• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <debug.h>
14 #include <platform.h>
15 #include <string.h>
16 #include <utils.h>
17 #include "psci_private.h"
18 
19 /*
20  * SPD power management operations, expected to be supplied by the registered
21  * SPD on successful SP initialization
22  */
23 const spd_pm_ops_t *psci_spd_pm;
24 
25 /*
26  * PSCI requested local power state map. This array is used to store the local
27  * power states requested by a CPU for power levels from level 1 to
28  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
29  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
30  * CPU are the same.
31  *
32  * During state coordination, the platform is passed an array containing the
33  * local states requested for a particular non cpu power domain by each cpu
34  * within the domain.
35  *
36  * TODO: Dense packing of the requested states will cause cache thrashing
37  * when multiple power domains write to it. If we allocate the requested
38  * states at each power level in a cache-line aligned per-domain memory,
39  * the cache thrashing can be avoided.
40  */
41 static plat_local_state_t
42 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
43 
44 
45 /*******************************************************************************
46  * Arrays that hold the platform's power domain tree information for state
47  * management of power domains.
48  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
49  * which is an ancestor of a CPU power domain.
50  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
51  ******************************************************************************/
52 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
53 #if USE_COHERENT_MEM
54 __section("tzfw_coherent_mem")
55 #endif
56 ;
57 
58 /* Lock for PSCI state coordination */
59 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
60 
61 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
62 
63 /*******************************************************************************
64  * Pointer to functions exported by the platform to complete power mgmt. ops
65  ******************************************************************************/
66 const plat_psci_ops_t *psci_plat_pm_ops;
67 
68 /******************************************************************************
69  * Check that the maximum power level supported by the platform makes sense
70  *****************************************************************************/
71 CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
72 		PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
73 		assert_platform_max_pwrlvl_check);
74 
75 /*
76  * The plat_local_state used by the platform is one of these types: RUN,
77  * RETENTION and OFF. The platform can define further sub-states for each type
78  * apart from RUN. This categorization is done to verify the sanity of the
79  * psci_power_state passed by the platform and to print debug information. The
80  * categorization is done on the basis of the following conditions:
81  *
82  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
83  *
84  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
85  *    STATE_TYPE_RETN.
86  *
87  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
88  *    STATE_TYPE_OFF.
89  */
90 typedef enum plat_local_state_type {
91 	STATE_TYPE_RUN = 0,
92 	STATE_TYPE_RETN,
93 	STATE_TYPE_OFF
94 } plat_local_state_type_t;
95 
96 /* The macro used to categorize plat_local_state. */
97 #define find_local_state_type(plat_local_state)					\
98 		((plat_local_state) ? ((plat_local_state > PLAT_MAX_RET_STATE)	\
99 		? STATE_TYPE_OFF : STATE_TYPE_RETN)				\
100 		: STATE_TYPE_RUN)
101 
102 /******************************************************************************
103  * Check that the maximum retention level supported by the platform is less
104  * than the maximum off level.
105  *****************************************************************************/
106 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \
107 		assert_platform_max_off_and_retn_state_check);
108 
109 /******************************************************************************
110  * This function ensures that the power state parameter in a CPU_SUSPEND request
111  * is valid. If so, it returns the requested states for each power level.
112  *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)113 int psci_validate_power_state(unsigned int power_state,
114 			      psci_power_state_t *state_info)
115 {
116 	/* Check SBZ bits in power state are zero */
117 	if (psci_check_power_state(power_state))
118 		return PSCI_E_INVALID_PARAMS;
119 
120 	assert(psci_plat_pm_ops->validate_power_state);
121 
122 	/* Validate the power_state using platform pm_ops */
123 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
124 }
125 
126 /******************************************************************************
127  * This function retrieves the `psci_power_state_t` for system suspend from
128  * the platform.
129  *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)130 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
131 {
132 	/*
133 	 * Assert that the required pm_ops hook is implemented to ensure that
134 	 * the capability detected during psci_setup() is valid.
