1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/Support/KnownBits.h"
22 using namespace llvm;
23 using namespace PatternMatch;
24
25 #define DEBUG_TYPE "instcombine"
26
27 /// Analyze 'Val', seeing if it is a simple linear expression.
28 /// If so, decompose it, returning some value X, such that Val is
29 /// X*Scale+Offset.
30 ///
decomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)31 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
32 uint64_t &Offset) {
33 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
34 Offset = CI->getZExtValue();
35 Scale = 0;
36 return ConstantInt::get(Val->getType(), 0);
37 }
38
39 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
40 // Cannot look past anything that might overflow.
41 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
42 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
43 Scale = 1;
44 Offset = 0;
45 return Val;
46 }
47
48 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
49 if (I->getOpcode() == Instruction::Shl) {
50 // This is a value scaled by '1 << the shift amt'.
51 Scale = UINT64_C(1) << RHS->getZExtValue();
52 Offset = 0;
53 return I->getOperand(0);
54 }
55
56 if (I->getOpcode() == Instruction::Mul) {
57 // This value is scaled by 'RHS'.
58 Scale = RHS->getZExtValue();
59 Offset = 0;
60 return I->getOperand(0);
61 }
62
63 if (I->getOpcode() == Instruction::Add) {
64 // We have X+C. Check to see if we really have (X*C2)+C1,
65 // where C1 is divisible by C2.
66 unsigned SubScale;
67 Value *SubVal =
68 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
69 Offset += RHS->getZExtValue();
70 Scale = SubScale;
71 return SubVal;
72 }
73 }
74 }
75
76 // Otherwise, we can't look past this.
77 Scale = 1;
78 Offset = 0;
79 return Val;
80 }
81
82 /// If we find a cast of an allocation instruction, try to eliminate the cast by
83 /// moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)84 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
85 AllocaInst &AI) {
86 PointerType *PTy = cast<PointerType>(CI.getType());
87
88 BuilderTy AllocaBuilder(Builder);
89 AllocaBuilder.SetInsertPoint(&AI);
90
91 // Get the type really allocated and the type casted to.
92 Type *AllocElTy = AI.getAllocatedType();
93 Type *CastElTy = PTy->getElementType();
94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
95
96 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
97 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
98 if (CastElTyAlign < AllocElTyAlign) return nullptr;
99
100 // If the allocation has multiple uses, only promote it if we are strictly
101 // increasing the alignment of the resultant allocation. If we keep it the
102 // same, we open the door to infinite loops of various kinds.
103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
104
105 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
106 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
108
109 // If the allocation has multiple uses, only promote it if we're not
110 // shrinking the amount of memory being allocated.
111 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
112 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
114
115 // See if we can satisfy the modulus by pulling a scale out of the array
116 // size argument.
117 unsigned ArraySizeScale;
118 uint64_t ArrayOffset;
119 Value *NumElements = // See if the array size is a decomposable linear expr.
120 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
121
122 // If we can now satisfy the modulus, by using a non-1 scale, we really can
123 // do the xform.
124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
126
127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
128 Value *Amt = nullptr;
129 if (Scale == 1) {
130 Amt = NumElements;
131 } else {
132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
133 // Insert before the alloca, not before the cast.
134 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
135 }
136
137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
139 Offset, true);
140 Amt = AllocaBuilder.CreateAdd(Amt, Off);
141 }
142
143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
144 New->setAlignment(AI.getAlignment());
145 New->takeName(&AI);
146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
147
148 // If the allocation has multiple real uses, insert a cast and change all
149 // things that used it to use the new cast. This will also hack on CI, but it
150 // will die soon.
151 if (!AI.hasOneUse()) {
152 // New is the allocation instruction, pointer typed. AI is the original
153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
155 replaceInstUsesWith(AI, NewCast);
156 }
157 return replaceInstUsesWith(CI, New);
158 }
159
160 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
161 /// true for, actually insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)162 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
163 bool isSigned) {
164 if (Constant *C = dyn_cast<Constant>(V)) {
165 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
166 // If we got a constantexpr back, try to simplify it with DL info.
167 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
168 C = FoldedC;
169 return C;
170 }
171
172 // Otherwise, it must be an instruction.
173 Instruction *I = cast<Instruction>(V);
174 Instruction *Res = nullptr;
175 unsigned Opc = I->getOpcode();
176 switch (Opc) {
177 case Instruction::Add:
178 case Instruction::Sub:
179 case Instruction::Mul:
180 case Instruction::And:
181 case Instruction::Or:
182 case Instruction::Xor:
183 case Instruction::AShr:
184 case Instruction::LShr:
185 case Instruction::Shl:
186 case Instruction::UDiv:
187 case Instruction::URem: {
188 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
189 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
190 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
191 break;
192 }
193 case Instruction::Trunc:
194 case Instruction::ZExt:
195 case Instruction::SExt:
196 // If the source type of the cast is the type we're trying for then we can
197 // just return the source. There's no need to insert it because it is not
198 // new.
199 if (I->getOperand(0)->getType() == Ty)
200 return I->getOperand(0);
201
202 // Otherwise, must be the same type of cast, so just reinsert a new one.
203 // This also handles the case of zext(trunc(x)) -> zext(x).
204 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
205 Opc == Instruction::SExt);
206 break;
207 case Instruction::Select: {
208 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
209 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
210 Res = SelectInst::Create(I->getOperand(0), True, False);
211 break;
212 }
213 case Instruction::PHI: {
214 PHINode *OPN = cast<PHINode>(I);
215 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
216 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
217 Value *V =
218 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
219 NPN->addIncoming(V, OPN->getIncomingBlock(i));
220 }
221 Res = NPN;
222 break;
223 }
224 default:
225 // TODO: Can handle more cases here.
226 llvm_unreachable("Unreachable!");
227 }
228
229 Res->takeName(I);
230 return InsertNewInstWith(Res, *I);
231 }
232
isEliminableCastPair(const CastInst * CI1,const CastInst * CI2)233 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
234 const CastInst *CI2) {
235 Type *SrcTy = CI1->getSrcTy();
236 Type *MidTy = CI1->getDestTy();
237 Type *DstTy = CI2->getDestTy();
238
239 Instruction::CastOps firstOp = CI1->getOpcode();
240 Instruction::CastOps secondOp = CI2->getOpcode();
241 Type *SrcIntPtrTy =
242 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
243 Type *MidIntPtrTy =
244 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
245 Type *DstIntPtrTy =
246 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
247 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
248 DstTy, SrcIntPtrTy, MidIntPtrTy,
249 DstIntPtrTy);
250
251 // We don't want to form an inttoptr or ptrtoint that converts to an integer
252 // type that differs from the pointer size.
253 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
254 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
255 Res = 0;
256
257 return Instruction::CastOps(Res);
258 }
259
260 /// Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)261 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
262 Value *Src = CI.getOperand(0);
263
264 // Try to eliminate a cast of a cast.
265 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
266 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
267 // The first cast (CSrc) is eliminable so we need to fix up or replace
268 // the second cast (CI). CSrc will then have a good chance of being dead.
269 auto *Ty = CI.getType();
270 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
271 // Point debug users of the dying cast to the new one.
272 if (CSrc->hasOneUse())
273 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
274 return Res;
275 }
276 }
277
278 if (auto *Sel = dyn_cast<SelectInst>(Src)) {
279 // We are casting a select. Try to fold the cast into the select, but only
280 // if the select does not have a compare instruction with matching operand
281 // types. Creating a select with operands that are different sizes than its
282 // condition may inhibit other folds and lead to worse codegen.
283 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
284 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
285 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
286 replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
287 return NV;
288 }
289 }
290
291 // If we are casting a PHI, then fold the cast into the PHI.
292 if (auto *PN = dyn_cast<PHINode>(Src)) {
293 // Don't do this if it would create a PHI node with an illegal type from a
294 // legal type.
295 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
296 shouldChangeType(CI.getType(), Src->getType()))
297 if (Instruction *NV = foldOpIntoPhi(CI, PN))
298 return NV;
299 }
300
301 return nullptr;
302 }
303
304 /// Constants and extensions/truncates from the destination type are always
305 /// free to be evaluated in that type. This is a helper for canEvaluate*.
canAlwaysEvaluateInType(Value * V,Type * Ty)306 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
307 if (isa<Constant>(V))
308 return true;
309 Value *X;
310 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
311 X->getType() == Ty)
312 return true;
313
314 return false;
315 }
316
317 /// Filter out values that we can not evaluate in the destination type for free.
318 /// This is a helper for canEvaluate*.
canNotEvaluateInType(Value * V,Type * Ty)319 static bool canNotEvaluateInType(Value *V, Type *Ty) {
320 assert(!isa<Constant>(V) && "Constant should already be handled.");
321 if (!isa<Instruction>(V))
322 return true;
323 // We don't extend or shrink something that has multiple uses -- doing so
324 // would require duplicating the instruction which isn't profitable.
325 if (!V->hasOneUse())
326 return true;
327
328 return false;
329 }
330
331 /// Return true if we can evaluate the specified expression tree as type Ty
332 /// instead of its larger type, and arrive with the same value.
333 /// This is used by code that tries to eliminate truncates.
334 ///
335 /// Ty will always be a type smaller than V. We should return true if trunc(V)
336 /// can be computed by computing V in the smaller type. If V is an instruction,
337 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
338 /// makes sense if x and y can be efficiently truncated.
339 ///
340 /// This function works on both vectors and scalars.
