1 /*===-- X86DisassemblerDecoderInternal.h - Disassembler decoder ---*- C -*-===* 2 * 3 * The LLVM Compiler Infrastructure 4 * 5 * This file is distributed under the University of Illinois Open Source 6 * License. See LICENSE.TXT for details. 7 * 8 *===----------------------------------------------------------------------===* 9 * 10 * This file is part of the X86 Disassembler. 11 * It contains the public interface of the instruction decoder. 12 * Documentation for the disassembler can be found in X86Disassembler.h. 13 * 14 *===----------------------------------------------------------------------===*/ 15 16 /* Capstone Disassembly Engine */ 17 /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2014 */ 18 19 #ifndef CS_X86_DISASSEMBLERDECODER_H 20 #define CS_X86_DISASSEMBLERDECODER_H 21 22 #if defined(CAPSTONE_HAS_OSXKERNEL) 23 #include <libkern/libkern.h> 24 #else 25 #include <stdio.h> 26 #endif 27 #if !defined(_MSC_VER) || !defined(_KERNEL_MODE) 28 #include <stdint.h> 29 #endif 30 31 #include "X86DisassemblerDecoderCommon.h" 32 33 /* 34 * Accessor functions for various fields of an Intel instruction 35 */ 36 #define modFromModRM(modRM) (((modRM) & 0xc0) >> 6) 37 #define regFromModRM(modRM) (((modRM) & 0x38) >> 3) 38 #define rmFromModRM(modRM) ((modRM) & 0x7) 39 #define scaleFromSIB(sib) (((sib) & 0xc0) >> 6) 40 #define indexFromSIB(sib) (((sib) & 0x38) >> 3) 41 #define baseFromSIB(sib) ((sib) & 0x7) 42 #define wFromREX(rex) (((rex) & 0x8) >> 3) 43 #define rFromREX(rex) (((rex) & 0x4) >> 2) 44 #define xFromREX(rex) (((rex) & 0x2) >> 1) 45 #define bFromREX(rex) ((rex) & 0x1) 46 47 #define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7) 48 #define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6) 49 #define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5) 50 #define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4) 51 #define mmFromEVEX2of4(evex) ((evex) & 0x3) 52 #define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7) 53 #define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3) 54 #define ppFromEVEX3of4(evex) ((evex) & 0x3) 55 #define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7) 56 #define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6) 57 #define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5) 58 #define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4) 59 #define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3) 60 #define aaaFromEVEX4of4(evex) ((evex) & 0x7) 61 62 #define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7) 63 #define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6) 64 #define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5) 65 #define mmmmmFromVEX2of3(vex) ((vex) & 0x1f) 66 #define wFromVEX3of3(vex) (((vex) & 0x80) >> 7) 67 #define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3) 68 #define lFromVEX3of3(vex) (((vex) & 0x4) >> 2) 69 #define ppFromVEX3of3(vex) ((vex) & 0x3) 70 71 #define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7) 72 #define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3) 73 #define lFromVEX2of2(vex) (((vex) & 0x4) >> 2) 74 #define ppFromVEX2of2(vex) ((vex) & 0x3) 75 76 #define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7) 77 #define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6) 78 #define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5) 79 #define mmmmmFromXOP2of3(xop) ((xop) & 0x1f) 80 #define wFromXOP3of3(xop) (((xop) & 0x80) >> 7) 81 #define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3) 82 #define lFromXOP3of3(xop) (((xop) & 0x4) >> 2) 83 #define ppFromXOP3of3(xop) ((xop) & 0x3) 84 85 /* 86 * These enums represent Intel registers for use by the decoder. 