1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010-2015 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #ifndef BRW_IR_FS_H
26 #define BRW_IR_FS_H
27
28 #include "brw_shader.h"
29
30 class fs_inst;
31
32 class fs_reg : public backend_reg {
33 public:
34 DECLARE_RALLOC_CXX_OPERATORS(fs_reg)
35
36 void init();
37
38 fs_reg();
39 fs_reg(struct ::brw_reg reg);
40 fs_reg(enum brw_reg_file file, int nr);
41 fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type);
42
43 bool equals(const fs_reg &r) const;
44 bool is_contiguous() const;
45
46 /**
47 * Return the size in bytes of a single logical component of the
48 * register assuming the given execution width.
49 */
50 unsigned component_size(unsigned width) const;
51
52 /** Register region horizontal stride */
53 uint8_t stride;
54 };
55
56 static inline fs_reg
negate(fs_reg reg)57 negate(fs_reg reg)
58 {
59 assert(reg.file != IMM);
60 reg.negate = !reg.negate;
61 return reg;
62 }
63
64 static inline fs_reg
retype(fs_reg reg,enum brw_reg_type type)65 retype(fs_reg reg, enum brw_reg_type type)
66 {
67 reg.type = type;
68 return reg;
69 }
70
71 static inline fs_reg
byte_offset(fs_reg reg,unsigned delta)72 byte_offset(fs_reg reg, unsigned delta)
73 {
74 switch (reg.file) {
75 case BAD_FILE:
76 break;
77 case VGRF:
78 case ATTR:
79 case UNIFORM:
80 reg.offset += delta;
81 break;
82 case MRF: {
83 const unsigned suboffset = reg.offset + delta;
84 reg.nr += suboffset / REG_SIZE;
85 reg.offset = suboffset % REG_SIZE;
86 break;
87 }
88 case ARF:
89 case FIXED_GRF: {
90 const unsigned suboffset = reg.subnr + delta;
91 reg.nr += suboffset / REG_SIZE;
92 reg.subnr = suboffset % REG_SIZE;
93 break;
94 }
95 case IMM:
96 default:
97 assert(delta == 0);
98 }
99 return reg;
100 }
101
102 static inline fs_reg
horiz_offset(const fs_reg & reg,unsigned delta)103 horiz_offset(const fs_reg ®, unsigned delta)
104 {
105 switch (reg.file) {
106 case BAD_FILE:
107 case UNIFORM:
108 case IMM:
109 /* These only have a single component that is implicitly splatted. A
110 * horizontal offset should be a harmless no-op.
111 * XXX - Handle vector immediates correctly.
112 */
113 return reg;
114 case VGRF:
115 case MRF:
116 case ATTR:
117 return byte_offset(reg, delta * reg.stride * type_sz(reg.type));
118 case ARF:
119 case FIXED_GRF:
120 if (reg.is_null()) {
121 return reg;
122 } else {
123 const unsigned stride = reg.hstride ? 1 << (reg.hstride - 1) : 0;
124 return byte_offset(reg, delta * stride * type_sz(reg.type));
125 }
126 }
127 unreachable("Invalid register file");
128 }
129
130 static inline fs_reg
offset(fs_reg reg,unsigned width,unsigned delta)131 offset(fs_reg reg, unsigned width, unsigned delta)
132 {
133 switch (reg.file) {
134 case BAD_FILE:
135 break;
136 case ARF:
137 case FIXED_GRF:
138 case MRF:
139 case VGRF:
140 case ATTR:
141 case UNIFORM:
142 return byte_offset(reg, delta * reg.component_size(width));
143 case IMM:
144 assert(delta == 0);
145 }
146 return reg;
147 }
148
149 /**
150 * Get the scalar channel of \p reg given by \p idx and replicate it to all
151 * channels of the result.
