1 /*
2 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <debug.h>
14 #include <platform.h>
15 #include <string.h>
16 #include <utils.h>
17 #include "psci_private.h"
18
19 /*
20 * SPD power management operations, expected to be supplied by the registered
21 * SPD on successful SP initialization
22 */
23 const spd_pm_ops_t *psci_spd_pm;
24
25 /*
26 * PSCI requested local power state map. This array is used to store the local
27 * power states requested by a CPU for power levels from level 1 to
28 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
29 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
30 * CPU are the same.
31 *
32 * During state coordination, the platform is passed an array containing the
33 * local states requested for a particular non cpu power domain by each cpu
34 * within the domain.
35 *
36 * TODO: Dense packing of the requested states will cause cache thrashing
37 * when multiple power domains write to it. If we allocate the requested
38 * states at each power level in a cache-line aligned per-domain memory,
39 * the cache thrashing can be avoided.
40 */
41 static plat_local_state_t
42 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
43
44
45 /*******************************************************************************
46 * Arrays that hold the platform's power domain tree information for state
47 * management of power domains.
48 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
49 * which is an ancestor of a CPU power domain.
50 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
51 ******************************************************************************/
52 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
53 #if USE_COHERENT_MEM
54 __section("tzfw_coherent_mem")
55 #endif
56 ;
57
58 /* Lock for PSCI state coordination */
59 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
60
61 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
62
63 /*******************************************************************************
64 * Pointer to functions exported by the platform to complete power mgmt. ops
65 ******************************************************************************/
66 const plat_psci_ops_t *psci_plat_pm_ops;
67
68 /******************************************************************************
69 * Check that the maximum power level supported by the platform makes sense
70 *****************************************************************************/
71 CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
72 PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
73 assert_platform_max_pwrlvl_check);
74
75 /*
76 * The plat_local_state used by the platform is one of these types: RUN,
77 * RETENTION and OFF. The platform can define further sub-states for each type
78 * apart from RUN. This categorization is done to verify the sanity of the
79 * psci_power_state passed by the platform and to print debug information. The
80 * categorization is done on the basis of the following conditions:
81 *
82 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
83 *
84 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
85 * STATE_TYPE_RETN.
86 *
87 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
88 * STATE_TYPE_OFF.
89 */
90 typedef enum plat_local_state_type {
91 STATE_TYPE_RUN = 0,
92 STATE_TYPE_RETN,
93 STATE_TYPE_OFF
94 } plat_local_state_type_t;
95
96 /* The macro used to categorize plat_local_state. */
97 #define find_local_state_type(plat_local_state) \
98 ((plat_local_state) ? ((plat_local_state > PLAT_MAX_RET_STATE) \
99 ? STATE_TYPE_OFF : STATE_TYPE_RETN) \
100 : STATE_TYPE_RUN)
101
102 /******************************************************************************
103 * Check that the maximum retention level supported by the platform is less
104 * than the maximum off level.
105 *****************************************************************************/
106 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \
107 assert_platform_max_off_and_retn_state_check);
108
109 /******************************************************************************
110 * This function ensures that the power state parameter in a CPU_SUSPEND request
111 * is valid. If so, it returns the requested states for each power level.
112 *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)113 int psci_validate_power_state(unsigned int power_state,
114 psci_power_state_t *state_info)
115 {
116 /* Check SBZ bits in power state are zero */
117 if (psci_check_power_state(power_state))
118 return PSCI_E_INVALID_PARAMS;
119
120 assert(psci_plat_pm_ops->validate_power_state);
121
122 /* Validate the power_state using platform pm_ops */
123 return psci_plat_pm_ops->validate_power_state(power_state, state_info);
124 }
125
126 /******************************************************************************
127 * This function retrieves the `psci_power_state_t` for system suspend from
128 * the platform.
129 *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)130 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
131 {
132 /*
133 * Assert that the required pm_ops hook is implemented to ensure that
134 * the capability detected during psci_setup() is valid.
