• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function.  This is required due to the
12 // limited pc-relative displacements that ARM has.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "MCTargetDesc/ARMAddressingModes.h"
19 #include "Thumb2InstrInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <algorithm>
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "arm-cp-islands"
39 
40 STATISTIC(NumCPEs,       "Number of constpool entries");
41 STATISTIC(NumSplit,      "Number of uncond branches inserted");
42 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
43 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
44 STATISTIC(NumTBs,        "Number of table branches generated");
45 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
46 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
47 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
48 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
49 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
50 
51 
52 static cl::opt<bool>
53 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
54           cl::desc("Adjust basic block layout to better use TB[BH]"));
55 
56 static cl::opt<unsigned>
57 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
58           cl::desc("The max number of iteration for converge"));
59 
60 
61 /// UnknownPadding - Return the worst case padding that could result from
62 /// unknown offset bits.  This does not include alignment padding caused by
63 /// known offset bits.
64 ///
65 /// @param LogAlign log2(alignment)
66 /// @param KnownBits Number of known low offset bits.
UnknownPadding(unsigned LogAlign,unsigned KnownBits)67 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
68   if (KnownBits < LogAlign)
69     return (1u << LogAlign) - (1u << KnownBits);
70   return 0;
71 }
72 
73 namespace {
74   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
75   /// requires constant pool entries to be scattered among the instructions
76   /// inside a function.  To do this, it completely ignores the normal LLVM
77   /// constant pool; instead, it places constants wherever it feels like with
78   /// special instructions.
79   ///
80   /// The terminology used in this pass includes:
81   ///   Islands - Clumps of constants placed in the function.
82   ///   Water   - Potential places where an island could be formed.
83   ///   CPE     - A constant pool entry that has been placed somewhere, which
84   ///             tracks a list of users.
85   class ARMConstantIslands : public MachineFunctionPass {
86     /// BasicBlockInfo - Information about the offset and size of a single
87     /// basic block.
88     struct BasicBlockInfo {
89       /// Offset - Distance from the beginning of the function to the beginning
90       /// of this basic block.
91       ///
92       /// Offsets are computed assuming worst case padding before an aligned
93       /// block. This means that subtracting basic block offsets always gives a
94       /// conservative estimate of the real distance which may be smaller.
95       ///
96       /// Because worst case padding is used, the computed offset of an aligned
97       /// block may not actually be aligned.
98       unsigned Offset;
99 
100       /// Size - Size of the basic block in bytes.  If the block contains
101       /// inline assembly, this is a worst case estimate.
102       ///
103       /// The size does not include any alignment padding whether from the
104       /// beginning of the block, or from an aligned jump table at the end.
105       unsigned Size;
106 
107       /// KnownBits - The number of low bits in Offset that are known to be
108       /// exact.  The remaining bits of Offset are an upper bound.
109       uint8_t KnownBits;
110 
111       /// Unalign - When non-zero, the block contains instructions (inline asm)
112       /// of unknown size.  The real size may be smaller than Size bytes by a
113       /// multiple of 1 << Unalign.
114       uint8_t Unalign;
115 
116       /// PostAlign - When non-zero, the block terminator contains a .align
117       /// directive, so the end of the block is aligned to 1 << PostAlign
118       /// bytes.
119       uint8_t PostAlign;
120 
BasicBlockInfo__anon72f5a51c0111::ARMConstantIslands::BasicBlockInfo121       BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
122         PostAlign(0) {}
123 
124       /// Compute the number of known offset bits internally to this block.
125       /// This number should be used to predict worst case padding when
126       /// splitting the block.
internalKnownBits__anon72f5a51c0111::ARMConstantIslands::BasicBlockInfo127       unsigned internalKnownBits() const {
128         unsigned Bits = Unalign ? Unalign : KnownBits;
129         // If the block size isn't a multiple of the known bits, assume the
130         // worst case padding.
131         if (Size & ((1u << Bits) - 1))
132           Bits = countTrailingZeros(Size);
133         return Bits;
134       }
135 
136       /// Compute the offset immediately following this block.  If LogAlign is
137       /// specified, return the offset the successor block will get if it has
138       /// this alignment.
postOffset__anon72f5a51c0111::ARMConstantIslands::BasicBlockInfo139       unsigned postOffset(unsigned LogAlign = 0) const {
140         unsigned PO = Offset + Size;
141         unsigned LA = std::max(unsigned(PostAlign), LogAlign);
142         if (!LA)
143           return PO;
144         // Add alignment padding from the terminator.
145         return PO + UnknownPadding(LA, internalKnownBits());
146       }
147 
148       /// Compute the number of known low bits of postOffset.  If this block
149       /// contains inline asm, the number of known bits drops to the
150       /// instruction alignment.  An aligned terminator may increase the number
151       /// of know bits.
152       /// If LogAlign is given, also consider the alignment of the next block.
postKnownBits__anon72f5a51c0111::ARMConstantIslands::BasicBlockInfo153       unsigned postKnownBits(unsigned LogAlign = 0) const {
154         return std::max(std::max(unsigned(PostAlign), LogAlign),
155                         internalKnownBits());
156       }
157     };
158 
159     std::vector<BasicBlockInfo> BBInfo;
160 
161     /// WaterList - A sorted list of basic blocks where islands could be placed
162     /// (i.e. blocks that don't fall through to the following block, due
163     /// to a return, unreachable, or unconditional branch).
164     std::vector<MachineBasicBlock*> WaterList;
165 
166     /// NewWaterList - The subset of WaterList that was created since the
167     /// previous iteration by inserting unconditional branches.
168     SmallSet<MachineBasicBlock*, 4> NewWaterList;
169 
170     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
171 
172     /// CPUser - One user of a constant pool, keeping the machine instruction
173     /// pointer, the constant pool being referenced, and the max displacement
174     /// allowed from the instruction to the CP.  The HighWaterMark records the
175     /// highest basic block where a new CPEntry can be placed.  To ensure this
176     /// pass terminates, the CP entries are initially placed at the end of the
177     /// function and then move monotonically to lower addresses.  The
178     /// exception to this rule is when the current CP entry for a particular
179     /// CPUser is out of range, but there is another CP entry for the same
180     /// constant value in range.  We want to use the existing in-range CP
181     /// entry, but if it later moves out of range, the search for new water
182     /// should resume where it left off.  The HighWaterMark is used to record
183     /// that point.
184     struct CPUser {
185       MachineInstr *MI;
186       MachineInstr *CPEMI;
187       MachineBasicBlock *HighWaterMark;
188       unsigned MaxDisp;
189       bool NegOk;
190       bool IsSoImm;
191       bool KnownAlignment;
CPUser__anon72f5a51c0111::ARMConstantIslands::CPUser192       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
193              bool neg, bool soimm)
194         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
195           KnownAlignment(false) {
196         HighWaterMark = CPEMI->getParent();
197       }
198       /// getMaxDisp - Returns the maximum displacement supported by MI.
199       /// Correct for unknown alignment.
200       /// Conservatively subtract 2 bytes to handle weird alignment effects.
getMaxDisp__anon72f5a51c0111::ARMConstantIslands::CPUser201       unsigned getMaxDisp() const {
202         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
203       }
204     };
205 
206     /// CPUsers - Keep track of all of the machine instructions that use various
207     /// constant pools and their max displacement.
208     std::vector<CPUser> CPUsers;
209 
210     /// CPEntry - One per constant pool entry, keeping the machine instruction
211     /// pointer, the constpool index, and the number of CPUser's which
212     /// reference this entry.
213     struct CPEntry {
214       MachineInstr *CPEMI;
215       unsigned CPI;
216       unsigned RefCount;
CPEntry__anon72f5a51c0111::ARMConstantIslands::CPEntry217       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
218         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
219     };
220 
221     /// CPEntries - Keep track of all of the constant pool entry machine
222     /// instructions. For each original constpool index (i.e. those that existed
223     /// upon entry to this pass), it keeps a vector of entries.  Original
224     /// elements are cloned as we go along; the clones are put in the vector of
225     /// the original element, but have distinct CPIs.
226     ///
227     /// The first half of CPEntries contains generic constants, the second half
228     /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
229     /// which vector it will be in here.
230     std::vector<std::vector<CPEntry> > CPEntries;
231 
232     /// Maps a JT index to the offset in CPEntries containing copies of that
233     /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
234     DenseMap<int, int> JumpTableEntryIndices;
235 
236     /// Maps a JT index to the LEA that actually uses the index to calculate its
237     /// base address.
238     DenseMap<int, int> JumpTableUserIndices;
239 
240     /// ImmBranch - One per immediate branch, keeping the machine instruction
241     /// pointer, conditional or unconditional, the max displacement,
242     /// and (if isCond is true) the corresponding unconditional branch
243     /// opcode.
244     struct ImmBranch {
245       MachineInstr *MI;
246       unsigned MaxDisp : 31;
247       bool isCond : 1;
248       unsigned UncondBr;
ImmBranch__anon72f5a51c0111::ARMConstantIslands::ImmBranch249       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
250         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
251     };
252 
253     /// ImmBranches - Keep track of all the immediate branch instructions.
254     ///
255     std::vector<ImmBranch> ImmBranches;
256 
257     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
258     ///
259     SmallVector<MachineInstr*, 4> PushPopMIs;
260 
261     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
262     SmallVector<MachineInstr*, 4> T2JumpTables;
263 
264     /// HasFarJump - True if any far jump instruction has been emitted during
265     /// the branch fix up pass.
