virtual function type for wavelet transform in 1-D
115 */
116 typedef void (*DWT1DFN)(const opj_dwt_t* v);
117
118 /** @name Local static functions */
119 /*@{*/
120
121 /**
122 Forward lazy transform (horizontal)
123 */
124 static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
125 OPJ_INT32 sn, OPJ_INT32 cas);
126 /**
127 Forward lazy transform (vertical)
128 */
129 static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
130 OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
131 /**
132 Forward 5-3 wavelet transform in 1-D
133 */
134 static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
135 OPJ_INT32 sn, OPJ_INT32 cas);
136 /**
137 Forward 9-7 wavelet transform in 1-D
138 */
139 static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count,
140 OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
141
142
143 /**
144 Explicit calculation of the Quantization Stepsizes
145 */
146 static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
147 opj_stepsize_t *bandno_stepsize);
148 /**
149 Inverse wavelet transform in 2-D.
150 */
151 static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
152 const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i);
153
154 static OPJ_BOOL opj_dwt_decode_partial_tile(
155 opj_tcd_tilecomp_t* tilec,
156 OPJ_UINT32 numres);
157
158 static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
159 void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32));
160
161 static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
162 OPJ_UINT32 i);
163
164 /* <summary> */
165 /* Inverse 9-7 wavelet transform in 1-D. */
166 /* </summary> */
167 static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt);
168
169 static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt,
170 OPJ_FLOAT32* OPJ_RESTRICT a,
171 OPJ_UINT32 width,
172 OPJ_UINT32 remaining_height);
173
174 static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
175 OPJ_FLOAT32* OPJ_RESTRICT a,
176 OPJ_UINT32 width,
177 OPJ_UINT32 nb_elts_read);
178
179 #ifdef __SSE__
180 static void opj_v4dwt_decode_step1_sse(opj_v4_t* w,
181 OPJ_UINT32 start,
182 OPJ_UINT32 end,
183 const __m128 c);
184
185 static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w,
186 OPJ_UINT32 start,
187 OPJ_UINT32 end,
188 OPJ_UINT32 m, __m128 c);
189
190 #else
191 static void opj_v4dwt_decode_step1(opj_v4_t* w,
192 OPJ_UINT32 start,
193 OPJ_UINT32 end,
194 const OPJ_FLOAT32 c);
195
196 static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w,
197 OPJ_UINT32 start,
198 OPJ_UINT32 end,
199 OPJ_UINT32 m,
200 OPJ_FLOAT32 c);
201
202 #endif
203
204 /*@}*/
205
206 /*@}*/
207
208 #define IDX_S(i) (i)*2
209 #define IDX_D(i) 1 + (i)* 2
210 #define UNDERFLOW_SN(i) ((i) >= sn&&sn>0)
211 #define UNDERFLOW_DN(i) ((i) >= dn&&dn>0)
212 #define OVERFLOW_S(i) (IDX_S(i) >= a_count)
213 #define OVERFLOW_D(i) (IDX_D(i) >= a_count)
214
215 #define OPJ_S(i) a[IDX_S(i)]
216 #define OPJ_D(i) a[IDX_D(i)]
217 #define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
218 #define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
219 /* new */
220 #define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
221 #define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
222
223 /* <summary> */
224 /* This table contains the norms of the 5-3 wavelets for different bands. */
225 /* </summary> */
226 /* FIXME! the array should really be extended up to 33 resolution levels */
227 /* See https://github.com/uclouvain/openjpeg/issues/493 */
228 static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
229 {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
230 {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
231 {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
232 {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
233 };
234
235 /* <summary> */
236 /* This table contains the norms of the 9-7 wavelets for different bands. */
237 /* </summary> */
238 /* FIXME! the array should really be extended up to 33 resolution levels */
239 /* See https://github.com/uclouvain/openjpeg/issues/493 */
240 static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
241 {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
242 {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
243 {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
244 {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
245 };
246
247 /*
248 ==========================================================
249 local functions
250 ==========================================================
251 */
252
253 /* <summary> */
254 /* Forward lazy transform (horizontal). */
255 /* </summary> */
opj_dwt_deinterleave_h(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)256 static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
257 OPJ_INT32 sn, OPJ_INT32 cas)
258 {
259 OPJ_INT32 i;
260 OPJ_INT32 * l_dest = b;
261 OPJ_INT32 * l_src = a + cas;
262
263 for (i = 0; i < sn; ++i) {
264 *l_dest++ = *l_src;
265 l_src += 2;
266 }
267
268 l_dest = b + sn;
269 l_src = a + 1 - cas;
270
271 for (i = 0; i < dn; ++i) {
272 *l_dest++ = *l_src;
273 l_src += 2;
274 }
275 }
276
277 /* <summary> */
278 /* Forward lazy transform (vertical). */
279 /* </summary> */
opj_dwt_deinterleave_v(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 x,OPJ_INT32 cas)280 static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn,
281 OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas)
282 {
283 OPJ_INT32 i = sn;
284 OPJ_INT32 * l_dest = b;
285 OPJ_INT32 * l_src = a + cas;
286
287 while (i--) {
288 *l_dest = *l_src;
289 l_dest += x;
290 l_src += 2;
291 } /* b[i*x]=a[2*i+cas]; */
292
293 l_dest = b + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)x;
294 l_src = a + 1 - cas;
295
296 i = dn;
297 while (i--) {
298 *l_dest = *l_src;
299 l_dest += x;
300 l_src += 2;
301 } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
302 }
303
304 #ifdef STANDARD_SLOW_VERSION
305 /* <summary> */
306 /* Inverse lazy transform (horizontal). */
307 /* </summary> */
opj_dwt_interleave_h(const opj_dwt_t * h,OPJ_INT32 * a)308 static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a)
309 {
310 OPJ_INT32 *ai = a;
311 OPJ_INT32 *bi = h->mem + h->cas;
312 OPJ_INT32 i = h->sn;
313 while (i--) {
314 *bi = *(ai++);
315 bi += 2;
316 }
317 ai = a + h->sn;
318 bi = h->mem + 1 - h->cas;
319 i = h->dn ;
320 while (i--) {
321 *bi = *(ai++);
322 bi += 2;
323 }
324 }
325
326 /* <summary> */
327 /* Inverse lazy transform (vertical). */
328 /* </summary> */
opj_dwt_interleave_v(const opj_dwt_t * v,OPJ_INT32 * a,OPJ_INT32 x)329 static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x)
330 {
331 OPJ_INT32 *ai = a;
332 OPJ_INT32 *bi = v->mem + v->cas;
333 OPJ_INT32 i = v->sn;
334 while (i--) {
335 *bi = *ai;
336 bi += 2;
337 ai += x;
338 }
339 ai = a + (v->sn * (OPJ_SIZE_T)x);
340 bi = v->mem + 1 - v->cas;
341 i = v->dn ;
342 while (i--) {
343 *bi = *ai;
344 bi += 2;
345 ai += x;
346 }
347 }
348
349 #endif /* STANDARD_SLOW_VERSION */
350
351 /* <summary> */
352 /* Forward 5-3 wavelet transform in 1-D. */
353 /* </summary> */
opj_dwt_encode_1(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)354 static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
355 OPJ_INT32 sn, OPJ_INT32 cas)
356 {
357 OPJ_INT32 i;
358
359 if (!cas) {
360 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
361 for (i = 0; i < dn; i++) {
362 OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
363 }
364 for (i = 0; i < sn; i++) {
365 OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
366 }
367 }
368 } else {
369 if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
370 OPJ_S(0) *= 2;
371 } else {
372 for (i = 0; i < dn; i++) {
373 OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
374 }
375 for (i = 0; i < sn; i++) {
376 OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
377 }
378 }
379 }
380 }
381
382 #ifdef STANDARD_SLOW_VERSION
383 /* <summary> */
384 /* Inverse 5-3 wavelet transform in 1-D. */
385 /* </summary> */
opj_dwt_decode_1_(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)386 static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn,
387 OPJ_INT32 sn, OPJ_INT32 cas)
388 {
389 OPJ_INT32 i;
390
391 if (!cas) {
392 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
393 for (i = 0; i < sn; i++) {
394 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
395 }
396 for (i = 0; i < dn; i++) {
397 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
398 }
399 }
400 } else {
401 if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
402 OPJ_S(0) /= 2;
403 } else {
404 for (i = 0; i < sn; i++) {
405 OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
406 }
407 for (i = 0; i < dn; i++) {
408 OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
409 }
410 }
411 }
412 }
413
opj_dwt_decode_1(const opj_dwt_t * v)414 static void opj_dwt_decode_1(const opj_dwt_t *v)
415 {
416 opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas);
417 }
418
419 #endif /* STANDARD_SLOW_VERSION */
420
421 #if !defined(STANDARD_SLOW_VERSION)
opj_idwt53_h_cas0(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp)422 static void opj_idwt53_h_cas0(OPJ_INT32* tmp,
423 const OPJ_INT32 sn,
424 const OPJ_INT32 len,
425 OPJ_INT32* tiledp)
426 {
427 OPJ_INT32 i, j;
428 const OPJ_INT32* in_even = &tiledp[0];
429 const OPJ_INT32* in_odd = &tiledp[sn];
430
431 #ifdef TWO_PASS_VERSION
432 /* For documentation purpose: performs lifting in two iterations, */
433 /* but without explicit interleaving */
434
435 assert(len > 1);
436
437 /* Even */
438 tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1);
439 for (i = 2, j = 0; i <= len - 2; i += 2, j++) {
440 tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2);
441 }
442 if (len & 1) { /* if len is odd */
443 tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1);
444 }
445
446 /* Odd */
447 for (i = 1, j = 0; i < len - 1; i += 2, j++) {
448 tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1);
449 }
450 if (!(len & 1)) { /* if len is even */
451 tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2];
452 }
453 #else
454 OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
455
456 assert(len > 1);
457
458 /* Improved version of the TWO_PASS_VERSION: */
459 /* Performs lifting in one single iteration. Saves memory */
460 /* accesses and explicit interleaving. */
461 s1n = in_even[0];
462 d1n = in_odd[0];
463 s0n = s1n - ((d1n + 1) >> 1);
464
465 for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
466 d1c = d1n;
467 s0c = s0n;
468
469 s1n = in_even[j];
470 d1n = in_odd[j];
471
472 s0n = s1n - ((d1c + d1n + 2) >> 2);
473
474 tmp[i ] = s0c;
475 tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
476 }
477
478 tmp[i] = s0n;
479
480 if (len & 1) {
481 tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1);
482 tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
483 } else {
484 tmp[len - 1] = d1n + s0n;
485 }
486 #endif
487 memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
488 }
489
opj_idwt53_h_cas1(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp)490 static void opj_idwt53_h_cas1(OPJ_INT32* tmp,
491 const OPJ_INT32 sn,
492 const OPJ_INT32 len,
493 OPJ_INT32* tiledp)
494 {
495 OPJ_INT32 i, j;
496 const OPJ_INT32* in_even = &tiledp[sn];
497 const OPJ_INT32* in_odd = &tiledp[0];
498