135 */
136 assert(psci_plat_pm_ops->get_sys_suspend_power_state);
137
138 /*
139 * Query the platform for the power_state required for system suspend
140 */
141 psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
142 }
143
144 /*******************************************************************************
145 * This function verifies that the all the other cores in the system have been
146 * turned OFF and the current CPU is the last running CPU in the system.
147 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
148 * otherwise.
149 ******************************************************************************/
psci_is_last_on_cpu(void)150 unsigned int psci_is_last_on_cpu(void)
151 {
152 unsigned int cpu_idx, my_idx = plat_my_core_pos();
153
154 for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
155 if (cpu_idx == my_idx) {
156 assert(psci_get_aff_info_state() == AFF_STATE_ON);
157 continue;
158 }
159
160 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
161 return 0;
162 }
163
164 return 1;
165 }
166
167 /*******************************************************************************
168 * Routine to return the maximum power level to traverse to after a cpu has
169 * been physically powered up. It is expected to be called immediately after
170 * reset from assembler code.
171 ******************************************************************************/
get_power_on_target_pwrlvl(void)172 static unsigned int get_power_on_target_pwrlvl(void)
173 {
174 unsigned int pwrlvl;
175
176 /*
177 * Assume that this cpu was suspended and retrieve its target power
178 * level. If it is invalid then it could only have been turned off
179 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
180 * cpu can be turned off to.
181 */
182 pwrlvl = psci_get_suspend_pwrlvl();
183 if (pwrlvl == PSCI_INVALID_PWR_LVL)
184 pwrlvl = PLAT_MAX_PWR_LVL;
185 return pwrlvl;
186 }
187
188 /******************************************************************************
189 * Helper function to update the requested local power state array. This array
190 * does not store the requested state for the CPU power level. Hence an
191 * assertion is added to prevent us from accessing the wrong index.
192 *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)193 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
194 unsigned int cpu_idx,
195 plat_local_state_t req_pwr_state)
196 {
197 /*
198 * This should never happen, we have this here to avoid
199 * "array subscript is above array bounds" errors in GCC.
200 */
201 assert(pwrlvl > PSCI_CPU_PWR_LVL);
202 #pragma GCC diagnostic push
203 #pragma GCC diagnostic ignored "-Warray-bounds"
204 psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state;
205 #pragma GCC diagnostic pop
206 }
207
208 /******************************************************************************
209 * This function initializes the psci_req_local_pwr_states.
210 *****************************************************************************/
psci_init_req_local_pwr_states(void)211 void psci_init_req_local_pwr_states(void)
212 {
213 /* Initialize the requested state of all non CPU power domains as OFF */
214 memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE,
215 sizeof(psci_req_local_pwr_states));
216 }
217
218 /******************************************************************************
219 * Helper function to return a reference to an array containing the local power
220 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
221 * array will be the number of cpu power domains of which this power domain is
222 * an ancestor. These requested states will be used to determine a suitable
223 * target state for this power domain during psci state coordination. An
224 * assertion is added to prevent us from accessing the CPU power level.
225 *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)226 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
227 unsigned int cpu_idx)
228 {
229 assert(pwrlvl > PSCI_CPU_PWR_LVL);
230
231 return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
232 }
233
234 /*
235 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
236 * memory.
237 *
238 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
239 * it's accessed by both cached and non-cached participants. To serve the common
240 * minimum, perform a cache flush before read and after write so that non-cached
241 * participants operate on latest data in main memory.
242 *
243 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
244 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
245 * In both cases, no cache operations are required.
246 */
247
248 /*
249 * Retrieve local state of non-CPU power domain node from a non-cached CPU,
250 * after any required cache maintenance operation.
251 */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)252 static plat_local_state_t get_non_cpu_pd_node_local_state(
253 unsigned int parent_idx)
254 {
255 #if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
256 flush_dcache_range(
257 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
258 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
259 #endif
260 return psci_non_cpu_pd_nodes[parent_idx].local_state;
261 }
262
263 /*
264 * Update local state of non-CPU power domain node from a cached CPU; perform
265 * any required cache maintenance operation afterwards.