87 */ 88 89 #define REGS_8BIT \ 90 ENTRY(AL) \ 91 ENTRY(CL) \ 92 ENTRY(DL) \ 93 ENTRY(BL) \ 94 ENTRY(AH) \ 95 ENTRY(CH) \ 96 ENTRY(DH) \ 97 ENTRY(BH) \ 98 ENTRY(R8B) \ 99 ENTRY(R9B) \ 100 ENTRY(R10B) \ 101 ENTRY(R11B) \ 102 ENTRY(R12B) \ 103 ENTRY(R13B) \ 104 ENTRY(R14B) \ 105 ENTRY(R15B) \ 106 ENTRY(SPL) \ 107 ENTRY(BPL) \ 108 ENTRY(SIL) \ 109 ENTRY(DIL) 110 111 #define EA_BASES_16BIT \ 112 ENTRY(BX_SI) \ 113 ENTRY(BX_DI) \ 114 ENTRY(BP_SI) \ 115 ENTRY(BP_DI) \ 116 ENTRY(SI) \ 117 ENTRY(DI) \ 118 ENTRY(BP) \ 119 ENTRY(BX) \ 120 ENTRY(R8W) \ 121 ENTRY(R9W) \ 122 ENTRY(R10W) \ 123 ENTRY(R11W) \ 124 ENTRY(R12W) \ 125 ENTRY(R13W) \ 126 ENTRY(R14W) \ 127 ENTRY(R15W) 128 129 #define REGS_16BIT \ 130 ENTRY(AX) \ 131 ENTRY(CX) \ 132 ENTRY(DX) \ 133 ENTRY(BX) \ 134 ENTRY(SP) \ 135 ENTRY(BP) \ 136 ENTRY(SI) \ 137 ENTRY(DI) \ 138 ENTRY(R8W) \ 139 ENTRY(R9W) \ 140 ENTRY(R10W) \ 141 ENTRY(R11W) \ 142 ENTRY(R12W) \ 143 ENTRY(R13W) \ 144 ENTRY(R14W) \ 145 ENTRY(R15W) 146 147 #define EA_BASES_32BIT \ 148 ENTRY(EAX) \ 149 ENTRY(ECX) \ 150 ENTRY(EDX) \ 151 ENTRY(EBX) \ 152 ENTRY(sib) \ 153 ENTRY(EBP) \ 154 ENTRY(ESI) \ 155 ENTRY(EDI) \ 156 ENTRY(R8D) \ 157 ENTRY(R9D) \ 158 ENTRY(R10D) \ 159 ENTRY(R11D) \ 160 ENTRY(R12D) \ 161 ENTRY(R13D) \ 162 ENTRY(R14D) \ 163 ENTRY(R15D) 164 165 #define REGS_32BIT \ 166 ENTRY(EAX) \ 167 ENTRY(ECX) \ 168 ENTRY(EDX) \ 169 ENTRY(EBX) \ 170 ENTRY(ESP) \ 171 ENTRY(EBP) \ 172 ENTRY(ESI) \ 173 ENTRY(EDI) \ 174 ENTRY(R8D) \ 175 ENTRY(R9D) \ 176 ENTRY(R10D) \ 177 ENTRY(R11D) \ 178 ENTRY(R12D) \ 179 ENTRY(R13D) \ 180 ENTRY(R14D) \ 181 ENTRY(R15D) 182 183 #define EA_BASES_64BIT \ 184 ENTRY(RAX) \ 185 ENTRY(RCX) \ 186 ENTRY(RDX) \ 187 ENTRY(RBX) \ 188 ENTRY(sib64) \ 189 ENTRY(RBP) \ 190 ENTRY(RSI) \ 191 ENTRY(RDI) \ 192 ENTRY(R8) \ 193 ENTRY(R9) \ 194 ENTRY(R10) \ 195 ENTRY(R11) \ 196 ENTRY(R12) \ 197 ENTRY(R13) \ 198 ENTRY(R14) \ 199 ENTRY(R15) 200 201 #define REGS_64BIT \ 202 ENTRY(RAX) \ 203 ENTRY(RCX) \ 204 ENTRY(RDX) \ 205 ENTRY(RBX) \ 206 ENTRY(RSP) \ 207 ENTRY(RBP) \ 208 ENTRY(RSI) \ 209 ENTRY(RDI) \ 210 ENTRY(R8) \ 211 ENTRY(R9) \ 212 ENTRY(R10) \ 213 ENTRY(R11) \ 214 ENTRY(R12) \ 215 ENTRY(R13) \ 216 ENTRY(R14) \ 217 ENTRY(R15) 218 219 #define REGS_MMX \ 220 ENTRY(MM0) \ 221 ENTRY(MM1) \ 222 ENTRY(MM2) \ 223 ENTRY(MM3) \ 224 ENTRY(MM4) \ 225 ENTRY(MM5) \ 226 ENTRY(MM6) \ 227 ENTRY(MM7) 228 229 #define REGS_XMM \ 230 ENTRY(XMM0) \ 231 ENTRY(XMM1) \ 232 ENTRY(XMM2) \ 233 ENTRY(XMM3) \ 234 ENTRY(XMM4) \ 235 ENTRY(XMM5) \ 236 ENTRY(XMM6) \ 237 ENTRY(XMM7) \ 238 ENTRY(XMM8) \ 239 ENTRY(XMM9) \ 240 ENTRY(XMM10) \ 241 ENTRY(XMM11) \ 242 ENTRY(XMM12) \ 243 ENTRY(XMM13) \ 244 ENTRY(XMM14) \ 245 ENTRY(XMM15) \ 246 ENTRY(XMM16) \ 247 ENTRY(XMM17) \ 248 ENTRY(XMM18) \ 249 ENTRY(XMM19) \ 250 ENTRY(XMM20) \ 251 