• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- RDFGraph.cpp -------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Target-independent, SSA-based data flow graph for register data flow (RDF).
11 //
12 #include "RDFGraph.h"
13 #include "RDFRegisters.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineDominanceFrontier.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineOperand.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/LaneBitmask.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <iterator>
40 #include <set>
41 #include <utility>
42 #include <vector>
43 
44 using namespace llvm;
45 using namespace rdf;
46 
47 // Printing functions. Have them here first, so that the rest of the code
48 // can use them.
49 namespace llvm {
50 namespace rdf {
51 
operator <<(raw_ostream & OS,const PrintLaneMaskOpt & P)52 raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
53   if (!P.Mask.all())
54     OS << ':' << PrintLaneMask(P.Mask);
55   return OS;
56 }
57 
58 template<>
operator <<(raw_ostream & OS,const Print<RegisterRef> & P)59 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
60   auto &TRI = P.G.getTRI();
61   if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
62     OS << TRI.getName(P.Obj.Reg);
63   else
64     OS << '#' << P.Obj.Reg;
65   OS << PrintLaneMaskOpt(P.Obj.Mask);
66   return OS;
67 }
68 
69 template<>
operator <<(raw_ostream & OS,const Print<NodeId> & P)70 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
71   auto NA = P.G.addr<NodeBase*>(P.Obj);
72   uint16_t Attrs = NA.Addr->getAttrs();
73   uint16_t Kind = NodeAttrs::kind(Attrs);
74   uint16_t Flags = NodeAttrs::flags(Attrs);
75   switch (NodeAttrs::type(Attrs)) {
76     case NodeAttrs::Code:
77       switch (Kind) {
78         case NodeAttrs::Func:   OS << 'f'; break;
79         case NodeAttrs::Block:  OS << 'b'; break;
80         case NodeAttrs::Stmt:   OS << 's'; break;
81         case NodeAttrs::Phi:    OS << 'p'; break;
82         default:                OS << "c?"; break;
83       }
84       break;
85     case NodeAttrs::Ref:
86       if (Flags & NodeAttrs::Undef)
87         OS << '/';
88       if (Flags & NodeAttrs::Dead)
89         OS << '\\';
90       if (Flags & NodeAttrs::Preserving)
91         OS << '+';
92       if (Flags & NodeAttrs::Clobbering)
93         OS << '~';
94       switch (Kind) {
95         case NodeAttrs::Use:    OS << 'u'; break;
96         case NodeAttrs::Def:    OS << 'd'; break;
97         case NodeAttrs::Block:  OS << 'b'; break;
98         default:                OS << "r?"; break;
99       }
100       break;
101     default:
102       OS << '?';
103       break;
104   }
105   OS << P.Obj;
106   if (Flags & NodeAttrs::Shadow)
107     OS << '"';
108   return OS;
109 }
110 
printRefHeader(raw_ostream & OS,const NodeAddr<RefNode * > RA,const DataFlowGraph & G)111 static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
112                 const DataFlowGraph &G) {
113   OS << Print<NodeId>(RA.Id, G) << '<'
114      << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
115   if (RA.Addr->getFlags() & NodeAttrs::Fixed)
116     OS << '!';
117 }
118 
119 template<>
operator <<(raw_ostream & OS,const Print<NodeAddr<DefNode * >> & P)120 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
121   printRefHeader(OS, P.Obj, P.G);
122   OS << '(';
123   if (NodeId N = P.Obj.Addr->getReachingDef())
124     OS << Print<NodeId>(N, P.G);
125   OS << ',';
126   if (NodeId N = P.Obj.Addr->getReachedDef())
127     OS << Print<NodeId>(N, P.G);
128   OS << ',';
129   if (NodeId N = P.Obj.Addr->getReachedUse())
130     OS << Print<NodeId>(N, P.G);
131   OS << "):";
132   if (NodeId N = P.Obj.Addr->getSibling())
133     OS << Print<NodeId>(N, P.G);
134   return OS;
135 }
136 
137 template<>
operator <<(raw_ostream & OS,const Print<NodeAddr<UseNode * >> & P)138 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
139   printRefHeader(OS, P.Obj, P.G);
140   OS << '(';
141   if (NodeId N = P.Obj.Addr->getReachingDef())
142     OS << Print<NodeId>(N, P.G);
143   OS << "):";
144   if (NodeId N = P.Obj.Addr->getSibling())
145     OS << Print<NodeId>(N, P.G);
146   return OS;
147 }
148 
149 template<>
operator <<(raw_ostream & OS,const Print<NodeAddr<PhiUseNode * >> & P)150 raw_ostream &operator<< (raw_ostream &OS,
151       const Print<NodeAddr<PhiUseNode*>> &P) {
152   printRefHeader(OS, P.Obj, P.G);
153   OS << '(';
154   if (NodeId N = P.Obj.Addr->getReachingDef())
155     OS << Print<NodeId>(N, P.G);
156   OS << ',';
157   if (NodeId N = P.Obj.Addr->getPredecessor())
158     OS << Print<NodeId>(N, P.G);
159   OS << "):";
160   if (NodeId N = P.Obj.Addr->getSibling())
161     OS << Print<NodeId>(N, P.G);
162   return OS;
163 }
164 
165 template<>
operator <<(raw_ostream & OS,const Print<NodeAddr<RefNode * >> & P)166 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
167   switch (P.Obj.Addr->getKind()) {
168     case NodeAttrs::Def:
169       OS << PrintNode<DefNode*>(P.Obj, P.G);
170       break;
171     case NodeAttrs::Use:
172       if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
173         OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
174       else
175         OS << PrintNode<UseNode*>(P.Obj, P.G);
176       break;
177   }
178   return OS;
179 }
180 
181 template<>
operator <<(raw_ostream & OS,const Print<NodeList> & P)182 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
183   unsigned N = P.Obj.size();
184   for (auto I : P.Obj) {
185     OS << Print<NodeId>(I.Id, P.G);
186     if (--N)
187       OS << ' ';
188   }
189   return OS;
190 }
191 
192 template<>
operator <<(raw_ostream & OS,const Print<NodeSet> & P)193 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
194   unsigned N = P.Obj.size();
195   for (auto I : P.Obj) {
196     OS << Print<NodeId>(I, P.G);
197     if (--N)
198       OS << ' ';
199   }
200   return OS;
201 }
202 
203 namespace {
204 
205   template <typename T>
206   struct PrintListV {
PrintListVllvm::rdf::__anon0ec12c300111::PrintListV207     PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
208 
209     using Type = T;
210     const NodeList &List;
211     const DataFlowGraph &G;
212   };
213 
214   template <typename T>
operator <<(raw_ostream & OS,const PrintListV<T> & P)215   raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
216     unsigned N = P.List.size();
217     for (NodeAddr<T> A : P.List) {
218       OS << PrintNode<T>(A, P.G);
219       if (--N)
220         OS << ", ";
221     }
222     return OS;
223   }
224 
225 } // end anonymous namespace
226 
227 template<>
operator <<(raw_ostream & OS,const Print<NodeAddr<PhiNode * >> & P)228 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
229   OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
230      << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
231   return OS;
232 }
233 
234 template<>
operator <<(raw_ostream & OS,const Print<NodeAddr<StmtNode * >> & P)235 raw_ostream &operator<< (raw_ostream &OS,
236       const Print<NodeAddr<StmtNode*>> &P) {
237   const MachineInstr &MI = *P.Obj.Addr->getCode();
238   unsigned Opc = MI.getOpcode();
239   OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
240   // Print the target for calls and branches (for readability).