341 ///
canEvaluateTruncated(Value * V,Type * Ty,InstCombiner & IC,Instruction * CxtI)342 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
343 Instruction *CxtI) {
344 if (canAlwaysEvaluateInType(V, Ty))
345 return true;
346 if (canNotEvaluateInType(V, Ty))
347 return false;
348
349 auto *I = cast<Instruction>(V);
350 Type *OrigTy = V->getType();
351 switch (I->getOpcode()) {
352 case Instruction::Add:
353 case Instruction::Sub:
354 case Instruction::Mul:
355 case Instruction::And:
356 case Instruction::Or:
357 case Instruction::Xor:
358 // These operators can all arbitrarily be extended or truncated.
359 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
360 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
361
362 case Instruction::UDiv:
363 case Instruction::URem: {
364 // UDiv and URem can be truncated if all the truncated bits are zero.
365 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
366 uint32_t BitWidth = Ty->getScalarSizeInBits();
367 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
368 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
369 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
370 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
371 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
372 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
373 }
374 break;
375 }
376 case Instruction::Shl: {
377 // If we are truncating the result of this SHL, and if it's a shift of a
378 // constant amount, we can always perform a SHL in a smaller type.
379 const APInt *Amt;
380 if (match(I->getOperand(1), m_APInt(Amt))) {
381 uint32_t BitWidth = Ty->getScalarSizeInBits();
382 if (Amt->getLimitedValue(BitWidth) < BitWidth)
383 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
384 }
385 break;
386 }
387 case Instruction::LShr: {
388 // If this is a truncate of a logical shr, we can truncate it to a smaller
389 // lshr iff we know that the bits we would otherwise be shifting in are
390 // already zeros.
391 const APInt *Amt;
392 if (match(I->getOperand(1), m_APInt(Amt))) {
393 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
394 uint32_t BitWidth = Ty->getScalarSizeInBits();
395 if (Amt->getLimitedValue(BitWidth) < BitWidth &&
396 IC.MaskedValueIsZero(I->getOperand(0),
397 APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
398 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
399 }
400 }
401 break;
402 }
403 case Instruction::AShr: {
404 // If this is a truncate of an arithmetic shr, we can truncate it to a
405 // smaller ashr iff we know that all the bits from the sign bit of the
406 // original type and the sign bit of the truncate type are similar.
407 // TODO: It is enough to check that the bits we would be shifting in are
408 // similar to sign bit of the truncate type.
409 const APInt *Amt;
410 if (match(I->getOperand(1), m_APInt(Amt))) {
411 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
412 uint32_t BitWidth = Ty->getScalarSizeInBits();
413 if (Amt->getLimitedValue(BitWidth) < BitWidth &&
414 OrigBitWidth - BitWidth <
415 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
416 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
417 }
418 break;
419 }
420 case Instruction::Trunc:
421 // trunc(trunc(x)) -> trunc(x)
422 return true;
423 case Instruction::ZExt:
424 case Instruction::SExt:
425 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
426 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
427 return true;
428 case Instruction::Select: {
429 SelectInst *SI = cast<SelectInst>(I);
430 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
431 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
432 }
433 case Instruction::PHI: {
434 // We can change a phi if we can change all operands. Note that we never
435 // get into trouble with cyclic PHIs here because we only consider
436 // instructions with a single use.
437 PHINode *PN = cast<PHINode>(I);
438 for (Value *IncValue : PN->incoming_values())
439 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
440 return false;
441 return true;
442 }
443 default:
444 // TODO: Can handle more cases here.
445 break;
446 }
447
448 return false;
449 }
450
451 /// Given a vector that is bitcast to an integer, optionally logically
452 /// right-shifted, and truncated, convert it to an extractelement.
453 /// Example (big endian):
454 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
455 /// --->
456 /// extractelement <4 x i32> %X, 1
foldVecTruncToExtElt(TruncInst & Trunc,InstCombiner & IC)457 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
458 Value *TruncOp = Trunc.getOperand(0);
459 Type *DestType = Trunc.getType();
460 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
461 return nullptr;
462
463 Value *VecInput = nullptr;
464 ConstantInt *ShiftVal = nullptr;
465 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
466 m_LShr(m_BitCast(m_Value(VecInput)),
467 m_ConstantInt(ShiftVal)))) ||
468 !isa<VectorType>(VecInput->getType()))
469 return nullptr;
470
471 VectorType *VecType = cast<VectorType>(VecInput->getType());
472 unsigned VecWidth = VecType->getPrimitiveSizeInBits();
473 unsigned DestWidth = DestType->getPrimitiveSizeInBits();
474 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
475
476 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
477 return nullptr;
478
479 // If the element type of the vector doesn't match the result type,
480 // bitcast it to a vector type that we can extract from.
481 unsigned NumVecElts = VecWidth / DestWidth;
482 if (VecType->getElementType() != DestType) {
483 VecType = VectorType::get(DestType, NumVecElts);
484 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
485 }
486
487 unsigned Elt = ShiftAmount / DestWidth;
488 if (IC.getDataLayout().isBigEndian())
489 Elt = NumVecElts - 1 - Elt;
490
491 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
492 }
493
494 /// Rotate left/right may occur in a wider type than necessary because of type
495 /// promotion rules. Try to narrow all of the component instructions.
narrowRotate(TruncInst & Trunc)496 Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
497 assert((isa<VectorType>(Trunc.getSrcTy()) ||
498 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
499 "Don't narrow to an illegal scalar type");
500
501 // First, find an or'd pair of opposite shifts with the same shifted operand:
502 // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
503 Value *Or0, *Or1;
504 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
505 return nullptr;
506
507 Value *ShVal, *ShAmt0, *ShAmt1;
508 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
509 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
510 return nullptr;
511
512 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
513 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
514 if (ShiftOpcode0 == ShiftOpcode1)
515 return nullptr;
516
517 // The shift amounts must add up to the narrow bit width.
518 Value *ShAmt;
519 bool SubIsOnLHS;
520 Type *DestTy = Trunc.getType();
521 unsigned NarrowWidth = DestTy->getScalarSizeInBits();
522 if (match(ShAmt0,
523 m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) {
524 ShAmt = ShAmt1;
525 SubIsOnLHS = true;
526 } else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth),
527 m_Specific(ShAmt0))))) {
528 ShAmt = ShAmt0;
529 SubIsOnLHS = false;
530 } else {
531 return nullptr;
532 }
533
534 // The shifted value must have high zeros in the wide type. Typically, this
535 // will be a zext, but it could also be the result of an 'and' or 'shift'.
536 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
537 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
538 if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
539 return nullptr;
540
541 // We have an unnecessarily wide rotate!
542 // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
543 // Narrow it down to eliminate the zext/trunc:
544 // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
545 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
546 Value *NegShAmt = Builder.CreateNeg(NarrowShAmt);
547
548 // Mask both shift amounts to ensure there's no UB from oversized shifts.
549 Constant *MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
550 Value *MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
551 Value *MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
552
553 // Truncate the original value and use narrow ops.
554 Value *X = Builder.CreateTrunc(ShVal, DestTy);
555 Value *NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
556 Value *NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
557 Value *NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
558 Value *NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
559 return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
560 }
561
562 /// Try to narrow the width of math or bitwise logic instructions by pulling a
563 /// truncate ahead of binary operators.
564 /// TODO: Transforms for truncated shifts should be moved into here.
narrowBinOp(TruncInst & Trunc)565 Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
566 Type *SrcTy = Trunc.getSrcTy();
567 Type *DestTy = Trunc.getType();
568 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
569 return nullptr;
570
571 BinaryOperator *BinOp;
572 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
573 return nullptr;
574
575 Value *BinOp0 = BinOp->getOperand(0);
576 Value *BinOp1 = BinOp->getOperand(1);
577 switch (BinOp->getOpcode()) {
578 case Instruction::And:
579 case Instruction::Or:
580 case Instruction::Xor:
581 case Instruction::Add:
582 case Instruction::Sub:
583 case Instruction::Mul: {
584 Constant *C;
585 if (match(BinOp0, m_Constant(C))) {
586 // trunc (binop C, X) --> binop (trunc C', X)
587 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
588 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
589 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
590 }
591 if (match(BinOp1, m_Constant(C))) {
592 // trunc (binop X, C) --> binop (trunc X, C')
593 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
594 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
595 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
596 }
597 Value *X;
598 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
599 // trunc (binop (ext X), Y) --> binop X, (trunc Y)
600 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
601 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
602 }
603 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
604 // trunc (binop Y, (ext X)) --> binop (trunc Y), X
605 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
606 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
607 }
608 break;
609 }
610
611 default: break;
612 }
613
614 if (Instruction *NarrowOr = narrowRotate(Trunc))
615 return NarrowOr;
616
617 return nullptr;
618 }
619
620 /// Try to narrow the width of a splat shuffle. This could be generalized to any
621 /// shuffle with a constant operand, but we limit the transform to avoid
622 /// creating a shuffle type that targets may not be able to lower effectively.
shrinkSplatShuffle(TruncInst & Trunc,InstCombiner::BuilderTy & Builder)623 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
624 InstCombiner::BuilderTy &Builder) {
625 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
626 if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
627 Shuf->getMask()->getSplatValue() &&
628 Shuf->getType() == Shuf->getOperand(0)->getType()) {
629 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
630 Constant *NarrowUndef = UndefValue::get(Trunc.getType());
631 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
632 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
633 }
634
635 return nullptr;
636 }
637
638 /// Try to narrow the width of an insert element. This could be generalized for
639 /// any vector constant, but we limit the transform to insertion into undef to
640 /// avoid potential backend problems from unsupported insertion widths. This
641 /// could also be extended to handle the case of inserting a scalar constant
642 /// into a vector variable.
shrinkInsertElt(CastInst & Trunc,InstCombiner::BuilderTy & Builder)643 static Instruction *shrinkInsertElt(CastInst &Trunc,
644 InstCombiner::BuilderTy &Builder) {
645 Instruction::CastOps Opcode = Trunc.getOpcode();
646 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
647 "Unexpected instruction for shrinking");
648
649 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
650 if (!InsElt || !InsElt->hasOneUse())
651 return nullptr;
652
653 Type *DestTy = Trunc.getType();
654 Type *DestScalarTy = DestTy->getScalarType();
655 Value *VecOp = InsElt->getOperand(0);
656 Value *ScalarOp = InsElt->getOperand(1);
657 Value *Index = InsElt->getOperand(2);
658
659 if (isa<UndefValue>(VecOp)) {
660 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
661 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
662 UndefValue *NarrowUndef = UndefValue::get(DestTy);
663 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
664 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
665 }
666
667 return nullptr;
668 }
669
visitTrunc(TruncInst & CI)670 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
671 if (Instruction *Result = commonCastTransforms(CI))
672 return Result;
673
674 Value *Src = CI.getOperand(0);
675 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
676
677 // Attempt to truncate the entire input expression tree to the destination
678 // type. Only do this if the dest type is a simple type, don't convert the
679 // expression tree to something weird like i93 unless the source is also
680 // strange.