135 	 */
136 	assert(psci_plat_pm_ops->get_sys_suspend_power_state);
137 
138 	/*
139 	 * Query the platform for the power_state required for system suspend
140 	 */
141 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
142 }
143 
144 /*******************************************************************************
145  * This function verifies that the all the other cores in the system have been
146  * turned OFF and the current CPU is the last running CPU in the system.
147  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
148  * otherwise.
149  ******************************************************************************/
psci_is_last_on_cpu(void)150 unsigned int psci_is_last_on_cpu(void)
151 {
152 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
153 
154 	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
155 		if (cpu_idx == my_idx) {
156 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
157 			continue;
158 		}
159 
160 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
161 			return 0;
162 	}
163 
164 	return 1;
165 }
166 
167 /*******************************************************************************
168  * Routine to return the maximum power level to traverse to after a cpu has
169  * been physically powered up. It is expected to be called immediately after
170  * reset from assembler code.
171  ******************************************************************************/
get_power_on_target_pwrlvl(void)172 static unsigned int get_power_on_target_pwrlvl(void)
173 {
174 	unsigned int pwrlvl;
175 
176 	/*
177 	 * Assume that this cpu was suspended and retrieve its target power
178 	 * level. If it is invalid then it could only have been turned off
179 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
180 	 * cpu can be turned off to.
181 	 */
182 	pwrlvl = psci_get_suspend_pwrlvl();
183 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
184 		pwrlvl = PLAT_MAX_PWR_LVL;
185 	return pwrlvl;
186 }
187 
188 /******************************************************************************
189  * Helper function to update the requested local power state array. This array
190  * does not store the requested state for the CPU power level. Hence an
191  * assertion is added to prevent us from accessing the wrong index.
192  *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)193 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
194 					 unsigned int cpu_idx,
195 					 plat_local_state_t req_pwr_state)
196 {
197 	/*
198 	 * This should never happen, we have this here to avoid
199 	 * "array subscript is above array bounds" errors in GCC.
200 	 */
201 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
202 #pragma GCC diagnostic push
203 #pragma GCC diagnostic ignored "-Warray-bounds"
204 	psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state;
205 #pragma GCC diagnostic pop
206 }
207 
208 /******************************************************************************
209  * This function initializes the psci_req_local_pwr_states.
210  *****************************************************************************/
psci_init_req_local_pwr_states(void)211 void psci_init_req_local_pwr_states(void)
212 {
213 	/* Initialize the requested state of all non CPU power domains as OFF */
214 	memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE,
215 			sizeof(psci_req_local_pwr_states));
216 }
217 
218 /******************************************************************************
219  * Helper function to return a reference to an array containing the local power
220  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
221  * array will be the number of cpu power domains of which this power domain is
222  * an ancestor. These requested states will be used to determine a suitable
223  * target state for this power domain during psci state coordination. An
224  * assertion is added to prevent us from accessing the CPU power level.
225  *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)226 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
227 							 unsigned int cpu_idx)
228 {
229 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
230 
231 	return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
232 }
233 
234 /*
235  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
236  * memory.
237  *
238  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
239  * it's accessed by both cached and non-cached participants. To serve the common
240  * minimum, perform a cache flush before read and after write so that non-cached
241  * participants operate on latest data in main memory.
242  *
243  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
244  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
245  * In both cases, no cache operations are required.
246  */
247 
248 /*
249  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
250  * after any required cache maintenance operation.
251  */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)252 static plat_local_state_t get_non_cpu_pd_node_local_state(
253 		unsigned int parent_idx)
254 {
255 #if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
256 	flush_dcache_range(
257 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
258 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
259 #endif
260 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
261 }
262 
263 /*
264  * Update local state of non-CPU power domain node from a cached CPU; perform
265  * any required cache maintenance operation afterwards.
266  */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)267 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
268 		plat_local_state_t state)
269 {
270 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
271 #if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
272 	flush_dcache_range(
273 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
274 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
275 #endif
276 }
277 
278 /******************************************************************************
279  * Helper function to return the current local power state of each power domain
280  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
281  * function will be called after a cpu is powered on to find the local state
282  * each power domain has emerged from.
