1 //==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/TargetRegisterInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Printable.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <cassert>
36 #include <utility>
37
38 #define DEBUG_TYPE "target-reg-info"
39
40 using namespace llvm;
41
TargetRegisterInfo(const TargetRegisterInfoDesc * ID,regclass_iterator RCB,regclass_iterator RCE,const char * const * SRINames,const LaneBitmask * SRILaneMasks,LaneBitmask SRICoveringLanes,const RegClassInfo * const RCIs,unsigned Mode)42 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
43 regclass_iterator RCB, regclass_iterator RCE,
44 const char *const *SRINames,
45 const LaneBitmask *SRILaneMasks,
46 LaneBitmask SRICoveringLanes,
47 const RegClassInfo *const RCIs,
48 unsigned Mode)
49 : InfoDesc(ID), SubRegIndexNames(SRINames),
50 SubRegIndexLaneMasks(SRILaneMasks),
51 RegClassBegin(RCB), RegClassEnd(RCE),
52 CoveringLanes(SRICoveringLanes),
53 RCInfos(RCIs), HwMode(Mode) {
54 }
55
56 TargetRegisterInfo::~TargetRegisterInfo() = default;
57
markSuperRegs(BitVector & RegisterSet,unsigned Reg) const58 void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
59 const {
60 for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
61 RegisterSet.set(*AI);
62 }
63
checkAllSuperRegsMarked(const BitVector & RegisterSet,ArrayRef<MCPhysReg> Exceptions) const64 bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
65 ArrayRef<MCPhysReg> Exceptions) const {
66 // Check that all super registers of reserved regs are reserved as well.
67 BitVector Checked(getNumRegs());
68 for (unsigned Reg : RegisterSet.set_bits()) {
69 if (Checked[Reg])
70 continue;
71 for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
72 if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
73 dbgs() << "Error: Super register " << printReg(*SR, this)
74 << " of reserved register " << printReg(Reg, this)
75 << " is not reserved.\n";
76 return false;
77 }
78
79 // We transitively check superregs. So we can remember this for later
80 // to avoid compiletime explosion in deep register hierarchies.
81 Checked.set(*SR);
82 }
83 }
84 return true;
85 }
86
87 namespace llvm {
88
printReg(unsigned Reg,const TargetRegisterInfo * TRI,unsigned SubIdx,const MachineRegisterInfo * MRI)89 Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI,
90 unsigned SubIdx, const MachineRegisterInfo *MRI) {
91 return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
92 if (!Reg)
93 OS << "$noreg";
94 else if (TargetRegisterInfo::isStackSlot(Reg))
95 OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
96 else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
97 StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
98 if (Name != "") {
99 OS << '%' << Name;
100 } else {
101 OS << '%' << TargetRegisterInfo::virtReg2Index(Reg);
102 }
103 }
104 else if (!TRI)
105 OS << '$' << "physreg" << Reg;
106 else if (Reg < TRI->getNumRegs()) {
107 OS << '$';
108 printLowerCase(TRI->getName(Reg), OS);
109 } else
110 llvm_unreachable("Register kind is unsupported.");
111
112 if (SubIdx) {
113 if (TRI)
114 OS << ':' << TRI->getSubRegIndexName(SubIdx);
115 else
116 OS << ":sub(" << SubIdx << ')';
117 }
118 });
119 }
120
printRegUnit(unsigned Unit,const TargetRegisterInfo * TRI)121 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
122 return Printable([Unit, TRI](raw_ostream &OS) {
123 // Generic printout when TRI is missing.
124 if (!TRI) {
125 OS << "Unit~" << Unit;
126 return;
127 }
128
129 // Check for invalid register units.
130 if (Unit >= TRI->getNumRegUnits()) {
131 OS << "BadUnit~" << Unit;
132 return;
133 }
134
135 // Normal units have at least one root.
136 MCRegUnitRootIterator Roots(Unit, TRI);
137 assert(Roots.isValid() && "Unit has no roots.");
138 OS << TRI->getName(*Roots);
139 for (++Roots; Roots.isValid(); ++Roots)
140 OS << '~' << TRI->getName(*Roots);
141 });
142 }
143
printVRegOrUnit(unsigned Unit,const TargetRegisterInfo * TRI)144 Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
145 return Printable([Unit, TRI](raw_ostream &OS) {
146 if (TRI && TRI->isVirtualRegister(Unit)) {
147 OS << '%' << TargetRegisterInfo::virtReg2Index(Unit);
148 } else {
149 OS << printRegUnit(Unit, TRI);
150 }
151 });
152 }
153
printRegClassOrBank(unsigned Reg,const MachineRegisterInfo & RegInfo,const TargetRegisterInfo * TRI)154 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
155 const TargetRegisterInfo *TRI) {
156 return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
157 if (RegInfo.getRegClassOrNull(Reg))
158 OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
159 else if (RegInfo.getRegBankOrNull(Reg))
160 OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
161 else {
162 OS << "_";
163 assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
164 "Generic registers must have a valid type");
165 }
166 });
167 }
168
169 } // end namespace llvm
170
171 /// getAllocatableClass - Return the maximal subclass of the given register
172 /// class that is alloctable, or NULL.