499 #ifdef TWO_PASS_VERSION
500 /* For documentation purpose: performs lifting in two iterations, */
501 /* but without explicit interleaving */
502
503 assert(len > 2);
504
505 /* Odd */
506 for (i = 1, j = 0; i < len - 1; i += 2, j++) {
507 tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2);
508 }
509 if (!(len & 1)) {
510 tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1);
511 }
512
513 /* Even */
514 tmp[0] = in_even[0] + tmp[1];
515 for (i = 2, j = 1; i < len - 1; i += 2, j++) {
516 tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1);
517 }
518 if (len & 1) {
519 tmp[len - 1] = in_even[len / 2] + tmp[len - 2];
520 }
521 #else
522 OPJ_INT32 s1, s2, dc, dn;
523
524 assert(len > 2);
525
526 /* Improved version of the TWO_PASS_VERSION: */
527 /* Performs lifting in one single iteration. Saves memory */
528 /* accesses and explicit interleaving. */
529
530 s1 = in_even[1];
531 dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
532 tmp[0] = in_even[0] + dc;
533
534 for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
535
536 s2 = in_even[j + 1];
537
538 dn = in_odd[j] - ((s1 + s2 + 2) >> 2);
539 tmp[i ] = dc;
540 tmp[i + 1] = s1 + ((dn + dc) >> 1);
541
542 dc = dn;
543 s1 = s2;
544 }
545
546 tmp[i] = dc;
547
548 if (!(len & 1)) {
549 dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1);
550 tmp[len - 2] = s1 + ((dn + dc) >> 1);
551 tmp[len - 1] = dn;
552 } else {
553 tmp[len - 1] = s1 + dc;
554 }
555 #endif
556 memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32));
557 }
558
559
560 #endif /* !defined(STANDARD_SLOW_VERSION) */
561
562 /* <summary> */
563 /* Inverse 5-3 wavelet transform in 1-D for one row. */
564 /* </summary> */
565 /* Performs interleave, inverse wavelet transform and copy back to buffer */
opj_idwt53_h(const opj_dwt_t * dwt,OPJ_INT32 * tiledp)566 static void opj_idwt53_h(const opj_dwt_t *dwt,
567 OPJ_INT32* tiledp)
568 {
569 #ifdef STANDARD_SLOW_VERSION
570 /* For documentation purpose */
571 opj_dwt_interleave_h(dwt, tiledp);
572 opj_dwt_decode_1(dwt);
573 memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32));
574 #else
575 const OPJ_INT32 sn = dwt->sn;
576 const OPJ_INT32 len = sn + dwt->dn;
577 if (dwt->cas == 0) { /* Left-most sample is on even coordinate */
578 if (len > 1) {
579 opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp);
580 } else {
581 /* Unmodified value */
582 }
583 } else { /* Left-most sample is on odd coordinate */
584 if (len == 1) {
585 tiledp[0] /= 2;
586 } else if (len == 2) {
587 OPJ_INT32* out = dwt->mem;
588 const OPJ_INT32* in_even = &tiledp[sn];
589 const OPJ_INT32* in_odd = &tiledp[0];
590 out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
591 out[0] = in_even[0] + out[1];
592 memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32));
593 } else if (len > 2) {
594 opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp);
595 }
596 }
597 #endif
598 }
599
600 #if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION)
601
602 /* Conveniency macros to improve the readabilty of the formulas */
603 #if __AVX2__
604 #define VREG __m256i
605 #define LOAD_CST(x) _mm256_set1_epi32(x)
606 #define LOAD(x) _mm256_load_si256((const VREG*)(x))
607 #define LOADU(x) _mm256_loadu_si256((const VREG*)(x))
608 #define STORE(x,y) _mm256_store_si256((VREG*)(x),(y))
609 #define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y))
610 #define ADD(x,y) _mm256_add_epi32((x),(y))
611 #define SUB(x,y) _mm256_sub_epi32((x),(y))
612 #define SAR(x,y) _mm256_srai_epi32((x),(y))
613 #else
614 #define VREG __m128i
615 #define LOAD_CST(x) _mm_set1_epi32(x)
616 #define LOAD(x) _mm_load_si128((const VREG*)(x))
617 #define LOADU(x) _mm_loadu_si128((const VREG*)(x))
618 #define STORE(x,y) _mm_store_si128((VREG*)(x),(y))
619 #define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y))
620 #define ADD(x,y) _mm_add_epi32((x),(y))
621 #define SUB(x,y) _mm_sub_epi32((x),(y))
622 #define SAR(x,y) _mm_srai_epi32((x),(y))
623 #endif
624 #define ADD3(x,y,z) ADD(ADD(x,y),z)
625
626 static
opj_idwt53_v_final_memcpy(OPJ_INT32 * tiledp_col,const OPJ_INT32 * tmp,OPJ_INT32 len,OPJ_SIZE_T stride)627 void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col,
628 const OPJ_INT32* tmp,
629 OPJ_INT32 len,
630 OPJ_SIZE_T stride)
631 {
632 OPJ_INT32 i;
633 for (i = 0; i < len; ++i) {
634 /* A memcpy(&tiledp_col[i * stride + 0],
635 &tmp[PARALLEL_COLS_53 * i + 0],
636 PARALLEL_COLS_53 * sizeof(OPJ_INT32))
637 would do but would be a tiny bit slower.
638 We can take here advantage of our knowledge of alignment */
639 STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0],
640 LOAD(&tmp[PARALLEL_COLS_53 * i + 0]));
641 STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT],
642 LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT]));
643 }
644 }
645
646 /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
647 * 16 in AVX2, when top-most pixel is on even coordinate */
opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp_col,const OPJ_SIZE_T stride)648 static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(
649 OPJ_INT32* tmp,
650 const OPJ_INT32 sn,
651 const OPJ_INT32 len,
652 OPJ_INT32* tiledp_col,
653 const OPJ_SIZE_T stride)
654 {
655 const OPJ_INT32* in_even = &tiledp_col[0];
656 const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride];
657
658 OPJ_INT32 i;
659 OPJ_SIZE_T j;
660 VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0;
661 VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1;
662 const VREG two = LOAD_CST(2);
663
664 assert(len > 1);
665 #if __AVX2__
666 assert(PARALLEL_COLS_53 == 16);
667 assert(VREG_INT_COUNT == 8);
668 #else
669 assert(PARALLEL_COLS_53 == 8);
670 assert(VREG_INT_COUNT == 4);
671 #endif
672
673 /* Note: loads of input even/odd values must be done in a unaligned */
674 /* fashion. But stores in tmp can be done with aligned store, since */
675 /* the temporary buffer is properly aligned */
676 assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
677
678 s1n_0 = LOADU(in_even + 0);
679 s1n_1 = LOADU(in_even + VREG_INT_COUNT);
680 d1n_0 = LOADU(in_odd);
681 d1n_1 = LOADU(in_odd + VREG_INT_COUNT);
682
683 /* s0n = s1n - ((d1n + 1) >> 1); <==> */
684 /* s0n = s1n - ((d1n + d1n + 2) >> 2); */
685 s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
686 s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
687
688 for (i = 0, j = 1; i < (len - 3); i += 2, j++) {
689 d1c_0 = d1n_0;
690 s0c_0 = s0n_0;
691 d1c_1 = d1n_1;
692 s0c_1 = s0n_1;
693
694 s1n_0 = LOADU(in_even + j * stride);
695 s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT);
696 d1n_0 = LOADU(in_odd + j * stride);
697 d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT);
698
699 /*s0n = s1n - ((d1c + d1n + 2) >> 2);*/
700 s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2));
701 s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2));
702
703 STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0);
704 STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1);
705
706 /* d1c + ((s0c + s0n) >> 1) */
707 STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
708 ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1)));
709 STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
710 ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1)));
711 }
712
713 STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0);
714 STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1);
715
716 if (len & 1) {
717 VREG tmp_len_minus_1;
718 s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride);
719 /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
720 tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2));
721 STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1);
722 /* d1n + ((s0n + tmp_len_minus_1) >> 1) */
723 STORE(tmp + PARALLEL_COLS_53 * (len - 2),
724 ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1)));
725
726 s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT);
727 /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */
728 tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2));
729 STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
730 tmp_len_minus_1);
731 /* d1n + ((s0n + tmp_len_minus_1) >> 1) */
732 STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
733 ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1)));
734
735
736 } else {
737 STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0,
738 ADD(d1n_0, s0n_0));
739 STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
740 ADD(d1n_1, s0n_1));
741 }
742
743 opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
744 }
745
746
747 /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or
748 * 16 in AVX2, when top-most pixel is on odd coordinate */
opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp_col,const OPJ_SIZE_T stride)749 static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(
750 OPJ_INT32* tmp,
751 const OPJ_INT32 sn,
752 const OPJ_INT32 len,
753 OPJ_INT32* tiledp_col,
754 const OPJ_SIZE_T stride)
755 {
756 OPJ_INT32 i;
757 OPJ_SIZE_T j;
758
759 VREG s1_0, s2_0, dc_0, dn_0;
760 VREG s1_1, s2_1, dc_1, dn_1;
761 const VREG two = LOAD_CST(2);
762
763 const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
764 const OPJ_INT32* in_odd = &tiledp_col[0];
765
766 assert(len > 2);
767 #if __AVX2__
768 assert(PARALLEL_COLS_53 == 16);
769 assert(VREG_INT_COUNT == 8);
770 #else
771 assert(PARALLEL_COLS_53 == 8);
772 assert(VREG_INT_COUNT == 4);
773 #endif
774
775 /* Note: loads of input even/odd values must be done in a unaligned */
776 /* fashion. But stores in tmp can be done with aligned store, since */
777 /* the temporary buffer is properly aligned */
778 assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0);
779
780 s1_0 = LOADU(in_even + stride);
781 /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
782 dc_0 = SUB(LOADU(in_odd + 0),
783 SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2));
784 STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0));
785
786 s1_1 = LOADU(in_even + stride + VREG_INT_COUNT);
787 /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */
788 dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT),
789 SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2));
790 STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT,
791 ADD(LOADU(in_even + VREG_INT_COUNT), dc_1));
792
793 for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
794
795 s2_0 = LOADU(in_even + (j + 1) * stride);
796 s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT);
797
798 /* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */
799 dn_0 = SUB(LOADU(in_odd + j * stride),
800 SAR(ADD3(s1_0, s2_0, two), 2));
801 dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT),
802 SAR(ADD3(s1_1, s2_1, two), 2));
803
804 STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
805 STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
806
807 /* tmp[i + 1] = s1 + ((dn + dc) >> 1); */
808 STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0,
809 ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
810 STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT,
811 ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
812
813 dc_0 = dn_0;
814 s1_0 = s2_0;
815 dc_1 = dn_1;
816 s1_1 = s2_1;
817 }