266 */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)267 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
268 plat_local_state_t state)
269 {
270 psci_non_cpu_pd_nodes[parent_idx].local_state = state;
271 #if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
272 flush_dcache_range(
273 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
274 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
275 #endif
276 }
277
278 /******************************************************************************
279 * Helper function to return the current local power state of each power domain
280 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
281 * function will be called after a cpu is powered on to find the local state
282 * each power domain has emerged from.
283 *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)284 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
285 psci_power_state_t *target_state)
286 {
287 unsigned int parent_idx, lvl;
288 plat_local_state_t *pd_state = target_state->pwr_domain_state;
289
290 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
291 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
292
293 /* Copy the local power state from node to state_info */
294 for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
295 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
296 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
297 }
298
299 /* Set the the higher levels to RUN */
300 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
301 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
302 }
303
304 /******************************************************************************
305 * Helper function to set the target local power state that each power domain
306 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
307 * enter. This function will be called after coordination of requested power
308 * states has been done for each power level.
309 *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)310 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
311 const psci_power_state_t *target_state)
312 {
313 unsigned int parent_idx, lvl;
314 const plat_local_state_t *pd_state = target_state->pwr_domain_state;
315
316 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
317
318 /*
319 * Need to flush as local_state might be accessed with Data Cache
320 * disabled during power on
321 */
322 psci_flush_cpu_data(psci_svc_cpu_data.local_state);
323
324 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
325
326 /* Copy the local_state from state_info */
327 for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
328 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
329 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
330 }
331 }
332
333
334 /*******************************************************************************
335 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
336 ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int node_index[])337 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
338 unsigned int end_lvl,
339 unsigned int node_index[])
340 {
341 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
342 unsigned int i;
343
344 for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
345 *node_index++ = parent_node;
346 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
347 }
348 }
349
350 /******************************************************************************
351 * This function is invoked post CPU power up and initialization. It sets the
352 * affinity info state, target power state and requested power state for the
353 * current CPU and all its ancestor power domains to RUN.
354 *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)355 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
356 {
357 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
358 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
359
360 /* Reset the local_state to RUN for the non cpu power domains. */
361 for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
362 set_non_cpu_pd_node_local_state(parent_idx,
363 PSCI_LOCAL_STATE_RUN);
364 psci_set_req_local_pwr_state(lvl,
365 cpu_idx,
366 PSCI_LOCAL_STATE_RUN);
367 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
368 }
369
370 /* Set the affinity info state to ON */
371 psci_set_aff_info_state(AFF_STATE_ON);
372
373 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
374 psci_flush_cpu_data(psci_svc_cpu_data);
375 }
376
377 /******************************************************************************
378 * This function is passed the local power states requested for each power
379 * domain (state_info) between the current CPU domain and its ancestors until
380 * the target power level (end_pwrlvl). It updates the array of requested power
381 * states with this information.
382 *
383 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
384 * retrieves the states requested by all the cpus of which the power domain at
385 * that level is an ancestor. It passes this information to the platform to
386 * coordinate and return the target power state. If the target state for a level
387 * is RUN then subsequent levels are not considered. At the CPU level, state
388 * coordination is not required. Hence, the requested and the target states are
389 * the same.
390 *
391 * The 'state_info' is updated with the target state for each level between the
392 * CPU and the 'end_pwrlvl' and returned to the caller.
393 *
394 * This function will only be invoked with data cache enabled and while
395 * powering down a core.
396 *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)397 void psci_do_state_coordination(unsigned int end_pwrlvl,
398 psci_power_state_t *state_info)
399 {
400 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
401 unsigned int start_idx, ncpus;
402 plat_local_state_t target_state, *req_states;
403
404 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
405 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
406
407 /* For level 0, the requested state will be equivalent
408 to target state */
409 for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
410
411 /* First update the requested power state */
412 psci_set_req_local_pwr_state(lvl, cpu_idx,
413 state_info->pwr_domain_state[lvl]);
414
415 /* Get the requested power states for this power level */
416 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
417 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
418
419 /*
420 * Let the platform coordinate amongst the requested states at
421 * this power level and return the target local power state.