266     bool HasFarJump;
267 
268     MachineFunction *MF;
269     MachineConstantPool *MCP;
270     const ARMBaseInstrInfo *TII;
271     const ARMSubtarget *STI;
272     ARMFunctionInfo *AFI;
273     bool isThumb;
274     bool isThumb1;
275     bool isThumb2;
276   public:
277     static char ID;
ARMConstantIslands()278     ARMConstantIslands() : MachineFunctionPass(ID) {}
279 
280     bool runOnMachineFunction(MachineFunction &MF) override;
281 
getRequiredProperties() const282     MachineFunctionProperties getRequiredProperties() const override {
283       return MachineFunctionProperties().set(
284           MachineFunctionProperties::Property::AllVRegsAllocated);
285     }
286 
getPassName() const287     const char *getPassName() const override {
288       return "ARM constant island placement and branch shortening pass";
289     }
290 
291   private:
292     void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
293     void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
294     bool BBHasFallthrough(MachineBasicBlock *MBB);
295     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
296     unsigned getCPELogAlign(const MachineInstr *CPEMI);
297     void scanFunctionJumpTables();
298     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
299     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
300     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
301     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
302     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
303     unsigned getCombinedIndex(const MachineInstr *CPEMI);
304     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
305     bool findAvailableWater(CPUser&U, unsigned UserOffset,
306                             water_iterator &WaterIter, bool CloserWater);
307     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
308                         MachineBasicBlock *&NewMBB);
309     bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
310     void removeDeadCPEMI(MachineInstr *CPEMI);
311     bool removeUnusedCPEntries();
312     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
313                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
314                           bool DoDump = false);
315     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
316                         CPUser &U, unsigned &Growth);
317     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
318     bool fixupImmediateBr(ImmBranch &Br);
319     bool fixupConditionalBr(ImmBranch &Br);
320     bool fixupUnconditionalBr(ImmBranch &Br);
321     bool undoLRSpillRestore();
322     bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
323     bool optimizeThumb2Instructions();
324     bool optimizeThumb2Branches();
325     bool reorderThumb2JumpTables();
326     bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
327                               unsigned &DeadSize, bool &CanDeleteLEA,
328                               bool &BaseRegKill);
329     bool optimizeThumb2JumpTables();
330     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
331                                                   MachineBasicBlock *JTBB);
332 
333     void computeBlockSize(MachineBasicBlock *MBB);
334     unsigned getOffsetOf(MachineInstr *MI) const;
335     unsigned getUserOffset(CPUser&) const;
336     void dumpBBs();
337     void verify();
338 
339     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
340                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,const CPUser & U)341     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
342                          const CPUser &U) {
343       return isOffsetInRange(UserOffset, TrialOffset,
344                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
345     }
346   };
347   char ARMConstantIslands::ID = 0;
348 }
349 
350 /// verify - check BBOffsets, BBSizes, alignment of islands
verify()351 void ARMConstantIslands::verify() {
352 #ifndef NDEBUG
353   assert(std::is_sorted(MF->begin(), MF->end(),
354                         [this](const MachineBasicBlock &LHS,
355                                const MachineBasicBlock &RHS) {
356                           return BBInfo[LHS.getNumber()].postOffset() <
357                                  BBInfo[RHS.getNumber()].postOffset();
358                         }));
359   DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
360   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
361     CPUser &U = CPUsers[i];
362     unsigned UserOffset = getUserOffset(U);
363     // Verify offset using the real max displacement without the safety
364     // adjustment.
365     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
366                          /* DoDump = */ true)) {
367       DEBUG(dbgs() << "OK\n");
368       continue;
369     }
370     DEBUG(dbgs() << "Out of range.\n");
371     dumpBBs();
372     DEBUG(MF->dump());
373     llvm_unreachable("Constant pool entry out of range!");
374   }
375 #endif
376 }
377 
378 /// print block size and offset information - debugging
dumpBBs()379 void ARMConstantIslands::dumpBBs() {
380   DEBUG({
381     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
382       const BasicBlockInfo &BBI = BBInfo[J];
383       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
384              << " kb=" << unsigned(BBI.KnownBits)
385              << " ua=" << unsigned(BBI.Unalign)
386              << " pa=" << unsigned(BBI.PostAlign)
387              << format(" size=%#x\n", BBInfo[J].Size);
388     }
389   });
390 }
391 
392 /// createARMConstantIslandPass - returns an instance of the constpool
393 /// island pass.
createARMConstantIslandPass()394 FunctionPass *llvm::createARMConstantIslandPass() {
395   return new ARMConstantIslands();
396 }
397 
runOnMachineFunction(MachineFunction & mf)398 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
399   MF = &mf;
400   MCP = mf.getConstantPool();
401 
402   DEBUG(dbgs() << "***** ARMConstantIslands: "
403                << MCP->getConstants().size() << " CP entries, aligned to "
404                << MCP->getConstantPoolAlignment() << " bytes *****\n");
405 
406   STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
407   TII = STI->getInstrInfo();
408   AFI = MF->getInfo<ARMFunctionInfo>();
409 
410   isThumb = AFI->isThumbFunction();
411   isThumb1 = AFI->isThumb1OnlyFunction();
412   isThumb2 = AFI->isThumb2Function();
413 
414   HasFarJump = false;
415 
416   // This pass invalidates liveness information when it splits basic blocks.
417   MF->getRegInfo().invalidateLiveness();
418 
419   // Renumber all of the machine basic blocks in the function, guaranteeing that
420   // the numbers agree with the position of the block in the function.
421   MF->RenumberBlocks();
422 
423   // Try to reorder and otherwise adjust the block layout to make good use
424   // of the TB[BH] instructions.
425   bool MadeChange = false;
426   if (isThumb2 && AdjustJumpTableBlocks) {
427     scanFunctionJumpTables();
428     MadeChange |= reorderThumb2JumpTables();
429     // Data is out of date, so clear it. It'll be re-computed later.
430     T2JumpTables.clear();
431     // Blocks may have shifted around. Keep the numbering up to date.
432     MF->RenumberBlocks();
433   }
434 
435   // Perform the initial placement of the constant pool entries.  To start with,
436   // we put them all at the end of the function.
437   std::vector<MachineInstr*> CPEMIs;
438   if (!MCP->isEmpty())
439     doInitialConstPlacement(CPEMIs);
440 
441   if (MF->getJumpTableInfo())
442     doInitialJumpTablePlacement(CPEMIs);
443 
444   /// The next UID to take is the first unused one.
445   AFI->initPICLabelUId(CPEMIs.size());
446 
447   // Do the initial scan of the function, building up information about the
448   // sizes of each block, the location of all the water, and finding all of the
449   // constant pool users.
450   initializeFunctionInfo(CPEMIs);
451   CPEMIs.clear();
452   DEBUG(dumpBBs());
453 
454   // Functions with jump tables need an alignment of 4 because they use the ADR
455   // instruction, which aligns the PC to 4 bytes before adding an offset.
456   if (!T2JumpTables.empty())
457     MF->ensureAlignment(2);
458 
459   /// Remove dead constant pool entries.
460   MadeChange |= removeUnusedCPEntries();
461 
462   // Iteratively place constant pool entries and fix up branches until there
463   // is no change.
464   unsigned NoCPIters = 0, NoBRIters = 0;
465   while (true) {
466     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
467     bool CPChange = false;
468     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
469       // For most inputs, it converges in no more than 5 iterations.
470       // If it doesn't end in 10, the input may have huge BB or many CPEs.
471       // In this case, we will try different heuristics.
472       CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
473     if (CPChange && ++NoCPIters > CPMaxIteration)
474       report_fatal_error("Constant Island pass failed to converge!");
475     DEBUG(dumpBBs());
476 
477     // Clear NewWaterList now.  If we split a block for branches, it should
478     // appear as "new water" for the next iteration of constant pool placement.
479     NewWaterList.clear();
480 
481     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
482     bool BRChange = false;
483     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
484       BRChange |= fixupImmediateBr(ImmBranches[i]);
485     if (BRChange && ++NoBRIters > 30)
486       report_fatal_error("Branch Fix Up pass failed to converge!");
487     DEBUG(dumpBBs());
488 
489     if (!CPChange && !BRChange)
490       break;
491     MadeChange = true;
492   }
493 
494   // Shrink 32-bit Thumb2 load and store instructions.
495   if (isThumb2 && !STI->prefers32BitThumb())
496     MadeChange |= optimizeThumb2Instructions();
497 
498   // Shrink 32-bit branch instructions.
499   if (isThumb && STI->hasV8MBaselineOps())
500     MadeChange |= optimizeThumb2Branches();
501 
502   // Optimize jump tables using TBB / TBH.
503   if (isThumb2)
504     MadeChange |= optimizeThumb2JumpTables();
505 
506   // After a while, this might be made debug-only, but it is not expensive.
507   verify();
508 
509   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
510   // undo the spill / restore of LR if possible.
511   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
512     MadeChange |= undoLRSpillRestore();
513 
514   // Save the mapping between original and cloned constpool entries.
515   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
516     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
517       const CPEntry & CPE = CPEntries[i][j];
518       if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
519         AFI->recordCPEClone(i, CPE.CPI);
520     }
521   }
522 
523   DEBUG(dbgs() << '\n'; dumpBBs());
524 
525   BBInfo.clear();
526   WaterList.clear();
527   CPUsers.clear();
528   CPEntries.clear();
529   JumpTableEntryIndices.clear();
530   JumpTableUserIndices.clear();
531   ImmBranches.clear();
532   PushPopMIs.clear();
533   T2JumpTables.clear();
534 
535   return MadeChange;
536 }
537 
538 /// \brief Perform the initial placement of the regular constant pool entries.
539 /// To start with, we put them all at the end of the function.
540 void
doInitialConstPlacement(std::vector<MachineInstr * > & CPEMIs)541 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
542   // Create the basic block to hold the CPE's.
543   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
544   MF->push_back(BB);
545 
546   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
547   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
548 
549   // Mark the basic block as required by the const-pool.
550   BB->setAlignment(MaxAlign);
551 
552   // The function needs to be as aligned as the basic blocks. The linker may
553   // move functions around based on their alignment.
554   MF->ensureAlignment(BB->getAlignment());
555 
556   // Order the entries in BB by descending alignment.  That ensures correct
557   // alignment of all entries as long as BB is sufficiently aligned.  Keep
558   // track of the insertion point for each alignment.  We are going to bucket
559   // sort the entries as they are created.
560   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
561 
562   // Add all of the constants from the constant pool to the end block, use an
563   // identity mapping of CPI's to CPE's.
564   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
565 
566   const DataLayout &TD = MF->getDataLayout();
567   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
568     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
569     assert(Size >= 4 && "Too small constant pool entry");
570     unsigned Align = CPs[i].getAlignment();
571     assert(isPowerOf2_32(Align) && "Invalid alignment");
572     // Verify that all constant pool entries are a multiple of their alignment.
573     // If not, we would have to pad them out so that instructions stay aligned.
574     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
575 
576     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
577     unsigned LogAlign = Log2_32(Align);
578     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
579     MachineInstr *CPEMI =
580       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
581         .addImm(i).addConstantPoolIndex(i).addImm(Size);
582     CPEMIs.push_back(CPEMI);
583 
584     // Ensure that future entries with higher alignment get inserted before
585     // CPEMI. This is bucket sort with iterators.
586     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
587       if (InsPoint[a] == InsAt)
588         InsPoint[a] = CPEMI;
589 
590     // Add a new CPEntry, but no corresponding CPUser yet.