283  *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)284 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
285 				      psci_power_state_t *target_state)
286 {
287 	unsigned int parent_idx, lvl;
288 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
289 
290 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
291 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
292 
293 	/* Copy the local power state from node to state_info */
294 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
295 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
296 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
297 	}
298 
299 	/* Set the the higher levels to RUN */
300 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
301 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
302 }
303 
304 /******************************************************************************
305  * Helper function to set the target local power state that each power domain
306  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
307  * enter. This function will be called after coordination of requested power
308  * states has been done for each power level.
309  *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)310 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
311 					const psci_power_state_t *target_state)
312 {
313 	unsigned int parent_idx, lvl;
314 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
315 
316 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
317 
318 	/*
319 	 * Need to flush as local_state might be accessed with Data Cache
320 	 * disabled during power on
321 	 */
322 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
323 
324 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
325 
326 	/* Copy the local_state from state_info */
327 	for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
328 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
329 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
330 	}
331 }
332 
333 
334 /*******************************************************************************
335  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
336  ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int node_index[])337 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
338 				      unsigned int end_lvl,
339 				      unsigned int node_index[])
340 {
341 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
342 	unsigned int i;
343 
344 	for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
345 		*node_index++ = parent_node;
346 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
347 	}
348 }
349 
350 /******************************************************************************
351  * This function is invoked post CPU power up and initialization. It sets the
352  * affinity info state, target power state and requested power state for the
353  * current CPU and all its ancestor power domains to RUN.
354  *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)355 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
356 {
357 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
358 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
359 
360 	/* Reset the local_state to RUN for the non cpu power domains. */
361 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
362 		set_non_cpu_pd_node_local_state(parent_idx,
363 				PSCI_LOCAL_STATE_RUN);
364 		psci_set_req_local_pwr_state(lvl,
365 					     cpu_idx,
366 					     PSCI_LOCAL_STATE_RUN);
367 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
368 	}
369 
370 	/* Set the affinity info state to ON */
371 	psci_set_aff_info_state(AFF_STATE_ON);
372 
373 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
374 	psci_flush_cpu_data(psci_svc_cpu_data);
375 }
376 
377 /******************************************************************************
378  * This function is passed the local power states requested for each power
379  * domain (state_info) between the current CPU domain and its ancestors until
380  * the target power level (end_pwrlvl). It updates the array of requested power
381  * states with this information.
382  *
383  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
384  * retrieves the states requested by all the cpus of which the power domain at
385  * that level is an ancestor. It passes this information to the platform to
386  * coordinate and return the target power state. If the target state for a level
387  * is RUN then subsequent levels are not considered. At the CPU level, state
388  * coordination is not required. Hence, the requested and the target states are
389  * the same.
390  *
391  * The 'state_info' is updated with the target state for each level between the
392  * CPU and the 'end_pwrlvl' and returned to the caller.
393  *
394  * This function will only be invoked with data cache enabled and while
395  * powering down a core.
396  *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)397 void psci_do_state_coordination(unsigned int end_pwrlvl,
398 				psci_power_state_t *state_info)
399 {
400 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
401 	unsigned int start_idx, ncpus;
402 	plat_local_state_t target_state, *req_states;
403 
404 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
405 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
406 
407 	/* For level 0, the requested state will be equivalent
408 	   to target state */
409 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
410 
411 		/* First update the requested power state */
412 		psci_set_req_local_pwr_state(lvl, cpu_idx,
413 					     state_info->pwr_domain_state[lvl]);
414 
415 		/* Get the requested power states for this power level */
416 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
417 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
418 
419 		/*
420 		 * Let the platform coordinate amongst the requested states at
421 		 * this power level and return the target local power state.
422 		 */
423 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
424 		target_state = plat_get_target_pwr_state(lvl,
425 							 req_states,
426 							 ncpus);
427 
428 		state_info->pwr_domain_state[lvl] = target_state;
429 
430 		/* Break early if the negotiated target power state is RUN */
431 		if (is_local_state_run(state_info->pwr_domain_state[lvl]))
432 			break;
433 
434 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
435 	}
436 
437 	/*
438 	 * This is for cases when we break out of the above loop early because
439 	 * the target power state is RUN at a power level < end_pwlvl.
