• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // -*- C++ -*-
2 //===------------------------- fuzzing.cpp -------------------------------===//
3 //
4 //                     The LLVM Compiler Infrastructure
5 //
6 // This file is dual licensed under the MIT and the University of Illinois Open
7 // Source Licenses. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 
11 //  A set of routines to use when fuzzing the algorithms in libc++
12 //  Each one tests a single algorithm.
13 //
14 //  They all have the form of:
15 //      int `algorithm`(const uint8_t *data, size_t size);
16 //
17 //  They perform the operation, and then check to see if the results are correct.
18 //  If so, they return zero, and non-zero otherwise.
19 //
20 //  For example, sort calls std::sort, then checks two things:
21 //      (1) The resulting vector is sorted
22 //      (2) The resulting vector contains the same elements as the original data.
23 
24 
25 
26 #include "fuzzing.h"
27 #include <vector>
28 #include <algorithm>
29 #include <functional>
30 #include <regex>
31 #include <cassert>
32 
33 #include <iostream>
34 
35 //  If we had C++14, we could use the four iterator version of is_permutation and equal
36 
37 namespace fuzzing {
38 
39 //  This is a struct we can use to test the stable_XXX algorithms.
40 //  perform the operation on the key, then check the order of the payload.
41 
42 struct stable_test {
43     uint8_t key;
44     size_t payload;
45 
stable_testfuzzing::stable_test46     stable_test(uint8_t k) : key(k), payload(0) {}
stable_testfuzzing::stable_test47     stable_test(uint8_t k, size_t p) : key(k), payload(p) {}
48     };
49 
swap(stable_test & lhs,stable_test & rhs)50 void swap(stable_test &lhs, stable_test &rhs)
51 {
52     using std::swap;
53     swap(lhs.key,     rhs.key);
54     swap(lhs.payload, rhs.payload);
55 }
56 
57 struct key_less
58 {
operator ()fuzzing::key_less59     bool operator () (const stable_test &lhs, const stable_test &rhs) const
60     {
61         return lhs.key < rhs.key;
62     }
63 };
64 
65 struct payload_less
66 {
operator ()fuzzing::payload_less67     bool operator () (const stable_test &lhs, const stable_test &rhs) const
68     {
69         return lhs.payload < rhs.payload;
70     }
71 };
72 
73 struct total_less
74 {
operator ()fuzzing::total_less75     bool operator () (const stable_test &lhs, const stable_test &rhs) const
76     {
77         return lhs.key == rhs.key ? lhs.payload < rhs.payload : lhs.key < rhs.key;
78     }
79 };
80 
operator ==(const stable_test & lhs,const stable_test & rhs)81 bool operator==(const stable_test &lhs, const stable_test &rhs)
82 {
83     return lhs.key == rhs.key && lhs.payload == rhs.payload;
84 }
85 
86 
87 template<typename T>
88 struct is_even
89 {
operator ()fuzzing::is_even90     bool operator () (const T &t) const
91     {
92         return t % 2 == 0;
93     }
94 };
95 
96 
97 template<>
98 struct is_even<stable_test>
99 {
operator ()fuzzing::is_even100     bool operator () (const stable_test &t) const
101     {
102         return t.key % 2 == 0;
103     }
104 };
105 
106 typedef std::vector<uint8_t> Vec;
107 typedef std::vector<stable_test> StableVec;
108 typedef StableVec::const_iterator SVIter;
109 
110 //  Cheap version of is_permutation
111 //  Builds a set of buckets for each of the key values.
112 //  Sums all the payloads.