591     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
592     ++NumCPEs;
593     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
594                  << Size << ", align = " << Align <<'\n');
595   }
596   DEBUG(BB->dump());
597 }
598 
599 /// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH
600 /// instructions can be made more efficient if the jump table immediately
601 /// follows the instruction, it's best to place them immediately next to their
602 /// jumps to begin with. In almost all cases they'll never be moved from that
603 /// position.
doInitialJumpTablePlacement(std::vector<MachineInstr * > & CPEMIs)604 void ARMConstantIslands::doInitialJumpTablePlacement(
605     std::vector<MachineInstr *> &CPEMIs) {
606   unsigned i = CPEntries.size();
607   auto MJTI = MF->getJumpTableInfo();
608   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
609 
610   MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
611   for (MachineBasicBlock &MBB : *MF) {
612     auto MI = MBB.getLastNonDebugInstr();
613     if (MI == MBB.end())
614       continue;
615 
616     unsigned JTOpcode;
617     switch (MI->getOpcode()) {
618     default:
619       continue;
620     case ARM::BR_JTadd:
621     case ARM::BR_JTr:
622     case ARM::tBR_JTr:
623     case ARM::BR_JTm:
624       JTOpcode = ARM::JUMPTABLE_ADDRS;
625       break;
626     case ARM::t2BR_JT:
627       JTOpcode = ARM::JUMPTABLE_INSTS;
628       break;
629     case ARM::t2TBB_JT:
630       JTOpcode = ARM::JUMPTABLE_TBB;
631       break;
632     case ARM::t2TBH_JT:
633       JTOpcode = ARM::JUMPTABLE_TBH;
634       break;
635     }
636 
637     unsigned NumOps = MI->getDesc().getNumOperands();
638     MachineOperand JTOp =
639       MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
640     unsigned JTI = JTOp.getIndex();
641     unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
642     MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
643     MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
644     MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
645                                   DebugLoc(), TII->get(JTOpcode))
646                               .addImm(i++)
647                               .addJumpTableIndex(JTI)
648                               .addImm(Size);
649     CPEMIs.push_back(CPEMI);
650     CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
651     JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
652     if (!LastCorrectlyNumberedBB)
653       LastCorrectlyNumberedBB = &MBB;
654   }
655 
656   // If we did anything then we need to renumber the subsequent blocks.
657   if (LastCorrectlyNumberedBB)
658     MF->RenumberBlocks(LastCorrectlyNumberedBB);
659 }
660 
661 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
662 /// into the block immediately after it.
BBHasFallthrough(MachineBasicBlock * MBB)663 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
664   // Get the next machine basic block in the function.
665   MachineFunction::iterator MBBI = MBB->getIterator();
666   // Can't fall off end of function.
667   if (std::next(MBBI) == MBB->getParent()->end())
668     return false;
669 
670   MachineBasicBlock *NextBB = &*std::next(MBBI);
671   if (std::find(MBB->succ_begin(), MBB->succ_end(), NextBB) == MBB->succ_end())
672     return false;
673 
674   // Try to analyze the end of the block. A potential fallthrough may already
675   // have an unconditional branch for whatever reason.
676   MachineBasicBlock *TBB, *FBB;
677   SmallVector<MachineOperand, 4> Cond;
678   bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
679   return TooDifficult || FBB == nullptr;
680 }
681 
682 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
683 /// look up the corresponding CPEntry.
684 ARMConstantIslands::CPEntry
findConstPoolEntry(unsigned CPI,const MachineInstr * CPEMI)685 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
686                                         const MachineInstr *CPEMI) {
687   std::vector<CPEntry> &CPEs = CPEntries[CPI];
688   // Number of entries per constpool index should be small, just do a
689   // linear search.
690   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
691     if (CPEs[i].CPEMI == CPEMI)
692       return &CPEs[i];
693   }
694   return nullptr;
695 }
696 
697 /// getCPELogAlign - Returns the required alignment of the constant pool entry
698 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
getCPELogAlign(const MachineInstr * CPEMI)699 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
700   switch (CPEMI->getOpcode()) {
701   case ARM::CONSTPOOL_ENTRY:
702     break;
703   case ARM::JUMPTABLE_TBB:
704     return 0;
705   case ARM::JUMPTABLE_TBH:
706   case ARM::JUMPTABLE_INSTS:
707     return 1;
708   case ARM::JUMPTABLE_ADDRS:
709     return 2;
710   default:
711     llvm_unreachable("unknown constpool entry kind");
712   }
713 
714   unsigned CPI = getCombinedIndex(CPEMI);
715   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
716   unsigned Align = MCP->getConstants()[CPI].getAlignment();
717   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
718   return Log2_32(Align);
719 }
720 
721 /// scanFunctionJumpTables - Do a scan of the function, building up
722 /// information about the sizes of each block and the locations of all
723 /// the jump tables.
scanFunctionJumpTables()724 void ARMConstantIslands::scanFunctionJumpTables() {
725   for (MachineBasicBlock &MBB : *MF) {
726     for (MachineInstr &I : MBB)
727       if (I.isBranch() && I.getOpcode() == ARM::t2BR_JT)
728         T2JumpTables.push_back(&I);
729   }
730 }
731 
732 /// initializeFunctionInfo - Do the initial scan of the function, building up
733 /// information about the sizes of each block, the location of all the water,
734 /// and finding all of the constant pool users.
735 void ARMConstantIslands::
initializeFunctionInfo(const std::vector<MachineInstr * > & CPEMIs)736 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
737   BBInfo.clear();
738   BBInfo.resize(MF->getNumBlockIDs());
739 
740   // First thing, compute the size of all basic blocks, and see if the function
741   // has any inline assembly in it. If so, we have to be conservative about
742   // alignment assumptions, as we don't know for sure the size of any
743   // instructions in the inline assembly.
744   for (MachineBasicBlock &MBB : *MF)
745     computeBlockSize(&MBB);
746 
747   // The known bits of the entry block offset are determined by the function
748   // alignment.
749   BBInfo.front().KnownBits = MF->getAlignment();
750 
751   // Compute block offsets and known bits.
752   adjustBBOffsetsAfter(&MF->front());
753 
754   // Now go back through the instructions and build up our data structures.
755   for (MachineBasicBlock &MBB : *MF) {
756     // If this block doesn't fall through into the next MBB, then this is
757     // 'water' that a constant pool island could be placed.
758     if (!BBHasFallthrough(&MBB))
759       WaterList.push_back(&MBB);
760 
761     for (MachineInstr &I : MBB) {
762       if (I.isDebugValue())
763         continue;
764 
765       unsigned Opc = I.getOpcode();
766       if (I.isBranch()) {
767         bool isCond = false;
768         unsigned Bits = 0;
769         unsigned Scale = 1;
770         int UOpc = Opc;
771         switch (Opc) {
772         default:
773           continue;  // Ignore other JT branches
774         case ARM::t2BR_JT:
775           T2JumpTables.push_back(&I);
776           continue;   // Does not get an entry in ImmBranches
777         case ARM::Bcc:
778           isCond = true;
779           UOpc = ARM::B;
780           // Fallthrough
781         case ARM::B:
782           Bits = 24;
783           Scale = 4;
784           break;
785         case ARM::tBcc:
786           isCond = true;
787           UOpc = ARM::tB;
788           Bits = 8;
789           Scale = 2;
790           break;
791         case ARM::tB:
792           Bits = 11;
793           Scale = 2;
794           break;
795         case ARM::t2Bcc:
796           isCond = true;
797           UOpc = ARM::t2B;
798           Bits = 20;
799           Scale = 2;
800           break;
801         case ARM::t2B:
802           Bits = 24;
803           Scale = 2;
804           break;
805         }
806 
807         // Record this immediate branch.
808         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
809         ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
810       }
811 
812       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
813         PushPopMIs.push_back(&I);
814 
815       if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
816           Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
817           Opc == ARM::JUMPTABLE_TBH)
818         continue;
819 
820       // Scan the instructions for constant pool operands.
821       for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
822         if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
823           // We found one.  The addressing mode tells us the max displacement
824           // from the PC that this instruction permits.
825 
826           // Basic size info comes from the TSFlags field.
827           unsigned Bits = 0;
828           unsigned Scale = 1;
829           bool NegOk = false;
830           bool IsSoImm = false;
831 
832           switch (Opc) {
833           default:
834             llvm_unreachable("Unknown addressing mode for CP reference!");
835 
836           // Taking the address of a CP entry.
837           case ARM::LEApcrel:
838           case ARM::LEApcrelJT:
839             // This takes a SoImm, which is 8 bit immediate rotated. We'll
840             // pretend the maximum offset is 255 * 4. Since each instruction
841             // 4 byte wide, this is always correct. We'll check for other
842             // displacements that fits in a SoImm as well.
843             Bits = 8;
844             Scale = 4;
845             NegOk = true;
846             IsSoImm = true;
847             break;
848           case ARM::t2LEApcrel:
849           case ARM::t2LEApcrelJT:
850             Bits = 12;
851             NegOk = true;
852             break;
853           case ARM::tLEApcrel:
854           case ARM::tLEApcrelJT:
855             Bits = 8;
856             Scale = 4;
857             break;
858 
859           case ARM::LDRBi12:
860           case ARM::LDRi12:
861           case ARM::LDRcp:
862           case ARM::t2LDRpci:
863             Bits = 12;  // +-offset_12
864             NegOk = true;
865             break;
866 
867           case ARM::tLDRpci:
868             Bits = 8;
869             Scale = 4;  // +(offset_8*4)
870             break;
871 
872           case ARM::VLDRD:
873           case ARM::VLDRS:
874             Bits = 8;
875             Scale = 4;  // +-(offset_8*4)
876             NegOk = true;
877             break;
878           }
879 
880           // Remember that this is a user of a CP entry.
881           unsigned CPI = I.getOperand(op).getIndex();
882           if (I.getOperand(op).isJTI()) {
883             JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
884             CPI = JumpTableEntryIndices[CPI];
885           }
886 
887           MachineInstr *CPEMI = CPEMIs[CPI];
888           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
889           CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
890 
891           // Increment corresponding CPEntry reference count.
892           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
893           assert(CPE && "Cannot find a corresponding CPEntry!");
894           CPE->RefCount++;
895 
896           // Instructions can only use one CP entry, don't bother scanning the
897           // rest of the operands.
898           break;
899         }
900     }
901   }
902 }
903 
904 /// computeBlockSize - Compute the size and some alignment information for MBB.