440 	 * We update the requested power state from state_info and then
441 	 * set the target state as RUN.
442 	 */
443 	for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) {
444 		psci_set_req_local_pwr_state(lvl, cpu_idx,
445 					     state_info->pwr_domain_state[lvl]);
446 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
447 
448 	}
449 
450 	/* Update the target state in the power domain nodes */
451 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
452 }
453 
454 /******************************************************************************
455  * This function validates a suspend request by making sure that if a standby
456  * state is requested then no power level is turned off and the highest power
457  * level is placed in a standby/retention state.
458  *
459  * It also ensures that the state level X will enter is not shallower than the
460  * state level X + 1 will enter.
461  *
462  * This validation will be enabled only for DEBUG builds as the platform is
463  * expected to perform these validations as well.
464  *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)465 int psci_validate_suspend_req(const psci_power_state_t *state_info,
466 			      unsigned int is_power_down_state)
467 {
468 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
469 	plat_local_state_t state;
470 	plat_local_state_type_t req_state_type, deepest_state_type;
471 	int i;
472 
473 	/* Find the target suspend power level */
474 	target_lvl = psci_find_target_suspend_lvl(state_info);
475 	if (target_lvl == PSCI_INVALID_PWR_LVL)
476 		return PSCI_E_INVALID_PARAMS;
477 
478 	/* All power domain levels are in a RUN state to begin with */
479 	deepest_state_type = STATE_TYPE_RUN;
480 
481 	for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) {
482 		state = state_info->pwr_domain_state[i];
483 		req_state_type = find_local_state_type(state);
484 
485 		/*
486 		 * While traversing from the highest power level to the lowest,
487 		 * the state requested for lower levels has to be the same or
488 		 * deeper i.e. equal to or greater than the state at the higher
489 		 * levels. If this condition is true, then the requested state
490 		 * becomes the deepest state encountered so far.
491 		 */
492 		if (req_state_type < deepest_state_type)
493 			return PSCI_E_INVALID_PARAMS;
494 		deepest_state_type = req_state_type;
495 	}
496 
497 	/* Find the highest off power level */
498 	max_off_lvl = psci_find_max_off_lvl(state_info);
499 
500 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
501 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
502 	if (target_lvl != max_off_lvl)
503 		max_retn_lvl = target_lvl;
504 
505 	/*
506 	 * If this is not a request for a power down state then max off level
507 	 * has to be invalid and max retention level has to be a valid power
508 	 * level.
509 	 */
510 	if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_PWR_LVL ||
511 				    max_retn_lvl == PSCI_INVALID_PWR_LVL))
512 		return PSCI_E_INVALID_PARAMS;
513 
514 	return PSCI_E_SUCCESS;
515 }
516 
517 /******************************************************************************
518  * This function finds the highest power level which will be powered down
519  * amongst all the power levels specified in the 'state_info' structure
520  *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)521 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
522 {
523 	int i;
524 
525 	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
526 		if (is_local_state_off(state_info->pwr_domain_state[i]))
527 			return i;
528 	}
529 
530 	return PSCI_INVALID_PWR_LVL;
531 }
532 
533 /******************************************************************************
534  * This functions finds the level of the highest power domain which will be
535  * placed in a low power state during a suspend operation.
536  *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)537 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
538 {
539 	int i;
540 
541 	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
542 		if (!is_local_state_run(state_info->pwr_domain_state[i]))
543 			return i;
544 	}
545 
546 	return PSCI_INVALID_PWR_LVL;
547 }
548 
549 /*******************************************************************************
550  * This function is passed a cpu_index and the highest level in the topology
551  * tree that the operation should be applied to. It picks up locks in order of
552  * increasing power domain level in the range specified.