681 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
682 canEvaluateTruncated(Src, DestTy, *this, &CI)) {
683
684 // If this cast is a truncate, evaluting in a different type always
685 // eliminates the cast, so it is always a win.
686 LLVM_DEBUG(
687 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
688 " to avoid cast: "
689 << CI << '\n');
690 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
691 assert(Res->getType() == DestTy);
692 return replaceInstUsesWith(CI, Res);
693 }
694
695 // Test if the trunc is the user of a select which is part of a
696 // minimum or maximum operation. If so, don't do any more simplification.
697 // Even simplifying demanded bits can break the canonical form of a
698 // min/max.
699 Value *LHS, *RHS;
700 if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
701 if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
702 return nullptr;
703
704 // See if we can simplify any instructions used by the input whose sole
705 // purpose is to compute bits we don't care about.
706 if (SimplifyDemandedInstructionBits(CI))
707 return &CI;
708
709 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
710 if (DestTy->getScalarSizeInBits() == 1) {
711 Constant *One = ConstantInt::get(SrcTy, 1);
712 Src = Builder.CreateAnd(Src, One);
713 Value *Zero = Constant::getNullValue(Src->getType());
714 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
715 }
716
717 // FIXME: Maybe combine the next two transforms to handle the no cast case
718 // more efficiently. Support vector types. Cleanup code by using m_OneUse.
719
720 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
721 Value *A = nullptr; ConstantInt *Cst = nullptr;
722 if (Src->hasOneUse() &&
723 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
724 // We have three types to worry about here, the type of A, the source of
725 // the truncate (MidSize), and the destination of the truncate. We know that
726 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
727 // between ASize and ResultSize.
728 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
729
730 // If the shift amount is larger than the size of A, then the result is
731 // known to be zero because all the input bits got shifted out.
732 if (Cst->getZExtValue() >= ASize)
733 return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
734
735 // Since we're doing an lshr and a zero extend, and know that the shift
736 // amount is smaller than ASize, it is always safe to do the shift in A's
737 // type, then zero extend or truncate to the result.
738 Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
739 Shift->takeName(Src);
740 return CastInst::CreateIntegerCast(Shift, DestTy, false);
741 }
742
743 // FIXME: We should canonicalize to zext/trunc and remove this transform.
744 // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
745 // conversion.
746 // It works because bits coming from sign extension have the same value as
747 // the sign bit of the original value; performing ashr instead of lshr
748 // generates bits of the same value as the sign bit.
749 if (Src->hasOneUse() &&
750 match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
751 Value *SExt = cast<Instruction>(Src)->getOperand(0);
752 const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
753 const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
754 const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
755 const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
756 unsigned ShiftAmt = Cst->getZExtValue();
757
758 // This optimization can be only performed when zero bits generated by
759 // the original lshr aren't pulled into the value after truncation, so we
760 // can only shift by values no larger than the number of extension bits.
761 // FIXME: Instead of bailing when the shift is too large, use and to clear
762 // the extra bits.
763 if (ShiftAmt <= MaxAmt) {
764 if (CISize == ASize)
765 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
766 std::min(ShiftAmt, ASize - 1)));
767 if (SExt->hasOneUse()) {
768 Value *Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
769 Shift->takeName(Src);
770 return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
771 }
772 }
773 }
774
775 if (Instruction *I = narrowBinOp(CI))
776 return I;
777
778 if (Instruction *I = shrinkSplatShuffle(CI, Builder))
779 return I;
780
781 if (Instruction *I = shrinkInsertElt(CI, Builder))
782 return I;
783
784 if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
785 shouldChangeType(SrcTy, DestTy)) {
786 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
787 // dest type is native and cst < dest size.
788 if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
789 !match(A, m_Shr(m_Value(), m_Constant()))) {
790 // Skip shifts of shift by constants. It undoes a combine in
791 // FoldShiftByConstant and is the extend in reg pattern.
792 const unsigned DestSize = DestTy->getScalarSizeInBits();
793 if (Cst->getValue().ult(DestSize)) {
794 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
795
796 return BinaryOperator::Create(
797 Instruction::Shl, NewTrunc,
798 ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
799 }
800 }
801 }
802
803 if (Instruction *I = foldVecTruncToExtElt(CI, *this))
804 return I;
805
806 return nullptr;
807 }
808
transformZExtICmp(ICmpInst * ICI,ZExtInst & CI,bool DoTransform)809 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
810 bool DoTransform) {
811 // If we are just checking for a icmp eq of a single bit and zext'ing it
812 // to an integer, then shift the bit to the appropriate place and then
813 // cast to integer to avoid the comparison.
814 const APInt *Op1CV;
815 if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
816
817 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
818 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
819 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
820 (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
821 if (!DoTransform) return ICI;
822
823 Value *In = ICI->getOperand(0);
824 Value *Sh = ConstantInt::get(In->getType(),
825 In->getType()->getScalarSizeInBits() - 1);
826 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
827 if (In->getType() != CI.getType())
828 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
829
830 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
831 Constant *One = ConstantInt::get(In->getType(), 1);
832 In = Builder.CreateXor(In, One, In->getName() + ".not");
833 }
834
835 return replaceInstUsesWith(CI, In);
836 }
837
838 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
839 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
840 // zext (X == 1) to i32 --> X iff X has only the low bit set.
841 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
842 // zext (X != 0) to i32 --> X iff X has only the low bit set.
843 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
844 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
845 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
846 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
847 // This only works for EQ and NE
848 ICI->isEquality()) {
849 // If Op1C some other power of two, convert:
850 KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
851
852 APInt KnownZeroMask(~Known.Zero);
853 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
854 if (!DoTransform) return ICI;
855
856 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
857 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
858 // (X&4) == 2 --> false
859 // (X&4) != 2 --> true
860 Constant *Res = ConstantInt::get(CI.getType(), isNE);
861 return replaceInstUsesWith(CI, Res);
862 }
863
864 uint32_t ShAmt = KnownZeroMask.logBase2();
865 Value *In = ICI->getOperand(0);
866 if (ShAmt) {
867 // Perform a logical shr by shiftamt.
868 // Insert the shift to put the result in the low bit.
869 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
870 In->getName() + ".lobit");
871 }
872
873 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
874 Constant *One = ConstantInt::get(In->getType(), 1);
875 In = Builder.CreateXor(In, One);
876 }
877
878 if (CI.getType() == In->getType())
879 return replaceInstUsesWith(CI, In);
880
881 Value *IntCast = Builder.CreateIntCast(In, CI.getType(), false);
882 return replaceInstUsesWith(CI, IntCast);
883 }
884 }
885 }
886
887 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
888 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
889 // may lead to additional simplifications.
890 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
891 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
892 Value *LHS = ICI->getOperand(0);
893 Value *RHS = ICI->getOperand(1);
894
895 KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
896 KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
897
898 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
899 APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
900 APInt UnknownBit = ~KnownBits;
901 if (UnknownBit.countPopulation() == 1) {
902 if (!DoTransform) return ICI;
903
904 Value *Result = Builder.CreateXor(LHS, RHS);
905
906 // Mask off any bits that are set and won't be shifted away.
907 if (KnownLHS.One.uge(UnknownBit))
908 Result = Builder.CreateAnd(Result,
909 ConstantInt::get(ITy, UnknownBit));
910
911 // Shift the bit we're testing down to the lsb.
912 Result = Builder.CreateLShr(
913 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
914
915 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
916 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
917 Result->takeName(ICI);
918 return replaceInstUsesWith(CI, Result);
919 }
920 }
921 }
922 }
923
924 return nullptr;
925 }
926
927 /// Determine if the specified value can be computed in the specified wider type
928 /// and produce the same low bits. If not, return false.
929 ///
930 /// If this function returns true, it can also return a non-zero number of bits
931 /// (in BitsToClear) which indicates that the value it computes is correct for
932 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
933 /// out. For example, to promote something like:
934 ///
935 /// %B = trunc i64 %A to i32
936 /// %C = lshr i32 %B, 8
937 /// %E = zext i32 %C to i64
938 ///
939 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
940 /// set to 8 to indicate that the promoted value needs to have bits 24-31
941 /// cleared in addition to bits 32-63. Since an 'and' will be generated to
942 /// clear the top bits anyway, doing this has no extra cost.