905 /// This function updates BBInfo directly.
computeBlockSize(MachineBasicBlock * MBB)906 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
907   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
908   BBI.Size = 0;
909   BBI.Unalign = 0;
910   BBI.PostAlign = 0;
911 
912   for (MachineInstr &I : *MBB) {
913     BBI.Size += TII->GetInstSizeInBytes(I);
914     // For inline asm, GetInstSizeInBytes returns a conservative estimate.
915     // The actual size may be smaller, but still a multiple of the instr size.
916     if (I.isInlineAsm())
917       BBI.Unalign = isThumb ? 1 : 2;
918     // Also consider instructions that may be shrunk later.
919     else if (isThumb && mayOptimizeThumb2Instruction(&I))
920       BBI.Unalign = 1;
921   }
922 
923   // tBR_JTr contains a .align 2 directive.
924   if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
925     BBI.PostAlign = 2;
926     MBB->getParent()->ensureAlignment(2);
927   }
928 }
929 
930 /// getOffsetOf - Return the current offset of the specified machine instruction
931 /// from the start of the function.  This offset changes as stuff is moved
932 /// around inside the function.
getOffsetOf(MachineInstr * MI) const933 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
934   MachineBasicBlock *MBB = MI->getParent();
935 
936   // The offset is composed of two things: the sum of the sizes of all MBB's
937   // before this instruction's block, and the offset from the start of the block
938   // it is in.
939   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
940 
941   // Sum instructions before MI in MBB.
942   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
943     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
944     Offset += TII->GetInstSizeInBytes(*I);
945   }
946   return Offset;
947 }
948 
949 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
950 /// ID.
CompareMBBNumbers(const MachineBasicBlock * LHS,const MachineBasicBlock * RHS)951 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
952                               const MachineBasicBlock *RHS) {
953   return LHS->getNumber() < RHS->getNumber();
954 }
955 
956 /// updateForInsertedWaterBlock - When a block is newly inserted into the
957 /// machine function, it upsets all of the block numbers.  Renumber the blocks
958 /// and update the arrays that parallel this numbering.
updateForInsertedWaterBlock(MachineBasicBlock * NewBB)959 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
960   // Renumber the MBB's to keep them consecutive.
961   NewBB->getParent()->RenumberBlocks(NewBB);
962 
963   // Insert an entry into BBInfo to align it properly with the (newly
964   // renumbered) block numbers.
965   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
966 
967   // Next, update WaterList.  Specifically, we need to add NewMBB as having
968   // available water after it.
969   water_iterator IP =
970     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
971                      CompareMBBNumbers);
972   WaterList.insert(IP, NewBB);
973 }
974 
975 
976 /// Split the basic block containing MI into two blocks, which are joined by
977 /// an unconditional branch.  Update data structures and renumber blocks to
978 /// account for this change and returns the newly created block.
splitBlockBeforeInstr(MachineInstr * MI)979 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
980   MachineBasicBlock *OrigBB = MI->getParent();
981 
982   // Create a new MBB for the code after the OrigBB.
983   MachineBasicBlock *NewBB =
984     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
985   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
986   MF->insert(MBBI, NewBB);
987 
988   // Splice the instructions starting with MI over to NewBB.
989   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
990 
991   // Add an unconditional branch from OrigBB to NewBB.
992   // Note the new unconditional branch is not being recorded.
993   // There doesn't seem to be meaningful DebugInfo available; this doesn't
994   // correspond to anything in the source.
995   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
996   if (!isThumb)
997     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
998   else
999     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
1000             .addImm(ARMCC::AL).addReg(0);
1001   ++NumSplit;
1002 
1003   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
1004   NewBB->transferSuccessors(OrigBB);
1005 
1006   // OrigBB branches to NewBB.
1007   OrigBB->addSuccessor(NewBB);
1008 
1009   // Update internal data structures to account for the newly inserted MBB.
1010   // This is almost the same as updateForInsertedWaterBlock, except that
1011   // the Water goes after OrigBB, not NewBB.
1012   MF->RenumberBlocks(NewBB);
1013 
1014   // Insert an entry into BBInfo to align it properly with the (newly
1015   // renumbered) block numbers.
1016   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
1017 
1018   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
1019   // available water after it (but not if it's already there, which happens
1020   // when splitting before a conditional branch that is followed by an
1021   // unconditional branch - in that case we want to insert NewBB).
1022   water_iterator IP =
1023     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
1024                      CompareMBBNumbers);
1025   MachineBasicBlock* WaterBB = *IP;
1026   if (WaterBB == OrigBB)
1027     WaterList.insert(std::next(IP), NewBB);
1028   else
1029     WaterList.insert(IP, OrigBB);
1030   NewWaterList.insert(OrigBB);
1031 
1032   // Figure out how large the OrigBB is.  As the first half of the original
1033   // block, it cannot contain a tablejump.  The size includes
1034   // the new jump we added.  (It should be possible to do this without
1035   // recounting everything, but it's very confusing, and this is rarely
1036   // executed.)
1037   computeBlockSize(OrigBB);
1038 
1039   // Figure out how large the NewMBB is.  As the second half of the original
1040   // block, it may contain a tablejump.
1041   computeBlockSize(NewBB);
1042 
1043   // All BBOffsets following these blocks must be modified.
1044   adjustBBOffsetsAfter(OrigBB);
1045 
1046   return NewBB;
1047 }
1048 
1049 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
1050 /// displacement computation.  Update U.KnownAlignment to match its current
1051 /// basic block location.
getUserOffset(CPUser & U) const1052 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
1053   unsigned UserOffset = getOffsetOf(U.MI);
1054   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
1055   unsigned KnownBits = BBI.internalKnownBits();
1056 
1057   // The value read from PC is offset from the actual instruction address.
1058   UserOffset += (isThumb ? 4 : 8);
1059 
1060   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
1061   // Make sure U.getMaxDisp() returns a constrained range.
1062   U.KnownAlignment = (KnownBits >= 2);
1063 
1064   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
1065   // purposes of the displacement computation; compensate for that here.
1066   // For unknown alignments, getMaxDisp() constrains the range instead.
1067   if (isThumb && U.KnownAlignment)
1068     UserOffset &= ~3u;
1069 
1070   return UserOffset;
1071 }
1072 
1073 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1074 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
1075 /// constant pool entry).
1076 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
1077 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1078 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,unsigned MaxDisp,bool NegativeOK,bool IsSoImm)1079 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1080                                          unsigned TrialOffset, unsigned MaxDisp,
1081                                          bool NegativeOK, bool IsSoImm) {
1082   if (UserOffset <= TrialOffset) {
1083     // User before the Trial.
1084     if (TrialOffset - UserOffset <= MaxDisp)
1085       return true;
1086     // FIXME: Make use full range of soimm values.
1087   } else if (NegativeOK) {
1088     if (UserOffset - TrialOffset <= MaxDisp)
1089       return true;
1090     // FIXME: Make use full range of soimm values.
1091   }
1092   return false;
1093 }
1094 
1095 /// isWaterInRange - Returns true if a CPE placed after the specified
1096 /// Water (a basic block) will be in range for the specific MI.
1097 ///
1098 /// Compute how much the function will grow by inserting a CPE after Water.
isWaterInRange(unsigned UserOffset,MachineBasicBlock * Water,CPUser & U,unsigned & Growth)1099 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1100                                         MachineBasicBlock* Water, CPUser &U,
1101                                         unsigned &Growth) {
1102   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
1103   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
1104   unsigned NextBlockOffset, NextBlockAlignment;
1105   MachineFunction::const_iterator NextBlock = Water->getIterator();
1106   if (++NextBlock == MF->end()) {
1107     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1108     NextBlockAlignment = 0;
1109   } else {
1110     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1111     NextBlockAlignment = NextBlock->getAlignment();
1112   }
1113   unsigned Size = U.CPEMI->getOperand(2).getImm();
1114   unsigned CPEEnd = CPEOffset + Size;
1115 
1116   // The CPE may be able to hide in the alignment padding before the next
1117   // block. It may also cause more padding to be required if it is more aligned
1118   // that the next block.
1119   if (CPEEnd > NextBlockOffset) {
1120     Growth = CPEEnd - NextBlockOffset;
1121     // Compute the padding that would go at the end of the CPE to align the next
1122     // block.
1123     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
1124 
1125     // If the CPE is to be inserted before the instruction, that will raise
1126     // the offset of the instruction. Also account for unknown alignment padding
1127     // in blocks between CPE and the user.
1128     if (CPEOffset < UserOffset)
1129       UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
1130   } else
1131     // CPE fits in existing padding.
1132     Growth = 0;
1133 
1134   return isOffsetInRange(UserOffset, CPEOffset, U);
1135 }
1136 
1137 /// isCPEntryInRange - Returns true if the distance between specific MI and
1138 /// specific ConstPool entry instruction can fit in MI's displacement field.
isCPEntryInRange(MachineInstr * MI,unsigned UserOffset,MachineInstr * CPEMI,unsigned MaxDisp,bool NegOk,bool DoDump)1139 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1140                                       MachineInstr *CPEMI, unsigned MaxDisp,
1141                                       bool NegOk, bool DoDump) {
1142   unsigned CPEOffset  = getOffsetOf(CPEMI);
1143 
1144   if (DoDump) {
1145     DEBUG({
1146       unsigned Block = MI->getParent()->getNumber();
1147       const BasicBlockInfo &BBI = BBInfo[Block];
1148       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1149              << " max delta=" << MaxDisp
1150              << format(" insn address=%#x", UserOffset)
1151              << " in BB#" << Block << ": "
1152              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1153              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1154                        int(CPEOffset-UserOffset));
1155     });
1156   }
1157 
1158   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1159 }
1160 
1161 #ifndef NDEBUG
1162 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1163 /// unconditionally branches to its only successor.
BBIsJumpedOver(MachineBasicBlock * MBB)1164 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1165   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1166     return false;
1167 
1168   MachineBasicBlock *Succ = *MBB->succ_begin();
1169   MachineBasicBlock *Pred = *MBB->pred_begin();
1170   MachineInstr *PredMI = &Pred->back();
1171   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1172       || PredMI->getOpcode() == ARM::t2B)
1173     return PredMI->getOperand(0).getMBB() == Succ;
1174   return false;
1175 }
1176 #endif // NDEBUG
1177 
adjustBBOffsetsAfter(MachineBasicBlock * BB)1178 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1179   unsigned BBNum = BB->getNumber();
1180   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1181     // Get the offset and known bits at the end of the layout predecessor.
1182     // Include the alignment of the current block.