553  ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,unsigned int cpu_idx)554 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
555 				   unsigned int cpu_idx)
556 {
557 	unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
558 	unsigned int level;
559 
560 	/* No locking required for level 0. Hence start locking from level 1 */
561 	for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
562 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
563 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
564 	}
565 }
566 
567 /*******************************************************************************
568  * This function is passed a cpu_index and the highest level in the topology
569  * tree that the operation should be applied to. It releases the locks in order
570  * of decreasing power domain level in the range specified.
571  ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,unsigned int cpu_idx)572 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
573 				   unsigned int cpu_idx)
574 {
575 	unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
576 	int level;
577 
578 	/* Get the parent nodes */
579 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
580 
581 	/* Unlock top down. No unlocking required for level 0. */
582 	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
583 		parent_idx = parent_nodes[level - 1];
584 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
585 	}
586 }
587 
588 /*******************************************************************************
589  * Simple routine to determine whether a mpidr is valid or not.
590  ******************************************************************************/
psci_validate_mpidr(u_register_t mpidr)591 int psci_validate_mpidr(u_register_t mpidr)
592 {
593 	if (plat_core_pos_by_mpidr(mpidr) < 0)
594 		return PSCI_E_INVALID_PARAMS;
595 
596 	return PSCI_E_SUCCESS;
597 }
598 
599 /*******************************************************************************
600  * This function determines the full entrypoint information for the requested
601  * PSCI entrypoint on power on/resume and returns it.
602  ******************************************************************************/
603 #ifdef AARCH32
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)604 static int psci_get_ns_ep_info(entry_point_info_t *ep,
605 			       uintptr_t entrypoint,
606 			       u_register_t context_id)
607 {
608 	u_register_t ep_attr;
609 	unsigned int aif, ee, mode;
610 	u_register_t scr = read_scr();
611 	u_register_t ns_sctlr, sctlr;
612 
613 	/* Switch to non secure state */
614 	write_scr(scr | SCR_NS_BIT);
615 	isb();
616 	ns_sctlr = read_sctlr();
617 
618 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
619 
620 	/* Return to original state */
621 	write_scr(scr);
622 	isb();
623 	ee = 0;
624 
625 	ep_attr = NON_SECURE | EP_ST_DISABLE;
626 	if (sctlr & SCTLR_EE_BIT) {
627 		ep_attr |= EP_EE_BIG;
628 		ee = 1;
629 	}
630 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
631 
632 	ep->pc = entrypoint;
633 	zeromem(&ep->args, sizeof(ep->args));
634 	ep->args.arg0 = context_id;
635 
636 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
637 
638 	/*
639 	 * TODO: Choose async. exception bits if HYP mode is not
640 	 * implemented according to the values of SCR.{AW, FW} bits
641 	 */
642 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
643 
644 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
645 
646 	return PSCI_E_SUCCESS;
647 }
648 
649 #else
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)650 static int psci_get_ns_ep_info(entry_point_info_t *ep,
651 			       uintptr_t entrypoint,
652 			       u_register_t context_id)
653 {
654 	u_register_t ep_attr, sctlr;
655 	unsigned int daif, ee, mode;
656 	u_register_t ns_scr_el3 = read_scr_el3();
657 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
658 
659 	sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
660 	ee = 0;
661 
662 	ep_attr = NON_SECURE | EP_ST_DISABLE;
663 	if (sctlr & SCTLR_EE_BIT) {
664 		ep_attr |= EP_EE_BIG;
665 		ee = 1;
666 	}
667 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
668 
669 	ep->pc = entrypoint;
670 	zeromem(&ep->args, sizeof(ep->args));
671 	ep->args.arg0 = context_id;
672 
673 	/*
674 	 * Figure out whether the cpu enters the non-secure address space
675 	 * in aarch32 or aarch64
676 	 */
677 	if (ns_scr_el3 & SCR_RW_BIT) {
678 
679 		/*
680 		 * Check whether a Thumb entry point has been provided for an
681 		 * aarch64 EL
682 		 */
683 		if (entrypoint & 0x1)
684 			return PSCI_E_INVALID_ADDRESS;
685 
686 		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
687 
688 		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
689 	} else {
690 
691 		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
692 
693 		/*
694 		 * TODO: Choose async. exception bits if HYP mode is not
695 		 * implemented according to the values of SCR.{AW, FW} bits
696 		 */
697 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
698 
699 		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
700 	}
701 
702 	return PSCI_E_SUCCESS;
703 }
704 #endif
705 
706 /*******************************************************************************
707  * This function validates the entrypoint with the platform layer if the
708  * appropriate pm_ops hook is exported by the platform and returns the
709  * 'entry_point_info'.