422 */
423 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
424 target_state = plat_get_target_pwr_state(lvl,
425 req_states,
426 ncpus);
427
428 state_info->pwr_domain_state[lvl] = target_state;
429
430 /* Break early if the negotiated target power state is RUN */
431 if (is_local_state_run(state_info->pwr_domain_state[lvl]))
432 break;
433
434 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
435 }
436
437 /*
438 * This is for cases when we break out of the above loop early because
439 * the target power state is RUN at a power level < end_pwlvl.
440 * We update the requested power state from state_info and then
441 * set the target state as RUN.
442 */
443 for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) {
444 psci_set_req_local_pwr_state(lvl, cpu_idx,
445 state_info->pwr_domain_state[lvl]);
446 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
447
448 }
449
450 /* Update the target state in the power domain nodes */
451 psci_set_target_local_pwr_states(end_pwrlvl, state_info);
452 }
453
454 /******************************************************************************
455 * This function validates a suspend request by making sure that if a standby
456 * state is requested then no power level is turned off and the highest power
457 * level is placed in a standby/retention state.
458 *
459 * It also ensures that the state level X will enter is not shallower than the
460 * state level X + 1 will enter.
461 *
462 * This validation will be enabled only for DEBUG builds as the platform is
463 * expected to perform these validations as well.
464 *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)465 int psci_validate_suspend_req(const psci_power_state_t *state_info,
466 unsigned int is_power_down_state)
467 {
468 unsigned int max_off_lvl, target_lvl, max_retn_lvl;
469 plat_local_state_t state;
470 plat_local_state_type_t req_state_type, deepest_state_type;
471 int i;
472
473 /* Find the target suspend power level */
474 target_lvl = psci_find_target_suspend_lvl(state_info);
475 if (target_lvl == PSCI_INVALID_PWR_LVL)
476 return PSCI_E_INVALID_PARAMS;
477
478 /* All power domain levels are in a RUN state to begin with */
479 deepest_state_type = STATE_TYPE_RUN;
480
481 for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) {
482 state = state_info->pwr_domain_state[i];
483 req_state_type = find_local_state_type(state);
484
485 /*
486 * While traversing from the highest power level to the lowest,
487 * the state requested for lower levels has to be the same or
488 * deeper i.e. equal to or greater than the state at the higher
489 * levels. If this condition is true, then the requested state
490 * becomes the deepest state encountered so far.
491 */
492 if (req_state_type < deepest_state_type)
493 return PSCI_E_INVALID_PARAMS;
494 deepest_state_type = req_state_type;
495 }
496
497 /* Find the highest off power level */
498 max_off_lvl = psci_find_max_off_lvl(state_info);
499
500 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
501 max_retn_lvl = PSCI_INVALID_PWR_LVL;
502 if (target_lvl != max_off_lvl)
503 max_retn_lvl = target_lvl;
504
505 /*
506 * If this is not a request for a power down state then max off level
507 * has to be invalid and max retention level has to be a valid power
508 * level.
509 */
510 if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_PWR_LVL ||
511 max_retn_lvl == PSCI_INVALID_PWR_LVL))
512 return PSCI_E_INVALID_PARAMS;
513
514 return PSCI_E_SUCCESS;
515 }
516
517 /******************************************************************************
518 * This function finds the highest power level which will be powered down
519 * amongst all the power levels specified in the 'state_info' structure
520 *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)521 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
522 {
523 int i;
524
525 for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
526 if (is_local_state_off(state_info->pwr_domain_state[i]))
527 return i;
528 }
529
530 return PSCI_INVALID_PWR_LVL;
531 }
532
533 /******************************************************************************
534 * This functions finds the level of the highest power domain which will be
535 * placed in a low power state during a suspend operation.