1183     unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
1184     unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
1185     unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
1186 
1187     // This is where block i begins.  Stop if the offset is already correct,
1188     // and we have updated 2 blocks.  This is the maximum number of blocks
1189     // changed before calling this function.
1190     if (i > BBNum + 2 &&
1191         BBInfo[i].Offset == Offset &&
1192         BBInfo[i].KnownBits == KnownBits)
1193       break;
1194 
1195     BBInfo[i].Offset = Offset;
1196     BBInfo[i].KnownBits = KnownBits;
1197   }
1198 }
1199 
1200 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1201 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1202 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1203 /// the entry, false if we didn't.
1204 
decrementCPEReferenceCount(unsigned CPI,MachineInstr * CPEMI)1205 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1206                                                     MachineInstr *CPEMI) {
1207   // Find the old entry. Eliminate it if it is no longer used.
1208   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1209   assert(CPE && "Unexpected!");
1210   if (--CPE->RefCount == 0) {
1211     removeDeadCPEMI(CPEMI);
1212     CPE->CPEMI = nullptr;
1213     --NumCPEs;
1214     return true;
1215   }
1216   return false;
1217 }
1218 
getCombinedIndex(const MachineInstr * CPEMI)1219 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1220   if (CPEMI->getOperand(1).isCPI())
1221     return CPEMI->getOperand(1).getIndex();
1222 
1223   return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1224 }
1225 
1226 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1227 /// if not, see if an in-range clone of the CPE is in range, and if so,
1228 /// change the data structures so the user references the clone.  Returns:
1229 /// 0 = no existing entry found
1230 /// 1 = entry found, and there were no code insertions or deletions
1231 /// 2 = entry found, and there were code insertions or deletions
findInRangeCPEntry(CPUser & U,unsigned UserOffset)1232 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1233 {
1234   MachineInstr *UserMI = U.MI;
1235   MachineInstr *CPEMI  = U.CPEMI;
1236 
1237   // Check to see if the CPE is already in-range.
1238   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1239                        true)) {
1240     DEBUG(dbgs() << "In range\n");
1241     return 1;
1242   }
1243 
1244   // No.  Look for previously created clones of the CPE that are in range.
1245   unsigned CPI = getCombinedIndex(CPEMI);
1246   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1247   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1248     // We already tried this one
1249     if (CPEs[i].CPEMI == CPEMI)
1250       continue;
1251     // Removing CPEs can leave empty entries, skip
1252     if (CPEs[i].CPEMI == nullptr)
1253       continue;
1254     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1255                      U.NegOk)) {
1256       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1257                    << CPEs[i].CPI << "\n");
1258       // Point the CPUser node to the replacement
1259       U.CPEMI = CPEs[i].CPEMI;
1260       // Change the CPI in the instruction operand to refer to the clone.
1261       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1262         if (UserMI->getOperand(j).isCPI()) {
1263           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1264           break;
1265         }
1266       // Adjust the refcount of the clone...
1267       CPEs[i].RefCount++;
1268       // ...and the original.  If we didn't remove the old entry, none of the
1269       // addresses changed, so we don't need another pass.
1270       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1271     }
1272   }
1273   return 0;
1274 }
1275 
1276 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1277 /// the specific unconditional branch instruction.
getUnconditionalBrDisp(int Opc)1278 static inline unsigned getUnconditionalBrDisp(int Opc) {
1279   switch (Opc) {
1280   case ARM::tB:
1281     return ((1<<10)-1)*2;
1282   case ARM::t2B:
1283     return ((1<<23)-1)*2;
1284   default:
1285     break;
1286   }
1287 
1288   return ((1<<23)-1)*4;
1289 }
1290 
1291 /// findAvailableWater - Look for an existing entry in the WaterList in which
1292 /// we can place the CPE referenced from U so it's within range of U's MI.
1293 /// Returns true if found, false if not.  If it returns true, WaterIter
1294 /// is set to the WaterList entry.  For Thumb, prefer water that will not
1295 /// introduce padding to water that will.  To ensure that this pass
1296 /// terminates, the CPE location for a particular CPUser is only allowed to
1297 /// move to a lower address, so search backward from the end of the list and
1298 /// prefer the first water that is in range.
findAvailableWater(CPUser & U,unsigned UserOffset,water_iterator & WaterIter,bool CloserWater)1299 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1300                                             water_iterator &WaterIter,
1301                                             bool CloserWater) {
1302   if (WaterList.empty())
1303     return false;
1304 
1305   unsigned BestGrowth = ~0u;
1306   // The nearest water without splitting the UserBB is right after it.
1307   // If the distance is still large (we have a big BB), then we need to split it
1308   // if we don't converge after certain iterations. This helps the following
1309   // situation to converge:
1310   //   BB0:
1311   //      Big BB
1312   //   BB1:
1313   //      Constant Pool
1314   // When a CP access is out of range, BB0 may be used as water. However,
1315   // inserting islands between BB0 and BB1 makes other accesses out of range.
1316   MachineBasicBlock *UserBB = U.MI->getParent();
1317   unsigned MinNoSplitDisp =
1318       BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI));
1319   if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1320     return false;
1321   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1322        --IP) {
1323     MachineBasicBlock* WaterBB = *IP;
1324     // Check if water is in range and is either at a lower address than the
1325     // current "high water mark" or a new water block that was created since
1326     // the previous iteration by inserting an unconditional branch.  In the
1327     // latter case, we want to allow resetting the high water mark back to
1328     // this new water since we haven't seen it before.  Inserting branches
1329     // should be relatively uncommon and when it does happen, we want to be
1330     // sure to take advantage of it for all the CPEs near that block, so that
1331     // we don't insert more branches than necessary.
1332     // When CloserWater is true, we try to find the lowest address after (or
1333     // equal to) user MI's BB no matter of padding growth.
1334     unsigned Growth;
1335     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1336         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1337          NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1338         Growth < BestGrowth) {
1339       // This is the least amount of required padding seen so far.
1340       BestGrowth = Growth;
1341       WaterIter = IP;
1342       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1343                    << " Growth=" << Growth << '\n');
1344 
1345       if (CloserWater && WaterBB == U.MI->getParent())
1346         return true;
1347       // Keep looking unless it is perfect and we're not looking for the lowest
1348       // possible address.
1349       if (!CloserWater && BestGrowth == 0)
1350         return true;
1351     }
1352     if (IP == B)
1353       break;
1354   }
1355   return BestGrowth != ~0u;
1356 }
1357 
1358 /// createNewWater - No existing WaterList entry will work for
1359 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1360 /// block is used if in range, and the conditional branch munged so control
1361 /// flow is correct.  Otherwise the block is split to create a hole with an
1362 /// unconditional branch around it.  In either case NewMBB is set to a
1363 /// block following which the new island can be inserted (the WaterList
1364 /// is not adjusted).
createNewWater(unsigned CPUserIndex,unsigned UserOffset,MachineBasicBlock * & NewMBB)1365 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1366                                         unsigned UserOffset,
1367                                         MachineBasicBlock *&NewMBB) {
1368   CPUser &U = CPUsers[CPUserIndex];
1369   MachineInstr *UserMI = U.MI;
1370   MachineInstr *CPEMI  = U.CPEMI;
1371   unsigned CPELogAlign = getCPELogAlign(CPEMI);
1372   MachineBasicBlock *UserMBB = UserMI->getParent();
1373   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1374 
1375   // If the block does not end in an unconditional branch already, and if the
1376   // end of the block is within range, make new water there.  (The addition
1377   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1378   // Thumb2, 2 on Thumb1.
1379   if (BBHasFallthrough(UserMBB)) {
1380     // Size of branch to insert.
1381     unsigned Delta = isThumb1 ? 2 : 4;
1382     // Compute the offset where the CPE will begin.
1383     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1384 
1385     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1386       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1387             << format(", expected CPE offset %#x\n", CPEOffset));
1388       NewMBB = &*++UserMBB->getIterator();
1389       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1390       // it for branch lengthening; this new branch will not get out of range,
1391       // but if the preceding conditional branch is out of range, the targets
1392       // will be exchanged, and the altered branch may be out of range, so the
1393       // machinery has to know about it.
1394       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1395       if (!isThumb)
1396         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1397       else
1398         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
1399           .addImm(ARMCC::AL).addReg(0);
1400       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1401       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1402                                       MaxDisp, false, UncondBr));
1403       computeBlockSize(UserMBB);
1404       adjustBBOffsetsAfter(UserMBB);
1405       return;
1406     }
1407   }
1408 
1409   // What a big block.  Find a place within the block to split it.  This is a
1410   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1411   // entries are 4 bytes: if instruction I references island CPE, and
1412   // instruction I+1 references CPE', it will not work well to put CPE as far
1413   // forward as possible, since then CPE' cannot immediately follow it (that
1414   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1415   // need to create a new island.  So, we make a first guess, then walk through
1416   // the instructions between the one currently being looked at and the
1417   // possible insertion point, and make sure any other instructions that
1418   // reference CPEs will be able to use the same island area; if not, we back
1419   // up the insertion point.
1420 
1421   // Try to split the block so it's fully aligned.  Compute the latest split
1422   // point where we can add a 4-byte branch instruction, and then align to
1423   // LogAlign which is the largest possible alignment in the function.
1424   unsigned LogAlign = MF->getAlignment();
1425   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1426   unsigned KnownBits = UserBBI.internalKnownBits();
1427   unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1428   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1429   DEBUG(dbgs() << format("Split in middle of big block before %#x",
1430                          BaseInsertOffset));
1431 
1432   // The 4 in the following is for the unconditional branch we'll be inserting
1433   // (allows for long branch on Thumb1).  Alignment of the island is handled
1434   // inside isOffsetInRange.
1435   BaseInsertOffset -= 4;
1436 
1437   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1438                << " la=" << LogAlign
1439                << " kb=" << KnownBits
1440                << " up=" << UPad << '\n');
1441 
1442   // This could point off the end of the block if we've already got constant
1443   // pool entries following this block; only the last one is in the water list.
1444   // Back past any possible branches (allow for a conditional and a maximally
1445   // long unconditional).
1446   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1447     // Ensure BaseInsertOffset is larger than the offset of the instruction
1448     // following UserMI so that the loop which searches for the split point
1449     // iterates at least once.