818 STORE(tmp + PARALLEL_COLS_53 * i, dc_0);
819 STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1);
820
821 if (!(len & 1)) {
822 /*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */
823 dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride),
824 SAR(ADD3(s1_0, s1_0, two), 2));
825 dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT),
826 SAR(ADD3(s1_1, s1_1, two), 2));
827
828 /* tmp[len - 2] = s1 + ((dn + dc) >> 1); */
829 STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0,
830 ADD(s1_0, SAR(ADD(dn_0, dc_0), 1)));
831 STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT,
832 ADD(s1_1, SAR(ADD(dn_1, dc_1), 1)));
833
834 STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0);
835 STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1);
836 } else {
837 STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0));
838 STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT,
839 ADD(s1_1, dc_1));
840 }
841
842 opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride);
843 }
844
845 #undef VREG
846 #undef LOAD_CST
847 #undef LOADU
848 #undef LOAD
849 #undef STORE
850 #undef STOREU
851 #undef ADD
852 #undef ADD3
853 #undef SUB
854 #undef SAR
855
856 #endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */
857
858 #if !defined(STANDARD_SLOW_VERSION)
859 /** Vertical inverse 5x3 wavelet transform for one column, when top-most
860 * pixel is on even coordinate */
opj_idwt3_v_cas0(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp_col,const OPJ_SIZE_T stride)861 static void opj_idwt3_v_cas0(OPJ_INT32* tmp,
862 const OPJ_INT32 sn,
863 const OPJ_INT32 len,
864 OPJ_INT32* tiledp_col,
865 const OPJ_SIZE_T stride)
866 {
867 OPJ_INT32 i, j;
868 OPJ_INT32 d1c, d1n, s1n, s0c, s0n;
869
870 assert(len > 1);
871
872 /* Performs lifting in one single iteration. Saves memory */
873 /* accesses and explicit interleaving. */
874
875 s1n = tiledp_col[0];
876 d1n = tiledp_col[(OPJ_SIZE_T)sn * stride];
877 s0n = s1n - ((d1n + 1) >> 1);
878
879 for (i = 0, j = 0; i < (len - 3); i += 2, j++) {
880 d1c = d1n;
881 s0c = s0n;
882
883 s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride];
884 d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride];
885
886 s0n = s1n - ((d1c + d1n + 2) >> 2);
887
888 tmp[i ] = s0c;
889 tmp[i + 1] = d1c + ((s0c + s0n) >> 1);
890 }
891
892 tmp[i] = s0n;
893
894 if (len & 1) {
895 tmp[len - 1] =
896 tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] -
897 ((d1n + 1) >> 1);
898 tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1);
899 } else {
900 tmp[len - 1] = d1n + s0n;
901 }
902
903 for (i = 0; i < len; ++i) {
904 tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
905 }
906 }
907
908
909 /** Vertical inverse 5x3 wavelet transform for one column, when top-most
910 * pixel is on odd coordinate */
opj_idwt3_v_cas1(OPJ_INT32 * tmp,const OPJ_INT32 sn,const OPJ_INT32 len,OPJ_INT32 * tiledp_col,const OPJ_SIZE_T stride)911 static void opj_idwt3_v_cas1(OPJ_INT32* tmp,
912 const OPJ_INT32 sn,
913 const OPJ_INT32 len,
914 OPJ_INT32* tiledp_col,
915 const OPJ_SIZE_T stride)
916 {
917 OPJ_INT32 i, j;
918 OPJ_INT32 s1, s2, dc, dn;
919 const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
920 const OPJ_INT32* in_odd = &tiledp_col[0];
921
922 assert(len > 2);
923
924 /* Performs lifting in one single iteration. Saves memory */
925 /* accesses and explicit interleaving. */
926
927 s1 = in_even[stride];
928 dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2);
929 tmp[0] = in_even[0] + dc;
930 for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) {
931
932 s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride];
933
934 dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2);
935 tmp[i ] = dc;
936 tmp[i + 1] = s1 + ((dn + dc) >> 1);
937
938 dc = dn;
939 s1 = s2;
940 }
941 tmp[i] = dc;
942 if (!(len & 1)) {
943 dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1);
944 tmp[len - 2] = s1 + ((dn + dc) >> 1);
945 tmp[len - 1] = dn;
946 } else {
947 tmp[len - 1] = s1 + dc;
948 }
949
950 for (i = 0; i < len; ++i) {
951 tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i];
952 }
953 }
954 #endif /* !defined(STANDARD_SLOW_VERSION) */
955
956 /* <summary> */
957 /* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */
958 /* </summary> */
959 /* Performs interleave, inverse wavelet transform and copy back to buffer */
opj_idwt53_v(const opj_dwt_t * dwt,OPJ_INT32 * tiledp_col,OPJ_SIZE_T stride,OPJ_INT32 nb_cols)960 static void opj_idwt53_v(const opj_dwt_t *dwt,
961 OPJ_INT32* tiledp_col,
962 OPJ_SIZE_T stride,
963 OPJ_INT32 nb_cols)
964 {
965 #ifdef STANDARD_SLOW_VERSION
966 /* For documentation purpose */
967 OPJ_INT32 k, c;
968 for (c = 0; c < nb_cols; c ++) {
969 opj_dwt_interleave_v(dwt, tiledp_col + c, stride);
970 opj_dwt_decode_1(dwt);
971 for (k = 0; k < dwt->sn + dwt->dn; ++k) {
972 tiledp_col[c + k * stride] = dwt->mem[k];
973 }
974 }
975 #else
976 const OPJ_INT32 sn = dwt->sn;
977 const OPJ_INT32 len = sn + dwt->dn;
978 if (dwt->cas == 0) {
979 /* If len == 1, unmodified value */
980
981 #if (defined(__SSE2__) || defined(__AVX2__))
982 if (len > 1 && nb_cols == PARALLEL_COLS_53) {
983 /* Same as below general case, except that thanks to SSE2/AVX2 */
984 /* we can efficently process 8/16 columns in parallel */
985 opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
986 return;
987 }
988 #endif
989 if (len > 1) {
990 OPJ_INT32 c;
991 for (c = 0; c < nb_cols; c++, tiledp_col++) {
992 opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride);
993 }
994 return;
995 }
996 } else {
997 if (len == 1) {
998 OPJ_INT32 c;
999 for (c = 0; c < nb_cols; c++, tiledp_col++) {
1000 tiledp_col[0] /= 2;
1001 }
1002 return;
1003 }
1004
1005 if (len == 2) {
1006 OPJ_INT32 c;
1007 OPJ_INT32* out = dwt->mem;
1008 for (c = 0; c < nb_cols; c++, tiledp_col++) {
1009 OPJ_INT32 i;
1010 const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride];
1011 const OPJ_INT32* in_odd = &tiledp_col[0];
1012
1013 out[1] = in_odd[0] - ((in_even[0] + 1) >> 1);
1014 out[0] = in_even[0] + out[1];
1015
1016 for (i = 0; i < len; ++i) {
1017 tiledp_col[(OPJ_SIZE_T)i * stride] = out[i];
1018 }
1019 }
1020
1021 return;
1022 }
1023
1024 #if (defined(__SSE2__) || defined(__AVX2__))
1025 if (len > 2 && nb_cols == PARALLEL_COLS_53) {
1026 /* Same as below general case, except that thanks to SSE2/AVX2 */
1027 /* we can efficently process 8/16 columns in parallel */
1028 opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride);
1029 return;
1030 }
1031 #endif
1032 if (len > 2) {
1033 OPJ_INT32 c;
1034 for (c = 0; c < nb_cols; c++, tiledp_col++) {
1035 opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride);
1036 }
1037 return;
1038 }
1039 }
1040 #endif
1041 }
1042
1043
1044 /* <summary> */
1045 /* Forward 9-7 wavelet transform in 1-D. */
1046 /* </summary> */
opj_dwt_encode_1_real(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)1047 static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count,
1048 OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas)
1049 {
1050 OPJ_INT32 i;
1051 if (!cas) {
1052 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
1053 for (i = 0; i < dn; i++) {
1054 OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
1055 }
1056 for (i = 0; i < sn; i++) {
1057 OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
1058 }
1059 for (i = 0; i < dn; i++) {
1060 OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
1061 }
1062 for (i = 0; i < sn; i++) {
1063 OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
1064 }
1065 for (i = 0; i < dn; i++) {
1066 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038); /*5038 */
1067 }
1068 for (i = 0; i < sn; i++) {
1069 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659); /*6660 */
1070 }
1071 }
1072 } else {
1073 if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */
1074 for (i = 0; i < dn; i++) {
1075 OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
1076 }
1077 for (i = 0; i < sn; i++) {
1078 OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
1079 }
1080 for (i = 0; i < dn; i++) {
1081 OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
1082 }
1083 for (i = 0; i < sn; i++) {
1084 OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
1085 }
1086 for (i = 0; i < dn; i++) {
1087 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038); /*5038 */
1088 }
1089 for (i = 0; i < sn; i++) {
1090 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659); /*6660 */
1091 }
1092 }
1093 }
1094 }
1095
opj_dwt_encode_stepsize(OPJ_INT32 stepsize,OPJ_INT32 numbps,opj_stepsize_t * bandno_stepsize)1096 static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps,
1097 opj_stepsize_t *bandno_stepsize)
1098 {
1099 OPJ_INT32 p, n;
1100 p = opj_int_floorlog2(stepsize) - 13;
1101 n = 11 - opj_int_floorlog2(stepsize);
1102 bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
1103 bandno_stepsize->expn = numbps - p;
1104 }
1105
1106 /*
1107 ==========================================================
1108 DWT interface
1109 ==========================================================
1110 */
1111
1112
1113 /* <summary> */
1114 /* Forward 5-3 wavelet transform in 2-D. */
1115 /* </summary> */
opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,void (* p_function)(OPJ_INT32 *,OPJ_SIZE_T,OPJ_INT32,OPJ_INT32,OPJ_INT32))1116 static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
1117 void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32))
1118 {
1119 OPJ_INT32 i, j, k;
1120 OPJ_INT32 *a = 00;
1121 OPJ_INT32 *aj = 00;
1122 OPJ_INT32 *bj = 00;
1123 OPJ_INT32 w, l;
1124
1125 OPJ_INT32 rw; /* width of the resolution level computed */
1126 OPJ_INT32 rh; /* height of the resolution level computed */
1127 OPJ_SIZE_T l_data_count;
1128 OPJ_SIZE_T l_data_size;
1129
1130 opj_tcd_resolution_t * l_cur_res = 0;
1131 opj_tcd_resolution_t * l_last_res = 0;
1132
1133 w = tilec->x1 - tilec->x0;
1134 l = (OPJ_INT32)tilec->numresolutions - 1;
1135 a = tilec->data;
1136
1137 l_cur_res = tilec->resolutions + l;
1138 l_last_res = l_cur_res - 1;
1139
1140 l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions);
1141 /* overflow check */
1142 if (l_data_count > (SIZE_MAX / sizeof(OPJ_INT32))) {
1143 /* FIXME event manager error callback */
1144 return OPJ_FALSE;
1145 }
1146 l_data_size = l_data_count * sizeof(OPJ_INT32);
1147 bj = (OPJ_INT32*)opj_malloc(l_data_size);
1148 /* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */
1149 /* in that case, so do not error out */
1150 if (l_data_size != 0 && ! bj) {
1151 return OPJ_FALSE;
1152 }
1153 i = l;
1154
1155 while (i--) {
1156 OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */
1157 OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */
1158 OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
1159 OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
1160 OPJ_INT32 dn, sn;
1161
1162 rw = l_cur_res->x1 - l_cur_res->x0;
1163 rh = l_cur_res->y1 - l_cur_res->y0;
1164 rw1 = l_last_res->x1 - l_last_res->x0;
1165 rh1 = l_last_res->y1 - l_last_res->y0;
1166
1167 cas_row = l_cur_res->x0 & 1;
1168 cas_col = l_cur_res->y0 & 1;
1169
1170 sn = rh1;
1171 dn = rh - rh1;
1172 for (j = 0; j < rw; ++j) {
1173 aj = a + j;
1174 for (k = 0; k < rh; ++k) {
1175 bj[k] = aj[k * w];
1176 }
1177