943 ///
944 /// This function works on both vectors and scalars.
canEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear,InstCombiner & IC,Instruction * CxtI)945 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
946 InstCombiner &IC, Instruction *CxtI) {
947 BitsToClear = 0;
948 if (canAlwaysEvaluateInType(V, Ty))
949 return true;
950 if (canNotEvaluateInType(V, Ty))
951 return false;
952
953 auto *I = cast<Instruction>(V);
954 unsigned Tmp;
955 switch (I->getOpcode()) {
956 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
957 case Instruction::SExt: // zext(sext(x)) -> sext(x).
958 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
959 return true;
960 case Instruction::And:
961 case Instruction::Or:
962 case Instruction::Xor:
963 case Instruction::Add:
964 case Instruction::Sub:
965 case Instruction::Mul:
966 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
967 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
968 return false;
969 // These can all be promoted if neither operand has 'bits to clear'.
970 if (BitsToClear == 0 && Tmp == 0)
971 return true;
972
973 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
974 // other side, BitsToClear is ok.
975 if (Tmp == 0 && I->isBitwiseLogicOp()) {
976 // We use MaskedValueIsZero here for generality, but the case we care
977 // about the most is constant RHS.
978 unsigned VSize = V->getType()->getScalarSizeInBits();
979 if (IC.MaskedValueIsZero(I->getOperand(1),
980 APInt::getHighBitsSet(VSize, BitsToClear),
981 0, CxtI)) {
982 // If this is an And instruction and all of the BitsToClear are
983 // known to be zero we can reset BitsToClear.
984 if (I->getOpcode() == Instruction::And)
985 BitsToClear = 0;
986 return true;
987 }
988 }
989
990 // Otherwise, we don't know how to analyze this BitsToClear case yet.
991 return false;
992
993 case Instruction::Shl: {
994 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
995 // upper bits we can reduce BitsToClear by the shift amount.
996 const APInt *Amt;
997 if (match(I->getOperand(1), m_APInt(Amt))) {
998 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
999 return false;
1000 uint64_t ShiftAmt = Amt->getZExtValue();
1001 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1002 return true;
1003 }
1004 return false;
1005 }
1006 case Instruction::LShr: {
1007 // We can promote lshr(x, cst) if we can promote x. This requires the
1008 // ultimate 'and' to clear out the high zero bits we're clearing out though.
1009 const APInt *Amt;
1010 if (match(I->getOperand(1), m_APInt(Amt))) {
1011 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1012 return false;
1013 BitsToClear += Amt->getZExtValue();
1014 if (BitsToClear > V->getType()->getScalarSizeInBits())
1015 BitsToClear = V->getType()->getScalarSizeInBits();
1016 return true;
1017 }
1018 // Cannot promote variable LSHR.
1019 return false;
1020 }
1021 case Instruction::Select:
1022 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1023 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1024 // TODO: If important, we could handle the case when the BitsToClear are
1025 // known zero in the disagreeing side.
1026 Tmp != BitsToClear)
1027 return false;
1028 return true;
1029
1030 case Instruction::PHI: {
1031 // We can change a phi if we can change all operands. Note that we never
1032 // get into trouble with cyclic PHIs here because we only consider
1033 // instructions with a single use.
1034 PHINode *PN = cast<PHINode>(I);
1035 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1036 return false;
1037 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1038 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1039 // TODO: If important, we could handle the case when the BitsToClear
1040 // are known zero in the disagreeing input.
1041 Tmp != BitsToClear)
1042 return false;
1043 return true;
1044 }
1045 default:
1046 // TODO: Can handle more cases here.
1047 return false;
1048 }
1049 }
1050
visitZExt(ZExtInst & CI)1051 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
1052 // If this zero extend is only used by a truncate, let the truncate be
1053 // eliminated before we try to optimize this zext.
1054 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1055 return nullptr;
1056
1057 // If one of the common conversion will work, do it.
1058 if (Instruction *Result = commonCastTransforms(CI))
1059 return Result;
1060
1061 Value *Src = CI.getOperand(0);
1062 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1063
1064 // Attempt to extend the entire input expression tree to the destination
1065 // type. Only do this if the dest type is a simple type, don't convert the
1066 // expression tree to something weird like i93 unless the source is also
1067 // strange.
1068 unsigned BitsToClear;
1069 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1070 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1071 assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1072 "Can't clear more bits than in SrcTy");
1073
1074 // Okay, we can transform this! Insert the new expression now.
1075 LLVM_DEBUG(
1076 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1077 " to avoid zero extend: "
1078 << CI << '\n');
1079 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1080 assert(Res->getType() == DestTy);
1081
1082 // Preserve debug values referring to Src if the zext is its last use.
1083 if (auto *SrcOp = dyn_cast<Instruction>(Src))
1084 if (SrcOp->hasOneUse())
1085 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1086
1087 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1088 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1089
1090 // If the high bits are already filled with zeros, just replace this
1091 // cast with the result.
1092 if (MaskedValueIsZero(Res,
1093 APInt::getHighBitsSet(DestBitSize,
1094 DestBitSize-SrcBitsKept),
1095 0, &CI))
1096 return replaceInstUsesWith(CI, Res);
1097
1098 // We need to emit an AND to clear the high bits.
1099 Constant *C = ConstantInt::get(Res->getType(),
1100 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1101 return BinaryOperator::CreateAnd(Res, C);
1102 }
1103
1104 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1105 // types and if the sizes are just right we can convert this into a logical
1106 // 'and' which will be much cheaper than the pair of casts.
1107 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
1108 // TODO: Subsume this into EvaluateInDifferentType.
1109
1110 // Get the sizes of the types involved. We know that the intermediate type
1111 // will be smaller than A or C, but don't know the relation between A and C.
1112 Value *A = CSrc->getOperand(0);
1113 unsigned SrcSize = A->getType()->getScalarSizeInBits();
1114 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1115 unsigned DstSize = CI.getType()->getScalarSizeInBits();
1116 // If we're actually extending zero bits, then if
1117 // SrcSize < DstSize: zext(a & mask)
1118 // SrcSize == DstSize: a & mask
1119 // SrcSize > DstSize: trunc(a) & mask
1120 if (SrcSize < DstSize) {
1121 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1122 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1123 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1124 return new ZExtInst(And, CI.getType());
1125 }
1126
1127 if (SrcSize == DstSize) {
1128 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1129 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1130 AndValue));
1131 }
1132 if (SrcSize > DstSize) {
1133 Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1134 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1135 return BinaryOperator::CreateAnd(Trunc,
1136 ConstantInt::get(Trunc->getType(),
1137 AndValue));
1138 }
1139 }
1140
1141 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1142 return transformZExtICmp(ICI, CI);
1143
1144 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1145 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1146 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1147 // of the (zext icmp) can be eliminated. If so, immediately perform the
1148 // according elimination.
1149 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1150 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1151 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1152 (transformZExtICmp(LHS, CI, false) ||
1153 transformZExtICmp(RHS, CI, false))) {
1154 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1155 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1156 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1157 BinaryOperator *Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1158
1159 // Perform the elimination.
1160 if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1161 transformZExtICmp(LHS, *LZExt);
1162 if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1163 transformZExtICmp(RHS, *RZExt);
1164
1165 return Or;
1166 }
1167 }
1168
1169 // zext(trunc(X) & C) -> (X & zext(C)).
1170 Constant *C;
1171 Value *X;
1172 if (SrcI &&
1173 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1174 X->getType() == CI.getType())
1175 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1176
1177 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1178 Value *And;
1179 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1180 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1181 X->getType() == CI.getType()) {
1182 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1183 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1184 }
1185
1186 return nullptr;
1187 }
1188
1189 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)1190 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
1191 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1192 ICmpInst::Predicate Pred = ICI->getPredicate();
1193
1194 // Don't bother if Op1 isn't of vector or integer type.
1195 if (!Op1->getType()->isIntOrIntVectorTy())
1196 return nullptr;
1197
1198 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1199 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1200 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
1201 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
1202 Value *Sh = ConstantInt::get(Op0->getType(),
1203 Op0->getType()->getScalarSizeInBits() - 1);
1204 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1205 if (In->getType() != CI.getType())
1206 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1207
1208 if (Pred == ICmpInst::ICMP_SGT)
1209 In = Builder.CreateNot(In, In->getName() + ".not");
1210 return replaceInstUsesWith(CI, In);
1211 }
1212
1213 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1214 // If we know that only one bit of the LHS of the icmp can be set and we
1215 // have an equality comparison with zero or a power of 2, we can transform
1216 // the icmp and sext into bitwise/integer operations.
1217 if (ICI->hasOneUse() &&
1218 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1219 KnownBits Known = computeKnownBits(Op0, 0, &CI);
1220
1221 APInt KnownZeroMask(~Known.Zero);
1222 if (KnownZeroMask.isPowerOf2()) {
1223 Value *In = ICI->getOperand(0);
1224
1225 // If the icmp tests for a known zero bit we can constant fold it.
1226 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1227 Value *V = Pred == ICmpInst::ICMP_NE ?
1228 ConstantInt::getAllOnesValue(CI.getType()) :
1229 ConstantInt::getNullValue(CI.getType());
1230 return replaceInstUsesWith(CI, V);
1231 }
1232
1233 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1234 // sext ((x & 2^n) == 0) -> (x >> n) - 1
1235 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1236 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1237 // Perform a right shift to place the desired bit in the LSB.
1238 if (ShiftAmt)
1239 In = Builder.CreateLShr(In,
1240 ConstantInt::get(In->getType(), ShiftAmt));
1241
1242 // At this point "In" is either 1 or 0. Subtract 1 to turn
1243 // {1, 0} -> {0, -1}.
1244 In = Builder.CreateAdd(In,
1245 ConstantInt::getAllOnesValue(In->getType()),
1246 "sext");
1247 } else {
1248 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
1249 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1250 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1251 // Perform a left shift to place the desired bit in the MSB.