241   if (MI.isCall() || MI.isBranch()) {
242     MachineInstr::const_mop_iterator T =
243           llvm::find_if(MI.operands(),
244                         [] (const MachineOperand &Op) -> bool {
245                           return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
246                         });
247     if (T != MI.operands_end()) {
248       OS << ' ';
249       if (T->isMBB())
250         OS << printMBBReference(*T->getMBB());
251       else if (T->isGlobal())
252         OS << T->getGlobal()->getName();
253       else if (T->isSymbol())
254         OS << T->getSymbolName();
255     }
256   }
257   OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
258   return OS;
259 }
260 
261 template<>
operator <<(raw_ostream & OS,const Print<NodeAddr<InstrNode * >> & P)262 raw_ostream &operator<< (raw_ostream &OS,
263       const Print<NodeAddr<InstrNode*>> &P) {
264   switch (P.Obj.Addr->getKind()) {
265     case NodeAttrs::Phi:
266       OS << PrintNode<PhiNode*>(P.Obj, P.G);
267       break;
268     case NodeAttrs::Stmt:
269       OS << PrintNode<StmtNode*>(P.Obj, P.G);
270       break;
271     default:
272       OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
273       break;
274   }
275   return OS;
276 }
277 
278 template<>
operator <<(raw_ostream & OS,const Print<NodeAddr<BlockNode * >> & P)279 raw_ostream &operator<< (raw_ostream &OS,
280       const Print<NodeAddr<BlockNode*>> &P) {
281   MachineBasicBlock *BB = P.Obj.Addr->getCode();
282   unsigned NP = BB->pred_size();
283   std::vector<int> Ns;
284   auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
285     unsigned N = Ns.size();
286     for (int I : Ns) {
287       OS << "%bb." << I;
288       if (--N)
289         OS << ", ";
290     }
291   };
292 
293   OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
294      << " --- preds(" << NP << "): ";
295   for (MachineBasicBlock *B : BB->predecessors())
296     Ns.push_back(B->getNumber());
297   PrintBBs(Ns);
298 
299   unsigned NS = BB->succ_size();
300   OS << "  succs(" << NS << "): ";
301   Ns.clear();
302   for (MachineBasicBlock *B : BB->successors())
303     Ns.push_back(B->getNumber());
304   PrintBBs(Ns);
305   OS << '\n';
306 
307   for (auto I : P.Obj.Addr->members(P.G))
308     OS << PrintNode<InstrNode*>(I, P.G) << '\n';
309   return OS;
310 }
311 
312 template<>
operator <<(raw_ostream & OS,const Print<NodeAddr<FuncNode * >> & P)313 raw_ostream &operator<< (raw_ostream &OS,
314       const Print<NodeAddr<FuncNode*>> &P) {
315   OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
316      << P.Obj.Addr->getCode()->getName() << '\n';
317   for (auto I : P.Obj.Addr->members(P.G))
318     OS << PrintNode<BlockNode*>(I, P.G) << '\n';
319   OS << "]\n";
320   return OS;
321 }
322 
323 template<>
operator <<(raw_ostream & OS,const Print<RegisterSet> & P)324 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
325   OS << '{';
326   for (auto I : P.Obj)
327     OS << ' ' << Print<RegisterRef>(I, P.G);
328   OS << " }";
329   return OS;
330 }
331 
332 template<>
operator <<(raw_ostream & OS,const Print<RegisterAggr> & P)333 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
334   P.Obj.print(OS);
335   return OS;
336 }
337 
338 template<>
operator <<(raw_ostream & OS,const Print<DataFlowGraph::DefStack> & P)339 raw_ostream &operator<< (raw_ostream &OS,
340       const Print<DataFlowGraph::DefStack> &P) {
341   for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
342     OS << Print<NodeId>(I->Id, P.G)
343        << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
344     I.down();
345     if (I != E)
346       OS << ' ';
347   }
348   return OS;
349 }
350 
351 } // end namespace rdf
352 } // end namespace llvm
353 
354 // Node allocation functions.
355 //
356 // Node allocator is like a slab memory allocator: it allocates blocks of
357 // memory in sizes that are multiples of the size of a node. Each block has
358 // the same size. Nodes are allocated from the currently active block, and
359 // when it becomes full, a new one is created.
360 // There is a mapping scheme between node id and its location in a block,
361 // and within that block is described in the header file.
362 //
startNewBlock()363 void NodeAllocator::startNewBlock() {
364   void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
365   char *P = static_cast<char*>(T);
366   Blocks.push_back(P);
367   // Check if the block index is still within the allowed range, i.e. less
368   // than 2^N, where N is the number of bits in NodeId for the block index.
369   // BitsPerIndex is the number of bits per node index.
370   assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
371          "Out of bits for block index");
372   ActiveEnd = P;
373 }
374 
needNewBlock()375 bool NodeAllocator::needNewBlock() {
376   if (Blocks.empty())
377     return true;
378 
379   char *ActiveBegin = Blocks.back();
380   uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
381   return Index >= NodesPerBlock;
382 }
383 
New()384 NodeAddr<NodeBase*> NodeAllocator::New() {
385   if (needNewBlock())
386     startNewBlock();
387 
388   uint32_t ActiveB = Blocks.size()-1;
389   uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
390   NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
391                              makeId(ActiveB, Index) };
392   ActiveEnd += NodeMemSize;
393   return NA;
394 }
395 
id(const NodeBase * P) const396 NodeId NodeAllocator::id(const NodeBase *P) const {
397   uintptr_t A = reinterpret_cast<uintptr_t>(P);
398   for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
399     uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
400     if (A < B || A >= B + NodesPerBlock*NodeMemSize)
401       continue;
402     uint32_t Idx = (A-B)/NodeMemSize;
403     return makeId(i, Idx);
404   }
405   llvm_unreachable("Invalid node address");
406 }
407 
clear()408 void NodeAllocator::clear() {
409   MemPool.Reset();
410   Blocks.clear();
411   ActiveEnd = nullptr;
412 }
413 
414 // Insert node NA after "this" in the circular chain.
append(NodeAddr<NodeBase * > NA)415 void NodeBase::append(NodeAddr<NodeBase*> NA) {
416   NodeId Nx = Next;
417   // If NA is already "next", do nothing.
418   if (Next != NA.Id) {
419     Next = NA.Id;
420     NA.Addr->Next = Nx;
421   }
422 }
423 
424 // Fundamental node manipulator functions.
425 
426 // Obtain the register reference from a reference node.
getRegRef(const DataFlowGraph & G) const427 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
428   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
429   if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
430     return G.unpack(Ref.PR);
431   assert(Ref.Op != nullptr);
432   return G.makeRegRef(*Ref.Op);
433 }
434 
435 // Set the register reference in the reference node directly (for references
436 // in phi nodes).
setRegRef(RegisterRef RR,DataFlowGraph & G)437 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
438   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
439   assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
440   Ref.PR = G.pack(RR);
441 }
442 
443 // Set the register reference in the reference node based on a machine
444 // operand (for references in statement nodes).
setRegRef(MachineOperand * Op,DataFlowGraph & G)445 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
446   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
447   assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
448   (void)G;
449   Ref.Op = Op;
450 }
451 
452 // Get the owner of a given reference node.
getOwner(const DataFlowGraph & G)453 NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
454   NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
455 
456   while (NA.Addr != this) {
457     if (NA.Addr->getType() == NodeAttrs::Code)
458       return NA;
459     NA = G.addr<NodeBase*>(NA.Addr->getNext());
460   }
461   llvm_unreachable("No owner in circular list");
462 }
463 
464 // Connect the def node to the reaching def node.
linkToDef(NodeId Self,NodeAddr<DefNode * > DA)465 void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
466   Ref.RD = DA.Id;
467   Ref.Sib = DA.Addr->getReachedDef();
468   DA.Addr->setReachedDef(Self);
469 }
470 
471 // Connect the use node to the reaching def node.
linkToDef(NodeId Self,NodeAddr<DefNode * > DA)472 void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
473   Ref.RD = DA.Id;
474   Ref.Sib = DA.Addr->getReachedUse();
475   DA.Addr->setReachedUse(Self);
476 }
477 
478 // Get the first member of the code node.
getFirstMember(const DataFlowGraph & G) const479 NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
480   if (Code.FirstM == 0)
481     return NodeAddr<NodeBase*>();
482   return G.addr<NodeBase*>(Code.FirstM);
483 }
484 
485 // Get the last member of the code node.
getLastMember(const DataFlowGraph & G) const486 NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
487   if (Code.LastM == 0)
488     return NodeAddr<NodeBase*>();
489   return G.addr<NodeBase*>(Code.LastM);
490 }
491 
492 // Add node NA at the end of the member list of the given code node.
addMember(NodeAddr<NodeBase * > NA,const DataFlowGraph & G)493 void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
494   NodeAddr<NodeBase*> ML = getLastMember(G);
495   if (ML.Id != 0) {
496     ML.Addr->append(NA);
497   } else {
498     Code.FirstM = NA.Id;
499     NodeId Self = G.id(this);
500     NA.Addr->setNext(Self);
501   }
502   Code.LastM = NA.Id;
503 }
504 
505 // Add node NA after member node MA in the given code node.
addMemberAfter(NodeAddr<NodeBase * > MA,NodeAddr<NodeBase * > NA,const DataFlowGraph & G)506 void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
507       const DataFlowGraph &G) {
508   MA.Addr->append(NA);
509   if (Code.LastM == MA.Id)
510     Code.LastM = NA.Id;
511 }
512 
513 // Remove member node NA from the given code node.
removeMember(NodeAddr<NodeBase * > NA,const DataFlowGraph & G)514 void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
515   NodeAddr<NodeBase*> MA = getFirstMember(G);
516   assert(MA.Id != 0);
517 
518   // Special handling if the member to remove is the first member.