173 const TargetRegisterClass *
getAllocatableClass(const TargetRegisterClass * RC) const174 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
175 if (!RC || RC->isAllocatable())
176 return RC;
177
178 for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
179 ++It) {
180 const TargetRegisterClass *SubRC = getRegClass(It.getID());
181 if (SubRC->isAllocatable())
182 return SubRC;
183 }
184 return nullptr;
185 }
186
187 /// getMinimalPhysRegClass - Returns the Register Class of a physical
188 /// register of the given type, picking the most sub register class of
189 /// the right type that contains this physreg.
190 const TargetRegisterClass *
getMinimalPhysRegClass(unsigned reg,MVT VT) const191 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
192 assert(isPhysicalRegister(reg) && "reg must be a physical register");
193
194 // Pick the most sub register class of the right type that contains
195 // this physreg.
196 const TargetRegisterClass* BestRC = nullptr;
197 for (const TargetRegisterClass* RC : regclasses()) {
198 if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
199 RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
200 BestRC = RC;
201 }
202
203 assert(BestRC && "Couldn't find the register class");
204 return BestRC;
205 }
206
207 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
208 /// registers for the specific register class.
getAllocatableSetForRC(const MachineFunction & MF,const TargetRegisterClass * RC,BitVector & R)209 static void getAllocatableSetForRC(const MachineFunction &MF,
210 const TargetRegisterClass *RC, BitVector &R){
211 assert(RC->isAllocatable() && "invalid for nonallocatable sets");
212 ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
213 for (unsigned i = 0; i != Order.size(); ++i)
214 R.set(Order[i]);
215 }
216
getAllocatableSet(const MachineFunction & MF,const TargetRegisterClass * RC) const217 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
218 const TargetRegisterClass *RC) const {
219 BitVector Allocatable(getNumRegs());
220 if (RC) {
221 // A register class with no allocatable subclass returns an empty set.
222 const TargetRegisterClass *SubClass = getAllocatableClass(RC);
223 if (SubClass)
224 getAllocatableSetForRC(MF, SubClass, Allocatable);
225 } else {
226 for (const TargetRegisterClass *C : regclasses())
227 if (C->isAllocatable())
228 getAllocatableSetForRC(MF, C, Allocatable);
229 }
230
231 // Mask out the reserved registers
232 BitVector Reserved = getReservedRegs(MF);
233 Allocatable &= Reserved.flip();
234
235 return Allocatable;
236 }
237
238 static inline
firstCommonClass(const uint32_t * A,const uint32_t * B,const TargetRegisterInfo * TRI,const MVT::SimpleValueType SVT=MVT::SimpleValueType::Any)239 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
240 const uint32_t *B,
241 const TargetRegisterInfo *TRI,
242 const MVT::SimpleValueType SVT =
243 MVT::SimpleValueType::Any) {
244 const MVT VT(SVT);
245 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
246 if (unsigned Common = *A++ & *B++) {
247 const TargetRegisterClass *RC =
248 TRI->getRegClass(I + countTrailingZeros(Common));
249 if (SVT == MVT::SimpleValueType::Any || TRI->isTypeLegalForClass(*RC, VT))
250 return RC;
251 }
252 return nullptr;
253 }
254
255 const TargetRegisterClass *
getCommonSubClass(const TargetRegisterClass * A,const TargetRegisterClass * B,const MVT::SimpleValueType SVT) const256 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
257 const TargetRegisterClass *B,
258 const MVT::SimpleValueType SVT) const {
259 // First take care of the trivial cases.
260 if (A == B)
261 return A;
262 if (!A || !B)
263 return nullptr;
264
265 // Register classes are ordered topologically, so the largest common
266 // sub-class it the common sub-class with the smallest ID.
267 return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
268 }
269
270 const TargetRegisterClass *
getMatchingSuperRegClass(const TargetRegisterClass * A,const TargetRegisterClass * B,unsigned Idx) const271 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
272 const TargetRegisterClass *B,
273 unsigned Idx) const {
274 assert(A && B && "Missing register class");
275 assert(Idx && "Bad sub-register index");
276
277 // Find Idx in the list of super-register indices.