1252 if (ShiftAmt)
1253 In = Builder.CreateShl(In,
1254 ConstantInt::get(In->getType(), ShiftAmt));
1255
1256 // Distribute the bit over the whole bit width.
1257 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1258 KnownZeroMask.getBitWidth() - 1), "sext");
1259 }
1260
1261 if (CI.getType() == In->getType())
1262 return replaceInstUsesWith(CI, In);
1263 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1264 }
1265 }
1266 }
1267
1268 return nullptr;
1269 }
1270
1271 /// Return true if we can take the specified value and return it as type Ty
1272 /// without inserting any new casts and without changing the value of the common
1273 /// low bits. This is used by code that tries to promote integer operations to
1274 /// a wider types will allow us to eliminate the extension.
1275 ///
1276 /// This function works on both vectors and scalars.
1277 ///
canEvaluateSExtd(Value * V,Type * Ty)1278 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1279 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1280 "Can't sign extend type to a smaller type");
1281 if (canAlwaysEvaluateInType(V, Ty))
1282 return true;
1283 if (canNotEvaluateInType(V, Ty))
1284 return false;
1285
1286 auto *I = cast<Instruction>(V);
1287 switch (I->getOpcode()) {
1288 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1289 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1290 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1291 return true;
1292 case Instruction::And:
1293 case Instruction::Or:
1294 case Instruction::Xor:
1295 case Instruction::Add:
1296 case Instruction::Sub:
1297 case Instruction::Mul:
1298 // These operators can all arbitrarily be extended if their inputs can.
1299 return canEvaluateSExtd(I->getOperand(0), Ty) &&
1300 canEvaluateSExtd(I->getOperand(1), Ty);
1301
1302 //case Instruction::Shl: TODO
1303 //case Instruction::LShr: TODO
1304
1305 case Instruction::Select:
1306 return canEvaluateSExtd(I->getOperand(1), Ty) &&
1307 canEvaluateSExtd(I->getOperand(2), Ty);
1308
1309 case Instruction::PHI: {
1310 // We can change a phi if we can change all operands. Note that we never
1311 // get into trouble with cyclic PHIs here because we only consider
1312 // instructions with a single use.
1313 PHINode *PN = cast<PHINode>(I);
1314 for (Value *IncValue : PN->incoming_values())
1315 if (!canEvaluateSExtd(IncValue, Ty)) return false;
1316 return true;
1317 }
1318 default:
1319 // TODO: Can handle more cases here.
1320 break;
1321 }
1322
1323 return false;
1324 }
1325
visitSExt(SExtInst & CI)1326 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1327 // If this sign extend is only used by a truncate, let the truncate be
1328 // eliminated before we try to optimize this sext.
1329 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1330 return nullptr;
1331
1332 if (Instruction *I = commonCastTransforms(CI))
1333 return I;
1334
1335 Value *Src = CI.getOperand(0);
1336 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1337
1338 // If we know that the value being extended is positive, we can use a zext
1339 // instead.
1340 KnownBits Known = computeKnownBits(Src, 0, &CI);
1341 if (Known.isNonNegative()) {
1342 Value *ZExt = Builder.CreateZExt(Src, DestTy);
1343 return replaceInstUsesWith(CI, ZExt);
1344 }
1345
1346 // Attempt to extend the entire input expression tree to the destination
1347 // type. Only do this if the dest type is a simple type, don't convert the
1348 // expression tree to something weird like i93 unless the source is also
1349 // strange.
1350 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1351 canEvaluateSExtd(Src, DestTy)) {
1352 // Okay, we can transform this! Insert the new expression now.
1353 LLVM_DEBUG(
1354 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1355 " to avoid sign extend: "
1356 << CI << '\n');
1357 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1358 assert(Res->getType() == DestTy);
1359
1360 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1361 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1362
1363 // If the high bits are already filled with sign bit, just replace this
1364 // cast with the result.
1365 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1366 return replaceInstUsesWith(CI, Res);
1367
1368 // We need to emit a shl + ashr to do the sign extend.
1369 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1370 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1371 ShAmt);
1372 }
1373
1374 // If the input is a trunc from the destination type, then turn sext(trunc(x))
1375 // into shifts.
1376 Value *X;
1377 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1378 // sext(trunc(X)) --> ashr(shl(X, C), C)
1379 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1380 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1381 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1382 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1383 }
1384
1385 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1386 return transformSExtICmp(ICI, CI);
1387
1388 // If the input is a shl/ashr pair of a same constant, then this is a sign
1389 // extension from a smaller value. If we could trust arbitrary bitwidth
1390 // integers, we could turn this into a truncate to the smaller bit and then
1391 // use a sext for the whole extension. Since we don't, look deeper and check
1392 // for a truncate. If the source and dest are the same type, eliminate the
1393 // trunc and extend and just do shifts. For example, turn:
1394 // %a = trunc i32 %i to i8
1395 // %b = shl i8 %a, 6
1396 // %c = ashr i8 %b, 6
1397 // %d = sext i8 %c to i32
1398 // into:
1399 // %a = shl i32 %i, 30
1400 // %d = ashr i32 %a, 30
1401 Value *A = nullptr;
1402 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1403 ConstantInt *BA = nullptr, *CA = nullptr;
1404 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1405 m_ConstantInt(CA))) &&
1406 BA == CA && A->getType() == CI.getType()) {
1407 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1408 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1409 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1410 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1411 A = Builder.CreateShl(A, ShAmtV, CI.getName());
1412 return BinaryOperator::CreateAShr(A, ShAmtV);
1413 }
1414
1415 return nullptr;
1416 }
1417
1418
1419 /// Return a Constant* for the specified floating-point constant if it fits
1420 /// in the specified FP type without changing its value.
fitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1421 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1422 bool losesInfo;
1423 APFloat F = CFP->getValueAPF();
1424 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1425 return !losesInfo;
1426 }
1427
shrinkFPConstant(ConstantFP * CFP)1428 static Type *shrinkFPConstant(ConstantFP *CFP) {
1429 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1430 return nullptr; // No constant folding of this.
1431 // See if the value can be truncated to half and then reextended.
1432 if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1433 return Type::getHalfTy(CFP->getContext());
1434 // See if the value can be truncated to float and then reextended.
1435 if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1436 return Type::getFloatTy(CFP->getContext());
1437 if (CFP->getType()->isDoubleTy())
1438 return nullptr; // Won't shrink.
1439 if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1440 return Type::getDoubleTy(CFP->getContext());
1441 // Don't try to shrink to various long double types.
1442 return nullptr;
1443 }
1444
1445 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1446 // type we can safely truncate all elements to.
1447 // TODO: Make these support undef elements.
shrinkFPConstantVector(Value * V)1448 static Type *shrinkFPConstantVector(Value *V) {
1449 auto *CV = dyn_cast<Constant>(V);
1450 if (!CV || !CV->getType()->isVectorTy())
1451 return nullptr;
1452
1453 Type *MinType = nullptr;
1454
1455 unsigned NumElts = CV->getType()->getVectorNumElements();
1456 for (unsigned i = 0; i != NumElts; ++i) {
1457 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1458 if (!CFP)
1459 return nullptr;
1460
1461 Type *T = shrinkFPConstant(CFP);
1462 if (!T)
1463 return nullptr;
1464
1465 // If we haven't found a type yet or this type has a larger mantissa than
1466 // our previous type, this is our new minimal type.
1467 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1468 MinType = T;
1469 }
1470
1471 // Make a vector type from the minimal type.
1472 return VectorType::get(MinType, NumElts);
1473 }
1474
1475 /// Find the minimum FP type we can safely truncate to.
getMinimumFPType(Value * V)1476 static Type *getMinimumFPType(Value *V) {
1477 if (auto *FPExt = dyn_cast<FPExtInst>(V))
1478 return FPExt->getOperand(0)->getType();
1479
1480 // If this value is a constant, return the constant in the smallest FP type
1481 // that can accurately represent it. This allows us to turn
1482 // (float)((double)X+2.0) into x+2.0f.
1483 if (auto *CFP = dyn_cast<ConstantFP>(V))
1484 if (Type *T = shrinkFPConstant(CFP))
1485 return T;
1486
1487 // Try to shrink a vector of FP constants.
1488 if (Type *T = shrinkFPConstantVector(V))
1489 return T;
1490
1491 return V->getType();
1492 }
1493
visitFPTrunc(FPTruncInst & FPT)1494 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
1495 if (Instruction *I = commonCastTransforms(FPT))
1496 return I;
1497
1498 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1499 // simplify this expression to avoid one or more of the trunc/extend
1500 // operations if we can do so without changing the numerical results.
1501 //
1502 // The exact manner in which the widths of the operands interact to limit
1503 // what we can and cannot do safely varies from operation to operation, and
1504 // is explained below in the various case statements.
1505 Type *Ty = FPT.getType();
1506 BinaryOperator *OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1507 if (OpI && OpI->hasOneUse()) {
1508 Type *LHSMinType = getMinimumFPType(OpI->getOperand(0));
1509 Type *RHSMinType = getMinimumFPType(OpI->getOperand(1));
1510 unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1511 unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1512 unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1513 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1514 unsigned DstWidth = Ty->getFPMantissaWidth();
1515 switch (OpI->getOpcode()) {
1516 default: break;
1517 case Instruction::FAdd:
1518 case Instruction::FSub:
1519 // For addition and subtraction, the infinitely precise result can
1520 // essentially be arbitrarily wide; proving that double rounding
1521 // will not occur because the result of OpI is exact (as we will for
1522 // FMul, for example) is hopeless. However, we *can* nonetheless
1523 // frequently know that double rounding cannot occur (or that it is
1524 // innocuous) by taking advantage of the specific structure of
1525 // infinitely-precise results that admit double rounding.