519   if (MA.Id == NA.Id) {
520     if (Code.LastM == MA.Id) {
521       // If it is the only member, set both first and last to 0.
522       Code.FirstM = Code.LastM = 0;
523     } else {
524       // Otherwise, advance the first member.
525       Code.FirstM = MA.Addr->getNext();
526     }
527     return;
528   }
529 
530   while (MA.Addr != this) {
531     NodeId MX = MA.Addr->getNext();
532     if (MX == NA.Id) {
533       MA.Addr->setNext(NA.Addr->getNext());
534       // If the member to remove happens to be the last one, update the
535       // LastM indicator.
536       if (Code.LastM == NA.Id)
537         Code.LastM = MA.Id;
538       return;
539     }
540     MA = G.addr<NodeBase*>(MX);
541   }
542   llvm_unreachable("No such member");
543 }
544 
545 // Return the list of all members of the code node.
members(const DataFlowGraph & G) const546 NodeList CodeNode::members(const DataFlowGraph &G) const {
547   static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
548   return members_if(True, G);
549 }
550 
551 // Return the owner of the given instr node.
getOwner(const DataFlowGraph & G)552 NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
553   NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
554 
555   while (NA.Addr != this) {
556     assert(NA.Addr->getType() == NodeAttrs::Code);
557     if (NA.Addr->getKind() == NodeAttrs::Block)
558       return NA;
559     NA = G.addr<NodeBase*>(NA.Addr->getNext());
560   }
561   llvm_unreachable("No owner in circular list");
562 }
563 
564 // Add the phi node PA to the given block node.
addPhi(NodeAddr<PhiNode * > PA,const DataFlowGraph & G)565 void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
566   NodeAddr<NodeBase*> M = getFirstMember(G);
567   if (M.Id == 0) {
568     addMember(PA, G);
569     return;
570   }
571 
572   assert(M.Addr->getType() == NodeAttrs::Code);
573   if (M.Addr->getKind() == NodeAttrs::Stmt) {
574     // If the first member of the block is a statement, insert the phi as
575     // the first member.
576     Code.FirstM = PA.Id;
577     PA.Addr->setNext(M.Id);
578   } else {
579     // If the first member is a phi, find the last phi, and append PA to it.
580     assert(M.Addr->getKind() == NodeAttrs::Phi);
581     NodeAddr<NodeBase*> MN = M;
582     do {
583       M = MN;
584       MN = G.addr<NodeBase*>(M.Addr->getNext());
585       assert(MN.Addr->getType() == NodeAttrs::Code);
586     } while (MN.Addr->getKind() == NodeAttrs::Phi);
587 
588     // M is the last phi.
589     addMemberAfter(M, PA, G);
590   }
591 }
592 
593 // Find the block node corresponding to the machine basic block BB in the
594 // given func node.
findBlock(const MachineBasicBlock * BB,const DataFlowGraph & G) const595 NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
596       const DataFlowGraph &G) const {
597   auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
598     return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
599   };
600   NodeList Ms = members_if(EqBB, G);
601   if (!Ms.empty())
602     return Ms[0];
603   return NodeAddr<BlockNode*>();
604 }
605 
606 // Get the block node for the entry block in the given function.
getEntryBlock(const DataFlowGraph & G)607 NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
608   MachineBasicBlock *EntryB = &getCode()->front();
609   return findBlock(EntryB, G);
610 }
611 
612 // Target operand information.
613 //
614 
615 // For a given instruction, check if there are any bits of RR that can remain
616 // unchanged across this def.
isPreserving(const MachineInstr & In,unsigned OpNum) const617 bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
618       const {
619   return TII.isPredicated(In);
620 }
621 
622 // Check if the definition of RR produces an unspecified value.
isClobbering(const MachineInstr & In,unsigned OpNum) const623 bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
624       const {
625   const MachineOperand &Op = In.getOperand(OpNum);
626   if (Op.isRegMask())
627     return true;
628   assert(Op.isReg());
629   if (In.isCall())
630     if (Op.isDef() && Op.isDead())
631       return true;
632   return false;
633 }
634 
635 // Check if the given instruction specifically requires
isFixedReg(const MachineInstr & In,unsigned OpNum) const636 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
637       const {
638   if (In.isCall() || In.isReturn() || In.isInlineAsm())
639     return true;
640   // Check for a tail call.
641   if (In.isBranch())
642     for (const MachineOperand &O : In.operands())
643       if (O.isGlobal() || O.isSymbol())
644         return true;
645 
646   const MCInstrDesc &D = In.getDesc();
647   if (!D.getImplicitDefs() && !D.getImplicitUses())
648     return false;
649   const MachineOperand &Op = In.getOperand(OpNum);
650   // If there is a sub-register, treat the operand as non-fixed. Currently,
651   // fixed registers are those that are listed in the descriptor as implicit
652   // uses or defs, and those lists do not allow sub-registers.
653   if (Op.getSubReg() != 0)
654     return false;
655   RegisterId Reg = Op.getReg();
656   const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
657                                      : D.getImplicitUses();
658   if (!ImpR)
659     return false;
660   while (*ImpR)
661     if (*ImpR++ == Reg)
662       return true;
663   return false;
664 }
665 
666 //
667 // The data flow graph construction.
668 //
669 
DataFlowGraph(MachineFunction & mf,const TargetInstrInfo & tii,const TargetRegisterInfo & tri,const MachineDominatorTree & mdt,const MachineDominanceFrontier & mdf,const TargetOperandInfo & toi)670 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
671       const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
672       const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
673     : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
674       LiveIns(PRI) {
675 }
676 
677 // The implementation of the definition stack.
678 // Each register reference has its own definition stack. In particular,
679 // for a register references "Reg" and "Reg:subreg" will each have their
680 // own definition stacks.
681 
682 // Construct a stack iterator.
Iterator(const DataFlowGraph::DefStack & S,bool Top)683 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
684       bool Top) : DS(S) {
685   if (!Top) {
686     // Initialize to bottom.
687     Pos = 0;
688     return;
689   }
690   // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
691   Pos = DS.Stack.size();
692   while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
693     Pos--;
694 }
695 
696 // Return the size of the stack, including block delimiters.
size() const697 unsigned DataFlowGraph::DefStack::size() const {
698   unsigned S = 0;
699   for (auto I = top(), E = bottom(); I != E; I.down())
700     S++;
701   return S;
702 }
703 
704 // Remove the top entry from the stack. Remove all intervening delimiters
705 // so that after this, the stack is either empty, or the top of the stack
706 // is a non-delimiter.
pop()707 void DataFlowGraph::DefStack::pop() {
708   assert(!empty());
709   unsigned P = nextDown(Stack.size());
710   Stack.resize(P);
711 }
712 
713 // Push a delimiter for block node N on the stack.
start_block(NodeId N)714 void DataFlowGraph::DefStack::start_block(NodeId N) {
715   assert(N != 0);
716   Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
717 }
718 
719 // Remove all nodes from the top of the stack, until the delimited for
720 // block node N is encountered. Remove the delimiter as well. In effect,
721 // this will remove from the stack all definitions from block N.
clear_block(NodeId N)722 void DataFlowGraph::DefStack::clear_block(NodeId N) {
723   assert(N != 0);
724   unsigned P = Stack.size();
725   while (P > 0) {
726     bool Found = isDelimiter(Stack[P-1], N);
727     P--;
728     if (Found)
729       break;
730   }
731   // This will also remove the delimiter, if found.
732   Stack.resize(P);
733 }
734 
735 // Move the stack iterator up by one.
nextUp(unsigned P) const736 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
737   // Get the next valid position after P (skipping all delimiters).
738   // The input position P does not have to point to a non-delimiter.