710  ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)711 int psci_validate_entry_point(entry_point_info_t *ep,
712 			      uintptr_t entrypoint,
713 			      u_register_t context_id)
714 {
715 	int rc;
716 
717 	/* Validate the entrypoint using platform psci_ops */
718 	if (psci_plat_pm_ops->validate_ns_entrypoint) {
719 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
720 		if (rc != PSCI_E_SUCCESS)
721 			return PSCI_E_INVALID_ADDRESS;
722 	}
723 
724 	/*
725 	 * Verify and derive the re-entry information for
726 	 * the non-secure world from the non-secure state from
727 	 * where this call originated.
728 	 */
729 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
730 	return rc;
731 }
732 
733 /*******************************************************************************
734  * Generic handler which is called when a cpu is physically powered on. It
735  * traverses the node information and finds the highest power level powered
736  * off and performs generic, architectural, platform setup and state management
737  * to power on that power level and power levels below it.
738  * e.g. For a cpu that's been powered on, it will call the platform specific
739  * code to enable the gic cpu interface and for a cluster it will enable
740  * coherency at the interconnect level in addition to gic cpu interface.
741  ******************************************************************************/
psci_warmboot_entrypoint(void)742 void psci_warmboot_entrypoint(void)
743 {
744 	unsigned int end_pwrlvl, cpu_idx = plat_my_core_pos();
745 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
746 
747 	/*
748 	 * Verify that we have been explicitly turned ON or resumed from
749 	 * suspend.
750 	 */
751 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
752 		ERROR("Unexpected affinity info state");
753 		panic();
754 	}
755 
756 	/*
757 	 * Get the maximum power domain level to traverse to after this cpu
758 	 * has been physically powered up.
759 	 */
760 	end_pwrlvl = get_power_on_target_pwrlvl();
761 
762 	/*
763 	 * This function acquires the lock corresponding to each power level so
764 	 * that by the time all locks are taken, the system topology is snapshot
765 	 * and state management can be done safely.
766 	 */
767 	psci_acquire_pwr_domain_locks(end_pwrlvl,
768 				      cpu_idx);
769 
770 #if ENABLE_PSCI_STAT
771 	plat_psci_stat_accounting_stop(&state_info);
772 #endif
773 
774 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
775 
776 	/*
777 	 * This CPU could be resuming from suspend or it could have just been
778 	 * turned on. To distinguish between these 2 cases, we examine the
779 	 * affinity state of the CPU:
780 	 *  - If the affinity state is ON_PENDING then it has just been
781 	 *    turned on.
782 	 *  - Else it is resuming from suspend.
783 	 *
784 	 * Depending on the type of warm reset identified, choose the right set
785 	 * of power management handler and perform the generic, architecture
786 	 * and platform specific handling.
787 	 */
788 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
789 		psci_cpu_on_finish(cpu_idx, &state_info);
790 	else
791 		psci_cpu_suspend_finish(cpu_idx, &state_info);
792 
793 	/*
794 	 * Set the requested and target state of this CPU and all the higher
795 	 * power domains which are ancestors of this CPU to run.
796 	 */
797 	psci_set_pwr_domains_to_run(end_pwrlvl);
798 
799 #if ENABLE_PSCI_STAT
800 	/*
801 	 * Update PSCI stats.
802 	 * Caches are off when writing stats data on the power down path.
803 	 * Since caches are now enabled, it's necessary to do cache
804 	 * maintenance before reading that same data.