1450     BaseInsertOffset =
1451         std::max(UserBBI.postOffset() - UPad - 8,
1452                  UserOffset + TII->GetInstSizeInBytes(*UserMI) + 1);
1453     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1454   }
1455   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1456     CPEMI->getOperand(2).getImm();
1457   MachineBasicBlock::iterator MI = UserMI;
1458   ++MI;
1459   unsigned CPUIndex = CPUserIndex+1;
1460   unsigned NumCPUsers = CPUsers.size();
1461   MachineInstr *LastIT = nullptr;
1462   for (unsigned Offset = UserOffset + TII->GetInstSizeInBytes(*UserMI);
1463        Offset < BaseInsertOffset;
1464        Offset += TII->GetInstSizeInBytes(*MI), MI = std::next(MI)) {
1465     assert(MI != UserMBB->end() && "Fell off end of block");
1466     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1467       CPUser &U = CPUsers[CPUIndex];
1468       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1469         // Shift intertion point by one unit of alignment so it is within reach.
1470         BaseInsertOffset -= 1u << LogAlign;
1471         EndInsertOffset  -= 1u << LogAlign;
1472       }
1473       // This is overly conservative, as we don't account for CPEMIs being
1474       // reused within the block, but it doesn't matter much.  Also assume CPEs
1475       // are added in order with alignment padding.  We may eventually be able
1476       // to pack the aligned CPEs better.
1477       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1478       CPUIndex++;
1479     }
1480 
1481     // Remember the last IT instruction.
1482     if (MI->getOpcode() == ARM::t2IT)
1483       LastIT = &*MI;
1484   }
1485 
1486   --MI;
1487 
1488   // Avoid splitting an IT block.
1489   if (LastIT) {
1490     unsigned PredReg = 0;
1491     ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1492     if (CC != ARMCC::AL)
1493       MI = LastIT;
1494   }
1495 
1496   // We really must not split an IT block.
1497   DEBUG(unsigned PredReg;
1498         assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL));
1499 
1500   NewMBB = splitBlockBeforeInstr(&*MI);
1501 }
1502 
1503 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1504 /// is out-of-range.  If so, pick up the constant pool value and move it some
1505 /// place in-range.  Return true if we changed any addresses (thus must run
1506 /// another pass of branch lengthening), false otherwise.
handleConstantPoolUser(unsigned CPUserIndex,bool CloserWater)1507 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1508                                                 bool CloserWater) {
1509   CPUser &U = CPUsers[CPUserIndex];
1510   MachineInstr *UserMI = U.MI;
1511   MachineInstr *CPEMI  = U.CPEMI;
1512   unsigned CPI = getCombinedIndex(CPEMI);
1513   unsigned Size = CPEMI->getOperand(2).getImm();
1514   // Compute this only once, it's expensive.
1515   unsigned UserOffset = getUserOffset(U);
1516 
1517   // See if the current entry is within range, or there is a clone of it
1518   // in range.
1519   int result = findInRangeCPEntry(U, UserOffset);
1520   if (result==1) return false;
1521   else if (result==2) return true;
1522 
1523   // No existing clone of this CPE is within range.
1524   // We will be generating a new clone.  Get a UID for it.
1525   unsigned ID = AFI->createPICLabelUId();
1526 
1527   // Look for water where we can place this CPE.
1528   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1529   MachineBasicBlock *NewMBB;
1530   water_iterator IP;
1531   if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1532     DEBUG(dbgs() << "Found water in range\n");
1533     MachineBasicBlock *WaterBB = *IP;
1534 
1535     // If the original WaterList entry was "new water" on this iteration,
1536     // propagate that to the new island.  This is just keeping NewWaterList
1537     // updated to match the WaterList, which will be updated below.
1538     if (NewWaterList.erase(WaterBB))
1539       NewWaterList.insert(NewIsland);
1540 
1541     // The new CPE goes before the following block (NewMBB).
1542     NewMBB = &*++WaterBB->getIterator();
1543   } else {
1544     // No water found.
1545     DEBUG(dbgs() << "No water found\n");
1546     createNewWater(CPUserIndex, UserOffset, NewMBB);
1547 
1548     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1549     // called while handling branches so that the water will be seen on the
1550     // next iteration for constant pools, but in this context, we don't want
1551     // it.  Check for this so it will be removed from the WaterList.
1552     // Also remove any entry from NewWaterList.
1553     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1554     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1555     if (IP != WaterList.end())
1556       NewWaterList.erase(WaterBB);
1557 
1558     // We are adding new water.  Update NewWaterList.
1559     NewWaterList.insert(NewIsland);
1560   }
1561 
1562   // Remove the original WaterList entry; we want subsequent insertions in
1563   // this vicinity to go after the one we're about to insert.  This
1564   // considerably reduces the number of times we have to move the same CPE
1565   // more than once and is also important to ensure the algorithm terminates.
1566   if (IP != WaterList.end())
1567     WaterList.erase(IP);
1568 
1569   // Okay, we know we can put an island before NewMBB now, do it!
1570   MF->insert(NewMBB->getIterator(), NewIsland);
1571 
1572   // Update internal data structures to account for the newly inserted MBB.
1573   updateForInsertedWaterBlock(NewIsland);
1574 
1575   // Now that we have an island to add the CPE to, clone the original CPE and
1576   // add it to the island.
1577   U.HighWaterMark = NewIsland;
1578   U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1579                 .addImm(ID).addOperand(CPEMI->getOperand(1)).addImm(Size);
1580   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1581   ++NumCPEs;
1582 
1583   // Decrement the old entry, and remove it if refcount becomes 0.
1584   decrementCPEReferenceCount(CPI, CPEMI);
1585 
1586   // Mark the basic block as aligned as required by the const-pool entry.
1587   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1588 
1589   // Increase the size of the island block to account for the new entry.
1590   BBInfo[NewIsland->getNumber()].Size += Size;
1591   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1592 
1593   // Finally, change the CPI in the instruction operand to be ID.
1594   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1595     if (UserMI->getOperand(i).isCPI()) {
1596       UserMI->getOperand(i).setIndex(ID);
1597       break;
1598     }
1599 
1600   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1601         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1602 
1603   return true;
1604 }
1605 
1606 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1607 /// sizes and offsets of impacted basic blocks.
removeDeadCPEMI(MachineInstr * CPEMI)1608 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1609   MachineBasicBlock *CPEBB = CPEMI->getParent();
1610   unsigned Size = CPEMI->getOperand(2).getImm();
1611   CPEMI->eraseFromParent();
1612   BBInfo[CPEBB->getNumber()].Size -= Size;
1613   // All succeeding offsets have the current size value added in, fix this.
1614   if (CPEBB->empty()) {
1615     BBInfo[CPEBB->getNumber()].Size = 0;
1616 
1617     // This block no longer needs to be aligned.
1618     CPEBB->setAlignment(0);
1619   } else
1620     // Entries are sorted by descending alignment, so realign from the front.
1621     CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin()));
1622 
1623   adjustBBOffsetsAfter(CPEBB);
1624   // An island has only one predecessor BB and one successor BB. Check if
1625   // this BB's predecessor jumps directly to this BB's successor. This
1626   // shouldn't happen currently.
1627   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1628   // FIXME: remove the empty blocks after all the work is done?
1629 }
1630 
1631 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1632 /// are zero.
removeUnusedCPEntries()1633 bool ARMConstantIslands::removeUnusedCPEntries() {
1634   unsigned MadeChange = false;
1635   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1636       std::vector<CPEntry> &CPEs = CPEntries[i];
1637       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1638         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1639           removeDeadCPEMI(CPEs[j].CPEMI);
1640           CPEs[j].CPEMI = nullptr;
1641           MadeChange = true;
1642         }
1643       }
1644   }
1645   return MadeChange;
1646 }
1647 
1648 /// isBBInRange - Returns true if the distance between specific MI and
1649 /// specific BB can fit in MI's displacement field.
isBBInRange(MachineInstr * MI,MachineBasicBlock * DestBB,unsigned MaxDisp)1650 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1651                                      unsigned MaxDisp) {
1652   unsigned PCAdj      = isThumb ? 4 : 8;
1653   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1654   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1655 
1656   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1657                << " from BB#" << MI->getParent()->getNumber()
1658                << " max delta=" << MaxDisp
1659                << " from " << getOffsetOf(MI) << " to " << DestOffset
1660                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1661 
1662   if (BrOffset <= DestOffset) {
1663     // Branch before the Dest.
1664     if (DestOffset-BrOffset <= MaxDisp)
1665       return true;
1666   } else {
1667     if (BrOffset-DestOffset <= MaxDisp)
1668       return true;
1669   }
1670   return false;
1671 }
1672 
1673 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1674 /// away to fit in its displacement field.
fixupImmediateBr(ImmBranch & Br)1675 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1676   MachineInstr *MI = Br.MI;
1677   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1678 
1679   // Check to see if the DestBB is already in-range.
1680   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1681     return false;
1682 
1683   if (!Br.isCond)
1684     return fixupUnconditionalBr(Br);
1685   return fixupConditionalBr(Br);
1686 }
1687 
1688 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1689 /// too far away to fit in its displacement field. If the LR register has been
1690 /// spilled in the epilogue, then we can use BL to implement a far jump.
1691 /// Otherwise, add an intermediate branch instruction to a branch.
1692 bool
fixupUnconditionalBr(ImmBranch & Br)1693 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1694   MachineInstr *MI = Br.MI;
1695   MachineBasicBlock *MBB = MI->getParent();
1696   if (!isThumb1)
1697     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1698 
1699   // Use BL to implement far jump.
1700   Br.MaxDisp = (1 << 21) * 2;
1701   MI->setDesc(TII->get(ARM::tBfar));
1702   BBInfo[MBB->getNumber()].Size += 2;
1703   adjustBBOffsetsAfter(MBB);
1704   HasFarJump = true;
1705   ++NumUBrFixed;
1706 
1707   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1708 
1709   return true;
1710 }
1711 
1712 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1713 /// far away to fit in its displacement field. It is converted to an inverse
1714 /// conditional branch + an unconditional branch to the destination.
1715 bool
fixupConditionalBr(ImmBranch & Br)1716 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1717   MachineInstr *MI = Br.MI;
1718   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1719 
1720   // Add an unconditional branch to the destination and invert the branch
1721   // condition to jump over it:
1722   // blt L1
1723   // =>
1724   // bge L2
1725   // b   L1
1726   // L2:
1727   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1728   CC = ARMCC::getOppositeCondition(CC);
1729   unsigned CCReg = MI->getOperand(2).getReg();
1730 
1731   // If the branch is at the end of its MBB and that has a fall-through block,
1732   // direct the updated conditional branch to the fall-through block. Otherwise,
1733   // split the MBB before the next instruction.