739   unsigned SS = Stack.size();
740   bool IsDelim;
741   assert(P < SS);
742   do {
743     P++;
744     IsDelim = isDelimiter(Stack[P-1]);
745   } while (P < SS && IsDelim);
746   assert(!IsDelim);
747   return P;
748 }
749 
750 // Move the stack iterator down by one.
nextDown(unsigned P) const751 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
752   // Get the preceding valid position before P (skipping all delimiters).
753   // The input position P does not have to point to a non-delimiter.
754   assert(P > 0 && P <= Stack.size());
755   bool IsDelim = isDelimiter(Stack[P-1]);
756   do {
757     if (--P == 0)
758       break;
759     IsDelim = isDelimiter(Stack[P-1]);
760   } while (P > 0 && IsDelim);
761   assert(!IsDelim);
762   return P;
763 }
764 
765 // Register information.
766 
getLandingPadLiveIns() const767 RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
768   RegisterSet LR;
769   const Function &F = MF.getFunction();
770   const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
771                                             : nullptr;
772   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
773   if (RegisterId R = TLI.getExceptionPointerRegister(PF))
774     LR.insert(RegisterRef(R));
775   if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
776     LR.insert(RegisterRef(R));
777   return LR;
778 }
779 
780 // Node management functions.
781 
782 // Get the pointer to the node with the id N.
ptr(NodeId N) const783 NodeBase *DataFlowGraph::ptr(NodeId N) const {
784   if (N == 0)
785     return nullptr;
786   return Memory.ptr(N);
787 }
788 
789 // Get the id of the node at the address P.
id(const NodeBase * P) const790 NodeId DataFlowGraph::id(const NodeBase *P) const {
791   if (P == nullptr)
792     return 0;
793   return Memory.id(P);
794 }
795 
796 // Allocate a new node and set the attributes to Attrs.
newNode(uint16_t Attrs)797 NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
798   NodeAddr<NodeBase*> P = Memory.New();
799   P.Addr->init();
800   P.Addr->setAttrs(Attrs);
801   return P;
802 }
803 
804 // Make a copy of the given node B, except for the data-flow links, which
805 // are set to 0.
cloneNode(const NodeAddr<NodeBase * > B)806 NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
807   NodeAddr<NodeBase*> NA = newNode(0);
808   memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
809   // Ref nodes need to have the data-flow links reset.
810   if (NA.Addr->getType() == NodeAttrs::Ref) {
811     NodeAddr<RefNode*> RA = NA;
812     RA.Addr->setReachingDef(0);
813     RA.Addr->setSibling(0);
814     if (NA.Addr->getKind() == NodeAttrs::Def) {
815       NodeAddr<DefNode*> DA = NA;
816       DA.Addr->setReachedDef(0);
817       DA.Addr->setReachedUse(0);
818     }
819   }
820   return NA;
821 }
822 
823 // Allocation routines for specific node types/kinds.
824 
newUse(NodeAddr<InstrNode * > Owner,MachineOperand & Op,uint16_t Flags)825 NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
826       MachineOperand &Op, uint16_t Flags) {
827   NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
828   UA.Addr->setRegRef(&Op, *this);
829   return UA;
830 }
831 
newPhiUse(NodeAddr<PhiNode * > Owner,RegisterRef RR,NodeAddr<BlockNode * > PredB,uint16_t Flags)832 NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
833       RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
834   NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
835   assert(Flags & NodeAttrs::PhiRef);
836   PUA.Addr->setRegRef(RR, *this);
837   PUA.Addr->setPredecessor(PredB.Id);
838   return PUA;
839 }
840 
newDef(NodeAddr<InstrNode * > Owner,MachineOperand & Op,uint16_t Flags)841 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
842       MachineOperand &Op, uint16_t Flags) {
843   NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
844   DA.Addr->setRegRef(&Op, *this);
845   return DA;
846 }
847 
newDef(NodeAddr<InstrNode * > Owner,RegisterRef RR,uint16_t Flags)848 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
849       RegisterRef RR, uint16_t Flags) {
850   NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
851   assert(Flags & NodeAttrs::PhiRef);
852   DA.Addr->setRegRef(RR, *this);
853   return DA;
854 }
855 
newPhi(NodeAddr<BlockNode * > Owner)856 NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
857   NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
858   Owner.Addr->addPhi(PA, *this);
859   return PA;
860 }
861 
newStmt(NodeAddr<BlockNode * > Owner,MachineInstr * MI)862 NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
863       MachineInstr *MI) {
864   NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
865   SA.Addr->setCode(MI);
866   Owner.Addr->addMember(SA, *this);
867   return SA;
868 }
869 
newBlock(NodeAddr<FuncNode * > Owner,MachineBasicBlock * BB)870 NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
871       MachineBasicBlock *BB) {
872   NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
873   BA.Addr->setCode(BB);
874   Owner.Addr->addMember(BA, *this);
875   return BA;
876 }
877 
newFunc(MachineFunction * MF)878 NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
879   NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
880   FA.Addr->setCode(MF);
881   return FA;
882 }
883 
884 // Build the data flow graph.
build(unsigned Options)885 void DataFlowGraph::build(unsigned Options) {
886   reset();
887   Func = newFunc(&MF);
888 
889   if (MF.empty())
890     return;
891 
892   for (MachineBasicBlock &B : MF) {
893     NodeAddr<BlockNode*> BA = newBlock(Func, &B);
894     BlockNodes.insert(std::make_pair(&B, BA));
895     for (MachineInstr &I : B) {
896       if (I.isDebugInstr())
897         continue;
898       buildStmt(BA, I);
899     }
900   }
901 
902   NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
903   NodeList Blocks = Func.Addr->members(*this);
904 
905   // Collect information about block references.
906   RegisterSet AllRefs;
907   for (NodeAddr<BlockNode*> BA : Blocks)
908     for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
909       for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
910         AllRefs.insert(RA.Addr->getRegRef(*this));
911 
912   // Collect function live-ins and entry block live-ins.
913   MachineRegisterInfo &MRI = MF.getRegInfo();
914   MachineBasicBlock &EntryB = *EA.Addr->getCode();
915   assert(EntryB.pred_empty() && "Function entry block has predecessors");
916   for (std::pair<unsigned,unsigned> P : MRI.liveins())
917     LiveIns.insert(RegisterRef(P.first));
918   if (MRI.tracksLiveness()) {
919     for (auto I : EntryB.liveins())
920       LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
921   }
922 
923   // Add function-entry phi nodes for the live-in registers.
924   //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
925   for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
926     RegisterRef RR = *I;
927     NodeAddr<PhiNode*> PA = newPhi(EA);
928     uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
929     NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
930     PA.Addr->addMember(DA, *this);
931   }
932 
933   // Add phis for landing pads.
934   // Landing pads, unlike usual backs blocks, are not entered through
935   // branches in the program, or fall-throughs from other blocks. They
936   // are entered from the exception handling runtime and target's ABI
937   // may define certain registers as defined on entry to such a block.
938   RegisterSet EHRegs = getLandingPadLiveIns();
939   if (!EHRegs.empty()) {
940     for (NodeAddr<BlockNode*> BA : Blocks) {
941       const MachineBasicBlock &B = *BA.Addr->getCode();
942       if (!B.isEHPad())
943         continue;
944 
945       // Prepare a list of NodeIds of the block's predecessors.
946       NodeList Preds;
947       for (MachineBasicBlock *PB : B.predecessors())
948         Preds.push_back(findBlock(PB));
949 
950       // Build phi nodes for each live-in.
951       for (RegisterRef RR : EHRegs) {
952         NodeAddr<PhiNode*> PA = newPhi(BA);
953         uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
954         // Add def:
955         NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
956         PA.Addr->addMember(DA, *this);
957         // Add uses (no reaching defs for phi uses):
958         for (NodeAddr<BlockNode*> PBA : Preds) {
959           NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
960           PA.Addr->addMember(PUA, *this);
961         }
962       }
963     }
964   }
965 
966   // Build a map "PhiM" which will contain, for each block, the set
967   // of references that will require phi definitions in that block.
968   BlockRefsMap PhiM;
969   for (NodeAddr<BlockNode*> BA : Blocks)
970     recordDefsForDF(PhiM, BA);
971   for (NodeAddr<BlockNode*> BA : Blocks)
972     buildPhis(PhiM, AllRefs, BA);
973 
974   // Link all the refs. This will recursively traverse the dominator tree.
975   DefStackMap DM;
976   linkBlockRefs(DM, EA);
977 
978   // Finally, remove all unused phi nodes.