1526 //
1527 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1528 // to represent both sources, we can guarantee that the double
1529 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1530 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1531 // for proof of this fact).
1532 //
1533 // Note: Figueroa does not consider the case where DstFormat !=
1534 // SrcFormat. It's possible (likely even!) that this analysis
1535 // could be tightened for those cases, but they are rare (the main
1536 // case of interest here is (float)((double)float + float)).
1537 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1538 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1539 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1540 Instruction *RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS);
1541 RI->copyFastMathFlags(OpI);
1542 return RI;
1543 }
1544 break;
1545 case Instruction::FMul:
1546 // For multiplication, the infinitely precise result has at most
1547 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1548 // that such a value can be exactly represented, then no double
1549 // rounding can possibly occur; we can safely perform the operation
1550 // in the destination format if it can represent both sources.
1551 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1552 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1553 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1554 return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI);
1555 }
1556 break;
1557 case Instruction::FDiv:
1558 // For division, we use again use the bound from Figueroa's
1559 // dissertation. I am entirely certain that this bound can be
1560 // tightened in the unbalanced operand case by an analysis based on
1561 // the diophantine rational approximation bound, but the well-known
1562 // condition used here is a good conservative first pass.
1563 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1564 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1565 Value *LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1566 Value *RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1567 return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI);
1568 }
1569 break;
1570 case Instruction::FRem: {
1571 // Remainder is straightforward. Remainder is always exact, so the
1572 // type of OpI doesn't enter into things at all. We simply evaluate
1573 // in whichever source type is larger, then convert to the
1574 // destination type.
1575 if (SrcWidth == OpWidth)
1576 break;
1577 Value *LHS, *RHS;
1578 if (LHSWidth == SrcWidth) {
1579 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType);
1580 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType);
1581 } else {
1582 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType);
1583 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType);
1584 }
1585
1586 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI);
1587 return CastInst::CreateFPCast(ExactResult, Ty);
1588 }
1589 }
1590
1591 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1592 if (BinaryOperator::isFNeg(OpI)) {
1593 Value *InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1594 return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI);
1595 }
1596 }
1597
1598 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1599 switch (II->getIntrinsicID()) {
1600 default: break;
1601 case Intrinsic::ceil:
1602 case Intrinsic::fabs:
1603 case Intrinsic::floor:
1604 case Intrinsic::nearbyint:
1605 case Intrinsic::rint:
1606 case Intrinsic::round:
1607 case Intrinsic::trunc: {
1608 Value *Src = II->getArgOperand(0);
1609 if (!Src->hasOneUse())
1610 break;
1611
1612 // Except for fabs, this transformation requires the input of the unary FP
1613 // operation to be itself an fpext from the type to which we're
1614 // truncating.
1615 if (II->getIntrinsicID() != Intrinsic::fabs) {
1616 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1617 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1618 break;
1619 }
1620
1621 // Do unary FP operation on smaller type.
1622 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1623 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1624 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1625 II->getIntrinsicID(), Ty);
1626 SmallVector<OperandBundleDef, 1> OpBundles;
1627 II->getOperandBundlesAsDefs(OpBundles);
1628 CallInst *NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles,
1629 II->getName());
1630 NewCI->copyFastMathFlags(II);
1631 return NewCI;
1632 }
1633 }
1634 }
1635
1636 if (Instruction *I = shrinkInsertElt(FPT, Builder))
1637 return I;
1638
1639 return nullptr;
1640 }
1641
visitFPExt(CastInst & CI)1642 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1643 return commonCastTransforms(CI);
1644 }
1645
1646 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1647 // This is safe if the intermediate type has enough bits in its mantissa to
1648 // accurately represent all values of X. For example, this won't work with
1649 // i64 -> float -> i64.
FoldItoFPtoI(Instruction & FI)1650 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1651 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1652 return nullptr;
1653 Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1654
1655 Value *SrcI = OpI->getOperand(0);
1656 Type *FITy = FI.getType();
1657 Type *OpITy = OpI->getType();
1658 Type *SrcTy = SrcI->getType();
1659 bool IsInputSigned = isa<SIToFPInst>(OpI);
1660 bool IsOutputSigned = isa<FPToSIInst>(FI);
1661
1662 // We can safely assume the conversion won't overflow the output range,
1663 // because (for example) (uint8_t)18293.f is undefined behavior.
1664
1665 // Since we can assume the conversion won't overflow, our decision as to
1666 // whether the input will fit in the float should depend on the minimum
1667 // of the input range and output range.
1668
1669 // This means this is also safe for a signed input and unsigned output, since
1670 // a negative input would lead to undefined behavior.
1671 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1672 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1673 int ActualSize = std::min(InputSize, OutputSize);
1674
1675 if (ActualSize <= OpITy->getFPMantissaWidth()) {
1676 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1677 if (IsInputSigned && IsOutputSigned)
1678 return new SExtInst(SrcI, FITy);
1679 return new ZExtInst(SrcI, FITy);
1680 }
1681 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1682 return new TruncInst(SrcI, FITy);
1683 if (SrcTy == FITy)
1684 return replaceInstUsesWith(FI, SrcI);
1685 return new BitCastInst(SrcI, FITy);
1686 }
1687 return nullptr;
1688 }
1689
visitFPToUI(FPToUIInst & FI)1690 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1691 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1692 if (!OpI)
1693 return commonCastTransforms(FI);
1694
1695 if (Instruction *I = FoldItoFPtoI(FI))
1696 return I;
1697
1698 return commonCastTransforms(FI);
1699 }
1700
visitFPToSI(FPToSIInst & FI)1701 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1702 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1703 if (!OpI)
1704 return commonCastTransforms(FI);
1705
1706 if (Instruction *I = FoldItoFPtoI(FI))
1707 return I;
1708
1709 return commonCastTransforms(FI);
1710 }
1711
visitUIToFP(CastInst & CI)1712 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1713 return commonCastTransforms(CI);
1714 }
1715
visitSIToFP(CastInst & CI)1716 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1717 return commonCastTransforms(CI);
1718 }
1719
visitIntToPtr(IntToPtrInst & CI)1720 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1721 // If the source integer type is not the intptr_t type for this target, do a
1722 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1723 // cast to be exposed to other transforms.
1724 unsigned AS = CI.getAddressSpace();
1725 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1726 DL.getPointerSizeInBits(AS)) {
1727 Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1728 if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1729 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1730
1731 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1732 return new IntToPtrInst(P, CI.getType());
1733 }
1734
1735 if (Instruction *I = commonCastTransforms(CI))
1736 return I;
1737
1738 return nullptr;
1739 }
1740
1741 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1742 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1743 Value *Src = CI.getOperand(0);
1744
1745 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1746 // If casting the result of a getelementptr instruction with no offset, turn
1747 // this into a cast of the original pointer!
1748 if (GEP->hasAllZeroIndices() &&
1749 // If CI is an addrspacecast and GEP changes the poiner type, merging
1750 // GEP into CI would undo canonicalizing addrspacecast with different
1751 // pointer types, causing infinite loops.
1752 (!isa<AddrSpaceCastInst>(CI) ||
1753 GEP->getType() == GEP->getPointerOperandType())) {
1754 // Changing the cast operand is usually not a good idea but it is safe
1755 // here because the pointer operand is being replaced with another
1756 // pointer operand so the opcode doesn't need to change.
1757 Worklist.Add(GEP);
1758 CI.setOperand(0, GEP->getOperand(0));
1759 return &CI;
1760 }
1761 }
1762
1763 return commonCastTransforms(CI);
1764 }
1765
visitPtrToInt(PtrToIntInst & CI)1766 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1767 // If the destination integer type is not the intptr_t type for this target,
1768 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1769 // to be exposed to other transforms.
1770
1771 Type *Ty = CI.getType();
1772 unsigned AS = CI.getPointerAddressSpace();
1773
1774 if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
1775 return commonPointerCastTransforms(CI);
1776
1777 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1778 if (Ty->isVectorTy()) // Handle vectors of pointers.
1779 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1780
1781 Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1782 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1783 }
1784
1785 /// This input value (which is known to have vector type) is being zero extended
1786 /// or truncated to the specified vector type.
1787 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1788 ///
1789 /// The source and destination vector types may have different element types.
optimizeVectorResize(Value * InVal,VectorType * DestTy,InstCombiner & IC)1790 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1791 InstCombiner &IC) {
1792 // We can only do this optimization if the output is a multiple of the input
1793 // element size, or the input is a multiple of the output element size.
1794 // Convert the input type to have the same element type as the output.
1795 VectorType *SrcTy = cast<VectorType>(InVal->getType());
1796
1797 if (SrcTy->getElementType() != DestTy->getElementType()) {
1798 // The input types don't need to be identical, but for now they must be the
1799 // same size. There is no specific reason we couldn't handle things like
1800 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1801 // there yet.
1802 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1803 DestTy->getElementType()->getPrimitiveSizeInBits())
1804 return nullptr;
1805
1806 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1807 InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1808 }
1809
1810 // Now that the element types match, get the shuffle mask and RHS of the
1811 // shuffle to use, which depends on whether we're increasing or decreasing the
1812 // size of the input.
1813 SmallVector<uint32_t, 16> ShuffleMask;
1814 Value *V2;
1815
1816 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1817 // If we're shrinking the number of elements, just shuffle in the low
1818 // elements from the input and use undef as the second shuffle input.
1819 V2 = UndefValue::get(SrcTy);
1820 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1821 ShuffleMask.push_back(i);
1822
1823 } else {
1824 // If we're increasing the number of elements, shuffle in all of the
1825 // elements from InVal and fill the rest of the result elements with zeros
1826 // from a constant zero.