1178 (*p_function) (bj, l_data_count, dn, sn, cas_col);
1179
1180 opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
1181 }
1182
1183 sn = rw1;
1184 dn = rw - rw1;
1185
1186 for (j = 0; j < rh; j++) {
1187 aj = a + j * w;
1188 for (k = 0; k < rw; k++) {
1189 bj[k] = aj[k];
1190 }
1191 (*p_function) (bj, l_data_count, dn, sn, cas_row);
1192 opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
1193 }
1194
1195 l_cur_res = l_last_res;
1196
1197 --l_last_res;
1198 }
1199
1200 opj_free(bj);
1201 return OPJ_TRUE;
1202 }
1203
1204 /* Forward 5-3 wavelet transform in 2-D. */
1205 /* </summary> */
opj_dwt_encode(opj_tcd_tilecomp_t * tilec)1206 OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
1207 {
1208 return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1);
1209 }
1210
1211 /* <summary> */
1212 /* Inverse 5-3 wavelet transform in 2-D. */
1213 /* </summary> */
opj_dwt_decode(opj_tcd_t * p_tcd,opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)1214 OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec,
1215 OPJ_UINT32 numres)
1216 {
1217 if (p_tcd->whole_tile_decoding) {
1218 return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres);
1219 } else {
1220 return opj_dwt_decode_partial_tile(tilec, numres);
1221 }
1222 }
1223
1224
1225 /* <summary> */
1226 /* Get gain of 5-3 wavelet transform. */
1227 /* </summary> */
opj_dwt_getgain(OPJ_UINT32 orient)1228 OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient)
1229 {
1230 if (orient == 0) {
1231 return 0;
1232 }
1233 if (orient == 1 || orient == 2) {
1234 return 1;
1235 }
1236 return 2;
1237 }
1238
1239 /* <summary> */
1240 /* Get norm of 5-3 wavelet. */
1241 /* </summary> */
opj_dwt_getnorm(OPJ_UINT32 level,OPJ_UINT32 orient)1242 OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient)
1243 {
1244 /* FIXME ! This is just a band-aid to avoid a buffer overflow */
1245 /* but the array should really be extended up to 33 resolution levels */
1246 /* See https://github.com/uclouvain/openjpeg/issues/493 */
1247 if (orient == 0 && level >= 10) {
1248 level = 9;
1249 } else if (orient > 0 && level >= 9) {
1250 level = 8;
1251 }
1252 return opj_dwt_norms[orient][level];
1253 }
1254
1255 /* <summary> */
1256 /* Forward 9-7 wavelet transform in 2-D. */
1257 /* </summary> */
opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)1258 OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
1259 {
1260 return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1_real);
1261 }
1262
1263 /* <summary> */
1264 /* Get gain of 9-7 wavelet transform. */
1265 /* </summary> */
opj_dwt_getgain_real(OPJ_UINT32 orient)1266 OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient)
1267 {
1268 (void)orient;
1269 return 0;
1270 }
1271
1272 /* <summary> */
1273 /* Get norm of 9-7 wavelet. */
1274 /* </summary> */
opj_dwt_getnorm_real(OPJ_UINT32 level,OPJ_UINT32 orient)1275 OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient)
1276 {
1277 /* FIXME ! This is just a band-aid to avoid a buffer overflow */
1278 /* but the array should really be extended up to 33 resolution levels */
1279 /* See https://github.com/uclouvain/openjpeg/issues/493 */
1280 if (orient == 0 && level >= 10) {
1281 level = 9;
1282 } else if (orient > 0 && level >= 9) {
1283 level = 8;
1284 }
1285 return opj_dwt_norms_real[orient][level];
1286 }
1287
opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp,OPJ_UINT32 prec)1288 void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec)
1289 {
1290 OPJ_UINT32 numbands, bandno;
1291 numbands = 3 * tccp->numresolutions - 2;
1292 for (bandno = 0; bandno < numbands; bandno++) {
1293 OPJ_FLOAT64 stepsize;
1294 OPJ_UINT32 resno, level, orient, gain;
1295
1296 resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
1297 orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
1298 level = tccp->numresolutions - 1 - resno;
1299 gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) ||
1300 (orient == 2)) ? 1 : 2));
1301 if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
1302 stepsize = 1.0;
1303 } else {
1304 OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
1305 stepsize = (1 << (gain)) / norm;
1306 }
1307 opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0),
1308 (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
1309 }
1310 }
1311
1312 /* <summary> */
1313 /* Determine maximum computed resolution level for inverse wavelet transform */
1314 /* </summary> */
opj_dwt_max_resolution(opj_tcd_resolution_t * OPJ_RESTRICT r,OPJ_UINT32 i)1315 static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r,
1316 OPJ_UINT32 i)
1317 {
1318 OPJ_UINT32 mr = 0;
1319 OPJ_UINT32 w;
1320 while (--i) {
1321 ++r;
1322 if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) {
1323 mr = w ;
1324 }
1325 if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) {
1326 mr = w ;
1327 }
1328 }
1329 return mr ;
1330 }
1331
1332 typedef struct {
1333 opj_dwt_t h;
1334 OPJ_UINT32 rw;
1335 OPJ_UINT32 w;
1336 OPJ_INT32 * OPJ_RESTRICT tiledp;
1337 OPJ_UINT32 min_j;
1338 OPJ_UINT32 max_j;
1339 } opj_dwd_decode_h_job_t;
1340
opj_dwt_decode_h_func(void * user_data,opj_tls_t * tls)1341 static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls)
1342 {
1343 OPJ_UINT32 j;
1344 opj_dwd_decode_h_job_t* job;
1345 (void)tls;
1346
1347 job = (opj_dwd_decode_h_job_t*)user_data;
1348 for (j = job->min_j; j < job->max_j; j++) {
1349 opj_idwt53_h(&job->h, &job->tiledp[j * job->w]);
1350 }
1351
1352 opj_aligned_free(job->h.mem);
1353 opj_free(job);
1354 }
1355
1356 typedef struct {
1357 opj_dwt_t v;
1358 OPJ_UINT32 rh;
1359 OPJ_UINT32 w;
1360 OPJ_INT32 * OPJ_RESTRICT tiledp;
1361 OPJ_UINT32 min_j;
1362 OPJ_UINT32 max_j;
1363 } opj_dwd_decode_v_job_t;
1364
opj_dwt_decode_v_func(void * user_data,opj_tls_t * tls)1365 static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls)
1366 {
1367 OPJ_UINT32 j;
1368 opj_dwd_decode_v_job_t* job;
1369 (void)tls;
1370
1371 job = (opj_dwd_decode_v_job_t*)user_data;
1372 for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j;
1373 j += PARALLEL_COLS_53) {
1374 opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
1375 PARALLEL_COLS_53);
1376 }
1377 if (j < job->max_j)
1378 opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w,
1379 (OPJ_INT32)(job->max_j - j));
1380
1381 opj_aligned_free(job->v.mem);
1382 opj_free(job);
1383 }
1384
1385
1386 /* <summary> */
1387 /* Inverse wavelet transform in 2-D. */
1388 /* </summary> */
opj_dwt_decode_tile(opj_thread_pool_t * tp,const opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)1389 static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp,
1390 const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres)
1391 {
1392 opj_dwt_t h;
1393 opj_dwt_t v;
1394
1395 opj_tcd_resolution_t* tr = tilec->resolutions;
1396
1397 OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
1398 tr->x0); /* width of the resolution level computed */
1399 OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
1400 tr->y0); /* height of the resolution level computed */
1401
1402 OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
1403 1].x1 -
1404 tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
1405 OPJ_SIZE_T h_mem_size;
1406 int num_threads;
1407
1408 if (numres == 1U) {
1409 return OPJ_TRUE;
1410 }
1411 num_threads = opj_thread_pool_get_thread_count(tp);
1412 h.mem_count = opj_dwt_max_resolution(tr, numres);
1413 /* overflow check */
1414 if (h.mem_count > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) {
1415 /* FIXME event manager error callback */
1416 return OPJ_FALSE;
1417 }
1418 /* We need PARALLEL_COLS_53 times the height of the array, */
1419 /* since for the vertical pass */
1420 /* we process PARALLEL_COLS_53 columns at a time */
1421 h_mem_size = h.mem_count * PARALLEL_COLS_53 * sizeof(OPJ_INT32);
1422 h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1423 if (! h.mem) {
1424 /* FIXME event manager error callback */
1425 return OPJ_FALSE;
1426 }
1427
1428 v.mem_count = h.mem_count;
1429 v.mem = h.mem;
1430
1431 while (--numres) {
1432 OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data;
1433 OPJ_UINT32 j;
1434
1435 ++tr;
1436 h.sn = (OPJ_INT32)rw;
1437 v.sn = (OPJ_INT32)rh;
1438
1439 rw = (OPJ_UINT32)(tr->x1 - tr->x0);
1440 rh = (OPJ_UINT32)(tr->y1 - tr->y0);
1441
1442 h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
1443 h.cas = tr->x0 % 2;
1444
1445 if (num_threads <= 1 || rh <= 1) {
1446 for (j = 0; j < rh; ++j) {
1447 opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]);
1448 }
1449 } else {
1450 OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
1451 OPJ_UINT32 step_j;
1452
1453 if (rh < num_jobs) {
1454 num_jobs = rh;
1455 }
1456 step_j = (rh / num_jobs);
1457
1458 for (j = 0; j < num_jobs; j++) {
1459 opj_dwd_decode_h_job_t* job;
1460
1461 job = (opj_dwd_decode_h_job_t*) opj_malloc(sizeof(opj_dwd_decode_h_job_t));
1462 if (!job) {
1463 /* It would be nice to fallback to single thread case, but */
1464 /* unfortunately some jobs may be launched and have modified */
1465 /* tiledp, so it is not practical to recover from that error */
1466 /* FIXME event manager error callback */
1467 opj_thread_pool_wait_completion(tp, 0);
1468 opj_aligned_free(h.mem);
1469 return OPJ_FALSE;
1470 }
1471 job->h = h;
1472 job->rw = rw;
1473 job->w = w;
1474 job->tiledp = tiledp;
1475 job->min_j = j * step_j;
1476 job->max_j = (j + 1U) * step_j; /* this can overflow */
1477 if (j == (num_jobs - 1U)) { /* this will take care of the overflow */
1478 job->max_j = rh;
1479 }
1480 job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1481 if (!job->h.mem) {
1482 /* FIXME event manager error callback */
1483 opj_thread_pool_wait_completion(tp, 0);
1484 opj_free(job);
1485 opj_aligned_free(h.mem);
1486 return OPJ_FALSE;
1487 }
1488 opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job);
1489 }
1490 opj_thread_pool_wait_completion(tp, 0);
1491 }
1492
1493 v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
1494 v.cas = tr->y0 % 2;
1495
1496 if (num_threads <= 1 || rw <= 1) {
1497 for (j = 0; j + PARALLEL_COLS_53 <= rw;
1498 j += PARALLEL_COLS_53) {
1499 opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53);
1500 }
1501 if (j < rw) {
1502 opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j));
1503 }
1504 } else {
1505 OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads;
1506 OPJ_UINT32 step_j;
1507
1508 if (rw < num_jobs) {
1509 num_jobs = rw;
1510 }
1511 step_j = (rw / num_jobs);
1512
1513 for (j = 0; j < num_jobs; j++) {
1514 opj_dwd_decode_v_job_t* job;
1515
1516 job = (opj_dwd_decode_v_job_t*) opj_malloc(sizeof(opj_dwd_decode_v_job_t));
1517 if (!job) {
1518 /* It would be nice to fallback to single thread case, but */
1519 /* unfortunately some jobs may be launched and have modified */
1520 /* tiledp, so it is not practical to recover from that error */
1521 /* FIXME event manager error callback */
1522 opj_thread_pool_wait_completion(tp, 0);
1523 opj_aligned_free(v.mem);
1524 return OPJ_FALSE;
1525 }
1526 job->v = v;
1527 job->rh = rh;
1528 job->w = w;
1529 job->tiledp = tiledp;
1530 job->min_j = j * step_j;
1531 job->max_j = (j + 1U) * step_j; /* this can overflow */
1532 if (j == (num_jobs - 1U)) { /* this will take care of the overflow */
1533 job->max_j = rw;
1534 }