ENTRY(XMM21) \ 252 ENTRY(XMM22) \ 253 ENTRY(XMM23) \ 254 ENTRY(XMM24) \ 255 ENTRY(XMM25) \ 256 ENTRY(XMM26) \ 257 ENTRY(XMM27) \ 258 ENTRY(XMM28) \ 259 ENTRY(XMM29) \ 260 ENTRY(XMM30) \ 261 ENTRY(XMM31) 262 263 264 #define REGS_YMM \ 265 ENTRY(YMM0) \ 266 ENTRY(YMM1) \ 267 ENTRY(YMM2) \ 268 ENTRY(YMM3) \ 269 ENTRY(YMM4) \ 270 ENTRY(YMM5) \ 271 ENTRY(YMM6) \ 272 ENTRY(YMM7) \ 273 ENTRY(YMM8) \ 274 ENTRY(YMM9) \ 275 ENTRY(YMM10) \ 276 ENTRY(YMM11) \ 277 ENTRY(YMM12) \ 278 ENTRY(YMM13) \ 279 ENTRY(YMM14) \ 280 ENTRY(YMM15) \ 281 ENTRY(YMM16) \ 282 ENTRY(YMM17) \ 283 ENTRY(YMM18) \ 284 ENTRY(YMM19) \ 285 ENTRY(YMM20) \ 286 ENTRY(YMM21) \ 287 ENTRY(YMM22) \ 288 ENTRY(YMM23) \ 289 ENTRY(YMM24) \ 290 ENTRY(YMM25) \ 291 ENTRY(YMM26) \ 292 ENTRY(YMM27) \ 293 ENTRY(YMM28) \ 294 ENTRY(YMM29) \ 295 ENTRY(YMM30) \ 296 ENTRY(YMM31) 297 298 #define REGS_ZMM \ 299 ENTRY(ZMM0) \ 300 ENTRY(ZMM1) \ 301 ENTRY(ZMM2) \ 302 ENTRY(ZMM3) \ 303 ENTRY(ZMM4) \ 304 ENTRY(ZMM5) \ 305 ENTRY(ZMM6) \ 306 ENTRY(ZMM7) \ 307 ENTRY(ZMM8) \ 308 ENTRY(ZMM9) \ 309 ENTRY(ZMM10) \ 310 ENTRY(ZMM11) \ 311 ENTRY(ZMM12) \ 312 ENTRY(ZMM13) \ 313 ENTRY(ZMM14) \ 314 ENTRY(ZMM15) \ 315 ENTRY(ZMM16) \ 316 ENTRY(ZMM17) \ 317 ENTRY(ZMM18) \ 318 ENTRY(ZMM19) \ 319 ENTRY(ZMM20) \ 320 ENTRY(ZMM21) \ 321 ENTRY(ZMM22) \ 322 ENTRY(ZMM23) \ 323 ENTRY(ZMM24) \ 324 ENTRY(ZMM25) \ 325 ENTRY(ZMM26) \ 326 ENTRY(ZMM27) \ 327 ENTRY(ZMM28) \ 328 ENTRY(ZMM29) \ 329 ENTRY(ZMM30) \ 330 ENTRY(ZMM31) 331 332 #define REGS_MASKS \ 333 ENTRY(K0) \ 334 ENTRY(K1) \ 335 ENTRY(K2) \ 336 ENTRY(K3) \ 337 ENTRY(K4) \ 338 ENTRY(K5) \ 339 ENTRY(K6) \ 340 ENTRY(K7) 341 342 #define REGS_SEGMENT \ 343 ENTRY(ES) \ 344 ENTRY(CS) \ 345 ENTRY(SS) \ 346 ENTRY(DS) \ 347 ENTRY(FS) \ 348 ENTRY(GS) 349 350 #define REGS_DEBUG \ 351 ENTRY(DR0) \ 352 ENTRY(DR1) \ 353 ENTRY(DR2) \ 354 ENTRY(DR3) \ 355 ENTRY(DR4) \ 356 ENTRY(DR5) \ 357 ENTRY(DR6) \ 358 ENTRY(DR7) 359 360 #define REGS_CONTROL \ 361 ENTRY(CR0) \ 362 ENTRY(CR1) \ 363 ENTRY(CR2) \ 364 ENTRY(CR3) \ 365 ENTRY(CR4) \ 366 ENTRY(CR5) \ 367 ENTRY(CR6) \ 368 ENTRY(CR7) \ 369 ENTRY(CR8) \ 370 ENTRY(CR9) \ 371 ENTRY(CR10) \ 372 ENTRY(CR11) \ 373 ENTRY(CR12) \ 374 ENTRY(CR13) \ 375 ENTRY(CR14) \ 376 ENTRY(CR15) 377 378 #define ALL_EA_BASES \ 379 EA_BASES_16BIT \ 380 EA_BASES_32BIT \ 381 EA_BASES_64BIT 382 383 #define ALL_SIB_BASES \ 384 REGS_32BIT \ 385 REGS_64BIT 386 387 #define ALL_REGS \ 388 REGS_8BIT \ 389 REGS_16BIT \ 390 REGS_32BIT \ 391 REGS_64BIT \ 392 REGS_MMX \ 393 REGS_XMM \ 394 REGS_YMM \ 395 REGS_ZMM \ 396 REGS_MASKS \ 397 REGS_SEGMENT \ 398 REGS_DEBUG \ 399 REGS_CONTROL \ 400 ENTRY(RIP) 401 402 /* 403 * EABase - All possible values of the base field for effective-address 404 * computations, a.k.a. the Mod and R/M fields of the ModR/M byte. We 405 * distinguish between bases (EA_BASE_*) and registers that just happen to be 406 * referred to when Mod == 0b11 (EA_REG_*). 407 */ 408 typedef enum { 409 EA_BASE_NONE, 410 #define ENTRY(x) EA_BASE_##x, 411 ALL_EA_BASES 412 #undef ENTRY 413 #define ENTRY(x) EA_REG_##x, 414 ALL_REGS 415 #undef ENTRY 416 EA_max 417 } EABase; 418 419 /* 420 * SIBIndex - All possible values of the SIB index field. 