278 for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
279 if (RCI.getSubReg() == Idx)
280 // The bit mask contains all register classes that are projected into B
281 // by Idx. Find a class that is also a sub-class of A.
282 return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
283 return nullptr;
284 }
285
286 const TargetRegisterClass *TargetRegisterInfo::
getCommonSuperRegClass(const TargetRegisterClass * RCA,unsigned SubA,const TargetRegisterClass * RCB,unsigned SubB,unsigned & PreA,unsigned & PreB) const287 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
288 const TargetRegisterClass *RCB, unsigned SubB,
289 unsigned &PreA, unsigned &PreB) const {
290 assert(RCA && SubA && RCB && SubB && "Invalid arguments");
291
292 // Search all pairs of sub-register indices that project into RCA and RCB
293 // respectively. This is quadratic, but usually the sets are very small. On
294 // most targets like X86, there will only be a single sub-register index
295 // (e.g., sub_16bit projecting into GR16).
296 //
297 // The worst case is a register class like DPR on ARM.
298 // We have indices dsub_0..dsub_7 projecting into that class.
299 //
300 // It is very common that one register class is a sub-register of the other.
301 // Arrange for RCA to be the larger register so the answer will be found in
302 // the first iteration. This makes the search linear for the most common
303 // case.
304 const TargetRegisterClass *BestRC = nullptr;
305 unsigned *BestPreA = &PreA;
306 unsigned *BestPreB = &PreB;
307 if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
308 std::swap(RCA, RCB);
309 std::swap(SubA, SubB);
310 std::swap(BestPreA, BestPreB);
311 }
312
313 // Also terminate the search one we have found a register class as small as
314 // RCA.
315 unsigned MinSize = getRegSizeInBits(*RCA);
316
317 for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
318 unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
319 for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
320 // Check if a common super-register class exists for this index pair.
321 const TargetRegisterClass *RC =
322 firstCommonClass(IA.getMask(), IB.getMask(), this);
323 if (!RC || getRegSizeInBits(*RC) < MinSize)
324 continue;
325
326 // The indexes must compose identically: PreA+SubA == PreB+SubB.
327 unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
328 if (FinalA != FinalB)
329 continue;
330
331 // Is RC a better candidate than BestRC?
332 if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
333 continue;
334
335 // Yes, RC is the smallest super-register seen so far.
336 BestRC = RC;
337 *BestPreA = IA.getSubReg();
338 *BestPreB = IB.getSubReg();
339
340 // Bail early if we reached MinSize. We won't find a better candidate.
341 if (getRegSizeInBits(*BestRC) == MinSize)
342 return BestRC;
343 }
344 }
345 return BestRC;
346 }
347
348 /// Check if the registers defined by the pair (RegisterClass, SubReg)
349 /// share the same register file.
shareSameRegisterFile(const TargetRegisterInfo & TRI,const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg)350 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
351 const TargetRegisterClass *DefRC,
352 unsigned DefSubReg,
353 const TargetRegisterClass *SrcRC,
354 unsigned SrcSubReg) {
355 // Same register class.
356 if (DefRC == SrcRC)
357 return true;
358
359 // Both operands are sub registers. Check if they share a register class.
360 unsigned SrcIdx, DefIdx;
361 if (SrcSubReg && DefSubReg) {
362 return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
363 SrcIdx, DefIdx) != nullptr;
364 }
365
366 // At most one of the register is a sub register, make it Src to avoid
367 // duplicating the test.
368 if (!SrcSubReg) {
369 std::swap(DefSubReg, SrcSubReg);
370 std::swap(DefRC, SrcRC);
371 }
372
373 // One of the register is a sub register, check if we can get a superclass.
374 if (SrcSubReg)
375 return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
376
377 // Plain copy.
378 return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
379 }
380
shouldRewriteCopySrc(const TargetRegisterClass * DefRC,unsigned DefSubReg,const TargetRegisterClass * SrcRC,unsigned SrcSubReg) const381 bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
382 unsigned DefSubReg,
383 const TargetRegisterClass *SrcRC,
384 unsigned SrcSubReg) const {
385 // If this source does not incur a cross register bank copy, use it.
386 return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
387 }
388
389 // Compute target-independent register allocator hints to help eliminate copies.