979   if (!(Options & BuildOptions::KeepDeadPhis))
980     removeUnusedPhis();
981 }
982 
makeRegRef(unsigned Reg,unsigned Sub) const983 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
984   assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
985          TargetRegisterInfo::isPhysicalRegister(Reg));
986   assert(Reg != 0);
987   if (Sub != 0)
988     Reg = TRI.getSubReg(Reg, Sub);
989   return RegisterRef(Reg);
990 }
991 
makeRegRef(const MachineOperand & Op) const992 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
993   assert(Op.isReg() || Op.isRegMask());
994   if (Op.isReg())
995     return makeRegRef(Op.getReg(), Op.getSubReg());
996   return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
997 }
998 
restrictRef(RegisterRef AR,RegisterRef BR) const999 RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
1000   if (AR.Reg == BR.Reg) {
1001     LaneBitmask M = AR.Mask & BR.Mask;
1002     return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
1003   }
1004 #ifndef NDEBUG
1005 //  RegisterRef NAR = PRI.normalize(AR);
1006 //  RegisterRef NBR = PRI.normalize(BR);
1007 //  assert(NAR.Reg != NBR.Reg);
1008 #endif
1009   // This isn't strictly correct, because the overlap may happen in the
1010   // part masked out.
1011   if (PRI.alias(AR, BR))
1012     return AR;
1013   return RegisterRef();
1014 }
1015 
1016 // For each stack in the map DefM, push the delimiter for block B on it.
markBlock(NodeId B,DefStackMap & DefM)1017 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
1018   // Push block delimiters.
1019   for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1020     I->second.start_block(B);
1021 }
1022 
1023 // Remove all definitions coming from block B from each stack in DefM.
releaseBlock(NodeId B,DefStackMap & DefM)1024 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
1025   // Pop all defs from this block from the definition stack. Defs that were
1026   // added to the map during the traversal of instructions will not have a
1027   // delimiter, but for those, the whole stack will be emptied.
1028   for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1029     I->second.clear_block(B);
1030 
1031   // Finally, remove empty stacks from the map.
1032   for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1033     NextI = std::next(I);
1034     // This preserves the validity of iterators other than I.
1035     if (I->second.empty())
1036       DefM.erase(I);
1037   }
1038 }
1039 
1040 // Push all definitions from the instruction node IA to an appropriate
1041 // stack in DefM.
pushAllDefs(NodeAddr<InstrNode * > IA,DefStackMap & DefM)1042 void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1043   pushClobbers(IA, DefM);
1044   pushDefs(IA, DefM);
1045 }
1046 
1047 // Push all definitions from the instruction node IA to an appropriate
1048 // stack in DefM.
pushClobbers(NodeAddr<InstrNode * > IA,DefStackMap & DefM)1049 void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1050   NodeSet Visited;
1051   std::set<RegisterId> Defined;
1052 
1053   // The important objectives of this function are:
1054   // - to be able to handle instructions both while the graph is being
1055   //   constructed, and after the graph has been constructed, and
1056   // - maintain proper ordering of definitions on the stack for each
1057   //   register reference:
1058   //   - if there are two or more related defs in IA (i.e. coming from
1059   //     the same machine operand), then only push one def on the stack,
1060   //   - if there are multiple unrelated defs of non-overlapping
1061   //     subregisters of S, then the stack for S will have both (in an
1062   //     unspecified order), but the order does not matter from the data-
1063   //     -flow perspective.
1064 
1065   for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1066     if (Visited.count(DA.Id))
1067       continue;
1068     if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1069       continue;
1070 
1071     NodeList Rel = getRelatedRefs(IA, DA);
1072     NodeAddr<DefNode*> PDA = Rel.front();
1073     RegisterRef RR = PDA.Addr->getRegRef(*this);
1074 
1075     // Push the definition on the stack for the register and all aliases.
1076     // The def stack traversal in linkNodeUp will check the exact aliasing.
1077     DefM[RR.Reg].push(DA);
1078     Defined.insert(RR.Reg);
1079     for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1080       // Check that we don't push the same def twice.
1081       assert(A != RR.Reg);
1082       if (!Defined.count(A))
1083         DefM[A].push(DA);
1084     }
1085     // Mark all the related defs as visited.
1086     for (NodeAddr<NodeBase*> T : Rel)
1087       Visited.insert(T.Id);
1088   }
1089 }
1090 
1091 // Push all definitions from the instruction node IA to an appropriate
1092 // stack in DefM.
pushDefs(NodeAddr<InstrNode * > IA,DefStackMap & DefM)1093 void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1094   NodeSet Visited;
1095 #ifndef NDEBUG
1096   std::set<RegisterId> Defined;
1097 #endif
1098 
1099   // The important objectives of this function are:
1100   // - to be able to handle instructions both while the graph is being
1101   //   constructed, and after the graph has been constructed, and
1102   // - maintain proper ordering of definitions on the stack for each
1103   //   register reference:
1104   //   - if there are two or more related defs in IA (i.e. coming from
1105   //     the same machine operand), then only push one def on the stack,
1106   //   - if there are multiple unrelated defs of non-overlapping
1107   //     subregisters of S, then the stack for S will have both (in an
1108   //     unspecified order), but the order does not matter from the data-
1109   //     -flow perspective.
1110 
1111   for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1112     if (Visited.count(DA.Id))
1113       continue;
1114     if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1115       continue;
1116 
1117     NodeList Rel = getRelatedRefs(IA, DA);
1118     NodeAddr<DefNode*> PDA = Rel.front();
1119     RegisterRef RR = PDA.Addr->getRegRef(*this);
1120 #ifndef NDEBUG
1121     // Assert if the register is defined in two or more unrelated defs.
1122     // This could happen if there are two or more def operands defining it.
1123     if (!Defined.insert(RR.Reg).second) {
1124       MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
1125       dbgs() << "Multiple definitions of register: "
1126              << Print<RegisterRef>(RR, *this) << " in\n  " << *MI << "in "
1127              << printMBBReference(*MI->getParent()) << '\n';
1128       llvm_unreachable(nullptr);
1129     }
1130 #endif
1131     // Push the definition on the stack for the register and all aliases.
1132     // The def stack traversal in linkNodeUp will check the exact aliasing.
1133     DefM[RR.Reg].push(DA);
1134     for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1135       // Check that we don't push the same def twice.
1136       assert(A != RR.Reg);
1137       DefM[A].push(DA);
1138     }
1139     // Mark all the related defs as visited.
1140     for (NodeAddr<NodeBase*> T : Rel)
1141       Visited.insert(T.Id);
1142   }
1143 }
1144 
1145 // Return the list of all reference nodes related to RA, including RA itself.
1146 // See "getNextRelated" for the meaning of a "related reference".
getRelatedRefs(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA) const1147 NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1148       NodeAddr<RefNode*> RA) const {
1149   assert(IA.Id != 0 && RA.Id != 0);
1150 
1151   NodeList Refs;
1152   NodeId Start = RA.Id;
1153   do {
1154     Refs.push_back(RA);
1155     RA = getNextRelated(IA, RA);
1156   } while (RA.Id != 0 && RA.Id != Start);
1157   return Refs;
1158 }
1159 
1160 // Clear all information in the graph.
reset()1161 void DataFlowGraph::reset() {
1162   Memory.clear();
1163   BlockNodes.clear();
1164   Func = NodeAddr<FuncNode*>();
1165 }
1166 
1167 // Return the next reference node in the instruction node IA that is related
1168 // to RA. Conceptually, two reference nodes are related if they refer to the
1169 // same instance of a register access, but differ in flags or other minor
1170 // characteristics. Specific examples of related nodes are shadow reference
1171 // nodes.
1172 // Return the equivalent of nullptr if there are no more related references.
getNextRelated(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA) const1173 NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1174       NodeAddr<RefNode*> RA) const {
1175   assert(IA.Id != 0 && RA.Id != 0);
1176 
1177   auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
1178     if (TA.Addr->getKind() != RA.Addr->getKind())
1179       return false;
1180     if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
1181       return false;
1182     return true;
1183   };
1184   auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1185     return Related(TA) &&
1186            &RA.Addr->getOp() == &TA.Addr->getOp();
1187   };
1188   auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1189     if (!Related(TA))
1190       return false;
1191     if (TA.Addr->getKind() != NodeAttrs::Use)
1192       return true;
1193     // For phi uses, compare predecessor blocks.