421 * Borrows entries from ALL_EA_BASES with the special case that 422 * sib is synonymous with NONE. 423 * Vector SIB: index can be XMM or YMM. 424 */ 425 typedef enum { 426 SIB_INDEX_NONE, 427 #define ENTRY(x) SIB_INDEX_##x, 428 ALL_EA_BASES 429 REGS_XMM 430 REGS_YMM 431 REGS_ZMM 432 #undef ENTRY 433 SIB_INDEX_max 434 } SIBIndex; 435 436 /* 437 * SIBBase - All possible values of the SIB base field. 438 */ 439 typedef enum { 440 SIB_BASE_NONE, 441 #define ENTRY(x) SIB_BASE_##x, 442 ALL_SIB_BASES 443 #undef ENTRY 444 SIB_BASE_max 445 } SIBBase; 446 447 /* 448 * EADisplacement - Possible displacement types for effective-address 449 * computations. 450 */ 451 typedef enum { 452 EA_DISP_NONE, 453 EA_DISP_8, 454 EA_DISP_16, 455 EA_DISP_32 456 } EADisplacement; 457 458 /* 459 * Reg - All possible values of the reg field in the ModR/M byte. 460 */ 461 typedef enum { 462 #define ENTRY(x) MODRM_REG_##x, 463 ALL_REGS 464 #undef ENTRY 465 MODRM_REG_max 466 } Reg; 467 468 /* 469 * SegmentOverride - All possible segment overrides. 470 */ 471 typedef enum { 472 SEG_OVERRIDE_NONE, 473 SEG_OVERRIDE_CS, 474 SEG_OVERRIDE_SS, 475 SEG_OVERRIDE_DS, 476 SEG_OVERRIDE_ES, 477 SEG_OVERRIDE_FS, 478 SEG_OVERRIDE_GS, 479 SEG_OVERRIDE_max 480 } SegmentOverride; 481 482 /* 483 * VEXLeadingOpcodeByte - Possible values for the VEX.m-mmmm field 484 */ 485 typedef enum { 486 VEX_LOB_0F = 0x1, 487 VEX_LOB_0F38 = 0x2, 488 VEX_LOB_0F3A = 0x3 489 } VEXLeadingOpcodeByte; 490 491 typedef enum { 492 XOP_MAP_SELECT_8 = 0x8, 493 XOP_MAP_SELECT_9 = 0x9, 494 XOP_MAP_SELECT_A = 0xA 495 } XOPMapSelect; 496 497 /* 498 * VEXPrefixCode - Possible values for the VEX.pp/EVEX.pp field 499 */ 500 typedef enum { 501 VEX_PREFIX_NONE = 0x0, 502 VEX_PREFIX_66 = 0x1, 503 VEX_PREFIX_F3 = 0x2, 504 VEX_PREFIX_F2 = 0x3 505 } VEXPrefixCode; 506 507 typedef enum { 508 TYPE_NO_VEX_XOP = 0x0, 509 TYPE_VEX_2B = 0x1, 510 TYPE_VEX_3B = 0x2, 511 TYPE_EVEX = 0x3, 512 TYPE_XOP = 0x4 513 } VectorExtensionType; 514 515 struct reader_info { 516 const uint8_t *code; 517 uint64_t size; 518 uint64_t offset; 519 }; 520 521 /* 522 * byteReader_t - Type for the byte reader that the consumer must provide to 523 * the decoder. Reads a single byte from the instruction's address space. 524 * @param arg - A baton that the consumer can associate with any internal 525 * state that it needs. 526 * @param byte - A pointer to a single byte in memory that should be set to 527 * contain the value at address. 528 * @param address - The address in the instruction's address space that should 529 * be read from. 530 * @return - -1 if the byte cannot be read for any reason; 0 otherwise. 531 */ 532 typedef int (*byteReader_t)(const struct reader_info *arg, uint8_t* byte, uint64_t address); 533 534 /* 535 * dlog_t - Type for the logging function that the consumer can provide to 536 * get debugging output from the decoder. 537 * @param arg - A baton that the consumer can associate with any internal 538 * state that it needs. 539 * @param log - A string that contains the message. Will be reused after 540 * the logger returns. 541 */ 542 typedef void (*dlog_t)(void* arg, const char *log); 543 544 /// The specification for how to extract and interpret a full instruction and 545 /// its operands. 