1734   MachineBasicBlock *MBB = MI->getParent();
1735   MachineInstr *BMI = &MBB->back();
1736   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1737 
1738   ++NumCBrFixed;
1739   if (BMI != MI) {
1740     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1741         BMI->getOpcode() == Br.UncondBr) {
1742       // Last MI in the BB is an unconditional branch. Can we simply invert the
1743       // condition and swap destinations:
1744       // beq L1
1745       // b   L2
1746       // =>
1747       // bne L2
1748       // b   L1
1749       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1750       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1751         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
1752                      << *BMI);
1753         BMI->getOperand(0).setMBB(DestBB);
1754         MI->getOperand(0).setMBB(NewDest);
1755         MI->getOperand(1).setImm(CC);
1756         return true;
1757       }
1758     }
1759   }
1760 
1761   if (NeedSplit) {
1762     splitBlockBeforeInstr(MI);
1763     // No need for the branch to the next block. We're adding an unconditional
1764     // branch to the destination.
1765     int delta = TII->GetInstSizeInBytes(MBB->back());
1766     BBInfo[MBB->getNumber()].Size -= delta;
1767     MBB->back().eraseFromParent();
1768     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1769   }
1770   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1771 
1772   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
1773                << " also invert condition and change dest. to BB#"
1774                << NextBB->getNumber() << "\n");
1775 
1776   // Insert a new conditional branch and a new unconditional branch.
1777   // Also update the ImmBranch as well as adding a new entry for the new branch.
1778   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1779     .addMBB(NextBB).addImm(CC).addReg(CCReg);
1780   Br.MI = &MBB->back();
1781   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(MBB->back());
1782   if (isThumb)
1783     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
1784             .addImm(ARMCC::AL).addReg(0);
1785   else
1786     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1787   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(MBB->back());
1788   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1789   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1790 
1791   // Remove the old conditional branch.  It may or may not still be in MBB.
1792   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(*MI);
1793   MI->eraseFromParent();
1794   adjustBBOffsetsAfter(MBB);
1795   return true;
1796 }
1797 
1798 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1799 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1800 /// to do this if tBfar is not used.
undoLRSpillRestore()1801 bool ARMConstantIslands::undoLRSpillRestore() {
1802   bool MadeChange = false;
1803   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1804     MachineInstr *MI = PushPopMIs[i];
1805     // First two operands are predicates.
1806     if (MI->getOpcode() == ARM::tPOP_RET &&
1807         MI->getOperand(2).getReg() == ARM::PC &&
1808         MI->getNumExplicitOperands() == 3) {
1809       // Create the new insn and copy the predicate from the old.
1810       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1811         .addOperand(MI->getOperand(0))
1812         .addOperand(MI->getOperand(1));
1813       MI->eraseFromParent();
1814       MadeChange = true;
1815     }
1816   }
1817   return MadeChange;
1818 }
1819 
1820 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
1821 // below may shrink MI.
1822 bool
mayOptimizeThumb2Instruction(const MachineInstr * MI) const1823 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
1824   switch(MI->getOpcode()) {
1825     // optimizeThumb2Instructions.
1826     case ARM::t2LEApcrel:
1827     case ARM::t2LDRpci:
1828     // optimizeThumb2Branches.
1829     case ARM::t2B:
1830     case ARM::t2Bcc:
1831     case ARM::tBcc:
1832     // optimizeThumb2JumpTables.
1833     case ARM::t2BR_JT:
1834       return true;
1835   }
1836   return false;
1837 }
1838 
optimizeThumb2Instructions()1839 bool ARMConstantIslands::optimizeThumb2Instructions() {
1840   bool MadeChange = false;
1841 
1842   // Shrink ADR and LDR from constantpool.
1843   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1844     CPUser &U = CPUsers[i];
1845     unsigned Opcode = U.MI->getOpcode();
1846     unsigned NewOpc = 0;
1847     unsigned Scale = 1;
1848     unsigned Bits = 0;
1849     switch (Opcode) {
1850     default: break;
1851     case ARM::t2LEApcrel:
1852       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1853         NewOpc = ARM::tLEApcrel;
1854         Bits = 8;
1855         Scale = 4;
1856       }
1857       break;
1858     case ARM::t2LDRpci:
1859       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1860         NewOpc = ARM::tLDRpci;
1861         Bits = 8;
1862         Scale = 4;
1863       }
1864       break;
1865     }
1866 
1867     if (!NewOpc)
1868       continue;
1869 
1870     unsigned UserOffset = getUserOffset(U);
1871     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1872 
1873     // Be conservative with inline asm.
1874     if (!U.KnownAlignment)
1875       MaxOffs -= 2;
1876 
1877     // FIXME: Check if offset is multiple of scale if scale is not 4.
1878     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1879       DEBUG(dbgs() << "Shrink: " << *U.MI);
1880       U.MI->setDesc(TII->get(NewOpc));
1881       MachineBasicBlock *MBB = U.MI->getParent();
1882       BBInfo[MBB->getNumber()].Size -= 2;
1883       adjustBBOffsetsAfter(MBB);
1884       ++NumT2CPShrunk;
1885       MadeChange = true;
1886     }
1887   }
1888 
1889   return MadeChange;
1890 }
1891 
optimizeThumb2Branches()1892 bool ARMConstantIslands::optimizeThumb2Branches() {
1893   bool MadeChange = false;
1894 
1895   // The order in which branches appear in ImmBranches is approximately their
1896   // order within the function body. By visiting later branches first, we reduce
1897   // the distance between earlier forward branches and their targets, making it
1898   // more likely that the cbn?z optimization, which can only apply to forward
1899   // branches, will succeed.
1900   for (unsigned i = ImmBranches.size(); i != 0; --i) {
1901     ImmBranch &Br = ImmBranches[i-1];
1902     unsigned Opcode = Br.MI->getOpcode();
1903     unsigned NewOpc = 0;
1904     unsigned Scale = 1;
1905     unsigned Bits = 0;
1906     switch (Opcode) {
1907     default: break;
1908     case ARM::t2B:
1909       NewOpc = ARM::tB;
1910       Bits = 11;
1911       Scale = 2;
1912       break;
1913     case ARM::t2Bcc: {
1914       NewOpc = ARM::tBcc;
1915       Bits = 8;
1916       Scale = 2;
1917       break;
1918     }
1919     }
1920     if (NewOpc) {
1921       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1922       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1923       if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
1924         DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1925         Br.MI->setDesc(TII->get(NewOpc));
1926         MachineBasicBlock *MBB = Br.MI->getParent();
1927         BBInfo[MBB->getNumber()].Size -= 2;
1928         adjustBBOffsetsAfter(MBB);
1929         ++NumT2BrShrunk;
1930         MadeChange = true;
1931       }
1932     }
1933 
1934     Opcode = Br.MI->getOpcode();
1935     if (Opcode != ARM::tBcc)
1936       continue;
1937 
1938     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1939     // so this transformation is not safe.
1940     if (!Br.MI->killsRegister(ARM::CPSR))
1941       continue;
1942 
1943     NewOpc = 0;
1944     unsigned PredReg = 0;
1945     ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1946     if (Pred == ARMCC::EQ)
1947       NewOpc = ARM::tCBZ;
1948     else if (Pred == ARMCC::NE)
1949       NewOpc = ARM::tCBNZ;
1950     if (!NewOpc)
1951       continue;
1952     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1953     // Check if the distance is within 126. Subtract starting offset by 2
1954     // because the cmp will be eliminated.
1955     unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
1956     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1957     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1958       MachineBasicBlock::iterator CmpMI = Br.MI;
1959       if (CmpMI != Br.MI->getParent()->begin()) {
1960         --CmpMI;
1961         if (CmpMI->getOpcode() == ARM::tCMPi8) {
1962           unsigned Reg = CmpMI->getOperand(0).getReg();
1963           Pred = getInstrPredicate(*CmpMI, PredReg);
1964           if (Pred == ARMCC::AL &&
1965               CmpMI->getOperand(1).getImm() == 0 &&
1966               isARMLowRegister(Reg)) {
1967             MachineBasicBlock *MBB = Br.MI->getParent();
1968             DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
1969             MachineInstr *NewBR =
1970               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1971               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
1972             CmpMI->eraseFromParent();
1973             Br.MI->eraseFromParent();
1974             Br.MI = NewBR;
1975             BBInfo[MBB->getNumber()].Size -= 2;
1976             adjustBBOffsetsAfter(MBB);
1977             ++NumCBZ;
1978             MadeChange = true;
1979           }
1980         }
1981       }
1982     }
1983   }
1984 
1985   return MadeChange;
1986 }
1987 
isSimpleIndexCalc(MachineInstr & I,unsigned EntryReg,unsigned BaseReg)1988 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
1989                               unsigned BaseReg) {
1990   if (I.getOpcode() != ARM::t2ADDrs)
1991     return false;
1992 
1993   if (I.getOperand(0).getReg() != EntryReg)
1994     return false;
1995 
1996   if (I.getOperand(1).getReg() != BaseReg)
1997     return false;
1998 
1999   // FIXME: what about CC and IdxReg?
2000   return true;
2001 }
2002 
2003 /// \brief While trying to form a TBB/TBH instruction, we may (if the table
2004 /// doesn't immediately follow the BR_JT) need access to the start of the
2005 /// jump-table. We know one instruction that produces such a register; this
2006 /// function works out whether that definition can be preserved to the BR_JT,
2007 /// possibly by removing an intervening addition (which is usually needed to
2008 /// calculate the actual entry to jump to).
preserveBaseRegister(MachineInstr * JumpMI,MachineInstr * LEAMI,unsigned & DeadSize,bool & CanDeleteLEA,bool & BaseRegKill)2009 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
2010                                               MachineInstr *LEAMI,
2011                                               unsigned &DeadSize,
2012                                               bool &CanDeleteLEA,
2013                                               bool &BaseRegKill) {
2014   if (JumpMI->getParent() != LEAMI->getParent())
2015     return false;
2016 
2017   // Now we hope that we have at least these instructions in the basic block:
2018   //     BaseReg = t2LEA ...
2019   //     [...]
2020   //     EntryReg = t2ADDrs BaseReg, ...
2021   //     [...]
2022   //     t2BR_JT EntryReg
2023   //
2024   // We have to be very conservative about what we recognise here though. The
2025   // main perturbing factors to watch out for are:
2026   //    + Spills at any point in the chain: not direct problems but we would
2027   //      expect a blocking Def of the spilled register so in practice what we
2028   //      can do is limited.