1194     const NodeAddr<const PhiUseNode*> TUA = TA;
1195     const NodeAddr<const PhiUseNode*> RUA = RA;
1196     return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1197   };
1198 
1199   RegisterRef RR = RA.Addr->getRegRef(*this);
1200   if (IA.Addr->getKind() == NodeAttrs::Stmt)
1201     return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1202   return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1203 }
1204 
1205 // Find the next node related to RA in IA that satisfies condition P.
1206 // If such a node was found, return a pair where the second element is the
1207 // located node. If such a node does not exist, return a pair where the
1208 // first element is the element after which such a node should be inserted,
1209 // and the second element is a null-address.
1210 template <typename Predicate>
1211 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
locateNextRef(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA,Predicate P) const1212 DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1213       Predicate P) const {
1214   assert(IA.Id != 0 && RA.Id != 0);
1215 
1216   NodeAddr<RefNode*> NA;
1217   NodeId Start = RA.Id;
1218   while (true) {
1219     NA = getNextRelated(IA, RA);
1220     if (NA.Id == 0 || NA.Id == Start)
1221       break;
1222     if (P(NA))
1223       break;
1224     RA = NA;
1225   }
1226 
1227   if (NA.Id != 0 && NA.Id != Start)
1228     return std::make_pair(RA, NA);
1229   return std::make_pair(RA, NodeAddr<RefNode*>());
1230 }
1231 
1232 // Get the next shadow node in IA corresponding to RA, and optionally create
1233 // such a node if it does not exist.
getNextShadow(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA,bool Create)1234 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1235       NodeAddr<RefNode*> RA, bool Create) {
1236   assert(IA.Id != 0 && RA.Id != 0);
1237 
1238   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1239   auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1240     return TA.Addr->getFlags() == Flags;
1241   };
1242   auto Loc = locateNextRef(IA, RA, IsShadow);
1243   if (Loc.second.Id != 0 || !Create)
1244     return Loc.second;
1245 
1246   // Create a copy of RA and mark is as shadow.
1247   NodeAddr<RefNode*> NA = cloneNode(RA);
1248   NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1249   IA.Addr->addMemberAfter(Loc.first, NA, *this);
1250   return NA;
1251 }
1252 
1253 // Get the next shadow node in IA corresponding to RA. Return null-address
1254 // if such a node does not exist.
getNextShadow(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA) const1255 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1256       NodeAddr<RefNode*> RA) const {
1257   assert(IA.Id != 0 && RA.Id != 0);
1258   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1259   auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1260     return TA.Addr->getFlags() == Flags;
1261   };
1262   return locateNextRef(IA, RA, IsShadow).second;
1263 }
1264 
1265 // Create a new statement node in the block node BA that corresponds to
1266 // the machine instruction MI.
buildStmt(NodeAddr<BlockNode * > BA,MachineInstr & In)1267 void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
1268   NodeAddr<StmtNode*> SA = newStmt(BA, &In);
1269 
1270   auto isCall = [] (const MachineInstr &In) -> bool {
1271     if (In.isCall())
1272       return true;
1273     // Is tail call?
1274     if (In.isBranch()) {
1275       for (const MachineOperand &Op : In.operands())
1276         if (Op.isGlobal() || Op.isSymbol())
1277           return true;
1278       // Assume indirect branches are calls. This is for the purpose of
1279       // keeping implicit operands, and so it won't hurt on intra-function
1280       // indirect branches.
1281       if (In.isIndirectBranch())
1282         return true;
1283     }
1284     return false;
1285   };
1286 
1287   auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1288     // This instruction defines DR. Check if there is a use operand that
1289     // would make DR live on entry to the instruction.
1290     for (const MachineOperand &Op : In.operands()) {
1291       if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
1292         continue;
1293       RegisterRef UR = makeRegRef(Op);
1294       if (PRI.alias(DR, UR))
1295         return false;
1296     }
1297     return true;
1298   };
1299 
1300   bool IsCall = isCall(In);
1301   unsigned NumOps = In.getNumOperands();
1302 
1303   // Avoid duplicate implicit defs. This will not detect cases of implicit
1304   // defs that define registers that overlap, but it is not clear how to
1305   // interpret that in the absence of explicit defs. Overlapping explicit
1306   // defs are likely illegal already.
1307   BitVector DoneDefs(TRI.getNumRegs());
1308   // Process explicit defs first.
1309   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1310     MachineOperand &Op = In.getOperand(OpN);
1311     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1312       continue;
1313     unsigned R = Op.getReg();
1314     if (!R || !TargetRegisterInfo::isPhysicalRegister(R))
1315       continue;
1316     uint16_t Flags = NodeAttrs::None;
1317     if (TOI.isPreserving(In, OpN)) {
1318       Flags |= NodeAttrs::Preserving;
1319       // If the def is preserving, check if it is also undefined.
1320       if (isDefUndef(In, makeRegRef(Op)))
1321         Flags |= NodeAttrs::Undef;
1322     }
1323     if (TOI.isClobbering(In, OpN))
1324       Flags |= NodeAttrs::Clobbering;
1325     if (TOI.isFixedReg(In, OpN))
1326       Flags |= NodeAttrs::Fixed;
1327     if (IsCall && Op.isDead())
1328       Flags |= NodeAttrs::Dead;
1329     NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1330     SA.Addr->addMember(DA, *this);
1331     assert(!DoneDefs.test(R));
1332     DoneDefs.set(R);
1333   }
1334 
1335   // Process reg-masks (as clobbers).
1336   BitVector DoneClobbers(TRI.getNumRegs());
1337   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1338     MachineOperand &Op = In.getOperand(OpN);
1339     if (!Op.isRegMask())
1340       continue;
1341     uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
1342                      NodeAttrs::Dead;
1343     NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1344     SA.Addr->addMember(DA, *this);
1345     // Record all clobbered registers in DoneDefs.
1346     const uint32_t *RM = Op.getRegMask();
1347     for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
1348       if (!(RM[i/32] & (1u << (i%32))))
1349         DoneClobbers.set(i);
1350   }
1351 
1352   // Process implicit defs, skipping those that have already been added
1353   // as explicit.
1354   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1355     MachineOperand &Op = In.getOperand(OpN);
1356     if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1357       continue;
1358     unsigned R = Op.getReg();
1359     if (!R || !TargetRegisterInfo::isPhysicalRegister(R) || DoneDefs.test(R))
1360       continue;
1361     RegisterRef RR = makeRegRef(Op);
1362     uint16_t Flags = NodeAttrs::None;
1363     if (TOI.isPreserving(In, OpN)) {
1364       Flags |= NodeAttrs::Preserving;
1365       // If the def is preserving, check if it is also undefined.
1366       if (isDefUndef(In, RR))
1367         Flags |= NodeAttrs::Undef;
1368     }
1369     if (TOI.isClobbering(In, OpN))
1370       Flags |= NodeAttrs::Clobbering;
1371     if (TOI.isFixedReg(In, OpN))
1372       Flags |= NodeAttrs::Fixed;
1373     if (IsCall && Op.isDead()) {
1374       if (DoneClobbers.test(R))
1375         continue;
1376       Flags |= NodeAttrs::Dead;
1377     }
1378     NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1379     SA.Addr->addMember(DA, *this);
1380     DoneDefs.set(R);
1381   }
1382 
1383   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1384     MachineOperand &Op = In.getOperand(OpN);
1385     if (!Op.isReg() || !Op.isUse())
1386       continue;
1387     unsigned R = Op.getReg();
1388     if (!R || !TargetRegisterInfo::isPhysicalRegister(R))
1389       continue;
1390     uint16_t Flags = NodeAttrs::None;
1391     if (Op.isUndef())
1392       Flags |= NodeAttrs::Undef;
1393     if (TOI.isFixedReg(In, OpN))
1394       Flags |= NodeAttrs::Fixed;
1395     NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1396     SA.Addr->addMember(UA, *this);
1397   }
1398 }
1399 
1400 // Scan all defs in the block node BA and record in PhiM the locations of
1401 // phi nodes corresponding to these defs.
recordDefsForDF(BlockRefsMap & PhiM,NodeAddr<BlockNode * > BA)1402 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
1403       NodeAddr<BlockNode*> BA) {
1404   // Check all defs from block BA and record them in each block in BA's
1405   // iterated dominance frontier. This information will later be used to
1406   // create phi nodes.