113 //  Not 100% perfect, but _way_ faster
is_permutation(SVIter first1,SVIter last1,SVIter first2)114 bool is_permutation(SVIter first1, SVIter last1, SVIter first2)
115 {
116     size_t xBuckets[256]  = {0};
117     size_t xPayloads[256] = {0};
118     size_t yBuckets[256]  = {0};
119     size_t yPayloads[256] = {0};
120 
121     for (; first1 != last1; ++first1, ++first2)
122     {
123         xBuckets [first1->key]++;
124         xPayloads[first1->key] += first1->payload;
125 
126         yBuckets [first2->key]++;
127         yPayloads[first2->key] += first2->payload;
128     }
129 
130     for (size_t i = 0; i < 256; ++i)
131     {
132         if (xBuckets[i]  != yBuckets[i])
133             return false;
134         if (xPayloads[i] != yPayloads[i])
135             return false;
136     }
137 
138     return true;
139 }
140 
141 template <typename Iter1, typename Iter2>
is_permutation(Iter1 first1,Iter1 last1,Iter2 first2)142 bool is_permutation(Iter1 first1, Iter1 last1, Iter2 first2)
143 {
144     static_assert((std::is_same<typename std::iterator_traits<Iter1>::value_type, uint8_t>::value), "");
145     static_assert((std::is_same<typename std::iterator_traits<Iter2>::value_type, uint8_t>::value), "");
146 
147     size_t xBuckets[256]  = {0};
148     size_t yBuckets[256]  = {0};
149 
150     for (; first1 != last1; ++first1, ++first2)
151     {
152         xBuckets [*first1]++;
153         yBuckets [*first2]++;
154     }
155 
156     for (size_t i = 0; i < 256; ++i)
157         if (xBuckets[i]  != yBuckets[i])
158             return false;
159 
160     return true;
161 }
162 
163 //  == sort ==
sort(const uint8_t * data,size_t size)164 int sort(const uint8_t *data, size_t size)
165 {
166     Vec working(data, data + size);
167     std::sort(working.begin(), working.end());
168 
169     if (!std::is_sorted(working.begin(), working.end())) return 1;
170     if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99;
171     return 0;
172 }
173 
174 
175 //  == stable_sort ==
stable_sort(const uint8_t * data,size_t size)176 int stable_sort(const uint8_t *data, size_t size)
177 {
178     StableVec input;
179     for (size_t i = 0; i < size; ++i)
180         input.push_back(stable_test(data[i], i));
181     StableVec working = input;
182     std::stable_sort(working.begin(), working.end(), key_less());
183 
184     if (!std::is_sorted(working.begin(), working.end(), key_less()))   return 1;
185     auto iter = working.begin();
186     while (iter != working.end())
187     {
188         auto range = std::equal_range(iter, working.end(), *iter, key_less());
189         if (!std::is_sorted(range.first, range.second, total_less())) return 2;
190         iter = range.second;
191     }
192     if (!fuzzing::is_permutation(input.cbegin(), input.cend(), working.cbegin())) return 99;
193     return 0;
194 }
195 
196 //  == partition ==
partition(const uint8_t * data,size_t size)197 int partition(const uint8_t *data, size_t size)
198 {
199     Vec working(data, data + size);
200     auto iter = std::partition(working.begin(), working.end(), is_even<uint8_t>());
201 
202     if (!std::all_of (working.begin(), iter, is_even<uint8_t>())) return 1;
203     if (!std::none_of(iter,   working.end(), is_even<uint8_t>())) return 2;
204     if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99;
205     return 0;
206 }
207 
208 
209 //  == partition_copy ==
partition_copy(const uint8_t * data,size_t size)210 int partition_copy(const uint8_t *data, size_t size)
211 {
212     Vec v1, v2;
213     auto iter = std::partition_copy(data, data + size,
214         std::back_inserter<Vec>(v1), std::back_inserter<Vec>(v2),
215         is_even<uint8_t>());
216 
217 //  The two vectors should add up to the original size
218     if (v1.size() + v2.size() != size) return 1;
219 
220 //  All of the even values should be in the first vector, and none in the second
221     if (!std::all_of (v1.begin(), v1.end(), is_even<uint8_t>())) return 2;
222     if (!std::none_of(v2.begin(), v2.end(), is_even<uint8_t>())) return 3;
223 
224 //  Every value in both vectors has to be in the original
225 
226 //	Make a copy of the input, and sort it
227     Vec v0{data, data + size};
228     std::sort(v0.begin(), v0.end());
229 
230 //	Sort each vector and ensure that all of the elements appear in the original input
231     std::sort(v1.begin(), v1.end());
232     if (!std::includes(v0.begin(), v0.end(), v1.begin(), v1.end())) return 4;
233 
234     std::sort(v2.begin(), v2.end());
235     if (!std::includes(v0.begin(), v0.end(), v2.begin(), v2.end())) return 5;
236 
237 //  This, while simple, is really slow - 20 seconds on a 500K element input.