390 bool
getRegAllocationHints(unsigned VirtReg,ArrayRef<MCPhysReg> Order,SmallVectorImpl<MCPhysReg> & Hints,const MachineFunction & MF,const VirtRegMap * VRM,const LiveRegMatrix * Matrix) const391 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
392 ArrayRef<MCPhysReg> Order,
393 SmallVectorImpl<MCPhysReg> &Hints,
394 const MachineFunction &MF,
395 const VirtRegMap *VRM,
396 const LiveRegMatrix *Matrix) const {
397 const MachineRegisterInfo &MRI = MF.getRegInfo();
398 const std::pair<unsigned, SmallVector<unsigned, 4>> &Hints_MRI =
399 MRI.getRegAllocationHints(VirtReg);
400
401 // First hint may be a target hint.
402 bool Skip = (Hints_MRI.first != 0);
403 for (auto Reg : Hints_MRI.second) {
404 if (Skip) {
405 Skip = false;
406 continue;
407 }
408
409 // Target-independent hints are either a physical or a virtual register.
410 unsigned Phys = Reg;
411 if (VRM && isVirtualRegister(Phys))
412 Phys = VRM->getPhys(Phys);
413
414 // Check that Phys is a valid hint in VirtReg's register class.
415 if (!isPhysicalRegister(Phys))
416 continue;
417 if (MRI.isReserved(Phys))
418 continue;
419 // Check that Phys is in the allocation order. We shouldn't heed hints
420 // from VirtReg's register class if they aren't in the allocation order. The
421 // target probably has a reason for removing the register.
422 if (!is_contained(Order, Phys))
423 continue;
424
425 // All clear, tell the register allocator to prefer this register.
426 Hints.push_back(Phys);
427 }
428 return false;
429 }
430
canRealignStack(const MachineFunction & MF) const431 bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
432 return !MF.getFunction().hasFnAttribute("no-realign-stack");
433 }
434
needsStackRealignment(const MachineFunction & MF) const435 bool TargetRegisterInfo::needsStackRealignment(
436 const MachineFunction &MF) const {
437 const MachineFrameInfo &MFI = MF.getFrameInfo();
438 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
439 const Function &F = MF.getFunction();
440 unsigned StackAlign = TFI->getStackAlignment();
441 bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
442 F.hasFnAttribute(Attribute::StackAlignment));
443 if (F.hasFnAttribute("stackrealign") || requiresRealignment) {
444 if (canRealignStack(MF))
445 return true;
446 LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F.getName()
447 << "\n");
448 }
449 return false;
450 }
451
regmaskSubsetEqual(const uint32_t * mask0,const uint32_t * mask1) const452 bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
453 const uint32_t *mask1) const {
454 unsigned N = (getNumRegs()+31) / 32;
455 for (unsigned I = 0; I < N; ++I)
456 if ((mask0[I] & mask1[I]) != mask0[I])
457 return false;
458 return true;
459 }
460
getRegSizeInBits(unsigned Reg,const MachineRegisterInfo & MRI) const461 unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg,
462 const MachineRegisterInfo &MRI) const {
463 const TargetRegisterClass *RC{};
464 if (isPhysicalRegister(Reg)) {
465 // The size is not directly available for physical registers.
466 // Instead, we need to access a register class that contains Reg and
467 // get the size of that register class.
468 RC = getMinimalPhysRegClass(Reg);
469 } else {
470 LLT Ty = MRI.getType(Reg);
471 unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
472 // If Reg is not a generic register, query the register class to
473 // get its size.
474 if (RegSize)
475 return RegSize;
476 // Since Reg is not a generic register, it must have a register class.
477 RC = MRI.getRegClass(Reg);
478 }
479 assert(RC && "Unable to deduce the register class");
480 return getRegSizeInBits(*RC);
481 }
482
483 unsigned
lookThruCopyLike(unsigned SrcReg,const MachineRegisterInfo * MRI) const484 TargetRegisterInfo::lookThruCopyLike(unsigned SrcReg,
485 const MachineRegisterInfo *MRI) const {
486 while (true) {
487 const MachineInstr *MI = MRI->getVRegDef(SrcReg);
488 if (!MI->isCopyLike())
489 return SrcReg;
490
491 unsigned CopySrcReg;
492 if (MI->isCopy())
493 CopySrcReg = MI->getOperand(1).getReg();
494 else {
495 assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
496 CopySrcReg = MI->getOperand(2).getReg();
497 }
498
499 if (!isVirtualRegister(CopySrcReg))
500 return CopySrcReg;
501
502 SrcReg = CopySrcReg;
503 }
504 }
505
506 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
507 LLVM_DUMP_METHOD
dumpReg(unsigned Reg,unsigned SubRegIndex,const TargetRegisterInfo * TRI)508 void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
509 const TargetRegisterInfo *TRI) {
510 dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
511 }
512 #endif
513