2029   //    + EntryReg == BaseReg: this is the one situation we should allow a Def
2030   //      of BaseReg, but only if the t2ADDrs can be removed.
2031   //    + Some instruction other than t2ADDrs computing the entry. Not seen in
2032   //      the wild, but we should be careful.
2033   unsigned EntryReg = JumpMI->getOperand(0).getReg();
2034   unsigned BaseReg = LEAMI->getOperand(0).getReg();
2035 
2036   CanDeleteLEA = true;
2037   BaseRegKill = false;
2038   MachineInstr *RemovableAdd = nullptr;
2039   MachineBasicBlock::iterator I(LEAMI);
2040   for (++I; &*I != JumpMI; ++I) {
2041     if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
2042       RemovableAdd = &*I;
2043       break;
2044     }
2045 
2046     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2047       const MachineOperand &MO = I->getOperand(K);
2048       if (!MO.isReg() || !MO.getReg())
2049         continue;
2050       if (MO.isDef() && MO.getReg() == BaseReg)
2051         return false;
2052       if (MO.isUse() && MO.getReg() == BaseReg) {
2053         BaseRegKill = BaseRegKill || MO.isKill();
2054         CanDeleteLEA = false;
2055       }
2056     }
2057   }
2058 
2059   if (!RemovableAdd)
2060     return true;
2061 
2062   // Check the add really is removable, and that nothing else in the block
2063   // clobbers BaseReg.
2064   for (++I; &*I != JumpMI; ++I) {
2065     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2066       const MachineOperand &MO = I->getOperand(K);
2067       if (!MO.isReg() || !MO.getReg())
2068         continue;
2069       if (MO.isDef() && MO.getReg() == BaseReg)
2070         return false;
2071       if (MO.isUse() && MO.getReg() == EntryReg)
2072         RemovableAdd = nullptr;
2073     }
2074   }
2075 
2076   if (RemovableAdd) {
2077     RemovableAdd->eraseFromParent();
2078     DeadSize += 4;
2079   } else if (BaseReg == EntryReg) {
2080     // The add wasn't removable, but clobbered the base for the TBB. So we can't
2081     // preserve it.
2082     return false;
2083   }
2084 
2085   // We reached the end of the block without seeing another definition of
2086   // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2087   // used in the TBB/TBH if necessary.
2088   return true;
2089 }
2090 
2091 /// \brief Returns whether CPEMI is the first instruction in the block
2092 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2093 /// we can switch the first register to PC and usually remove the address
2094 /// calculation that preceded it.
jumpTableFollowsTB(MachineInstr * JTMI,MachineInstr * CPEMI)2095 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2096   MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2097   MachineFunction *MF = MBB->getParent();
2098   ++MBB;
2099 
2100   return MBB != MF->end() && MBB->begin() != MBB->end() &&
2101          &*MBB->begin() == CPEMI;
2102 }
2103 
2104 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2105 /// jumptables when it's possible.
optimizeThumb2JumpTables()2106 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2107   bool MadeChange = false;
2108 
2109   // FIXME: After the tables are shrunk, can we get rid some of the
2110   // constantpool tables?
2111   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2112   if (!MJTI) return false;
2113 
2114   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2115   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2116     MachineInstr *MI = T2JumpTables[i];
2117     const MCInstrDesc &MCID = MI->getDesc();
2118     unsigned NumOps = MCID.getNumOperands();
2119     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2120     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2121     unsigned JTI = JTOP.getIndex();
2122     assert(JTI < JT.size());
2123 
2124     bool ByteOk = true;
2125     bool HalfWordOk = true;
2126     unsigned JTOffset = getOffsetOf(MI) + 4;
2127     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2128     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2129       MachineBasicBlock *MBB = JTBBs[j];
2130       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2131       // Negative offset is not ok. FIXME: We should change BB layout to make
2132       // sure all the branches are forward.
2133       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2134         ByteOk = false;
2135       unsigned TBHLimit = ((1<<16)-1)*2;
2136       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2137         HalfWordOk = false;
2138       if (!ByteOk && !HalfWordOk)
2139         break;
2140     }
2141 
2142     if (!ByteOk && !HalfWordOk)
2143       continue;
2144 
2145     MachineBasicBlock *MBB = MI->getParent();
2146     if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2147       continue;
2148     unsigned IdxReg = MI->getOperand(1).getReg();
2149     bool IdxRegKill = MI->getOperand(1).isKill();
2150 
2151     CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2152     unsigned DeadSize = 0;
2153     bool CanDeleteLEA = false;
2154     bool BaseRegKill = false;
2155     bool PreservedBaseReg =
2156         preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2157 
2158     if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2159       continue;
2160 
2161     DEBUG(dbgs() << "Shrink JT: " << *MI);
2162     MachineInstr *CPEMI = User.CPEMI;
2163     unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2164     MachineBasicBlock::iterator MI_JT = MI;
2165     MachineInstr *NewJTMI =
2166         BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2167             .addReg(User.MI->getOperand(0).getReg(),
2168                     getKillRegState(BaseRegKill))
2169             .addReg(IdxReg, getKillRegState(IdxRegKill))
2170             .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2171             .addImm(CPEMI->getOperand(0).getImm());
2172     DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
2173 
2174     unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2175     CPEMI->setDesc(TII->get(JTOpc));
2176 
2177     if (jumpTableFollowsTB(MI, User.CPEMI)) {
2178       NewJTMI->getOperand(0).setReg(ARM::PC);
2179       NewJTMI->getOperand(0).setIsKill(false);
2180 
2181       if (CanDeleteLEA)  {
2182         User.MI->eraseFromParent();
2183         DeadSize += 4;
2184 
2185         // The LEA was eliminated, the TBB instruction becomes the only new user
2186         // of the jump table.
2187         User.MI = NewJTMI;
2188         User.MaxDisp = 4;
2189         User.NegOk = false;
2190         User.IsSoImm = false;
2191         User.KnownAlignment = false;
2192       } else {
2193         // The LEA couldn't be eliminated, so we must add another CPUser to
2194         // record the TBB or TBH use.
2195         int CPEntryIdx = JumpTableEntryIndices[JTI];
2196         auto &CPEs = CPEntries[CPEntryIdx];
2197         auto Entry = std::find_if(CPEs.begin(), CPEs.end(), [&](CPEntry &E) {
2198           return E.CPEMI == User.CPEMI;
2199         });
2200         ++Entry->RefCount;
2201         CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2202       }
2203     }
2204 
2205     unsigned NewSize = TII->GetInstSizeInBytes(*NewJTMI);
2206     unsigned OrigSize = TII->GetInstSizeInBytes(*MI);
2207     MI->eraseFromParent();
2208 
2209     int Delta = OrigSize - NewSize + DeadSize;
2210     BBInfo[MBB->getNumber()].Size -= Delta;
2211     adjustBBOffsetsAfter(MBB);
2212 
2213     ++NumTBs;
2214     MadeChange = true;
2215   }
2216 
2217   return MadeChange;
2218 }
2219 
2220 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2221 /// jump tables always branch forwards, since that's what tbb and tbh need.
reorderThumb2JumpTables()2222 bool ARMConstantIslands::reorderThumb2JumpTables() {
2223   bool MadeChange = false;
2224 
2225   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2226   if (!MJTI) return false;
2227 
2228   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2229   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2230     MachineInstr *MI = T2JumpTables[i];
2231     const MCInstrDesc &MCID = MI->getDesc();
2232     unsigned NumOps = MCID.getNumOperands();
2233     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2234     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2235     unsigned JTI = JTOP.getIndex();
2236     assert(JTI < JT.size());
2237 
2238     // We prefer if target blocks for the jump table come after the jump
2239     // instruction so we can use TB[BH]. Loop through the target blocks
2240     // and try to adjust them such that that's true.
2241     int JTNumber = MI->getParent()->getNumber();
2242     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2243     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2244       MachineBasicBlock *MBB = JTBBs[j];
2245       int DTNumber = MBB->getNumber();
2246 
2247       if (DTNumber < JTNumber) {
2248         // The destination precedes the switch. Try to move the block forward
2249         // so we have a positive offset.
2250         MachineBasicBlock *NewBB =
2251           adjustJTTargetBlockForward(MBB, MI->getParent());
2252         if (NewBB)
2253           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2254         MadeChange = true;
2255       }
2256     }
2257   }
2258 
2259   return MadeChange;
2260 }
2261 
2262 MachineBasicBlock *ARMConstantIslands::
adjustJTTargetBlockForward(MachineBasicBlock * BB,MachineBasicBlock * JTBB)2263 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2264   // If the destination block is terminated by an unconditional branch,
2265   // try to move it; otherwise, create a new block following the jump
2266   // table that branches back to the actual target. This is a very simple
2267   // heuristic. FIXME: We can definitely improve it.
2268   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2269   SmallVector<MachineOperand, 4> Cond;
2270   SmallVector<MachineOperand, 4> CondPrior;
2271   MachineFunction::iterator BBi = BB->getIterator();
2272   MachineFunction::iterator OldPrior = std::prev(BBi);
2273 
2274   // If the block terminator isn't analyzable, don't try to move the block
2275   bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2276 
2277   // If the block ends in an unconditional branch, move it. The prior block
2278   // has to have an analyzable terminator for us to move this one. Be paranoid
2279   // and make sure we're not trying to move the entry block of the function.
2280   if (!B && Cond.empty() && BB != &MF->front() &&
2281       !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2282     BB->moveAfter(JTBB);
2283     OldPrior->updateTerminator();
2284     BB->updateTerminator();
2285     // Update numbering to account for the block being moved.
2286     MF->RenumberBlocks();
2287     ++NumJTMoved;
2288     return nullptr;
2289   }
2290 
2291   // Create a new MBB for the code after the jump BB.
2292   MachineBasicBlock *NewBB =
2293     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2294   MachineFunction::iterator MBBI = ++JTBB->getIterator();
2295   MF->insert(MBBI, NewBB);
2296 
2297   // Add an unconditional branch from NewBB to BB.
2298   // There doesn't seem to be meaningful DebugInfo available; this doesn't
2299   // correspond directly to anything in the source.
2300   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
2301   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
2302           .addImm(ARMCC::AL).addReg(0);
2303 
2304   // Update internal data structures to account for the newly inserted MBB.
2305   MF->RenumberBlocks(NewBB);
2306 
2307   // Update the CFG.
2308   NewBB->addSuccessor(BB);
2309   JTBB->replaceSuccessor(BB, NewBB);
2310 
2311   ++NumJTInserted;
2312   return NewBB;
2313 }
2314