1535 job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1536 if (!job->v.mem) {
1537 /* FIXME event manager error callback */
1538 opj_thread_pool_wait_completion(tp, 0);
1539 opj_free(job);
1540 opj_aligned_free(v.mem);
1541 return OPJ_FALSE;
1542 }
1543 opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job);
1544 }
1545 opj_thread_pool_wait_completion(tp, 0);
1546 }
1547 }
1548 opj_aligned_free(h.mem);
1549 return OPJ_TRUE;
1550 }
1551
opj_dwt_interleave_partial_h(OPJ_INT32 * dest,OPJ_INT32 cas,opj_sparse_array_int32_t * sa,OPJ_UINT32 sa_line,OPJ_UINT32 sn,OPJ_UINT32 win_l_x0,OPJ_UINT32 win_l_x1,OPJ_UINT32 win_h_x0,OPJ_UINT32 win_h_x1)1552 static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest,
1553 OPJ_INT32 cas,
1554 opj_sparse_array_int32_t* sa,
1555 OPJ_UINT32 sa_line,
1556 OPJ_UINT32 sn,
1557 OPJ_UINT32 win_l_x0,
1558 OPJ_UINT32 win_l_x1,
1559 OPJ_UINT32 win_h_x0,
1560 OPJ_UINT32 win_h_x1)
1561 {
1562 OPJ_BOOL ret;
1563 ret = opj_sparse_array_int32_read(sa,
1564 win_l_x0, sa_line,
1565 win_l_x1, sa_line + 1,
1566 dest + cas + 2 * win_l_x0,
1567 2, 0, OPJ_TRUE);
1568 assert(ret);
1569 ret = opj_sparse_array_int32_read(sa,
1570 sn + win_h_x0, sa_line,
1571 sn + win_h_x1, sa_line + 1,
1572 dest + 1 - cas + 2 * win_h_x0,
1573 2, 0, OPJ_TRUE);
1574 assert(ret);
1575 OPJ_UNUSED(ret);
1576 }
1577
1578
opj_dwt_interleave_partial_v(OPJ_INT32 * dest,OPJ_INT32 cas,opj_sparse_array_int32_t * sa,OPJ_UINT32 sa_col,OPJ_UINT32 nb_cols,OPJ_UINT32 sn,OPJ_UINT32 win_l_y0,OPJ_UINT32 win_l_y1,OPJ_UINT32 win_h_y0,OPJ_UINT32 win_h_y1)1579 static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest,
1580 OPJ_INT32 cas,
1581 opj_sparse_array_int32_t* sa,
1582 OPJ_UINT32 sa_col,
1583 OPJ_UINT32 nb_cols,
1584 OPJ_UINT32 sn,
1585 OPJ_UINT32 win_l_y0,
1586 OPJ_UINT32 win_l_y1,
1587 OPJ_UINT32 win_h_y0,
1588 OPJ_UINT32 win_h_y1)
1589 {
1590 OPJ_BOOL ret;
1591 ret = opj_sparse_array_int32_read(sa,
1592 sa_col, win_l_y0,
1593 sa_col + nb_cols, win_l_y1,
1594 dest + cas * 4 + 2 * 4 * win_l_y0,
1595 1, 2 * 4, OPJ_TRUE);
1596 assert(ret);
1597 ret = opj_sparse_array_int32_read(sa,
1598 sa_col, sn + win_h_y0,
1599 sa_col + nb_cols, sn + win_h_y1,
1600 dest + (1 - cas) * 4 + 2 * 4 * win_h_y0,
1601 1, 2 * 4, OPJ_TRUE);
1602 assert(ret);
1603 OPJ_UNUSED(ret);
1604 }
1605
opj_dwt_decode_partial_1(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas,OPJ_INT32 win_l_x0,OPJ_INT32 win_l_x1,OPJ_INT32 win_h_x0,OPJ_INT32 win_h_x1)1606 static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_SIZE_T a_count,
1607 OPJ_INT32 dn, OPJ_INT32 sn,
1608 OPJ_INT32 cas,
1609 OPJ_INT32 win_l_x0,
1610 OPJ_INT32 win_l_x1,
1611 OPJ_INT32 win_h_x0,
1612 OPJ_INT32 win_h_x1)
1613 {
1614 OPJ_INT32 i;
1615
1616 if (!cas) {
1617 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
1618
1619 /* Naive version is :
1620 for (i = win_l_x0; i < i_max; i++) {
1621 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1622 }
1623 for (i = win_h_x0; i < win_h_x1; i++) {
1624 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
1625 }
1626 but the compiler doesn't manage to unroll it to avoid bound
1627 checking in OPJ_S_ and OPJ_D_ macros
1628 */
1629
1630 i = win_l_x0;
1631 if (i < win_l_x1) {
1632 OPJ_INT32 i_max;
1633
1634 /* Left-most case */
1635 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1636 i ++;
1637
1638 i_max = win_l_x1;
1639 if (i_max > dn) {
1640 i_max = dn;
1641 }
1642 for (; i < i_max; i++) {
1643 /* No bound checking */
1644 OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2;
1645 }
1646 for (; i < win_l_x1; i++) {
1647 /* Right-most case */
1648 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1649 }
1650 }
1651
1652 i = win_h_x0;
1653 if (i < win_h_x1) {
1654 OPJ_INT32 i_max = win_h_x1;
1655 if (i_max >= sn) {
1656 i_max = sn - 1;
1657 }
1658 for (; i < i_max; i++) {
1659 /* No bound checking */
1660 OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1;
1661 }
1662 for (; i < win_h_x1; i++) {
1663 /* Right-most case */
1664 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
1665 }
1666 }
1667 }
1668 } else {
1669 if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
1670 OPJ_S(0) /= 2;
1671 } else {
1672 for (i = win_l_x0; i < win_l_x1; i++) {
1673 OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
1674 }
1675 for (i = win_h_x0; i < win_h_x1; i++) {
1676 OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
1677 }
1678 }
1679 }
1680 }
1681
1682 #define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off]
1683 #define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off]
1684 #define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off)))
1685 #define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off)))
1686 #define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off)))
1687 #define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off)))
1688
opj_dwt_decode_partial_1_parallel(OPJ_INT32 * a,OPJ_UINT32 nb_cols,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas,OPJ_INT32 win_l_x0,OPJ_INT32 win_l_x1,OPJ_INT32 win_h_x0,OPJ_INT32 win_h_x1)1689 static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a,
1690 OPJ_UINT32 nb_cols,
1691 OPJ_INT32 dn, OPJ_INT32 sn,
1692 OPJ_INT32 cas,
1693 OPJ_INT32 win_l_x0,
1694 OPJ_INT32 win_l_x1,
1695 OPJ_INT32 win_h_x0,
1696 OPJ_INT32 win_h_x1)
1697 {
1698 OPJ_INT32 i;
1699 OPJ_UINT32 off;
1700
1701 (void)nb_cols;
1702
1703 if (!cas) {
1704 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
1705
1706 /* Naive version is :
1707 for (i = win_l_x0; i < i_max; i++) {
1708 OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
1709 }
1710 for (i = win_h_x0; i < win_h_x1; i++) {
1711 OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
1712 }
1713 but the compiler doesn't manage to unroll it to avoid bound
1714 checking in OPJ_S_ and OPJ_D_ macros
1715 */
1716
1717 i = win_l_x0;
1718 if (i < win_l_x1) {
1719 OPJ_INT32 i_max;
1720
1721 /* Left-most case */
1722 for (off = 0; off < 4; off++) {
1723 OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
1724 }
1725 i ++;
1726
1727 i_max = win_l_x1;
1728 if (i_max > dn) {
1729 i_max = dn;
1730 }
1731
1732 #ifdef __SSE2__
1733 if (i + 1 < i_max) {
1734 const __m128i two = _mm_set1_epi32(2);
1735 __m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8));
1736 for (; i + 1 < i_max; i += 2) {
1737 /* No bound checking */
1738 __m128i S = _mm_load_si128((__m128i * const)(a + i * 8));
1739 __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
1740 __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
1741 __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
1742 S = _mm_sub_epi32(S,
1743 _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2));
1744 S1 = _mm_sub_epi32(S1,
1745 _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2));
1746 _mm_store_si128((__m128i*)(a + i * 8), S);
1747 _mm_store_si128((__m128i*)(a + (i + 1) * 8), S1);
1748 Dm1 = D1;
1749 }
1750 }
1751 #endif
1752
1753 for (; i < i_max; i++) {
1754 /* No bound checking */
1755 for (off = 0; off < 4; off++) {
1756 OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2;
1757 }
1758 }
1759 for (; i < win_l_x1; i++) {
1760 /* Right-most case */
1761 for (off = 0; off < 4; off++) {
1762 OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2;
1763 }
1764 }
1765 }
1766
1767 i = win_h_x0;
1768 if (i < win_h_x1) {
1769 OPJ_INT32 i_max = win_h_x1;
1770 if (i_max >= sn) {
1771 i_max = sn - 1;
1772 }
1773
1774 #ifdef __SSE2__
1775 if (i + 1 < i_max) {
1776 __m128i S = _mm_load_si128((__m128i * const)(a + i * 8));
1777 for (; i + 1 < i_max; i += 2) {
1778 /* No bound checking */
1779 __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8));
1780 __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8));
1781 __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8));
1782 __m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8));
1783 D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1));
1784 D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1));
1785 _mm_store_si128((__m128i*)(a + 4 + i * 8), D);
1786 _mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1);
1787 S = S2;
1788 }
1789 }
1790 #endif
1791
1792 for (; i < i_max; i++) {
1793 /* No bound checking */
1794 for (off = 0; off < 4; off++) {
1795 OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1;
1796 }
1797 }
1798 for (; i < win_h_x1; i++) {
1799 /* Right-most case */
1800 for (off = 0; off < 4; off++) {
1801 OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1;
1802 }
1803 }
1804 }
1805 }
1806 } else {
1807 if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */
1808 for (off = 0; off < 4; off++) {
1809 OPJ_S_off(0, off) /= 2;
1810 }
1811 } else {
1812 for (i = win_l_x0; i < win_l_x1; i++) {
1813 for (off = 0; off < 4; off++) {
1814 OPJ_D_off(i, off) -= (OPJ_SS__off(i, off) + OPJ_SS__off(i + 1, off) + 2) >> 2;
1815 }
1816 }
1817 for (i = win_h_x0; i < win_h_x1; i++) {
1818 for (off = 0; off < 4; off++) {
1819 OPJ_S_off(i, off) += (OPJ_DD__off(i, off) + OPJ_DD__off(i - 1, off)) >> 1;
1820 }
1821 }
1822 }
1823 }
1824 }
1825
opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 resno,OPJ_UINT32 bandno,OPJ_UINT32 tcx0,OPJ_UINT32 tcy0,OPJ_UINT32 tcx1,OPJ_UINT32 tcy1,OPJ_UINT32 * tbx0,OPJ_UINT32 * tby0,OPJ_UINT32 * tbx1,OPJ_UINT32 * tby1)1826 static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec,
1827 OPJ_UINT32 resno,
1828 OPJ_UINT32 bandno,
1829 OPJ_UINT32 tcx0,
1830 OPJ_UINT32 tcy0,
1831 OPJ_UINT32 tcx1,
1832 OPJ_UINT32 tcy1,
1833 OPJ_UINT32* tbx0,
1834 OPJ_UINT32* tby0,
1835 OPJ_UINT32* tbx1,
1836 OPJ_UINT32* tby1)
1837 {
1838 /* Compute number of decomposition for this band. See table F-1 */
1839 OPJ_UINT32 nb = (resno == 0) ?
1840 tilec->numresolutions - 1 :
1841 tilec->numresolutions - resno;
1842 /* Map above tile-based coordinates to sub-band-based coordinates per */
1843 /* equation B-15 of the standard */
1844 OPJ_UINT32 x0b = bandno & 1;
1845 OPJ_UINT32 y0b = bandno >> 1;
1846 if (tbx0) {
1847 *tbx0 = (nb == 0) ? tcx0 :
1848 (tcx0 <= (1U << (nb - 1)) * x0b) ? 0 :
1849 opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb);
1850 }
1851 if (tby0) {
1852 *tby0 = (nb == 0) ? tcy0 :
1853 (tcy0 <= (1U << (nb - 1)) * y0b) ? 0 :
1854 opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb);
1855 }
1856 if (tbx1) {
1857 *tbx1 = (nb == 0) ? tcx1 :
1858 (tcx1 <= (1U << (nb - 1)) * x0b) ? 0 :
1859 opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb);
1860 }
1861 if (tby1) {
1862 *tby1 = (nb == 0) ? tcy1 :
1863 (tcy1 <= (1U << (nb - 1)) * y0b) ? 0 :
1864 opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb);
1865 }
1866 }
1867
opj_dwt_segment_grow(OPJ_UINT32 filter_width,OPJ_UINT32 max_size,OPJ_UINT32 * start,OPJ_UINT32 * end)1868 static void opj_dwt_segment_grow(OPJ_UINT32 filter_width,
1869 OPJ_UINT32 max_size,
1870 OPJ_UINT32* start,
1871 OPJ_UINT32* end)
1872 {
1873 *start = opj_uint_subs(*start, filter_width);
1874 *end = opj_uint_adds(*end, filter_width);
1875 *end = opj_uint_min(*end, max_size);
1876 }
1877
1878
opj_dwt_init_sparse_array(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)1879 static opj_sparse_array_int32_t* opj_dwt_init_sparse_array(
1880 opj_tcd_tilecomp_t* tilec,
1881 OPJ_UINT32 numres)
1882 {
1883 opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