1407   MachineBasicBlock *BB = BA.Addr->getCode();
1408   assert(BB);
1409   auto DFLoc = MDF.find(BB);
1410   if (DFLoc == MDF.end() || DFLoc->second.empty())
1411     return;
1412 
1413   // Traverse all instructions in the block and collect the set of all
1414   // defined references. For each reference there will be a phi created
1415   // in the block's iterated dominance frontier.
1416   // This is done to make sure that each defined reference gets only one
1417   // phi node, even if it is defined multiple times.
1418   RegisterSet Defs;
1419   for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1420     for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
1421       Defs.insert(RA.Addr->getRegRef(*this));
1422 
1423   // Calculate the iterated dominance frontier of BB.
1424   const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1425   SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1426   for (unsigned i = 0; i < IDF.size(); ++i) {
1427     auto F = MDF.find(IDF[i]);
1428     if (F != MDF.end())
1429       IDF.insert(F->second.begin(), F->second.end());
1430   }
1431 
1432   // Finally, add the set of defs to each block in the iterated dominance
1433   // frontier.
1434   for (auto DB : IDF) {
1435     NodeAddr<BlockNode*> DBA = findBlock(DB);
1436     PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1437   }
1438 }
1439 
1440 // Given the locations of phi nodes in the map PhiM, create the phi nodes
1441 // that are located in the block node BA.
buildPhis(BlockRefsMap & PhiM,RegisterSet & AllRefs,NodeAddr<BlockNode * > BA)1442 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
1443       NodeAddr<BlockNode*> BA) {
1444   // Check if this blocks has any DF defs, i.e. if there are any defs
1445   // that this block is in the iterated dominance frontier of.
1446   auto HasDF = PhiM.find(BA.Id);
1447   if (HasDF == PhiM.end() || HasDF->second.empty())
1448     return;
1449 
1450   // First, remove all R in Refs in such that there exists T in Refs
1451   // such that T covers R. In other words, only leave those refs that
1452   // are not covered by another ref (i.e. maximal with respect to covering).
1453 
1454   auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
1455     for (RegisterRef I : RRs)
1456       if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
1457         RR = I;
1458     return RR;
1459   };
1460 
1461   RegisterSet MaxDF;
1462   for (RegisterRef I : HasDF->second)
1463     MaxDF.insert(MaxCoverIn(I, HasDF->second));
1464 
1465   std::vector<RegisterRef> MaxRefs;
1466   for (RegisterRef I : MaxDF)
1467     MaxRefs.push_back(MaxCoverIn(I, AllRefs));
1468 
1469   // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1470   // only has R in it, create a phi a def for R. Otherwise, create a phi,
1471   // and add a def for each S in the closure.
1472 
1473   // Sort the refs so that the phis will be created in a deterministic order.
1474   llvm::sort(MaxRefs.begin(), MaxRefs.end());
1475   // Remove duplicates.
1476   auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1477   MaxRefs.erase(NewEnd, MaxRefs.end());
1478 
1479   auto Aliased = [this,&MaxRefs](RegisterRef RR,
1480                                  std::vector<unsigned> &Closure) -> bool {
1481     for (unsigned I : Closure)
1482       if (PRI.alias(RR, MaxRefs[I]))
1483         return true;
1484     return false;
1485   };
1486 
1487   // Prepare a list of NodeIds of the block's predecessors.
1488   NodeList Preds;
1489   const MachineBasicBlock *MBB = BA.Addr->getCode();
1490   for (MachineBasicBlock *PB : MBB->predecessors())
1491     Preds.push_back(findBlock(PB));
1492 
1493   while (!MaxRefs.empty()) {
1494     // Put the first element in the closure, and then add all subsequent
1495     // elements from MaxRefs to it, if they alias at least one element
1496     // already in the closure.
1497     // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1498     std::vector<unsigned> ClosureIdx = { 0 };
1499     for (unsigned i = 1; i != MaxRefs.size(); ++i)
1500       if (Aliased(MaxRefs[i], ClosureIdx))
1501         ClosureIdx.push_back(i);
1502 
1503     // Build a phi for the closure.
1504     unsigned CS = ClosureIdx.size();
1505     NodeAddr<PhiNode*> PA = newPhi(BA);
1506 
1507     // Add defs.
1508     for (unsigned X = 0; X != CS; ++X) {
1509       RegisterRef RR = MaxRefs[ClosureIdx[X]];
1510       uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1511       NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1512       PA.Addr->addMember(DA, *this);
1513     }
1514     // Add phi uses.
1515     for (NodeAddr<BlockNode*> PBA : Preds) {
1516       for (unsigned X = 0; X != CS; ++X) {
1517         RegisterRef RR = MaxRefs[ClosureIdx[X]];
1518         NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1519         PA.Addr->addMember(PUA, *this);
1520       }
1521     }
1522 
1523     // Erase from MaxRefs all elements in the closure.
1524     auto Begin = MaxRefs.begin();
1525     for (unsigned i = ClosureIdx.size(); i != 0; --i)
1526       MaxRefs.erase(Begin + ClosureIdx[i-1]);
1527   }
1528 }
1529 
1530 // Remove any unneeded phi nodes that were created during the build process.
removeUnusedPhis()1531 void DataFlowGraph::removeUnusedPhis() {
1532   // This will remove unused phis, i.e. phis where each def does not reach
1533   // any uses or other defs. This will not detect or remove circular phi
1534   // chains that are otherwise dead. Unused/dead phis are created during
1535   // the build process and this function is intended to remove these cases
1536   // that are easily determinable to be unnecessary.
1537 
1538   SetVector<NodeId> PhiQ;
1539   for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1540     for (auto P : BA.Addr->members_if(IsPhi, *this))
1541       PhiQ.insert(P.Id);
1542   }
1543 
1544   static auto HasUsedDef = [](NodeList &Ms) -> bool {
1545     for (NodeAddr<NodeBase*> M : Ms) {
1546       if (M.Addr->getKind() != NodeAttrs::Def)
1547         continue;
1548       NodeAddr<DefNode*> DA = M;
1549       if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1550         return true;
1551     }
1552     return false;
1553   };
1554 
1555   // Any phi, if it is removed, may affect other phis (make them dead).
1556   // For each removed phi, collect the potentially affected phis and add
1557   // them back to the queue.
1558   while (!PhiQ.empty()) {
1559     auto PA = addr<PhiNode*>(PhiQ[0]);
1560     PhiQ.remove(PA.Id);
1561     NodeList Refs = PA.Addr->members(*this);
1562     if (HasUsedDef(Refs))
1563       continue;
1564     for (NodeAddr<RefNode*> RA : Refs) {
1565       if (NodeId RD = RA.Addr->getReachingDef()) {
1566         auto RDA = addr<DefNode*>(RD);
1567         NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1568         if (IsPhi(OA))
1569           PhiQ.insert(OA.Id);
1570       }
1571       if (RA.Addr->isDef())
1572         unlinkDef(RA, true);
1573       else
1574         unlinkUse(RA, true);
1575     }
1576     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1577     BA.Addr->removeMember(PA, *this);
1578   }
1579 }
1580 
1581 // For a given reference node TA in an instruction node IA, connect the
1582 // reaching def of TA to the appropriate def node. Create any shadow nodes
1583 // as appropriate.
1584 template <typename T>
linkRefUp(NodeAddr<InstrNode * > IA,NodeAddr<T> TA,DefStack & DS)1585 void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1586       DefStack &DS) {
1587   if (DS.empty())
1588     return;
1589   RegisterRef RR = TA.Addr->getRegRef(*this);
1590   NodeAddr<T> TAP;
1591 
1592   // References from the def stack that have been examined so far.
1593   RegisterAggr Defs(PRI);
1594 
1595   for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1596     RegisterRef QR = I->Addr->getRegRef(*this);
1597 
1598     // Skip all defs that are aliased to any of the defs that we have already
1599     // seen. If this completes a cover of RR, stop the stack traversal.
1600     bool Alias = Defs.hasAliasOf(QR);
1601     bool Cover = Defs.insert(QR).hasCoverOf(RR);
1602     if (Alias) {
1603       if (Cover)
1604         break;
1605       continue;
1606     }
1607 
1608     // The reaching def.
1609     NodeAddr<DefNode*> RDA = *I;
1610 
1611     // Pick the reached node.
1612     if (TAP.Id == 0) {
1613       TAP = TA;
1614     } else {
1615       // Mark the existing ref as "shadow" and create a new shadow.
1616       TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1617       TAP = getNextShadow(IA, TAP, true);
1618     }
1619 
1620     // Create the link.