152 */
153 static inline fs_reg
component(fs_reg reg,unsigned idx)154 component(fs_reg reg, unsigned idx)
155 {
156 reg = horiz_offset(reg, idx);
157 reg.stride = 0;
158 return reg;
159 }
160
161 /**
162 * Return an integer identifying the discrete address space a register is
163 * contained in. A register is by definition fully contained in the single
164 * reg_space it belongs to, so two registers with different reg_space ids are
165 * guaranteed not to overlap. Most register files are a single reg_space of
166 * its own, only the VGRF file is composed of multiple discrete address
167 * spaces, one for each VGRF allocation.
168 */
169 static inline uint32_t
reg_space(const fs_reg & r)170 reg_space(const fs_reg &r)
171 {
172 return r.file << 16 | (r.file == VGRF ? r.nr : 0);
173 }
174
175 /**
176 * Return the base offset in bytes of a register relative to the start of its
177 * reg_space().
178 */
179 static inline unsigned
reg_offset(const fs_reg & r)180 reg_offset(const fs_reg &r)
181 {
182 return (r.file == VGRF || r.file == IMM ? 0 : r.nr) *
183 (r.file == UNIFORM ? 4 : REG_SIZE) + r.offset +
184 (r.file == ARF || r.file == FIXED_GRF ? r.subnr : 0);
185 }
186
187 /**
188 * Return the amount of padding in bytes left unused between individual
189 * components of register \p r due to a (horizontal) stride value greater than
190 * one, or zero if components are tightly packed in the register file.
191 */
192 static inline unsigned
reg_padding(const fs_reg & r)193 reg_padding(const fs_reg &r)
194 {
195 const unsigned stride = ((r.file != ARF && r.file != FIXED_GRF) ? r.stride :
196 r.hstride == 0 ? 0 :
197 1 << (r.hstride - 1));
198 return (MAX2(1, stride) - 1) * type_sz(r.type);
199 }
200
201 /**
202 * Return whether the register region starting at \p r and spanning \p dr
203 * bytes could potentially overlap the register region starting at \p s and
204 * spanning \p ds bytes.
205 */
206 static inline bool
regions_overlap(const fs_reg & r,unsigned dr,const fs_reg & s,unsigned ds)207 regions_overlap(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
208 {
209 if (r.file == MRF && (r.nr & BRW_MRF_COMPR4)) {
210 fs_reg t = r;
211 t.nr &= ~BRW_MRF_COMPR4;
212 /* COMPR4 regions are translated by the hardware during decompression
213 * into two separate half-regions 4 MRFs apart from each other.
214 */
215 return regions_overlap(t, dr / 2, s, ds) ||
216 regions_overlap(byte_offset(t, 4 * REG_SIZE), dr / 2, s, ds);
217
218 } else if (s.file == MRF && (s.nr & BRW_MRF_COMPR4)) {
219 return regions_overlap(s, ds, r, dr);
220
221 } else {
222 return reg_space(r) == reg_space(s) &&
223 !(reg_offset(r) + dr <= reg_offset(s) ||
224 reg_offset(s) + ds <= reg_offset(r));
225 }
226 }
227
228 /**
229 * Check that the register region given by r [r.offset, r.offset + dr[
230 * is fully contained inside the register region given by s
231 * [s.offset, s.offset + ds[.
232 */
233 static inline bool
region_contained_in(const fs_reg & r,unsigned dr,const fs_reg & s,unsigned ds)234 region_contained_in(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
235 {
236 return reg_space(r) == reg_space(s) &&
237 reg_offset(r) >= reg_offset(s) &&
238 reg_offset(r) + dr <= reg_offset(s) + ds;
239 }
240
241 /**
242 * Return whether the given register region is n-periodic, i.e. whether the
243 * original region remains invariant after shifting it by \p n scalar
244 * channels.