238 //     for (auto v: v1)
239 //         if (std::find(data, data + size, v) == data + size) return 4;
240 //
241 //     for (auto v: v2)
242 //         if (std::find(data, data + size, v) == data + size) return 5;
243 
244     return 0;
245 }
246 
247 //  == stable_partition ==
stable_partition(const uint8_t * data,size_t size)248 int stable_partition (const uint8_t *data, size_t size)
249 {
250     StableVec input;
251     for (size_t i = 0; i < size; ++i)
252         input.push_back(stable_test(data[i], i));
253     StableVec working = input;
254     auto iter = std::stable_partition(working.begin(), working.end(), is_even<stable_test>());
255 
256     if (!std::all_of (working.begin(), iter, is_even<stable_test>())) return 1;
257     if (!std::none_of(iter,   working.end(), is_even<stable_test>())) return 2;
258     if (!std::is_sorted(working.begin(), iter, payload_less()))   return 3;
259     if (!std::is_sorted(iter,   working.end(), payload_less()))   return 4;
260     if (!fuzzing::is_permutation(input.cbegin(), input.cend(), working.cbegin())) return 99;
261     return 0;
262 }
263 
264 //  == nth_element ==
265 //  use the first element as a position into the data
nth_element(const uint8_t * data,size_t size)266 int nth_element (const uint8_t *data, size_t size)
267 {
268     if (size <= 1) return 0;
269     const size_t partition_point = data[0] % size;
270     Vec working(data + 1, data + size);
271     const auto partition_iter = working.begin() + partition_point;
272     std::nth_element(working.begin(), partition_iter, working.end());
273 
274 //  nth may be the end iterator, in this case nth_element has no effect.
275     if (partition_iter == working.end())
276     {
277         if (!std::equal(data + 1, data + size, working.begin())) return 98;
278     }
279     else
280     {
281         const uint8_t nth = *partition_iter;
282         if (!std::all_of(working.begin(), partition_iter, [=](uint8_t v) { return v <= nth; }))
283             return 1;
284         if (!std::all_of(partition_iter, working.end(),   [=](uint8_t v) { return v >= nth; }))
285             return 2;
286         if (!fuzzing::is_permutation(data + 1, data + size, working.cbegin())) return 99;
287         }
288 
289     return 0;
290 }
291 
292 //  == partial_sort ==
293 //  use the first element as a position into the data
partial_sort(const uint8_t * data,size_t size)294 int partial_sort (const uint8_t *data, size_t size)
295 {
296     if (size <= 1) return 0;
297     const size_t sort_point = data[0] % size;
298     Vec working(data + 1, data + size);
299     const auto sort_iter = working.begin() + sort_point;
300     std::partial_sort(working.begin(), sort_iter, working.end());
301 
302     if (sort_iter != working.end())
303     {
304         const uint8_t nth = *std::min_element(sort_iter, working.end());
305         if (!std::all_of(working.begin(), sort_iter, [=](uint8_t v) { return v <= nth; }))
306             return 1;
307         if (!std::all_of(sort_iter, working.end(),   [=](uint8_t v) { return v >= nth; }))
308             return 2;
309     }
310     if (!std::is_sorted(working.begin(), sort_iter)) return 3;
311     if (!fuzzing::is_permutation(data + 1, data + size, working.cbegin())) return 99;
312 
313     return 0;
314 }
315 
316 
317 //  == partial_sort_copy ==
318 //  use the first element as a count
partial_sort_copy(const uint8_t * data,size_t size)319 int partial_sort_copy (const uint8_t *data, size_t size)
320 {
321     if (size <= 1) return 0;
322     const size_t num_results = data[0] % size;
323     Vec results(num_results);
324     (void) std::partial_sort_copy(data + 1, data + size, results.begin(), results.end());
325 
326 //  The results have to be sorted
327     if (!std::is_sorted(results.begin(), results.end())) return 1;
328 //  All the values in results have to be in the original data
329     for (auto v: results)
330         if (std::find(data + 1, data + size, v) == data + size) return 2;
331 
332 //  The things in results have to be the smallest N in the original data
333     Vec sorted(data + 1, data + size);
334     std::sort(sorted.begin(), sorted.end());
335     if (!std::equal(results.begin(), results.end(), sorted.begin())) return 3;
336     return 0;
337 }
338 
339 //  The second sequence has been "uniqued"
340 template <typename Iter1, typename Iter2>
compare_unique(Iter1 first1,Iter1 last1,Iter2 first2,Iter2 last2)341 static bool compare_unique(Iter1 first1, Iter1 last1, Iter2 first2, Iter2 last2)
342 {
343     assert(first1 != last1 && first2 != last2);
344     if (*first1 != *first2) return false;
345 
346     uint8_t last_value = *first1;
347     ++first1; ++first2;
348     while(first1 != last1 && first2 != last2)
349     {
350     //  Skip over dups in the first sequence
351         while (*first1 == last_value)
352             if (++first1 == last1) return false;
353         if (*first1 != *first2) return false;
354         last_value = *first1;
355         ++first1; ++first2;
356     }
357 
358 //  Still stuff left in the 'uniqued' sequence - oops
359     if (first1 == last1 && first2 != last2) return false;
360 
361 //  Still stuff left in the original sequence - better be all the same
362     while (first1 != last1)
363     {
364         if (*first1 != last_value) return false;
365         ++first1;
366     }
367     return true;
368 }
369 
370 //  == unique ==
unique(const uint8_t * data,size_t size)371 int unique (const uint8_t *data, size_t size)
372 {
373     Vec working(data, data + size);
374     std::sort(working.begin(), working.end());
375     Vec results = working;
376     Vec::iterator new_end = std::unique(results.begin(), results.end());
377     Vec::iterator it;   // scratch iterator
378 
379 //  Check the size of the unique'd sequence.