1621     TAP.Addr->linkToDef(TAP.Id, RDA);
1622 
1623     if (Cover)
1624       break;
1625   }
1626 }
1627 
1628 // Create data-flow links for all reference nodes in the statement node SA.
1629 template <typename Predicate>
linkStmtRefs(DefStackMap & DefM,NodeAddr<StmtNode * > SA,Predicate P)1630 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
1631       Predicate P) {
1632 #ifndef NDEBUG
1633   RegisterSet Defs;
1634 #endif
1635 
1636   // Link all nodes (upwards in the data-flow) with their reaching defs.
1637   for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
1638     uint16_t Kind = RA.Addr->getKind();
1639     assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1640     RegisterRef RR = RA.Addr->getRegRef(*this);
1641 #ifndef NDEBUG
1642     // Do not expect multiple defs of the same reference.
1643     assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1644     Defs.insert(RR);
1645 #endif
1646 
1647     auto F = DefM.find(RR.Reg);
1648     if (F == DefM.end())
1649       continue;
1650     DefStack &DS = F->second;
1651     if (Kind == NodeAttrs::Use)
1652       linkRefUp<UseNode*>(SA, RA, DS);
1653     else if (Kind == NodeAttrs::Def)
1654       linkRefUp<DefNode*>(SA, RA, DS);
1655     else
1656       llvm_unreachable("Unexpected node in instruction");
1657   }
1658 }
1659 
1660 // Create data-flow links for all instructions in the block node BA. This
1661 // will include updating any phi nodes in BA.
linkBlockRefs(DefStackMap & DefM,NodeAddr<BlockNode * > BA)1662 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1663   // Push block delimiters.
1664   markBlock(BA.Id, DefM);
1665 
1666   auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1667     return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1668   };
1669   auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1670     return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1671   };
1672 
1673   assert(BA.Addr && "block node address is needed to create a data-flow link");
1674   // For each non-phi instruction in the block, link all the defs and uses
1675   // to their reaching defs. For any member of the block (including phis),
1676   // push the defs on the corresponding stacks.
1677   for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1678     // Ignore phi nodes here. They will be linked part by part from the
1679     // predecessors.
1680     if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1681       linkStmtRefs(DefM, IA, IsUse);
1682       linkStmtRefs(DefM, IA, IsClobber);
1683     }
1684 
1685     // Push the definitions on the stack.
1686     pushClobbers(IA, DefM);
1687 
1688     if (IA.Addr->getKind() == NodeAttrs::Stmt)
1689       linkStmtRefs(DefM, IA, IsNoClobber);
1690 
1691     pushDefs(IA, DefM);
1692   }
1693 
1694   // Recursively process all children in the dominator tree.
1695   MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1696   for (auto I : *N) {
1697     MachineBasicBlock *SB = I->getBlock();
1698     NodeAddr<BlockNode*> SBA = findBlock(SB);
1699     linkBlockRefs(DefM, SBA);
1700   }
1701 
1702   // Link the phi uses from the successor blocks.
1703   auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1704     if (NA.Addr->getKind() != NodeAttrs::Use)
1705       return false;
1706     assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1707     NodeAddr<PhiUseNode*> PUA = NA;
1708     return PUA.Addr->getPredecessor() == BA.Id;
1709   };
1710 
1711   RegisterSet EHLiveIns = getLandingPadLiveIns();
1712   MachineBasicBlock *MBB = BA.Addr->getCode();
1713 
1714   for (MachineBasicBlock *SB : MBB->successors()) {
1715     bool IsEHPad = SB->isEHPad();
1716     NodeAddr<BlockNode*> SBA = findBlock(SB);
1717     for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
1718       // Do not link phi uses for landing pad live-ins.
1719       if (IsEHPad) {
1720         // Find what register this phi is for.
1721         NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1722         assert(RA.Id != 0);
1723         if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
1724           continue;
1725       }
1726       // Go over each phi use associated with MBB, and link it.
1727       for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1728         NodeAddr<PhiUseNode*> PUA = U;
1729         RegisterRef RR = PUA.Addr->getRegRef(*this);
1730         linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
1731       }
1732     }
1733   }
1734 
1735   // Pop all defs from this block from the definition stacks.
1736   releaseBlock(BA.Id, DefM);
1737 }
1738 
1739 // Remove the use node UA from any data-flow and structural links.
unlinkUseDF(NodeAddr<UseNode * > UA)1740 void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
1741   NodeId RD = UA.Addr->getReachingDef();
1742   NodeId Sib = UA.Addr->getSibling();
1743 
1744   if (RD == 0) {
1745     assert(Sib == 0);
1746     return;
1747   }
1748 
1749   auto RDA = addr<DefNode*>(RD);
1750   auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1751   if (TA.Id == UA.Id) {
1752     RDA.Addr->setReachedUse(Sib);
1753     return;
1754   }
1755 
1756   while (TA.Id != 0) {
1757     NodeId S = TA.Addr->getSibling();
1758     if (S == UA.Id) {
1759       TA.Addr->setSibling(UA.Addr->getSibling());
1760       return;
1761     }
1762     TA = addr<UseNode*>(S);
1763   }
1764 }
1765 
1766 // Remove the def node DA from any data-flow and structural links.
unlinkDefDF(NodeAddr<DefNode * > DA)1767 void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
1768   //
1769   //         RD
1770   //         | reached
1771   //         | def
1772   //         :
1773   //         .
1774   //        +----+
1775   // ... -- | DA | -- ... -- 0  : sibling chain of DA
1776   //        +----+
1777   //         |  | reached
1778   //         |  : def
1779   //         |  .
1780   //         | ...  : Siblings (defs)
1781   //         |
1782   //         : reached
1783   //         . use
1784   //        ... : sibling chain of reached uses
1785 
1786   NodeId RD = DA.Addr->getReachingDef();
1787 
1788   // Visit all siblings of the reached def and reset their reaching defs.
1789   // Also, defs reached by DA are now "promoted" to being reached by RD,
1790   // so all of them will need to be spliced into the sibling chain where
1791   // DA belongs.
1792   auto getAllNodes = [this] (NodeId N) -> NodeList {
1793     NodeList Res;
1794     while (N) {
1795       auto RA = addr<RefNode*>(N);
1796       // Keep the nodes in the exact sibling order.
1797       Res.push_back(RA);
1798       N = RA.Addr->getSibling();
1799     }
1800     return Res;
1801   };
1802   NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1803   NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1804 
1805   if (RD == 0) {
1806     for (NodeAddr<RefNode*> I : ReachedDefs)
1807       I.Addr->setSibling(0);
1808     for (NodeAddr<RefNode*> I : ReachedUses)
1809       I.Addr->setSibling(0);
1810   }
1811   for (NodeAddr<DefNode*> I : ReachedDefs)
1812     I.Addr->setReachingDef(RD);
1813   for (NodeAddr<UseNode*> I : ReachedUses)
1814     I.Addr->setReachingDef(RD);
1815 
1816   NodeId Sib = DA.Addr->getSibling();
1817   if (RD == 0) {
1818     assert(Sib == 0);
1819     return;
1820   }
1821 
1822   // Update the reaching def node and remove DA from the sibling list.
1823   auto RDA = addr<DefNode*>(RD);
1824   auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1825   if (TA.Id == DA.Id) {
1826     // If DA is the first reached def, just update the RD's reached def
1827     // to the DA's sibling.
1828     RDA.Addr->setReachedDef(Sib);
1829   } else {
1830     // Otherwise, traverse the sibling list of the reached defs and remove
1831     // DA from it.
1832     while (TA.Id != 0) {
1833       NodeId S = TA.Addr->getSibling();
1834       if (S == DA.Id) {
1835         TA.Addr->setSibling(Sib);
1836         break;
1837       }
1838       TA = addr<DefNode*>(S);
1839     }
1840   }
1841 
1842   // Splice the DA's reached defs into the RDA's reached def chain.
1843   if (!ReachedDefs.empty()) {
1844     auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1845     Last.Addr->setSibling(RDA.Addr->getReachedDef());
1846     RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1847   }
1848   // Splice the DA's reached uses into the RDA's reached use chain.
1849   if (!ReachedUses.empty()) {
1850     auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1851     Last.Addr->setSibling(RDA.Addr->getReachedUse());
1852     RDA.Addr->setReachedUse(ReachedUses.front().Id);
1853   }
1854 }
1855