1884 OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0);
1885 OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0);
1886 OPJ_UINT32 resno, bandno, precno, cblkno;
1887 opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create(
1888 w, h, opj_uint_min(w, 64), opj_uint_min(h, 64));
1889 if (sa == NULL) {
1890 return NULL;
1891 }
1892
1893 for (resno = 0; resno < numres; ++resno) {
1894 opj_tcd_resolution_t* res = &tilec->resolutions[resno];
1895
1896 for (bandno = 0; bandno < res->numbands; ++bandno) {
1897 opj_tcd_band_t* band = &res->bands[bandno];
1898
1899 for (precno = 0; precno < res->pw * res->ph; ++precno) {
1900 opj_tcd_precinct_t* precinct = &band->precincts[precno];
1901 for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) {
1902 opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno];
1903 if (cblk->decoded_data != NULL) {
1904 OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0);
1905 OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0);
1906 OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0);
1907 OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0);
1908
1909 if (band->bandno & 1) {
1910 opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
1911 x += (OPJ_UINT32)(pres->x1 - pres->x0);
1912 }
1913 if (band->bandno & 2) {
1914 opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1];
1915 y += (OPJ_UINT32)(pres->y1 - pres->y0);
1916 }
1917
1918 if (!opj_sparse_array_int32_write(sa, x, y,
1919 x + cblk_w, y + cblk_h,
1920 cblk->decoded_data,
1921 1, cblk_w, OPJ_TRUE)) {
1922 opj_sparse_array_int32_free(sa);
1923 return NULL;
1924 }
1925 }
1926 }
1927 }
1928 }
1929 }
1930
1931 return sa;
1932 }
1933
1934
opj_dwt_decode_partial_tile(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)1935 static OPJ_BOOL opj_dwt_decode_partial_tile(
1936 opj_tcd_tilecomp_t* tilec,
1937 OPJ_UINT32 numres)
1938 {
1939 opj_sparse_array_int32_t* sa;
1940 opj_dwt_t h;
1941 opj_dwt_t v;
1942 OPJ_UINT32 resno;
1943 /* This value matches the maximum left/right extension given in tables */
1944 /* F.2 and F.3 of the standard. */
1945 const OPJ_UINT32 filter_width = 2U;
1946
1947 opj_tcd_resolution_t* tr = tilec->resolutions;
1948 opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
1949
1950 OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
1951 tr->x0); /* width of the resolution level computed */
1952 OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
1953 tr->y0); /* height of the resolution level computed */
1954
1955 OPJ_SIZE_T h_mem_size;
1956
1957 /* Compute the intersection of the area of interest, expressed in tile coordinates */
1958 /* with the tile coordinates */
1959 OPJ_UINT32 win_tcx0 = tilec->win_x0;
1960 OPJ_UINT32 win_tcy0 = tilec->win_y0;
1961 OPJ_UINT32 win_tcx1 = tilec->win_x1;
1962 OPJ_UINT32 win_tcy1 = tilec->win_y1;
1963
1964 if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
1965 return OPJ_TRUE;
1966 }
1967
1968 sa = opj_dwt_init_sparse_array(tilec, numres);
1969 if (sa == NULL) {
1970 return OPJ_FALSE;
1971 }
1972
1973 if (numres == 1U) {
1974 OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
1975 tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
1976 tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
1977 tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
1978 tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
1979 tilec->data_win,
1980 1, tr_max->win_x1 - tr_max->win_x0,
1981 OPJ_TRUE);
1982 assert(ret);
1983 OPJ_UNUSED(ret);
1984 opj_sparse_array_int32_free(sa);
1985 return OPJ_TRUE;
1986 }
1987 h.mem_count = opj_dwt_max_resolution(tr, numres);
1988 /* overflow check */
1989 /* in vertical pass, we process 4 columns at a time */
1990 if (h.mem_count > (SIZE_MAX / (4 * sizeof(OPJ_INT32)))) {
1991 /* FIXME event manager error callback */
1992 opj_sparse_array_int32_free(sa);
1993 return OPJ_FALSE;
1994 }
1995
1996 h_mem_size = h.mem_count * 4 * sizeof(OPJ_INT32);
1997 h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size);
1998 if (! h.mem) {
1999 /* FIXME event manager error callback */
2000 opj_sparse_array_int32_free(sa);
2001 return OPJ_FALSE;
2002 }
2003
2004 v.mem_count = h.mem_count;
2005 v.mem = h.mem;
2006
2007 for (resno = 1; resno < numres; resno ++) {
2008 OPJ_UINT32 i, j;
2009 /* Window of interest subband-based coordinates */
2010 OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
2011 OPJ_UINT32 win_hl_x0, win_hl_x1;
2012 OPJ_UINT32 win_lh_y0, win_lh_y1;
2013 /* Window of interest tile-resolution-based coordinates */
2014 OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
2015 /* Tile-resolution subband-based coordinates */
2016 OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
2017
2018 ++tr;
2019
2020 h.sn = (OPJ_INT32)rw;
2021 v.sn = (OPJ_INT32)rh;
2022
2023 rw = (OPJ_UINT32)(tr->x1 - tr->x0);
2024 rh = (OPJ_UINT32)(tr->y1 - tr->y0);
2025
2026 h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
2027 h.cas = tr->x0 % 2;
2028
2029 v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
2030 v.cas = tr->y0 % 2;
2031
2032 /* Get the subband coordinates for the window of interest */
2033 /* LL band */
2034 opj_dwt_get_band_coordinates(tilec, resno, 0,
2035 win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2036 &win_ll_x0, &win_ll_y0,
2037 &win_ll_x1, &win_ll_y1);
2038
2039 /* HL band */
2040 opj_dwt_get_band_coordinates(tilec, resno, 1,
2041 win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2042 &win_hl_x0, NULL, &win_hl_x1, NULL);
2043
2044 /* LH band */
2045 opj_dwt_get_band_coordinates(tilec, resno, 2,
2046 win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2047 NULL, &win_lh_y0, NULL, &win_lh_y1);
2048
2049 /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
2050 tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
2051 tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
2052 tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
2053 tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
2054
2055 /* Substract the origin of the bands for this tile, to the subwindow */
2056 /* of interest band coordinates, so as to get them relative to the */
2057 /* tile */
2058 win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
2059 win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
2060 win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
2061 win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
2062 win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
2063 win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
2064 win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
2065 win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
2066
2067 opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
2068 opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
2069
2070 opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
2071 opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
2072
2073 /* Compute the tile-resolution-based coordinates for the window of interest */
2074 if (h.cas == 0) {
2075 win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
2076 win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
2077 } else {
2078 win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
2079 win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
2080 }
2081
2082 if (v.cas == 0) {
2083 win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
2084 win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
2085 } else {
2086 win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
2087 win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
2088 }
2089
2090 for (j = 0; j < rh; ++j) {
2091 if ((j >= win_ll_y0 && j < win_ll_y1) ||
2092 (j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
2093
2094 /* Avoids dwt.c:1584:44 (in opj_dwt_decode_partial_1): runtime error: */
2095 /* signed integer overflow: -1094795586 + -1094795586 cannot be represented in type 'int' */
2096 /* on opj_decompress -i ../../openjpeg/MAPA.jp2 -o out.tif -d 0,0,256,256 */
2097 /* This is less extreme than memsetting the whole buffer to 0 */
2098 /* although we could potentially do better with better handling of edge conditions */
2099 if (win_tr_x1 >= 1 && win_tr_x1 < rw) {
2100 h.mem[win_tr_x1 - 1] = 0;
2101 }
2102 if (win_tr_x1 < rw) {
2103 h.mem[win_tr_x1] = 0;
2104 }
2105
2106 opj_dwt_interleave_partial_h(h.mem,
2107 h.cas,
2108 sa,
2109 j,
2110 (OPJ_UINT32)h.sn,
2111 win_ll_x0,
2112 win_ll_x1,
2113 win_hl_x0,
2114 win_hl_x1);
2115 opj_dwt_decode_partial_1(h.mem, h.mem_count, h.dn, h.sn, h.cas,
2116 (OPJ_INT32)win_ll_x0,
2117 (OPJ_INT32)win_ll_x1,
2118 (OPJ_INT32)win_hl_x0,
2119 (OPJ_INT32)win_hl_x1);
2120 if (!opj_sparse_array_int32_write(sa,
2121 win_tr_x0, j,
2122 win_tr_x1, j + 1,
2123 h.mem + win_tr_x0,
2124 1, 0, OPJ_TRUE)) {
2125 /* FIXME event manager error callback */
2126 opj_sparse_array_int32_free(sa);
2127 opj_aligned_free(h.mem);
2128 return OPJ_FALSE;
2129 }
2130 }
2131 }
2132
2133 for (i = win_tr_x0; i < win_tr_x1;) {
2134 OPJ_UINT32 nb_cols = opj_uint_min(4U, win_tr_x1 - i);
2135 opj_dwt_interleave_partial_v(v.mem,
2136 v.cas,
2137 sa,
2138 i,
2139 nb_cols,
2140 (OPJ_UINT32)v.sn,
2141 win_ll_y0,
2142 win_ll_y1,
2143 win_lh_y0,
2144 win_lh_y1);
2145 opj_dwt_decode_partial_1_parallel(v.mem, nb_cols, v.dn, v.sn, v.cas,
2146 (OPJ_INT32)win_ll_y0,
2147 (OPJ_INT32)win_ll_y1,
2148 (OPJ_INT32)win_lh_y0,
2149 (OPJ_INT32)win_lh_y1);
2150 if (!opj_sparse_array_int32_write(sa,
2151 i, win_tr_y0,
2152 i + nb_cols, win_tr_y1,
2153 v.mem + 4 * win_tr_y0,
2154 1, 4, OPJ_TRUE)) {
2155 /* FIXME event manager error callback */
2156 opj_sparse_array_int32_free(sa);
2157 opj_aligned_free(h.mem);
2158 return OPJ_FALSE;
2159 }
2160
2161 i += nb_cols;
2162 }
2163 }
2164 opj_aligned_free(h.mem);
2165
2166 {
2167 OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
2168 tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
2169 tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
2170 tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
2171 tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
2172 tilec->data_win,
2173 1, tr_max->win_x1 - tr_max->win_x0,
2174 OPJ_TRUE);
2175 assert(ret);
2176 OPJ_UNUSED(ret);
2177 }
2178 opj_sparse_array_int32_free(sa);
2179 return OPJ_TRUE;
2180 }
2181
opj_v4dwt_interleave_h(opj_v4dwt_t * OPJ_RESTRICT dwt,OPJ_FLOAT32 * OPJ_RESTRICT a,OPJ_UINT32 width,OPJ_UINT32 remaining_height)2182 static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt,
2183 OPJ_FLOAT32* OPJ_RESTRICT a,
2184 OPJ_UINT32 width,
2185 OPJ_UINT32 remaining_height)
2186 {
2187 OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(dwt->wavelet + dwt->cas);
2188 OPJ_UINT32 i, k;
2189 OPJ_UINT32 x0 = dwt->win_l_x0;
2190 OPJ_UINT32 x1 = dwt->win_l_x1;
2191
2192 for (k = 0; k < 2; ++k) {
2193 if (remaining_height >= 4 && ((OPJ_SIZE_T) a & 0x0f) == 0 &&
2194 ((OPJ_SIZE_T) bi & 0x0f) == 0 && (width & 0x0f) == 0) {
2195 /* Fast code path */
2196 for (i = x0; i < x1; ++i) {
2197 OPJ_UINT32 j = i;
2198 bi[i * 8 ] = a[j];
2199 j += width;
2200 bi[i * 8 + 1] = a[j];
2201 j += width;
2202 bi[i * 8 + 2] = a[j];
2203 j += width;
2204 bi[i * 8 + 3] = a[j];
2205 }
2206 } else {
2207 /* Slow code path */
2208 for (i = x0; i < x1; ++i) {
2209 OPJ_UINT32 j = i;
2210 bi[i * 8 ] = a[j];
2211 j += width;