380 //  it should only be zero if the input sequence was empty.
381     if (results.begin() == new_end)
382         return working.size() == 0 ? 0 : 1;
383 
384 //  'results' is sorted
385     if (!std::is_sorted(results.begin(), new_end)) return 2;
386 
387 //  All the elements in 'results' must be different
388     it = results.begin();
389     uint8_t prev_value = *it++;
390     for (; it != new_end; ++it)
391     {
392         if (*it == prev_value) return 3;
393         prev_value = *it;
394     }
395 
396 //  Every element in 'results' must be in 'working'
397     for (it = results.begin(); it != new_end; ++it)
398         if (std::find(working.begin(), working.end(), *it) == working.end())
399             return 4;
400 
401 //  Every element in 'working' must be in 'results'
402     for (auto v : working)
403         if (std::find(results.begin(), new_end, v) == new_end)
404             return 5;
405 
406     return 0;
407 }
408 
409 //  == unique_copy ==
unique_copy(const uint8_t * data,size_t size)410 int unique_copy (const uint8_t *data, size_t size)
411 {
412     Vec working(data, data + size);
413     std::sort(working.begin(), working.end());
414     Vec results;
415     (void) std::unique_copy(working.begin(), working.end(),
416                             std::back_inserter<Vec>(results));
417     Vec::iterator it;   // scratch iterator
418 
419 //  Check the size of the unique'd sequence.
420 //  it should only be zero if the input sequence was empty.
421     if (results.size() == 0)
422         return working.size() == 0 ? 0 : 1;
423 
424 //  'results' is sorted
425     if (!std::is_sorted(results.begin(), results.end())) return 2;
426 
427 //  All the elements in 'results' must be different
428     it = results.begin();
429     uint8_t prev_value = *it++;
430     for (; it != results.end(); ++it)
431     {
432         if (*it == prev_value) return 3;
433         prev_value = *it;
434     }
435 
436 //  Every element in 'results' must be in 'working'
437     for (auto v : results)
438         if (std::find(working.begin(), working.end(), v) == working.end())
439             return 4;
440 
441 //  Every element in 'working' must be in 'results'
442     for (auto v : working)
443         if (std::find(results.begin(), results.end(), v) == results.end())
444             return 5;
445 
446     return 0;
447 }
448 
449 
450 // --   regex fuzzers
regex_helper(const uint8_t * data,size_t size,std::regex::flag_type flag)451 static int regex_helper(const uint8_t *data, size_t size, std::regex::flag_type flag)
452 {
453     if (size > 0)
454     {
455         try
456         {
457             std::string s((const char *)data, size);
458             std::regex re(s, flag);
459             return std::regex_match(s, re) ? 1 : 0;
460         }
461         catch (std::regex_error &ex) {}
462     }
463     return 0;
464 }
465 
466 
regex_ECMAScript(const uint8_t * data,size_t size)467 int regex_ECMAScript (const uint8_t *data, size_t size)
468 {
469     (void) regex_helper(data, size, std::regex_constants::ECMAScript);
470     return 0;
471 }
472 
regex_POSIX(const uint8_t * data,size_t size)473 int regex_POSIX (const uint8_t *data, size_t size)
474 {
475     (void) regex_helper(data, size, std::regex_constants::basic);
476     return 0;
477 }
478 
regex_extended(const uint8_t * data,size_t size)479 int regex_extended (const uint8_t *data, size_t size)
480 {
481     (void) regex_helper(data, size, std::regex_constants::extended);
482     return 0;
483 }
484 
regex_awk(const uint8_t * data,size_t size)485 int regex_awk (const uint8_t *data, size_t size)
486 {
487     (void) regex_helper(data, size, std::regex_constants::awk);
488     return 0;
489 }
490 
regex_grep(const uint8_t * data,size_t size)491 int regex_grep (const uint8_t *data, size_t size)
492 {
493     (void) regex_helper(data, size, std::regex_constants::grep);
494     return 0;
495 }
496 
regex_egrep(const uint8_t * data,size_t size)497 int regex_egrep (const uint8_t *data, size_t size)
498 {
499     (void) regex_helper(data, size, std::regex_constants::egrep);
500     return 0;
501 }
502 
503 // --   heap fuzzers