805 	 */
806 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
807 #endif
808 
809 	/*
810 	 * This loop releases the lock corresponding to each power level
811 	 * in the reverse order to which they were acquired.
812 	 */
813 	psci_release_pwr_domain_locks(end_pwrlvl,
814 				      cpu_idx);
815 }
816 
817 /*******************************************************************************
818  * This function initializes the set of hooks that PSCI invokes as part of power
819  * management operation. The power management hooks are expected to be provided
820  * by the SPD, after it finishes all its initialization
821  ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)822 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
823 {
824 	assert(pm);
825 	psci_spd_pm = pm;
826 
827 	if (pm->svc_migrate)
828 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
829 
830 	if (pm->svc_migrate_info)
831 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
832 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
833 }
834 
835 /*******************************************************************************
836  * This function invokes the migrate info hook in the spd_pm_ops. It performs
837  * the necessary return value validation. If the Secure Payload is UP and
838  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
839  * is resident through the mpidr parameter. Else the value of the parameter on
840  * return is undefined.
841  ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)842 int psci_spd_migrate_info(u_register_t *mpidr)
843 {
844 	int rc;
845 
846 	if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
847 		return PSCI_E_NOT_SUPPORTED;
848 
849 	rc = psci_spd_pm->svc_migrate_info(mpidr);
850 
851 	assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
852 		|| rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
853 
854 	return rc;
855 }
856 
857 
858 /*******************************************************************************
859  * This function prints the state of all power domains present in the
860  * system
861  ******************************************************************************/
psci_print_power_domain_map(void)862 void psci_print_power_domain_map(void)
863 {
864 #if LOG_LEVEL >= LOG_LEVEL_INFO
865 	unsigned int idx;
866 	plat_local_state_t state;
867 	plat_local_state_type_t state_type;
868 
869 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
870 	static const char * const psci_state_type_str[] = {
871 		"ON",
872 		"RETENTION",
873 		"OFF",
874 	};
875 
876 	INFO("PSCI Power Domain Map:\n");
877 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
878 							idx++) {
879 		state_type = find_local_state_type(
880 				psci_non_cpu_pd_nodes[idx].local_state);
881 		INFO("  Domain Node : Level %u, parent_node %d,"
882 				" State %s (0x%x)\n",
883 				psci_non_cpu_pd_nodes[idx].level,
884 				psci_non_cpu_pd_nodes[idx].parent_node,
885 				psci_state_type_str[state_type],
886 				psci_non_cpu_pd_nodes[idx].local_state);
887 	}
888 
889 	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
890 		state = psci_get_cpu_local_state_by_idx(idx);
891 		state_type = find_local_state_type(state);
892 		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
893 				" State %s (0x%x)\n",
894 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
895 				psci_cpu_pd_nodes[idx].parent_node,
896 				psci_state_type_str[state_type],
897 				psci_get_cpu_local_state_by_idx(idx));
898 	}
899 #endif
900 }
901 
902 /******************************************************************************
903  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
904  * have ever been powered up would have set its MPDIR value to something other
905  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
906  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
907  * meaningful only when called on the primary CPU during early boot.
908  *****************************************************************************/
psci_secondaries_brought_up(void)909 int psci_secondaries_brought_up(void)
910 {
911 	unsigned int idx, n_valid = 0;
912 
913 	for (idx = 0; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
914 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
915 			n_valid++;
916 	}
917 
918 	assert(n_valid);
919 
920 	return (n_valid > 1);
921 }
922 
923 #if ENABLE_PLAT_COMPAT
924 /*******************************************************************************
925  * PSCI Compatibility helper function to return the 'power_state' parameter of
926  * the PSCI CPU SUSPEND request for the current CPU. Returns PSCI_INVALID_DATA
927  * if not invoked within CPU_SUSPEND for the current CPU.