546 struct InstructionSpecifier { 547 uint16_t operands; 548 }; 549 550 /* 551 * The x86 internal instruction, which is produced by the decoder. 552 */ 553 typedef struct InternalInstruction { 554 // from here, all members must be initialized to ZERO to work properly 555 uint8_t operandSize; 556 uint8_t prefix0, prefix1, prefix2, prefix3; 557 /* true if the prefix byte corresponding to the entry is present; false if not */ 558 bool isPrefix26; 559 bool isPrefix2e; 560 bool isPrefix36; 561 bool isPrefix3e; 562 bool isPrefix64; 563 bool isPrefix65; 564 bool isPrefix66; 565 bool isPrefix67; 566 bool isPrefixf0; 567 bool isPrefixf2; 568 bool isPrefixf3; 569 /* contains the location (for use with the reader) of the prefix byte */ 570 uint64_t prefix26; 571 uint64_t prefix2e; 572 uint64_t prefix36; 573 uint64_t prefix3e; 574 uint64_t prefix64; 575 uint64_t prefix65; 576 uint64_t prefix66; 577 uint64_t prefix67; 578 uint64_t prefixf0; 579 uint64_t prefixf2; 580 uint64_t prefixf3; 581 /* The value of the REX prefix, if present */ 582 uint8_t rexPrefix; 583 /* The segment override type */ 584 SegmentOverride segmentOverride; 585 bool consumedModRM; 586 uint8_t orgModRM; // save original modRM because we will modify modRM 587 /* The SIB byte, used for more complex 32- or 64-bit memory operands */ 588 bool consumedSIB; 589 uint8_t sib; 590 /* The displacement, used for memory operands */ 591 bool consumedDisplacement; 592 int32_t displacement; 593 /* The value of the two-byte escape prefix (usually 0x0f) */ 594 uint8_t twoByteEscape; 595 /* The value of the three-byte escape prefix (usually 0x38 or 0x3a) */ 596 uint8_t threeByteEscape; 597 /* SIB state */ 598 SIBIndex sibIndex; 599 uint8_t sibScale; 600 SIBBase sibBase; 601 uint8_t numImmediatesConsumed; 602 /* true if the prefix byte, 0xf2 or 0xf3 is xacquire or xrelease */ 603 bool xAcquireRelease; 604 605 /* The value of the vector extension prefix(EVEX/VEX/XOP), if present */ 606 uint8_t vectorExtensionPrefix[4]; 607 608 // end-of-zero-members 609 610 /* Reader interface (C) */ 611 byteReader_t reader; 612 613 /* Opaque value passed to the reader */ 614 const void* readerArg; 615 /* The address of the next byte to read via the reader */ 616 uint64_t readerCursor; 617 618 /* Logger interface (C) */ 619 dlog_t dlog; 620 /* Opaque value passed to the logger */ 621 void* dlogArg; 622 623 /* General instruction information */ 624 625 /* The mode to disassemble for (64-bit, protected, real) */ 626 DisassemblerMode mode; 627 /* The start of the instruction, usable with the reader */ 628 uint64_t startLocation; 629 /* The length of the instruction, in bytes */ 630 size_t length; 631 632 /* Prefix state */ 633 634 /* The type of the vector extension prefix */ 635 VectorExtensionType vectorExtensionType; 636 637 /* The location where a mandatory prefix would have to be (i.e., right before 638 the opcode, or right before the REX prefix if one is present) */ 639 uint64_t necessaryPrefixLocation; 640 641 /* Sizes of various critical pieces of data, in bytes */ 642 uint8_t registerSize; 643 uint8_t addressSize; 644 uint8_t displacementSize; 645 uint8_t immediateSize; 646 647 uint8_t immSize; // immediate size for X86_OP_IMM operand 648 649 /* Offsets from the start of the instruction to the pieces of