245 */
246 static inline bool
is_periodic(const fs_reg & reg,unsigned n)247 is_periodic(const fs_reg ®, unsigned n)
248 {
249 if (reg.file == BAD_FILE || reg.is_null()) {
250 return true;
251
252 } else if (reg.file == IMM) {
253 const unsigned period = (reg.type == BRW_REGISTER_TYPE_UV ||
254 reg.type == BRW_REGISTER_TYPE_V ? 8 :
255 reg.type == BRW_REGISTER_TYPE_VF ? 4 :
256 1);
257 return n % period == 0;
258
259 } else if (reg.file == ARF || reg.file == FIXED_GRF) {
260 const unsigned period = (reg.hstride == 0 && reg.vstride == 0 ? 1 :
261 reg.vstride == 0 ? 1 << reg.width :
262 ~0);
263 return n % period == 0;
264
265 } else {
266 return reg.stride == 0;
267 }
268 }
269
270 static inline bool
is_uniform(const fs_reg & reg)271 is_uniform(const fs_reg ®)
272 {
273 return is_periodic(reg, 1);
274 }
275
276 /**
277 * Get the specified 8-component quarter of a register.
278 * XXX - Maybe come up with a less misleading name for this (e.g. quarter())?
279 */
280 static inline fs_reg
half(const fs_reg & reg,unsigned idx)281 half(const fs_reg ®, unsigned idx)
282 {
283 assert(idx < 2);
284 return horiz_offset(reg, 8 * idx);
285 }
286
287 /**
288 * Reinterpret each channel of register \p reg as a vector of values of the
289 * given smaller type and take the i-th subcomponent from each.
290 */
291 static inline fs_reg
subscript(fs_reg reg,brw_reg_type type,unsigned i)292 subscript(fs_reg reg, brw_reg_type type, unsigned i)
293 {
294 assert((i + 1) * type_sz(type) <= type_sz(reg.type));
295
296 if (reg.file == ARF || reg.file == FIXED_GRF) {
297 /* The stride is encoded inconsistently for fixed GRF and ARF registers
298 * as the log2 of the actual vertical and horizontal strides.
299 */
300 const int delta = _mesa_logbase2(type_sz(reg.type)) -
301 _mesa_logbase2(type_sz(type));
302 reg.hstride += (reg.hstride ? delta : 0);
303 reg.vstride += (reg.vstride ? delta : 0);
304
305 } else if (reg.file == IMM) {
306 assert(reg.type == type);
307
308 } else {
309 reg.stride *= type_sz(reg.type) / type_sz(type);
310 }
311
312 return byte_offset(retype(reg, type), i * type_sz(type));
313 }
314
315 static const fs_reg reg_undef;
316
317 class fs_inst : public backend_instruction {
318 fs_inst &operator=(const fs_inst &);
319
320 void init(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
321 const fs_reg *src, unsigned sources);
322
323 public:
324 DECLARE_RALLOC_CXX_OPERATORS(fs_inst)
325
326 fs_inst();
327 fs_inst(enum opcode opcode, uint8_t exec_size);
328 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst);
329 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
330 const fs_reg &src0);
331 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
332 const fs_reg &src0, const fs_reg &src1);
333 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
334 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2);
335 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
336 const fs_reg src[], unsigned sources);
337 fs_inst(const fs_inst &that);
338 ~fs_inst();
339
340 void resize_sources(uint8_t num_sources);
341
342 bool equals(fs_inst *inst) const;
343 bool is_send_from_grf() const;
344 bool is_partial_write() const;
345 bool is_copy_payload(const brw::simple_allocator &grf_alloc) const;
346 unsigned components_read(unsigned i) const;
347 unsigned size_read(int arg) const;
348 bool can_do_source_mods(const struct gen_device_info *devinfo);
349 bool can_change_types() const;
350 bool has_source_and_destination_hazard() const;
351
352 /**
353 * Return the subset of flag registers read by the instruction as a bitset
354 * with byte granularity.
355 */
356 unsigned flags_read(const gen_device_info *devinfo) const;
357
358 /**
359 * Return the subset of flag registers updated by the instruction (either
360 * partially or fully) as a bitset with byte granularity.
361 */
362 unsigned flags_written() const;
363
364 fs_reg dst;
365 fs_reg *src;
366
367 uint8_t sources; /**< Number of fs_reg sources. */
368
369 bool pi_noperspective:1; /**< Pixel interpolator noperspective flag */
370 };
371
372 /**
373 * Make the execution of \p inst dependent on the evaluation of a possibly
374 * inverted predicate.