1827 V2 = Constant::getNullValue(SrcTy);
1828 unsigned SrcElts = SrcTy->getNumElements();
1829 for (unsigned i = 0, e = SrcElts; i != e; ++i)
1830 ShuffleMask.push_back(i);
1831
1832 // The excess elements reference the first element of the zero input.
1833 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1834 ShuffleMask.push_back(SrcElts);
1835 }
1836
1837 return new ShuffleVectorInst(InVal, V2,
1838 ConstantDataVector::get(V2->getContext(),
1839 ShuffleMask));
1840 }
1841
isMultipleOfTypeSize(unsigned Value,Type * Ty)1842 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1843 return Value % Ty->getPrimitiveSizeInBits() == 0;
1844 }
1845
getTypeSizeIndex(unsigned Value,Type * Ty)1846 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1847 return Value / Ty->getPrimitiveSizeInBits();
1848 }
1849
1850 /// V is a value which is inserted into a vector of VecEltTy.
1851 /// Look through the value to see if we can decompose it into
1852 /// insertions into the vector. See the example in the comment for
1853 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1854 /// The type of V is always a non-zero multiple of VecEltTy's size.
1855 /// Shift is the number of bits between the lsb of V and the lsb of
1856 /// the vector.
1857 ///
1858 /// This returns false if the pattern can't be matched or true if it can,
1859 /// filling in Elements with the elements found here.
collectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,bool isBigEndian)1860 static bool collectInsertionElements(Value *V, unsigned Shift,
1861 SmallVectorImpl<Value *> &Elements,
1862 Type *VecEltTy, bool isBigEndian) {
1863 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1864 "Shift should be a multiple of the element type size");
1865
1866 // Undef values never contribute useful bits to the result.
1867 if (isa<UndefValue>(V)) return true;
1868
1869 // If we got down to a value of the right type, we win, try inserting into the
1870 // right element.
1871 if (V->getType() == VecEltTy) {
1872 // Inserting null doesn't actually insert any elements.
1873 if (Constant *C = dyn_cast<Constant>(V))
1874 if (C->isNullValue())
1875 return true;
1876
1877 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1878 if (isBigEndian)
1879 ElementIndex = Elements.size() - ElementIndex - 1;
1880
1881 // Fail if multiple elements are inserted into this slot.
1882 if (Elements[ElementIndex])
1883 return false;
1884
1885 Elements[ElementIndex] = V;
1886 return true;
1887 }
1888
1889 if (Constant *C = dyn_cast<Constant>(V)) {
1890 // Figure out the # elements this provides, and bitcast it or slice it up
1891 // as required.
1892 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1893 VecEltTy);
1894 // If the constant is the size of a vector element, we just need to bitcast
1895 // it to the right type so it gets properly inserted.
1896 if (NumElts == 1)
1897 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1898 Shift, Elements, VecEltTy, isBigEndian);
1899
1900 // Okay, this is a constant that covers multiple elements. Slice it up into
1901 // pieces and insert each element-sized piece into the vector.
1902 if (!isa<IntegerType>(C->getType()))
1903 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1904 C->getType()->getPrimitiveSizeInBits()));
1905 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1906 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1907
1908 for (unsigned i = 0; i != NumElts; ++i) {
1909 unsigned ShiftI = Shift+i*ElementSize;
1910 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1911 ShiftI));
1912 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1913 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1914 isBigEndian))
1915 return false;
1916 }
1917 return true;
1918 }
1919
1920 if (!V->hasOneUse()) return false;
1921
1922 Instruction *I = dyn_cast<Instruction>(V);
1923 if (!I) return false;
1924 switch (I->getOpcode()) {
1925 default: return false; // Unhandled case.
1926 case Instruction::BitCast:
1927 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1928 isBigEndian);
1929 case Instruction::ZExt:
1930 if (!isMultipleOfTypeSize(
1931 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1932 VecEltTy))
1933 return false;
1934 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1935 isBigEndian);
1936 case Instruction::Or:
1937 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1938 isBigEndian) &&
1939 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1940 isBigEndian);
1941 case Instruction::Shl: {
1942 // Must be shifting by a constant that is a multiple of the element size.
1943 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1944 if (!CI) return false;
1945 Shift += CI->getZExtValue();
1946 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1947 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1948 isBigEndian);
1949 }
1950
1951 }
1952 }
1953
1954
1955 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1956 /// assemble the elements of the vector manually.
1957 /// Try to rip the code out and replace it with insertelements. This is to
1958 /// optimize code like this:
1959 ///
1960 /// %tmp37 = bitcast float %inc to i32
1961 /// %tmp38 = zext i32 %tmp37 to i64
1962 /// %tmp31 = bitcast float %inc5 to i32
1963 /// %tmp32 = zext i32 %tmp31 to i64
1964 /// %tmp33 = shl i64 %tmp32, 32
1965 /// %ins35 = or i64 %tmp33, %tmp38
1966 /// %tmp43 = bitcast i64 %ins35 to <2 x float>
1967 ///
1968 /// Into two insertelements that do "buildvector{%inc, %inc5}".
optimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombiner & IC)1969 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1970 InstCombiner &IC) {
1971 VectorType *DestVecTy = cast<VectorType>(CI.getType());
1972 Value *IntInput = CI.getOperand(0);
1973
1974 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1975 if (!collectInsertionElements(IntInput, 0, Elements,
1976 DestVecTy->getElementType(),
1977 IC.getDataLayout().isBigEndian()))
1978 return nullptr;
1979
1980 // If we succeeded, we know that all of the element are specified by Elements
1981 // or are zero if Elements has a null entry. Recast this as a set of
1982 // insertions.
1983 Value *Result = Constant::getNullValue(CI.getType());
1984 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1985 if (!Elements[i]) continue; // Unset element.
1986
1987 Result = IC.Builder.CreateInsertElement(Result, Elements[i],
1988 IC.Builder.getInt32(i));
1989 }
1990
1991 return Result;
1992 }
1993
1994 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1995 /// vector followed by extract element. The backend tends to handle bitcasts of
1996 /// vectors better than bitcasts of scalars because vector registers are
1997 /// usually not type-specific like scalar integer or scalar floating-point.
canonicalizeBitCastExtElt(BitCastInst & BitCast,InstCombiner & IC)1998 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1999 InstCombiner &IC) {
2000 // TODO: Create and use a pattern matcher for ExtractElementInst.
2001 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2002 if (!ExtElt || !ExtElt->hasOneUse())
2003 return nullptr;
2004
2005 // The bitcast must be to a vectorizable type, otherwise we can't make a new
2006 // type to extract from.
2007 Type *DestType = BitCast.getType();
2008 if (!VectorType::isValidElementType(DestType))
2009 return nullptr;
2010
2011 unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2012 auto *NewVecType = VectorType::get(DestType, NumElts);
2013 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2014 NewVecType, "bc");
2015 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2016 }
2017
2018 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
foldBitCastBitwiseLogic(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2019 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2020 InstCombiner::BuilderTy &Builder) {
2021 Type *DestTy = BitCast.getType();
2022 BinaryOperator *BO;
2023 if (!DestTy->isIntOrIntVectorTy() ||
2024 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2025 !BO->isBitwiseLogicOp())
2026 return nullptr;
2027
2028 // FIXME: This transform is restricted to vector types to avoid backend
2029 // problems caused by creating potentially illegal operations. If a fix-up is
2030 // added to handle that situation, we can remove this check.
2031 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2032 return nullptr;
2033
2034 Value *X;
2035 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2036 X->getType() == DestTy && !isa<Constant>(X)) {
2037 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2038 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2039 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2040 }
2041
2042 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2043 X->getType() == DestTy && !isa<Constant>(X)) {
2044 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2045 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2046 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2047 }
2048
2049 // Canonicalize vector bitcasts to come before vector bitwise logic with a
2050 // constant. This eases recognition of special constants for later ops.
2051 // Example:
2052 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2053 Constant *C;
2054 if (match(BO->getOperand(1), m_Constant(C))) {
2055 // bitcast (logic X, C) --> logic (bitcast X, C')
2056 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2057 Value *CastedC = ConstantExpr::getBitCast(C, DestTy);
2058 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2059 }
2060
2061 return nullptr;
2062 }
2063
2064 /// Change the type of a select if we can eliminate a bitcast.
foldBitCastSelect(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2065 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2066 InstCombiner::BuilderTy &Builder) {
2067 Value *Cond, *TVal, *FVal;
2068 if (!match(BitCast.getOperand(0),
2069 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2070 return nullptr;
2071
2072 // A vector select must maintain the same number of elements in its operands.
2073 Type *CondTy = Cond->getType();
2074 Type *DestTy = BitCast.getType();
2075 if (CondTy->isVectorTy()) {
2076 if (!DestTy->isVectorTy())
2077 return nullptr;
2078 if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2079 return nullptr;
2080 }
2081
2082 // FIXME: This transform is restricted from changing the select between
2083 // scalars and vectors to avoid backend problems caused by creating
2084 // potentially illegal operations. If a fix-up is added to handle that
2085 // situation, we can remove this check.