536 *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)537 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
538 {
539 int i;
540
541 for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
542 if (!is_local_state_run(state_info->pwr_domain_state[i]))
543 return i;
544 }
545
546 return PSCI_INVALID_PWR_LVL;
547 }
548
549 /*******************************************************************************
550 * This function is passed a cpu_index and the highest level in the topology
551 * tree that the operation should be applied to. It picks up locks in order of
552 * increasing power domain level in the range specified.
553 ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,unsigned int cpu_idx)554 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
555 unsigned int cpu_idx)
556 {
557 unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
558 unsigned int level;
559
560 /* No locking required for level 0. Hence start locking from level 1 */
561 for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
562 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
563 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
564 }
565 }
566
567 /*******************************************************************************
568 * This function is passed a cpu_index and the highest level in the topology
569 * tree that the operation should be applied to. It releases the locks in order
570 * of decreasing power domain level in the range specified.
571 ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,unsigned int cpu_idx)572 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
573 unsigned int cpu_idx)
574 {
575 unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
576 int level;
577
578 /* Get the parent nodes */
579 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
580
581 /* Unlock top down. No unlocking required for level 0. */
582 for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
583 parent_idx = parent_nodes[level - 1];
584 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
585 }
586 }
587
588 /*******************************************************************************
589 * Simple routine to determine whether a mpidr is valid or not.
590 ******************************************************************************/
psci_validate_mpidr(u_register_t mpidr)591 int psci_validate_mpidr(u_register_t mpidr)
592 {
593 if (plat_core_pos_by_mpidr(mpidr) < 0)
594 return PSCI_E_INVALID_PARAMS;
595
596 return PSCI_E_SUCCESS;
597 }
598
599 /*******************************************************************************
600 * This function determines the full entrypoint information for the requested
601 * PSCI entrypoint on power on/resume and returns it.
602 ******************************************************************************/
603 #ifdef AARCH32
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)604 static int psci_get_ns_ep_info(entry_point_info_t *ep,
605 uintptr_t entrypoint,
606 u_register_t context_id)
607 {
608 u_register_t ep_attr;
609 unsigned int aif, ee, mode;
610 u_register_t scr = read_scr();
611 u_register_t ns_sctlr, sctlr;
612
613 /* Switch to non secure state */
614 write_scr(scr | SCR_NS_BIT);
615 isb();
616 ns_sctlr = read_sctlr();
617
618 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
619
620 /* Return to original state */
621 write_scr(scr);
622 isb();
623 ee = 0;
624
625 ep_attr = NON_SECURE | EP_ST_DISABLE;
626 if (sctlr & SCTLR_EE_BIT) {
627 ep_attr |= EP_EE_BIG;
628 ee = 1;
629 }
630 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
631
632 ep->pc = entrypoint;
633 zeromem(&ep->args, sizeof(ep->args));
634 ep->args.arg0 = context_id;
635
636 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
637
638 /*
639 * TODO: Choose async. exception bits if HYP mode is not
640 * implemented according to the values of SCR.{AW, FW} bits
641 */
642 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
643
644 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
645
646 return PSCI_E_SUCCESS;
647 }
648
649 #else
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)650 static int psci_get_ns_ep_info(entry_point_info_t *ep,
651 uintptr_t entrypoint,
652 u_register_t context_id)
653 {
654 u_register_t ep_attr, sctlr;
655 unsigned int daif, ee, mode;
656 u_register_t ns_scr_el3 = read_scr_el3();
657 u_register_t ns_sctlr_el1 = read_sctlr_el1();
658
659 sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
660 ee = 0;
661
662 ep_attr = NON_SECURE | EP_ST_DISABLE;
663 if (sctlr & SCTLR_EE_BIT) {
664 ep_attr |= EP_EE_BIG;
665 ee = 1;
666 }
667 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
668
669 ep->pc = entrypoint;
670 zeromem(&ep->args, sizeof(ep->args));
671 ep->args.arg0 = context_id;
672
673 /*
674 * Figure out whether the cpu enters the non-secure address space
675 * in aarch32 or aarch64
676 */
677 if (ns_scr_el3 & SCR_RW_BIT) {
678
679 /*
680 * Check whether a Thumb entry point has been provided for an
681 * aarch64 EL
682 */
683 if (entrypoint & 0x1)
684 return PSCI_E_INVALID_ADDRESS;
685
686 mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
687
688 ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
689 } else {
690
691 mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
692
693 /*
694 * TODO: Choose async. exception bits if HYP mode is not
695 * implemented according to the values of SCR.{AW, FW} bits
696 */
697 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
698
699 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
700 }
701
702 return PSCI_E_SUCCESS;
703 }
704 #endif
705
706 /*******************************************************************************
707 * This function validates the entrypoint with the platform layer if the
708 * appropriate pm_ops hook is exported by the platform and returns the
709 * 'entry_point_info'.