data, which is 650 needed to find relocation entries for adding symbolic operands */ 651 uint8_t displacementOffset; 652 uint8_t immediateOffset; 653 654 /* opcode state */ 655 656 /* The last byte of the opcode, not counting any ModR/M extension */ 657 uint8_t opcode; 658 659 /* decode state */ 660 661 /* The type of opcode, used for indexing into the array of decode tables */ 662 OpcodeType opcodeType; 663 /* The instruction ID, extracted from the decode table */ 664 uint16_t instructionID; 665 /* The specifier for the instruction, from the instruction info table */ 666 const struct InstructionSpecifier *spec; 667 668 /* state for additional bytes, consumed during operand decode. Pattern: 669 consumed___ indicates that the byte was already consumed and does not 670 need to be consumed again */ 671 672 /* The VEX.vvvv field, which contains a third register operand for some AVX 673 instructions */ 674 Reg vvvv; 675 676 /* The writemask for AVX-512 instructions which is contained in EVEX.aaa */ 677 Reg writemask; 678 679 /* The ModR/M byte, which contains most register operands and some portion of 680 all memory operands */ 681 uint8_t modRM; 682 683 // special data to handle MOVcr, MOVdr, MOVrc, MOVrd 684 uint8_t firstByte; // save the first byte in stream 685 686 /* Immediates. There can be two in some cases */ 687 uint8_t numImmediatesTranslated; 688 uint64_t immediates[2]; 689 690 /* A register or immediate operand encoded into the opcode */ 691 Reg opcodeRegister; 692 693 /* Portions of the ModR/M byte */ 694 695 /* These fields determine the allowable values for the ModR/M fields, which 696 depend on operand and address widths */ 697 EABase eaBaseBase; 698 EABase eaRegBase; 699 Reg regBase; 700 701 /* The Mod and R/M fields can encode a base for an effective address, or a 702 register. These are separated into two fields here */ 703 EABase eaBase; 704 EADisplacement eaDisplacement; 705 /* The reg field always encodes a register */ 706 Reg reg; 707 708 const struct OperandSpecifier *operands; 709 } InternalInstruction; 710 711 /* decodeInstruction - Decode one instruction and store the decoding results in 712 * a buffer provided by the consumer. 713 * @param insn - The buffer to store the instruction in. Allocated by the 714 * consumer. 715 * @param reader - The byteReader_t for the bytes to be read. 716 * @param readerArg - An argument to pass to the reader for storing context 717 * specific to the consumer. May be NULL. 718 * @param logger - The dlog_t to be used in printing status messages from the 719 * disassembler. May be NULL. 720 * @param loggerArg - An argument to pass to the logger for storing context 721 * specific to the logger. May be NULL. 722 * @param startLoc - The address (in the reader's address space) of the first 723 * byte in the instruction. 724 * @param mode - The mode (16-bit, 32-bit, 64-bit) to decode in. 725 * @return - Nonzero if there was an error during decode, 0 otherwise. 726 */ 727 int decodeInstruction(struct InternalInstruction* insn, 728 byteReader_t reader, 729 const void* readerArg, 730 uint64_t startLoc, 731 DisassemblerMode mode); 732 733 //const char *x86DisassemblerGetInstrName(unsigned Opcode, const void *mii); 734 735 #endif 736