375 */
376 static inline fs_inst *
set_predicate_inv(enum brw_predicate pred,bool inverse,fs_inst * inst)377 set_predicate_inv(enum brw_predicate pred, bool inverse,
378 fs_inst *inst)
379 {
380 inst->predicate = pred;
381 inst->predicate_inverse = inverse;
382 return inst;
383 }
384
385 /**
386 * Make the execution of \p inst dependent on the evaluation of a predicate.
387 */
388 static inline fs_inst *
set_predicate(enum brw_predicate pred,fs_inst * inst)389 set_predicate(enum brw_predicate pred, fs_inst *inst)
390 {
391 return set_predicate_inv(pred, false, inst);
392 }
393
394 /**
395 * Write the result of evaluating the condition given by \p mod to a flag
396 * register.
397 */
398 static inline fs_inst *
set_condmod(enum brw_conditional_mod mod,fs_inst * inst)399 set_condmod(enum brw_conditional_mod mod, fs_inst *inst)
400 {
401 inst->conditional_mod = mod;
402 return inst;
403 }
404
405 /**
406 * Clamp the result of \p inst to the saturation range of its destination
407 * datatype.
408 */
409 static inline fs_inst *
set_saturate(bool saturate,fs_inst * inst)410 set_saturate(bool saturate, fs_inst *inst)
411 {
412 inst->saturate = saturate;
413 return inst;
414 }
415
416 /**
417 * Return the number of dataflow registers written by the instruction (either
418 * fully or partially) counted from 'floor(reg_offset(inst->dst) /
419 * register_size)'. The somewhat arbitrary register size unit is 4B for the
420 * UNIFORM and IMM files and 32B for all other files.
421 */
422 inline unsigned
regs_written(const fs_inst * inst)423 regs_written(const fs_inst *inst)
424 {
425 assert(inst->dst.file != UNIFORM && inst->dst.file != IMM);
426 return DIV_ROUND_UP(reg_offset(inst->dst) % REG_SIZE +
427 inst->size_written -
428 MIN2(inst->size_written, reg_padding(inst->dst)),
429 REG_SIZE);
430 }
431
432 /**
433 * Return the number of dataflow registers read by the instruction (either
434 * fully or partially) counted from 'floor(reg_offset(inst->src[i]) /
435 * register_size)'. The somewhat arbitrary register size unit is 4B for the
436 * UNIFORM and IMM files and 32B for all other files.
437 */
438 inline unsigned
regs_read(const fs_inst * inst,unsigned i)439 regs_read(const fs_inst *inst, unsigned i)
440 {
441 const unsigned reg_size =
442 inst->src[i].file == UNIFORM || inst->src[i].file == IMM ? 4 : REG_SIZE;
443 return DIV_ROUND_UP(reg_offset(inst->src[i]) % reg_size +
444 inst->size_read(i) -
445 MIN2(inst->size_read(i), reg_padding(inst->src[i])),
446 reg_size);
447 }
448
449 static inline enum brw_reg_type
get_exec_type(const fs_inst * inst)450 get_exec_type(const fs_inst *inst)
451 {
452 brw_reg_type exec_type = BRW_REGISTER_TYPE_B;
453
454 for (int i = 0; i < inst->sources; i++) {
455 if (inst->src[i].file != BAD_FILE) {
456 const brw_reg_type t = get_exec_type(inst->src[i].type);
457 if (type_sz(t) > type_sz(exec_type))
458 exec_type = t;
459 else if (type_sz(t) == type_sz(exec_type) &&
460 brw_reg_type_is_floating_point(t))
461 exec_type = t;
462 }
463 }
464
465 if (exec_type == BRW_REGISTER_TYPE_B)
466 exec_type = inst->dst.type;
467
468 assert(exec_type != BRW_REGISTER_TYPE_B);
469
470 return exec_type;
471 }
472
473 static inline unsigned
get_exec_type_size(const fs_inst * inst)474 get_exec_type_size(const fs_inst *inst)
475 {
476 return type_sz(get_exec_type(inst));
477 }
478
479 #endif
480