710 ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)711 int psci_validate_entry_point(entry_point_info_t *ep,
712 uintptr_t entrypoint,
713 u_register_t context_id)
714 {
715 int rc;
716
717 /* Validate the entrypoint using platform psci_ops */
718 if (psci_plat_pm_ops->validate_ns_entrypoint) {
719 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
720 if (rc != PSCI_E_SUCCESS)
721 return PSCI_E_INVALID_ADDRESS;
722 }
723
724 /*
725 * Verify and derive the re-entry information for
726 * the non-secure world from the non-secure state from
727 * where this call originated.
728 */
729 rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
730 return rc;
731 }
732
733 /*******************************************************************************
734 * Generic handler which is called when a cpu is physically powered on. It
735 * traverses the node information and finds the highest power level powered
736 * off and performs generic, architectural, platform setup and state management
737 * to power on that power level and power levels below it.
738 * e.g. For a cpu that's been powered on, it will call the platform specific
739 * code to enable the gic cpu interface and for a cluster it will enable
740 * coherency at the interconnect level in addition to gic cpu interface.
741 ******************************************************************************/
psci_warmboot_entrypoint(void)742 void psci_warmboot_entrypoint(void)
743 {
744 unsigned int end_pwrlvl, cpu_idx = plat_my_core_pos();
745 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
746
747 /*
748 * Verify that we have been explicitly turned ON or resumed from
749 * suspend.
750 */
751 if (psci_get_aff_info_state() == AFF_STATE_OFF) {
752 ERROR("Unexpected affinity info state");
753 panic();
754 }
755
756 /*
757 * Get the maximum power domain level to traverse to after this cpu
758 * has been physically powered up.
759 */
760 end_pwrlvl = get_power_on_target_pwrlvl();
761
762 /*
763 * This function acquires the lock corresponding to each power level so
764 * that by the time all locks are taken, the system topology is snapshot
765 * and state management can be done safely.
766 */
767 psci_acquire_pwr_domain_locks(end_pwrlvl,
768 cpu_idx);
769
770 #if ENABLE_PSCI_STAT
771 plat_psci_stat_accounting_stop(&state_info);
772 #endif
773
774 psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
775
776 /*
777 * This CPU could be resuming from suspend or it could have just been
778 * turned on. To distinguish between these 2 cases, we examine the
779 * affinity state of the CPU:
780 * - If the affinity state is ON_PENDING then it has just been
781 * turned on.
782 * - Else it is resuming from suspend.
783 *
784 * Depending on the type of warm reset identified, choose the right set
785 * of power management handler and perform the generic, architecture
786 * and platform specific handling.
787 */
788 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
789 psci_cpu_on_finish(cpu_idx, &state_info);
790 else
791 psci_cpu_suspend_finish(cpu_idx, &state_info);
792
793 /*
794 * Set the requested and target state of this CPU and all the higher
795 * power domains which are ancestors of this CPU to run.
796 */
797 psci_set_pwr_domains_to_run(end_pwrlvl);
798
799 #if ENABLE_PSCI_STAT
800 /*
801 * Update PSCI stats.
802 * Caches are off when writing stats data on the power down path.
803 * Since caches are now enabled, it's necessary to do cache
804 * maintenance before reading that same data.