928  ******************************************************************************/
psci_get_suspend_powerstate(void)929 int psci_get_suspend_powerstate(void)
930 {
931 	/* Sanity check to verify that CPU is within CPU_SUSPEND */
932 	if (psci_get_aff_info_state() == AFF_STATE_ON &&
933 		!is_local_state_run(psci_get_cpu_local_state()))
934 		return psci_power_state_compat[plat_my_core_pos()];
935 
936 	return PSCI_INVALID_DATA;
937 }
938 
939 /*******************************************************************************
940  * PSCI Compatibility helper function to return the state id of the current
941  * cpu encoded in the 'power_state' parameter. Returns PSCI_INVALID_DATA
942  * if not invoked within CPU_SUSPEND for the current CPU.
943  ******************************************************************************/
psci_get_suspend_stateid(void)944 int psci_get_suspend_stateid(void)
945 {
946 	unsigned int power_state;
947 	power_state = psci_get_suspend_powerstate();
948 	if (power_state != PSCI_INVALID_DATA)
949 		return psci_get_pstate_id(power_state);
950 
951 	return PSCI_INVALID_DATA;
952 }
953 
954 /*******************************************************************************
955  * PSCI Compatibility helper function to return the state id encoded in the
956  * 'power_state' parameter of the CPU specified by 'mpidr'. Returns
957  * PSCI_INVALID_DATA if the CPU is not in CPU_SUSPEND.
958  ******************************************************************************/
psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)959 int psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)
960 {
961 	int cpu_idx = plat_core_pos_by_mpidr(mpidr);
962 
963 	if (cpu_idx == -1)
964 		return PSCI_INVALID_DATA;
965 
966 	/* Sanity check to verify that the CPU is in CPU_SUSPEND */
967 	if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON &&
968 		!is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx)))
969 		return psci_get_pstate_id(psci_power_state_compat[cpu_idx]);
970 
971 	return PSCI_INVALID_DATA;
972 }
973 
974 /*******************************************************************************
975  * This function returns highest affinity level which is in OFF
976  * state. The affinity instance with which the level is associated is
977  * determined by the caller.
978  ******************************************************************************/
psci_get_max_phys_off_afflvl(void)979 unsigned int psci_get_max_phys_off_afflvl(void)
980 {
981 	psci_power_state_t state_info;
982 
983 	zeromem(&state_info, sizeof(state_info));
984 	psci_get_target_local_pwr_states(PLAT_MAX_PWR_LVL, &state_info);
985 
986 	return psci_find_target_suspend_lvl(&state_info);
987 }
988 
989 /*******************************************************************************
990  * PSCI Compatibility helper function to return target affinity level requested
991  * for the CPU_SUSPEND. This function assumes affinity levels correspond to
992  * power domain levels on the platform.
993  ******************************************************************************/
psci_get_suspend_afflvl(void)994 int psci_get_suspend_afflvl(void)
995 {
996 	return psci_get_suspend_pwrlvl();
997 }
998 
999 #endif
1000 
1001 /*******************************************************************************
1002  * Initiate power down sequence, by calling power down operations registered for
1003  * this CPU.
1004  ******************************************************************************/
psci_do_pwrdown_sequence(unsigned int power_level)1005 void psci_do_pwrdown_sequence(unsigned int power_level)
1006 {
1007 #if HW_ASSISTED_COHERENCY
1008 	/*
1009 	 * With hardware-assisted coherency, the CPU drivers only initiate the
1010 	 * power down sequence, without performing cache-maintenance operations
1011 	 * in software. Data caches and MMU remain enabled both before and after
1012 	 * this call.
1013 	 */
1014 	prepare_cpu_pwr_dwn(power_level);
1015 #else
1016 	/*
1017 	 * Without hardware-assisted coherency, the CPU drivers disable data
1018 	 * caches and MMU, then perform cache-maintenance operations in
1019 	 * software.
1020 	 *
1021 	 * We ought to call prepare_cpu_pwr_dwn() to initiate power down
1022 	 * sequence. We currently have data caches and MMU enabled, but the
1023 	 * function will return with data caches and MMU disabled. We must
1024 	 * ensure that the stack memory is flushed out to memory before we start
1025 	 * popping from it again.
1026 	 */
1027 	psci_do_pwrdown_cache_maintenance(power_level);
1028 #endif
1029 }
1030