1 /**************************************************************************
2 *
3 * Copyright 2008-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * @file
30 * OS independent time-manipulation functions.
31 *
32 * @author Jose Fonseca <jfonseca@vmware.com>
33 */
34
35 #include "os_time.h"
36
37 /* TODO: fix this dependency */
38 #include "gallium/include/pipe/p_config.h"
39
40 #include "util/u_atomic.h"
41
42 #if defined(PIPE_OS_UNIX)
43 # include <unistd.h> /* usleep */
44 # include <time.h> /* timeval */
45 # include <sys/time.h> /* timeval */
46 # include <sched.h> /* sched_yield */
47 # include <errno.h>
48 #elif defined(PIPE_SUBSYSTEM_WINDOWS_USER)
49 # include <windows.h>
50 #else
51 # error Unsupported OS
52 #endif
53
54
55 int64_t
os_time_get_nano(void)56 os_time_get_nano(void)
57 {
58 #if defined(PIPE_OS_LINUX)
59
60 struct timespec tv;
61 clock_gettime(CLOCK_MONOTONIC, &tv);
62 return tv.tv_nsec + tv.tv_sec*INT64_C(1000000000);
63
64 #elif defined(PIPE_OS_UNIX)
65
66 struct timeval tv;
67 gettimeofday(&tv, NULL);
68 return tv.tv_usec*INT64_C(1000) + tv.tv_sec*INT64_C(1000000000);
69
70 #elif defined(PIPE_SUBSYSTEM_WINDOWS_USER)
71
72 static LARGE_INTEGER frequency;
73 LARGE_INTEGER counter;
74 int64_t secs, nanosecs;
75 if(!frequency.QuadPart)
76 QueryPerformanceFrequency(&frequency);
77 QueryPerformanceCounter(&counter);
78 /* Compute seconds and nanoseconds parts separately to
79 * reduce severity of precision loss.
80 */
81 secs = counter.QuadPart / frequency.QuadPart;
82 nanosecs = (counter.QuadPart % frequency.QuadPart) * INT64_C(1000000000)
83 / frequency.QuadPart;
84 return secs*INT64_C(1000000000) + nanosecs;
85
86 #else
87
88 #error Unsupported OS
89
90 #endif
91 }
92
93
94
95 void
os_time_sleep(int64_t usecs)96 os_time_sleep(int64_t usecs)
97 {
98 #if defined(PIPE_OS_LINUX)
99 struct timespec time;
100 time.tv_sec = usecs / 1000000;
101 time.tv_nsec = (usecs % 1000000) * 1000;
102 while (clock_nanosleep(CLOCK_MONOTONIC, 0, &time, &time) == EINTR);
103
104 #elif defined(PIPE_OS_UNIX)
105 usleep(usecs);
106
107 #elif defined(PIPE_SUBSYSTEM_WINDOWS_USER)
108 DWORD dwMilliseconds = (DWORD) ((usecs + 999) / 1000);
109 /* Avoid Sleep(O) as that would cause to sleep for an undetermined duration */
110 if (dwMilliseconds) {
111 Sleep(dwMilliseconds);
112 }
113 #else
114 # error Unsupported OS
115 #endif
116 }
117
118
119
120 int64_t
os_time_get_absolute_timeout(uint64_t timeout)121 os_time_get_absolute_timeout(uint64_t timeout)
122 {
123 int64_t time, abs_timeout;
124
125 /* Also check for the type upper bound. */
126 if (timeout == OS_TIMEOUT_INFINITE || timeout > INT64_MAX)
127 return OS_TIMEOUT_INFINITE;
128
129 time = os_time_get_nano();
130 abs_timeout = time + (int64_t)timeout;
131
132 /* Check for overflow. */
133 if (abs_timeout < time)
134 return OS_TIMEOUT_INFINITE;
135
136 return abs_timeout;
137 }
138
139
140 bool
os_wait_until_zero(volatile int * var,uint64_t timeout)141 os_wait_until_zero(volatile int *var, uint64_t timeout)
142 {
143 if (!p_atomic_read(var))
144 return true;
145
146 if (!timeout)
147 return false;
148
149 if (timeout == OS_TIMEOUT_INFINITE) {
150 while (p_atomic_read(var)) {
151 #if defined(PIPE_OS_UNIX)
152 sched_yield();
153 #endif
154 }
155 return true;
156 }
157 else {
158 int64_t start_time = os_time_get_nano();
159 int64_t end_time = start_time + timeout;
160
161 while (p_atomic_read(var)) {
162 if (os_time_timeout(start_time, end_time, os_time_get_nano()))
163 return false;
164
165 #if defined(PIPE_OS_UNIX)
166 sched_yield();
167 #endif
168 }
169 return true;
170 }
171 }
172
173
174 bool
os_wait_until_zero_abs_timeout(volatile int * var,int64_t timeout)175 os_wait_until_zero_abs_timeout(volatile int *var, int64_t timeout)
176 {
177 if (!p_atomic_read(var))
178 return true;
179
180 if (timeout == OS_TIMEOUT_INFINITE)
181 return os_wait_until_zero(var, OS_TIMEOUT_INFINITE);
182
183 while (p_atomic_read(var)) {
184 if (os_time_get_nano() >= timeout)
185 return false;
186
187 #if defined(PIPE_OS_UNIX)
188 sched_yield();
189 #endif
190 }
191 return true;
192 }
193