805 */
806 psci_stats_update_pwr_up(end_pwrlvl, &state_info);
807 #endif
808
809 /*
810 * This loop releases the lock corresponding to each power level
811 * in the reverse order to which they were acquired.
812 */
813 psci_release_pwr_domain_locks(end_pwrlvl,
814 cpu_idx);
815 }
816
817 /*******************************************************************************
818 * This function initializes the set of hooks that PSCI invokes as part of power
819 * management operation. The power management hooks are expected to be provided
820 * by the SPD, after it finishes all its initialization
821 ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)822 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
823 {
824 assert(pm);
825 psci_spd_pm = pm;
826
827 if (pm->svc_migrate)
828 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
829
830 if (pm->svc_migrate_info)
831 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
832 | define_psci_cap(PSCI_MIG_INFO_TYPE);
833 }
834
835 /*******************************************************************************
836 * This function invokes the migrate info hook in the spd_pm_ops. It performs
837 * the necessary return value validation. If the Secure Payload is UP and
838 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
839 * is resident through the mpidr parameter. Else the value of the parameter on
840 * return is undefined.
841 ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)842 int psci_spd_migrate_info(u_register_t *mpidr)
843 {
844 int rc;
845
846 if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
847 return PSCI_E_NOT_SUPPORTED;
848
849 rc = psci_spd_pm->svc_migrate_info(mpidr);
850
851 assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
852 || rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
853
854 return rc;
855 }
856
857
858 /*******************************************************************************
859 * This function prints the state of all power domains present in the
860 * system
861 ******************************************************************************/
psci_print_power_domain_map(void)862 void psci_print_power_domain_map(void)
863 {
864 #if LOG_LEVEL >= LOG_LEVEL_INFO
865 unsigned int idx;
866 plat_local_state_t state;
867 plat_local_state_type_t state_type;
868
869 /* This array maps to the PSCI_STATE_X definitions in psci.h */
870 static const char * const psci_state_type_str[] = {
871 "ON",
872 "RETENTION",
873 "OFF",
874 };
875
876 INFO("PSCI Power Domain Map:\n");
877 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
878 idx++) {
879 state_type = find_local_state_type(
880 psci_non_cpu_pd_nodes[idx].local_state);
881 INFO(" Domain Node : Level %u, parent_node %d,"
882 " State %s (0x%x)\n",
883 psci_non_cpu_pd_nodes[idx].level,
884 psci_non_cpu_pd_nodes[idx].parent_node,
885 psci_state_type_str[state_type],
886 psci_non_cpu_pd_nodes[idx].local_state);
887 }
888
889 for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
890 state = psci_get_cpu_local_state_by_idx(idx);
891 state_type = find_local_state_type(state);
892 INFO(" CPU Node : MPID 0x%llx, parent_node %d,"
893 " State %s (0x%x)\n",
894 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
895 psci_cpu_pd_nodes[idx].parent_node,
896 psci_state_type_str[state_type],
897 psci_get_cpu_local_state_by_idx(idx));
898 }
899 #endif
900 }
901
902 /******************************************************************************
903 * Return whether any secondaries were powered up with CPU_ON call. A CPU that
904 * have ever been powered up would have set its MPDIR value to something other
905 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
906 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
907 * meaningful only when called on the primary CPU during early boot.
908 *****************************************************************************/
psci_secondaries_brought_up(void)909 int psci_secondaries_brought_up(void)
910 {
911 unsigned int idx, n_valid = 0;
912
913 for (idx = 0; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
914 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
915 n_valid++;
916 }
917
918 assert(n_valid);
919
920 return (n_valid > 1);
921 }
922
923 #if ENABLE_PLAT_COMPAT
924 /*******************************************************************************
925 * PSCI Compatibility helper function to return the 'power_state' parameter of
926 * the PSCI CPU SUSPEND request for the current CPU. Returns PSCI_INVALID_DATA
927 * if not invoked within CPU_SUSPEND for the current CPU.