2212 if (remaining_height == 1) {
2213 continue;
2214 }
2215 bi[i * 8 + 1] = a[j];
2216 j += width;
2217 if (remaining_height == 2) {
2218 continue;
2219 }
2220 bi[i * 8 + 2] = a[j];
2221 j += width;
2222 if (remaining_height == 3) {
2223 continue;
2224 }
2225 bi[i * 8 + 3] = a[j]; /* This one*/
2226 }
2227 }
2228
2229 bi = (OPJ_FLOAT32*)(dwt->wavelet + 1 - dwt->cas);
2230 a += dwt->sn;
2231 x0 = dwt->win_h_x0;
2232 x1 = dwt->win_h_x1;
2233 }
2234 }
2235
opj_v4dwt_interleave_partial_h(opj_v4dwt_t * dwt,opj_sparse_array_int32_t * sa,OPJ_UINT32 sa_line,OPJ_UINT32 remaining_height)2236 static void opj_v4dwt_interleave_partial_h(opj_v4dwt_t* dwt,
2237 opj_sparse_array_int32_t* sa,
2238 OPJ_UINT32 sa_line,
2239 OPJ_UINT32 remaining_height)
2240 {
2241 OPJ_UINT32 i;
2242 for (i = 0; i < remaining_height; i++) {
2243 OPJ_BOOL ret;
2244 ret = opj_sparse_array_int32_read(sa,
2245 dwt->win_l_x0, sa_line + i,
2246 dwt->win_l_x1, sa_line + i + 1,
2247 /* Nasty cast from float* to int32* */
2248 (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i,
2249 8, 0, OPJ_TRUE);
2250 assert(ret);
2251 ret = opj_sparse_array_int32_read(sa,
2252 (OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i,
2253 (OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1,
2254 /* Nasty cast from float* to int32* */
2255 (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i,
2256 8, 0, OPJ_TRUE);
2257 assert(ret);
2258 OPJ_UNUSED(ret);
2259 }
2260 }
2261
opj_v4dwt_interleave_v(opj_v4dwt_t * OPJ_RESTRICT dwt,OPJ_FLOAT32 * OPJ_RESTRICT a,OPJ_UINT32 width,OPJ_UINT32 nb_elts_read)2262 static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
2263 OPJ_FLOAT32* OPJ_RESTRICT a,
2264 OPJ_UINT32 width,
2265 OPJ_UINT32 nb_elts_read)
2266 {
2267 opj_v4_t* OPJ_RESTRICT bi = dwt->wavelet + dwt->cas;
2268 OPJ_UINT32 i;
2269
2270 for (i = dwt->win_l_x0; i < dwt->win_l_x1; ++i) {
2271 memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
2272 (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
2273 }
2274
2275 a += (OPJ_UINT32)dwt->sn * (OPJ_SIZE_T)width;
2276 bi = dwt->wavelet + 1 - dwt->cas;
2277
2278 for (i = dwt->win_h_x0; i < dwt->win_h_x1; ++i) {
2279 memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width],
2280 (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32));
2281 }
2282 }
2283
opj_v4dwt_interleave_partial_v(opj_v4dwt_t * OPJ_RESTRICT dwt,opj_sparse_array_int32_t * sa,OPJ_UINT32 sa_col,OPJ_UINT32 nb_elts_read)2284 static void opj_v4dwt_interleave_partial_v(opj_v4dwt_t* OPJ_RESTRICT dwt,
2285 opj_sparse_array_int32_t* sa,
2286 OPJ_UINT32 sa_col,
2287 OPJ_UINT32 nb_elts_read)
2288 {
2289 OPJ_BOOL ret;
2290 ret = opj_sparse_array_int32_read(sa,
2291 sa_col, dwt->win_l_x0,
2292 sa_col + nb_elts_read, dwt->win_l_x1,
2293 (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0),
2294 1, 8, OPJ_TRUE);
2295 assert(ret);
2296 ret = opj_sparse_array_int32_read(sa,
2297 sa_col, (OPJ_UINT32)dwt->sn + dwt->win_h_x0,
2298 sa_col + nb_elts_read, (OPJ_UINT32)dwt->sn + dwt->win_h_x1,
2299 (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0),
2300 1, 8, OPJ_TRUE);
2301 assert(ret);
2302 OPJ_UNUSED(ret);
2303 }
2304
2305 #ifdef __SSE__
2306
opj_v4dwt_decode_step1_sse(opj_v4_t * w,OPJ_UINT32 start,OPJ_UINT32 end,const __m128 c)2307 static void opj_v4dwt_decode_step1_sse(opj_v4_t* w,
2308 OPJ_UINT32 start,
2309 OPJ_UINT32 end,
2310 const __m128 c)
2311 {
2312 __m128* OPJ_RESTRICT vw = (__m128*) w;
2313 OPJ_UINT32 i;
2314 /* 4x unrolled loop */
2315 vw += 2 * start;
2316 for (i = start; i + 3 < end; i += 4, vw += 8) {
2317 __m128 xmm0 = _mm_mul_ps(vw[0], c);
2318 __m128 xmm2 = _mm_mul_ps(vw[2], c);
2319 __m128 xmm4 = _mm_mul_ps(vw[4], c);
2320 __m128 xmm6 = _mm_mul_ps(vw[6], c);
2321 vw[0] = xmm0;
2322 vw[2] = xmm2;
2323 vw[4] = xmm4;
2324 vw[6] = xmm6;
2325 }
2326 for (; i < end; ++i, vw += 2) {
2327 vw[0] = _mm_mul_ps(vw[0], c);
2328 }
2329 }
2330
opj_v4dwt_decode_step2_sse(opj_v4_t * l,opj_v4_t * w,OPJ_UINT32 start,OPJ_UINT32 end,OPJ_UINT32 m,__m128 c)2331 static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w,
2332 OPJ_UINT32 start,
2333 OPJ_UINT32 end,
2334 OPJ_UINT32 m,
2335 __m128 c)
2336 {
2337 __m128* OPJ_RESTRICT vl = (__m128*) l;
2338 __m128* OPJ_RESTRICT vw = (__m128*) w;
2339 OPJ_UINT32 i;
2340 OPJ_UINT32 imax = opj_uint_min(end, m);
2341 __m128 tmp1, tmp2, tmp3;
2342 if (start == 0) {
2343 tmp1 = vl[0];
2344 } else {
2345 vw += start * 2;
2346 tmp1 = vw[-3];
2347 }
2348
2349 i = start;
2350
2351 /* 4x loop unrolling */
2352 for (; i + 3 < imax; i += 4) {
2353 __m128 tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
2354 tmp2 = vw[-1];
2355 tmp3 = vw[ 0];
2356 tmp4 = vw[ 1];
2357 tmp5 = vw[ 2];
2358 tmp6 = vw[ 3];
2359 tmp7 = vw[ 4];
2360 tmp8 = vw[ 5];
2361 tmp9 = vw[ 6];
2362 vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
2363 vw[ 1] = _mm_add_ps(tmp4, _mm_mul_ps(_mm_add_ps(tmp3, tmp5), c));
2364 vw[ 3] = _mm_add_ps(tmp6, _mm_mul_ps(_mm_add_ps(tmp5, tmp7), c));
2365 vw[ 5] = _mm_add_ps(tmp8, _mm_mul_ps(_mm_add_ps(tmp7, tmp9), c));
2366 tmp1 = tmp9;
2367 vw += 8;
2368 }
2369
2370 for (; i < imax; ++i) {
2371 tmp2 = vw[-1];
2372 tmp3 = vw[ 0];
2373 vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
2374 tmp1 = tmp3;
2375 vw += 2;
2376 }
2377 if (m < end) {
2378 assert(m + 1 == end);
2379 c = _mm_add_ps(c, c);
2380 c = _mm_mul_ps(c, vw[-2]);
2381 vw[-1] = _mm_add_ps(vw[-1], c);
2382 }
2383 }
2384
2385 #else
2386
opj_v4dwt_decode_step1(opj_v4_t * w,OPJ_UINT32 start,OPJ_UINT32 end,const OPJ_FLOAT32 c)2387 static void opj_v4dwt_decode_step1(opj_v4_t* w,
2388 OPJ_UINT32 start,
2389 OPJ_UINT32 end,
2390 const OPJ_FLOAT32 c)
2391 {
2392 OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w;
2393 OPJ_UINT32 i;
2394 for (i = start; i < end; ++i) {
2395 OPJ_FLOAT32 tmp1 = fw[i * 8 ];
2396 OPJ_FLOAT32 tmp2 = fw[i * 8 + 1];
2397 OPJ_FLOAT32 tmp3 = fw[i * 8 + 2];
2398 OPJ_FLOAT32 tmp4 = fw[i * 8 + 3];
2399 fw[i * 8 ] = tmp1 * c;
2400 fw[i * 8 + 1] = tmp2 * c;
2401 fw[i * 8 + 2] = tmp3 * c;
2402 fw[i * 8 + 3] = tmp4 * c;
2403 }
2404 }
2405
opj_v4dwt_decode_step2(opj_v4_t * l,opj_v4_t * w,OPJ_UINT32 start,OPJ_UINT32 end,OPJ_UINT32 m,OPJ_FLOAT32 c)2406 static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w,
2407 OPJ_UINT32 start,
2408 OPJ_UINT32 end,
2409 OPJ_UINT32 m,
2410 OPJ_FLOAT32 c)
2411 {
2412 OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l;
2413 OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w;
2414 OPJ_UINT32 i;
2415 OPJ_UINT32 imax = opj_uint_min(end, m);
2416 if (start > 0) {
2417 fw += 8 * start;
2418 fl = fw - 8;
2419 }
2420 for (i = start; i < imax; ++i) {
2421 OPJ_FLOAT32 tmp1_1 = fl[0];
2422 OPJ_FLOAT32 tmp1_2 = fl[1];
2423 OPJ_FLOAT32 tmp1_3 = fl[2];
2424 OPJ_FLOAT32 tmp1_4 = fl[3];
2425 OPJ_FLOAT32 tmp2_1 = fw[-4];
2426 OPJ_FLOAT32 tmp2_2 = fw[-3];
2427 OPJ_FLOAT32 tmp2_3 = fw[-2];
2428 OPJ_FLOAT32 tmp2_4 = fw[-1];
2429 OPJ_FLOAT32 tmp3_1 = fw[0];
2430 OPJ_FLOAT32 tmp3_2 = fw[1];
2431 OPJ_FLOAT32 tmp3_3 = fw[2];
2432 OPJ_FLOAT32 tmp3_4 = fw[3];
2433 fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
2434 fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
2435 fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
2436 fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
2437 fl = fw;
2438 fw += 8;
2439 }
2440 if (m < end) {
2441 assert(m + 1 == end);
2442 c += c;
2443 fw[-4] = fw[-4] + fl[0] * c;
2444 fw[-3] = fw[-3] + fl[1] * c;
2445 fw[-2] = fw[-2] + fl[2] * c;
2446 fw[-1] = fw[-1] + fl[3] * c;
2447 }
2448 }
2449
2450 #endif
2451
2452 /* <summary> */
2453 /* Inverse 9-7 wavelet transform in 1-D. */
2454 /* </summary> */
opj_v4dwt_decode(opj_v4dwt_t * OPJ_RESTRICT dwt)2455 static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt)
2456 {
2457 OPJ_INT32 a, b;
2458 if (dwt->cas == 0) {
2459 if (!((dwt->dn > 0) || (dwt->sn > 1))) {
2460 return;
2461 }
2462 a = 0;
2463 b = 1;
2464 } else {
2465 if (!((dwt->sn > 0) || (dwt->dn > 1))) {
2466 return;
2467 }
2468 a = 1;
2469 b = 0;
2470 }
2471 #ifdef __SSE__
2472 opj_v4dwt_decode_step1_sse(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
2473 _mm_set1_ps(opj_K));
2474 opj_v4dwt_decode_step1_sse(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
2475 _mm_set1_ps(opj_c13318));
2476 opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
2477 dwt->win_l_x0, dwt->win_l_x1,
2478 (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2479 _mm_set1_ps(opj_dwt_delta));
2480 opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
2481 dwt->win_h_x0, dwt->win_h_x1,
2482 (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2483 _mm_set1_ps(opj_dwt_gamma));
2484 opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1,
2485 dwt->win_l_x0, dwt->win_l_x1,
2486 (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2487 _mm_set1_ps(opj_dwt_beta));
2488 opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1,
2489 dwt->win_h_x0, dwt->win_h_x1,
2490 (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2491 _mm_set1_ps(opj_dwt_alpha));
2492 #else
2493 opj_v4dwt_decode_step1(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1,
2494 opj_K);
2495 opj_v4dwt_decode_step1(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1,
2496 opj_c13318);
2497 opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
2498 dwt->win_l_x0, dwt->win_l_x1,
2499 (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2500 opj_dwt_delta);
2501 opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
2502 dwt->win_h_x0, dwt->win_h_x1,
2503 (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2504 opj_dwt_gamma);
2505 opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1,
2506 dwt->win_l_x0, dwt->win_l_x1,
2507 (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a),
2508 opj_dwt_beta);
2509 opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1,
2510 dwt->win_h_x0, dwt->win_h_x1,
2511 (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b),
2512 opj_dwt_alpha);
2513 #endif
2514 }
2515
2516
2517 /* <summary> */
2518 /* Inverse 9-7 wavelet transform in 2-D. */
2519 /* </summary> */
2520 static
opj_dwt_decode_tile_97(opj_tcd_tilecomp_t * OPJ_RESTRICT tilec,OPJ_UINT32 numres)2521 OPJ_BOOL opj_dwt_decode_tile_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
2522 OPJ_UINT32 numres)
2523 {
2524 opj_v4dwt_t h;
2525 opj_v4dwt_t v;
2526
2527 opj_tcd_resolution_t* res = tilec->resolutions;
2528
2529 OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 -
2530 res->x0); /* width of the resolution level computed */
2531 OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 -
2532 res->y0); /* height of the resolution level computed */
2533
2534 OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions -
2535 1].x1 -
2536 tilec->resolutions[tilec->minimum_num_resolutions - 1].x0);
2537
2538 OPJ_SIZE_T l_data_size;
2539
2540 l_data_size = opj_dwt_max_resolution(res, numres);
2541 /* overflow check */
2542 if (l_data_size > (SIZE_MAX - 5U)) {
2543 /* FIXME event manager error callback */
2544 return OPJ_FALSE;
2545 }
2546 l_data_size += 5U;
2547 /* overflow check */
2548 if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) {
2549 /* FIXME event manager error callback */
2550 return OPJ_FALSE;
2551 }
2552 h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t));
2553 if (!h.wavelet) {