make_heap(const uint8_t * data,size_t size)504 int make_heap (const uint8_t *data, size_t size)
505 {
506     Vec working(data, data + size);
507     std::make_heap(working.begin(), working.end());
508 
509     if (!std::is_heap(working.begin(), working.end())) return 1;
510     if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99;
511     return 0;
512 }
513 
push_heap(const uint8_t * data,size_t size)514 int push_heap (const uint8_t *data, size_t size)
515 {
516     if (size < 2) return 0;
517 
518 //  Make a heap from the first half of the data
519     Vec working(data, data + size);
520     auto iter = working.begin() + (size / 2);
521     std::make_heap(working.begin(), iter);
522     if (!std::is_heap(working.begin(), iter)) return 1;
523 
524 //  Now push the rest onto the heap, one at a time
525     ++iter;
526     for (; iter != working.end(); ++iter) {
527         std::push_heap(working.begin(), iter);
528         if (!std::is_heap(working.begin(), iter)) return 2;
529         }
530 
531     if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99;
532     return 0;
533 }
534 
pop_heap(const uint8_t * data,size_t size)535 int pop_heap (const uint8_t *data, size_t size)
536 {
537     if (size < 2) return 0;
538     Vec working(data, data + size);
539     std::make_heap(working.begin(), working.end());
540 
541 //  Pop things off, one at a time
542     auto iter = --working.end();
543     while (iter != working.begin()) {
544         std::pop_heap(working.begin(), iter);
545         if (!std::is_heap(working.begin(), --iter)) return 2;
546         }
547 
548     return 0;
549 }
550 
551 
552 // --   search fuzzers
search(const uint8_t * data,size_t size)553 int search (const uint8_t *data, size_t size)
554 {
555     if (size < 2) return 0;
556 
557     const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max();
558     assert(pat_size <= size - 1);
559     const uint8_t *pat_begin = data + 1;
560     const uint8_t *pat_end   = pat_begin + pat_size;
561     const uint8_t *data_end  = data + size;
562     assert(pat_end <= data_end);
563 //  std::cerr << "data[0] = " << size_t(data[0]) << " ";
564 //  std::cerr << "Pattern size = " << pat_size << "; corpus is " << size - 1 << std::endl;
565     auto it = std::search(pat_end, data_end, pat_begin, pat_end);
566     if (it != data_end) // not found
567         if (!std::equal(pat_begin, pat_end, it))
568             return 1;
569     return 0;
570 }
571 
572 template <typename S>
search_helper(const uint8_t * data,size_t size)573 static int search_helper (const uint8_t *data, size_t size)
574 {
575     if (size < 2) return 0;
576 
577     const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max();
578     const uint8_t *pat_begin = data + 1;
579     const uint8_t *pat_end   = pat_begin + pat_size;
580     const uint8_t *data_end  = data + size;
581 
582     auto it = std::search(pat_end, data_end, S(pat_begin, pat_end));
583     if (it != data_end) // not found
584         if (!std::equal(pat_begin, pat_end, it))
585             return 1;
586     return 0;
587 }
588 
589 //  These are still in std::experimental
590 // int search_boyer_moore (const uint8_t *data, size_t size)
591 // {
592 //  return search_helper<std::boyer_moore_searcher<const uint8_t *>>(data, size);
593 // }
594 //
595 // int search_boyer_moore_horspool (const uint8_t *data, size_t size)
596 // {
597 //  return search_helper<std::boyer_moore_horspool_searcher<const uint8_t *>>(data, size);
598 // }
599 
600 
601 // --   set operation fuzzers
602 template <typename S>
set_helper(const uint8_t * data,size_t size,Vec & v1,Vec & v2)603 static void set_helper (const uint8_t *data, size_t size, Vec &v1, Vec &v2)
604 {
605     assert(size > 1);
606 
607     const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max();
608     const uint8_t *pat_begin = data + 1;
609     const uint8_t *pat_end   = pat_begin + pat_size;
610     const uint8_t *data_end  = data + size;
611     v1.assign(pat_begin, pat_end);
612     v2.assign(pat_end, data_end);
613 
614     std::sort(v1.begin(), v1.end());
615     std::sort(v2.begin(), v2.end());
616 }
617 
618 } // namespace fuzzing
619