928 ******************************************************************************/
psci_get_suspend_powerstate(void)929 int psci_get_suspend_powerstate(void)
930 {
931 /* Sanity check to verify that CPU is within CPU_SUSPEND */
932 if (psci_get_aff_info_state() == AFF_STATE_ON &&
933 !is_local_state_run(psci_get_cpu_local_state()))
934 return psci_power_state_compat[plat_my_core_pos()];
935
936 return PSCI_INVALID_DATA;
937 }
938
939 /*******************************************************************************
940 * PSCI Compatibility helper function to return the state id of the current
941 * cpu encoded in the 'power_state' parameter. Returns PSCI_INVALID_DATA
942 * if not invoked within CPU_SUSPEND for the current CPU.
943 ******************************************************************************/
psci_get_suspend_stateid(void)944 int psci_get_suspend_stateid(void)
945 {
946 unsigned int power_state;
947 power_state = psci_get_suspend_powerstate();
948 if (power_state != PSCI_INVALID_DATA)
949 return psci_get_pstate_id(power_state);
950
951 return PSCI_INVALID_DATA;
952 }
953
954 /*******************************************************************************
955 * PSCI Compatibility helper function to return the state id encoded in the
956 * 'power_state' parameter of the CPU specified by 'mpidr'. Returns
957 * PSCI_INVALID_DATA if the CPU is not in CPU_SUSPEND.
958 ******************************************************************************/
psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)959 int psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)
960 {
961 int cpu_idx = plat_core_pos_by_mpidr(mpidr);
962
963 if (cpu_idx == -1)
964 return PSCI_INVALID_DATA;
965
966 /* Sanity check to verify that the CPU is in CPU_SUSPEND */
967 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON &&
968 !is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx)))
969 return psci_get_pstate_id(psci_power_state_compat[cpu_idx]);
970
971 return PSCI_INVALID_DATA;
972 }
973
974 /*******************************************************************************
975 * This function returns highest affinity level which is in OFF
976 * state. The affinity instance with which the level is associated is
977 * determined by the caller.
978 ******************************************************************************/
psci_get_max_phys_off_afflvl(void)979 unsigned int psci_get_max_phys_off_afflvl(void)
980 {
981 psci_power_state_t state_info;
982
983 zeromem(&state_info, sizeof(state_info));
984 psci_get_target_local_pwr_states(PLAT_MAX_PWR_LVL, &state_info);
985
986 return psci_find_target_suspend_lvl(&state_info);
987 }
988
989 /*******************************************************************************
990 * PSCI Compatibility helper function to return target affinity level requested
991 * for the CPU_SUSPEND. This function assumes affinity levels correspond to
992 * power domain levels on the platform.
993 ******************************************************************************/
psci_get_suspend_afflvl(void)994 int psci_get_suspend_afflvl(void)
995 {
996 return psci_get_suspend_pwrlvl();
997 }
998
999 #endif
1000
1001 /*******************************************************************************
1002 * Initiate power down sequence, by calling power down operations registered for
1003 * this CPU.
1004 ******************************************************************************/
psci_do_pwrdown_sequence(unsigned int power_level)1005 void psci_do_pwrdown_sequence(unsigned int power_level)
1006 {
1007 #if HW_ASSISTED_COHERENCY
1008 /*
1009 * With hardware-assisted coherency, the CPU drivers only initiate the
1010 * power down sequence, without performing cache-maintenance operations
1011 * in software. Data caches and MMU remain enabled both before and after
1012 * this call.
1013 */
1014 prepare_cpu_pwr_dwn(power_level);
1015 #else
1016 /*
1017 * Without hardware-assisted coherency, the CPU drivers disable data
1018 * caches and MMU, then perform cache-maintenance operations in
1019 * software.
1020 *
1021 * We ought to call prepare_cpu_pwr_dwn() to initiate power down
1022 * sequence. We currently have data caches and MMU enabled, but the
1023 * function will return with data caches and MMU disabled. We must
1024 * ensure that the stack memory is flushed out to memory before we start
1025 * popping from it again.
1026 */
1027 psci_do_pwrdown_cache_maintenance(power_level);
1028 #endif
1029 }
1030