2086 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2087 return nullptr;
2088
2089 auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2090 Value *X;
2091 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2092 !isa<Constant>(X)) {
2093 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2094 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2095 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2096 }
2097
2098 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2099 !isa<Constant>(X)) {
2100 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2101 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2102 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2103 }
2104
2105 return nullptr;
2106 }
2107
2108 /// Check if all users of CI are StoreInsts.
hasStoreUsersOnly(CastInst & CI)2109 static bool hasStoreUsersOnly(CastInst &CI) {
2110 for (User *U : CI.users()) {
2111 if (!isa<StoreInst>(U))
2112 return false;
2113 }
2114 return true;
2115 }
2116
2117 /// This function handles following case
2118 ///
2119 /// A -> B cast
2120 /// PHI
2121 /// B -> A cast
2122 ///
2123 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2124 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
optimizeBitCastFromPhi(CastInst & CI,PHINode * PN)2125 Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
2126 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2127 if (hasStoreUsersOnly(CI))
2128 return nullptr;
2129
2130 Value *Src = CI.getOperand(0);
2131 Type *SrcTy = Src->getType(); // Type B
2132 Type *DestTy = CI.getType(); // Type A
2133
2134 SmallVector<PHINode *, 4> PhiWorklist;
2135 SmallSetVector<PHINode *, 4> OldPhiNodes;
2136
2137 // Find all of the A->B casts and PHI nodes.
2138 // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2139 // OldPhiNodes is used to track all known PHI nodes, before adding a new
2140 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2141 PhiWorklist.push_back(PN);
2142 OldPhiNodes.insert(PN);
2143 while (!PhiWorklist.empty()) {
2144 auto *OldPN = PhiWorklist.pop_back_val();
2145 for (Value *IncValue : OldPN->incoming_values()) {
2146 if (isa<Constant>(IncValue))
2147 continue;
2148
2149 if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2150 // If there is a sequence of one or more load instructions, each loaded
2151 // value is used as address of later load instruction, bitcast is
2152 // necessary to change the value type, don't optimize it. For
2153 // simplicity we give up if the load address comes from another load.
2154 Value *Addr = LI->getOperand(0);
2155 if (Addr == &CI || isa<LoadInst>(Addr))
2156 return nullptr;
2157 if (LI->hasOneUse() && LI->isSimple())
2158 continue;
2159 // If a LoadInst has more than one use, changing the type of loaded
2160 // value may create another bitcast.
2161 return nullptr;
2162 }
2163
2164 if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2165 if (OldPhiNodes.insert(PNode))
2166 PhiWorklist.push_back(PNode);
2167 continue;
2168 }
2169
2170 auto *BCI = dyn_cast<BitCastInst>(IncValue);
2171 // We can't handle other instructions.
2172 if (!BCI)
2173 return nullptr;
2174
2175 // Verify it's a A->B cast.
2176 Type *TyA = BCI->getOperand(0)->getType();
2177 Type *TyB = BCI->getType();
2178 if (TyA != DestTy || TyB != SrcTy)
2179 return nullptr;
2180 }
2181 }
2182
2183 // For each old PHI node, create a corresponding new PHI node with a type A.
2184 SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2185 for (auto *OldPN : OldPhiNodes) {
2186 Builder.SetInsertPoint(OldPN);
2187 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2188 NewPNodes[OldPN] = NewPN;
2189 }
2190
2191 // Fill in the operands of new PHI nodes.
2192 for (auto *OldPN : OldPhiNodes) {
2193 PHINode *NewPN = NewPNodes[OldPN];
2194 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2195 Value *V = OldPN->getOperand(j);
2196 Value *NewV = nullptr;
2197 if (auto *C = dyn_cast<Constant>(V)) {
2198 NewV = ConstantExpr::getBitCast(C, DestTy);
2199 } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2200 Builder.SetInsertPoint(LI->getNextNode());
2201 NewV = Builder.CreateBitCast(LI, DestTy);
2202 Worklist.Add(LI);
2203 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2204 NewV = BCI->getOperand(0);
2205 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2206 NewV = NewPNodes[PrevPN];
2207 }
2208 assert(NewV);
2209 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2210 }
2211 }
2212
2213 // If there is a store with type B, change it to type A.
2214 for (User *U : PN->users()) {
2215 auto *SI = dyn_cast<StoreInst>(U);
2216 if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2217 Builder.SetInsertPoint(SI);
2218 auto *NewBC =
2219 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2220 SI->setOperand(0, NewBC);
2221 Worklist.Add(SI);
2222 assert(hasStoreUsersOnly(*NewBC));
2223 }
2224 }
2225
2226 return replaceInstUsesWith(CI, NewPNodes[PN]);
2227 }
2228
visitBitCast(BitCastInst & CI)2229 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
2230 // If the operands are integer typed then apply the integer transforms,
2231 // otherwise just apply the common ones.
2232 Value *Src = CI.getOperand(0);
2233 Type *SrcTy = Src->getType();
2234 Type *DestTy = CI.getType();
2235
2236 // Get rid of casts from one type to the same type. These are useless and can
2237 // be replaced by the operand.
2238 if (DestTy == Src->getType())
2239 return replaceInstUsesWith(CI, Src);
2240
2241 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
2242 PointerType *SrcPTy = cast<PointerType>(SrcTy);
2243 Type *DstElTy = DstPTy->getElementType();
2244 Type *SrcElTy = SrcPTy->getElementType();
2245
2246 // Casting pointers between the same type, but with different address spaces
2247 // is an addrspace cast rather than a bitcast.
2248 if ((DstElTy == SrcElTy) &&
2249 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2250 return new AddrSpaceCastInst(Src, DestTy);
2251
2252 // If we are casting a alloca to a pointer to a type of the same
2253 // size, rewrite the allocation instruction to allocate the "right" type.
2254 // There is no need to modify malloc calls because it is their bitcast that
2255 // needs to be cleaned up.
2256 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2257 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2258 return V;
2259
2260 // When the type pointed to is not sized the cast cannot be
2261 // turned into a gep.
2262 Type *PointeeType =
2263 cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2264 if (!PointeeType->isSized())
2265 return nullptr;
2266
2267 // If the source and destination are pointers, and this cast is equivalent
2268 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
2269 // This can enhance SROA and other transforms that want type-safe pointers.
2270 unsigned NumZeros = 0;
2271 while (SrcElTy != DstElTy &&
2272 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2273 SrcElTy->getNumContainedTypes() /* not "{}" */) {
2274 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2275 ++NumZeros;
2276 }
2277
2278 // If we found a path from the src to dest, create the getelementptr now.
2279 if (SrcElTy == DstElTy) {
2280 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2281 return GetElementPtrInst::CreateInBounds(Src, Idxs);
2282 }
2283 }
2284
2285 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
2286 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2287 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2288 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2289 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2290 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2291 }
2292
2293 if (isa<IntegerType>(SrcTy)) {
2294 // If this is a cast from an integer to vector, check to see if the input
2295 // is a trunc or zext of a bitcast from vector. If so, we can replace all
2296 // the casts with a shuffle and (potentially) a bitcast.
2297 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2298 CastInst *SrcCast = cast<CastInst>(Src);
2299 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2300 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2301 if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
2302 cast<VectorType>(DestTy), *this))
2303 return I;
2304 }
2305
2306 // If the input is an 'or' instruction, we may be doing shifts and ors to
2307 // assemble the elements of the vector manually. Try to rip the code out
2308 // and replace it with insertelements.
2309 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2310 return replaceInstUsesWith(CI, V);
2311 }
2312 }
2313
2314 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2315 if (SrcVTy->getNumElements() == 1) {
2316 // If our destination is not a vector, then make this a straight
2317 // scalar-scalar cast.
2318 if (!DestTy->isVectorTy()) {
2319 Value *Elem =
2320 Builder.CreateExtractElement(Src,
2321 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2322 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2323 }
2324
2325 // Otherwise, see if our source is an insert. If so, then use the scalar
2326 // component directly.
2327 if (InsertElementInst *IEI =
2328 dyn_cast<InsertElementInst>(CI.getOperand(0)))
2329 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2330 DestTy);
2331 }
2332 }
2333
2334 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2335 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
2336 // a bitcast to a vector with the same # elts.
2337 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2338 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2339 SVI->getType()->getNumElements() ==
2340 SVI->getOperand(0)->getType()->getVectorNumElements()) {
2341 BitCastInst *Tmp;
2342 // If either of the operands is a cast from CI.getType(), then
2343 // evaluating the shuffle in the casted destination's type will allow
2344 // us to eliminate at least one cast.
2345 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2346 Tmp->getOperand(0)->getType() == DestTy) ||
2347 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2348 Tmp->getOperand(0)->getType() == DestTy)) {
2349 Value *LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2350 Value *RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2351 // Return a new shuffle vector. Use the same element ID's, as we
2352 // know the vector types match #elts.
2353 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2354 }
2355 }
2356 }
2357
2358 // Handle the A->B->A cast, and there is an intervening PHI node.
2359 if (PHINode *PN = dyn_cast<PHINode>(Src))
2360 if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2361 return I;
2362
2363 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2364 return I;
2365
2366 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2367 return I;
2368
2369 if (Instruction *I = foldBitCastSelect(CI, Builder))
2370 return I;
2371
2372 if (SrcTy->isPointerTy())
2373 return commonPointerCastTransforms(CI);
2374 return commonCastTransforms(CI);
2375 }
2376
visitAddrSpaceCast(AddrSpaceCastInst & CI)2377 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2378 // If the destination pointer element type is not the same as the source's
2379 // first do a bitcast to the destination type, and then the addrspacecast.
2380 // This allows the cast to be exposed to other transforms.
2381 Value *Src = CI.getOperand(0);
2382 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2383 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2384
2385 Type *DestElemTy = DestTy->getElementType();
2386 if (SrcTy->getElementType() != DestElemTy) {
2387 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2388 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2389 // Handle vectors of pointers.
2390 MidTy = VectorType::get(MidTy, VT->getNumElements());
2391 }
2392
2393 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2394 return new AddrSpaceCastInst(NewBitCast, CI.getType());
2395 }
2396
2397 return commonPointerCastTransforms(CI);
2398 }
2399