2554 /* FIXME event manager error callback */
2555 return OPJ_FALSE;
2556 }
2557 v.wavelet = h.wavelet;
2558
2559 while (--numres) {
2560 OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data;
2561 OPJ_UINT32 j;
2562
2563 h.sn = (OPJ_INT32)rw;
2564 v.sn = (OPJ_INT32)rh;
2565
2566 ++res;
2567
2568 rw = (OPJ_UINT32)(res->x1 -
2569 res->x0); /* width of the resolution level computed */
2570 rh = (OPJ_UINT32)(res->y1 -
2571 res->y0); /* height of the resolution level computed */
2572
2573 h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
2574 h.cas = res->x0 % 2;
2575
2576 h.win_l_x0 = 0;
2577 h.win_l_x1 = (OPJ_UINT32)h.sn;
2578 h.win_h_x0 = 0;
2579 h.win_h_x1 = (OPJ_UINT32)h.dn;
2580 for (j = 0; j + 3 < rh; j += 4) {
2581 OPJ_UINT32 k;
2582 opj_v4dwt_interleave_h(&h, aj, w, rh - j);
2583 opj_v4dwt_decode(&h);
2584
2585 for (k = 0; k < rw; k++) {
2586 aj[k ] = h.wavelet[k].f[0];
2587 aj[k + (OPJ_SIZE_T)w ] = h.wavelet[k].f[1];
2588 aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2];
2589 aj[k + (OPJ_SIZE_T)w * 3] = h.wavelet[k].f[3];
2590 }
2591
2592 aj += w * 4;
2593 }
2594
2595 if (j < rh) {
2596 OPJ_UINT32 k;
2597 opj_v4dwt_interleave_h(&h, aj, w, rh - j);
2598 opj_v4dwt_decode(&h);
2599 for (k = 0; k < rw; k++) {
2600 switch (rh - j) {
2601 case 3:
2602 aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2];
2603 /* FALLTHRU */
2604 case 2:
2605 aj[k + (OPJ_SIZE_T)w ] = h.wavelet[k].f[1];
2606 /* FALLTHRU */
2607 case 1:
2608 aj[k] = h.wavelet[k].f[0];
2609 }
2610 }
2611 }
2612
2613 v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
2614 v.cas = res->y0 % 2;
2615 v.win_l_x0 = 0;
2616 v.win_l_x1 = (OPJ_UINT32)v.sn;
2617 v.win_h_x0 = 0;
2618 v.win_h_x1 = (OPJ_UINT32)v.dn;
2619
2620 aj = (OPJ_FLOAT32*) tilec->data;
2621 for (j = rw; j > 3; j -= 4) {
2622 OPJ_UINT32 k;
2623
2624 opj_v4dwt_interleave_v(&v, aj, w, 4);
2625 opj_v4dwt_decode(&v);
2626
2627 for (k = 0; k < rh; ++k) {
2628 memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
2629 }
2630 aj += 4;
2631 }
2632
2633 if (rw & 0x03) {
2634 OPJ_UINT32 k;
2635
2636 j = rw & 0x03;
2637
2638 opj_v4dwt_interleave_v(&v, aj, w, j);
2639 opj_v4dwt_decode(&v);
2640
2641 for (k = 0; k < rh; ++k) {
2642 memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k],
2643 (OPJ_SIZE_T)j * sizeof(OPJ_FLOAT32));
2644 }
2645 }
2646 }
2647
2648 opj_aligned_free(h.wavelet);
2649 return OPJ_TRUE;
2650 }
2651
2652 static
opj_dwt_decode_partial_97(opj_tcd_tilecomp_t * OPJ_RESTRICT tilec,OPJ_UINT32 numres)2653 OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
2654 OPJ_UINT32 numres)
2655 {
2656 opj_sparse_array_int32_t* sa;
2657 opj_v4dwt_t h;
2658 opj_v4dwt_t v;
2659 OPJ_UINT32 resno;
2660 /* This value matches the maximum left/right extension given in tables */
2661 /* F.2 and F.3 of the standard. Note: in opj_tcd_is_subband_area_of_interest() */
2662 /* we currently use 3. */
2663 const OPJ_UINT32 filter_width = 4U;
2664
2665 opj_tcd_resolution_t* tr = tilec->resolutions;
2666 opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]);
2667
2668 OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 -
2669 tr->x0); /* width of the resolution level computed */
2670 OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 -
2671 tr->y0); /* height of the resolution level computed */
2672
2673 OPJ_SIZE_T l_data_size;
2674
2675 /* Compute the intersection of the area of interest, expressed in tile coordinates */
2676 /* with the tile coordinates */
2677 OPJ_UINT32 win_tcx0 = tilec->win_x0;
2678 OPJ_UINT32 win_tcy0 = tilec->win_y0;
2679 OPJ_UINT32 win_tcx1 = tilec->win_x1;
2680 OPJ_UINT32 win_tcy1 = tilec->win_y1;
2681
2682 if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) {
2683 return OPJ_TRUE;
2684 }
2685
2686 sa = opj_dwt_init_sparse_array(tilec, numres);
2687 if (sa == NULL) {
2688 return OPJ_FALSE;
2689 }
2690
2691 if (numres == 1U) {
2692 OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
2693 tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
2694 tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
2695 tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
2696 tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
2697 tilec->data_win,
2698 1, tr_max->win_x1 - tr_max->win_x0,
2699 OPJ_TRUE);
2700 assert(ret);
2701 OPJ_UNUSED(ret);
2702 opj_sparse_array_int32_free(sa);
2703 return OPJ_TRUE;
2704 }
2705
2706 l_data_size = opj_dwt_max_resolution(tr, numres);
2707 /* overflow check */
2708 if (l_data_size > (SIZE_MAX - 5U)) {
2709 /* FIXME event manager error callback */
2710 return OPJ_FALSE;
2711 }
2712 l_data_size += 5U;
2713 /* overflow check */
2714 if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) {
2715 /* FIXME event manager error callback */
2716 return OPJ_FALSE;
2717 }
2718 h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t));
2719 if (!h.wavelet) {
2720 /* FIXME event manager error callback */
2721 return OPJ_FALSE;
2722 }
2723 v.wavelet = h.wavelet;
2724
2725 for (resno = 1; resno < numres; resno ++) {
2726 OPJ_UINT32 j;
2727 /* Window of interest subband-based coordinates */
2728 OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1;
2729 OPJ_UINT32 win_hl_x0, win_hl_x1;
2730 OPJ_UINT32 win_lh_y0, win_lh_y1;
2731 /* Window of interest tile-resolution-based coordinates */
2732 OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1;
2733 /* Tile-resolution subband-based coordinates */
2734 OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0;
2735
2736 ++tr;
2737
2738 h.sn = (OPJ_INT32)rw;
2739 v.sn = (OPJ_INT32)rh;
2740
2741 rw = (OPJ_UINT32)(tr->x1 - tr->x0);
2742 rh = (OPJ_UINT32)(tr->y1 - tr->y0);
2743
2744 h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
2745 h.cas = tr->x0 % 2;
2746
2747 v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
2748 v.cas = tr->y0 % 2;
2749
2750 /* Get the subband coordinates for the window of interest */
2751 /* LL band */
2752 opj_dwt_get_band_coordinates(tilec, resno, 0,
2753 win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2754 &win_ll_x0, &win_ll_y0,
2755 &win_ll_x1, &win_ll_y1);
2756
2757 /* HL band */
2758 opj_dwt_get_band_coordinates(tilec, resno, 1,
2759 win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2760 &win_hl_x0, NULL, &win_hl_x1, NULL);
2761
2762 /* LH band */
2763 opj_dwt_get_band_coordinates(tilec, resno, 2,
2764 win_tcx0, win_tcy0, win_tcx1, win_tcy1,
2765 NULL, &win_lh_y0, NULL, &win_lh_y1);
2766
2767 /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */
2768 tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0;
2769 tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0;
2770 tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0;
2771 tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0;
2772
2773 /* Substract the origin of the bands for this tile, to the subwindow */
2774 /* of interest band coordinates, so as to get them relative to the */
2775 /* tile */
2776 win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0);
2777 win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0);
2778 win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0);
2779 win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0);
2780 win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0);
2781 win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0);
2782 win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0);
2783 win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0);
2784
2785 opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1);
2786 opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1);
2787
2788 opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1);
2789 opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1);
2790
2791 /* Compute the tile-resolution-based coordinates for the window of interest */
2792 if (h.cas == 0) {
2793 win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1);
2794 win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw);
2795 } else {
2796 win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1);
2797 win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw);
2798 }
2799
2800 if (v.cas == 0) {
2801 win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1);
2802 win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh);
2803 } else {
2804 win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1);
2805 win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh);
2806 }
2807
2808 h.win_l_x0 = win_ll_x0;
2809 h.win_l_x1 = win_ll_x1;
2810 h.win_h_x0 = win_hl_x0;
2811 h.win_h_x1 = win_hl_x1;
2812 for (j = 0; j + 3 < rh; j += 4) {
2813 if ((j + 3 >= win_ll_y0 && j < win_ll_y1) ||
2814 (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
2815 j < win_lh_y1 + (OPJ_UINT32)v.sn)) {
2816 opj_v4dwt_interleave_partial_h(&h, sa, j, opj_uint_min(4U, rh - j));
2817 opj_v4dwt_decode(&h);
2818 if (!opj_sparse_array_int32_write(sa,
2819 win_tr_x0, j,
2820 win_tr_x1, j + 4,
2821 (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
2822 4, 1, OPJ_TRUE)) {
2823 /* FIXME event manager error callback */
2824 opj_sparse_array_int32_free(sa);
2825 opj_aligned_free(h.wavelet);
2826 return OPJ_FALSE;
2827 }
2828 }
2829 }
2830
2831 if (j < rh &&
2832 ((j + 3 >= win_ll_y0 && j < win_ll_y1) ||
2833 (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn &&
2834 j < win_lh_y1 + (OPJ_UINT32)v.sn))) {
2835 opj_v4dwt_interleave_partial_h(&h, sa, j, rh - j);
2836 opj_v4dwt_decode(&h);
2837 if (!opj_sparse_array_int32_write(sa,
2838 win_tr_x0, j,
2839 win_tr_x1, rh,
2840 (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0],
2841 4, 1, OPJ_TRUE)) {
2842 /* FIXME event manager error callback */
2843 opj_sparse_array_int32_free(sa);
2844 opj_aligned_free(h.wavelet);
2845 return OPJ_FALSE;
2846 }
2847 }
2848
2849 v.win_l_x0 = win_ll_y0;
2850 v.win_l_x1 = win_ll_y1;
2851 v.win_h_x0 = win_lh_y0;
2852 v.win_h_x1 = win_lh_y1;
2853 for (j = win_tr_x0; j < win_tr_x1; j += 4) {
2854 OPJ_UINT32 nb_elts = opj_uint_min(4U, win_tr_x1 - j);
2855
2856 opj_v4dwt_interleave_partial_v(&v, sa, j, nb_elts);
2857 opj_v4dwt_decode(&v);
2858
2859 if (!opj_sparse_array_int32_write(sa,
2860 j, win_tr_y0,
2861 j + nb_elts, win_tr_y1,
2862 (OPJ_INT32*)&h.wavelet[win_tr_y0].f[0],
2863 1, 4, OPJ_TRUE)) {
2864 /* FIXME event manager error callback */
2865 opj_sparse_array_int32_free(sa);
2866 opj_aligned_free(h.wavelet);
2867 return OPJ_FALSE;
2868 }
2869 }
2870 }
2871
2872 {
2873 OPJ_BOOL ret = opj_sparse_array_int32_read(sa,
2874 tr_max->win_x0 - (OPJ_UINT32)tr_max->x0,
2875 tr_max->win_y0 - (OPJ_UINT32)tr_max->y0,
2876 tr_max->win_x1 - (OPJ_UINT32)tr_max->x0,
2877 tr_max->win_y1 - (OPJ_UINT32)tr_max->y0,
2878 tilec->data_win,
2879 1, tr_max->win_x1 - tr_max->win_x0,
2880 OPJ_TRUE);
2881 assert(ret);
2882 OPJ_UNUSED(ret);
2883 }
2884 opj_sparse_array_int32_free(sa);
2885
2886 opj_aligned_free(h.wavelet);
2887 return OPJ_TRUE;
2888 }
2889
2890
opj_dwt_decode_real(opj_tcd_t * p_tcd,opj_tcd_tilecomp_t * OPJ_RESTRICT tilec,OPJ_UINT32 numres)2891 OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd,
2892 opj_tcd_tilecomp_t* OPJ_RESTRICT tilec,
2893 OPJ_UINT32 numres)
2894 {
2895 if (p_tcd->whole_tile_decoding) {
2896 return opj_dwt_decode_tile_97(tilec, numres);
2897 } else {
2898 return opj_dwt_decode_partial_97(tilec, numres);
2899 }
2900 }
2901