1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74
75 #include "ralloc.h"
76 #include "main/imports.h"
77 #include "main/macros.h"
78 #include "main/mtypes.h"
79 #include "util/bitset.h"
80 #include "register_allocate.h"
81
82 #define NO_REG ~0U
83
84 struct ra_reg {
85 BITSET_WORD *conflicts;
86 unsigned int *conflict_list;
87 unsigned int conflict_list_size;
88 unsigned int num_conflicts;
89 };
90
91 struct ra_regs {
92 struct ra_reg *regs;
93 unsigned int count;
94
95 struct ra_class **classes;
96 unsigned int class_count;
97
98 bool round_robin;
99 };
100
101 struct ra_class {
102 /**
103 * Bitset indicating which registers belong to this class.
104 *
105 * (If bit N is set, then register N belongs to this class.)
106 */
107 BITSET_WORD *regs;
108
109 /**
110 * p(B) in Runeson/Nyström paper.
111 *
112 * This is "how many regs are in the set."
113 */
114 unsigned int p;
115
116 /**
117 * q(B,C) (indexed by C, B is this register class) in
118 * Runeson/Nyström paper. This is "how many registers of B could
119 * the worst choice register from C conflict with".
120 */
121 unsigned int *q;
122 };
123
124 struct ra_node {
125 /** @{
126 *
127 * List of which nodes this node interferes with. This should be
128 * symmetric with the other node.
129 */
130 BITSET_WORD *adjacency;
131 unsigned int *adjacency_list;
132 unsigned int adjacency_list_size;
133 unsigned int adjacency_count;
134 /** @} */
135
136 unsigned int class;
137
138 /* Register, if assigned, or NO_REG. */
139 unsigned int reg;
140
141 /**
142 * Set when the node is in the trivially colorable stack. When
143 * set, the adjacency to this node is ignored, to implement the
144 * "remove the edge from the graph" in simplification without
145 * having to actually modify the adjacency_list.
146 */
147 bool in_stack;
148
149 /**
150 * The q total, as defined in the Runeson/Nyström paper, for all the
151 * interfering nodes not in the stack.
152 */
153 unsigned int q_total;
154
155 /* For an implementation that needs register spilling, this is the
156 * approximate cost of spilling this node.
157 */
158 float spill_cost;
159 };
160
161 struct ra_graph {
162 struct ra_regs *regs;
163 /**
164 * the variables that need register allocation.
165 */
166 struct ra_node *nodes;
167 unsigned int count; /**< count of nodes. */
168
169 unsigned int *stack;
170 unsigned int stack_count;
171
172 /**
173 * Tracks the start of the set of optimistically-colored registers in the
174 * stack.
175 */
176 unsigned int stack_optimistic_start;
177
178 unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs,
179 void *data);
180 void *select_reg_callback_data;
181 };
182
183 /**
184 * Creates a set of registers for the allocator.
185 *
186 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
187 * using ralloc_free().
188 */
189 struct ra_regs *
ra_alloc_reg_set(void * mem_ctx,unsigned int count,bool need_conflict_lists)190 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
191 {
192 unsigned int i;
193 struct ra_regs *regs;
194
195 regs = rzalloc(mem_ctx, struct ra_regs);
196 regs->count = count;
197 regs->regs = rzalloc_array(regs, struct ra_reg, count);
198
199 for (i = 0; i < count; i++) {
200 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
201 BITSET_WORDS(count));
202 BITSET_SET(regs->regs[i].conflicts, i);
203
204 if (need_conflict_lists) {
205 regs->regs[i].conflict_list = ralloc_array(regs->regs,
206 unsigned int, 4);
207 regs->regs[i].conflict_list_size = 4;
208 regs->regs[i].conflict_list[0] = i;
209 } else {
210 regs->regs[i].conflict_list = NULL;
211 regs->regs[i].conflict_list_size = 0;
212 }
213 regs->regs[i].num_conflicts = 1;
214 }
215
216 return regs;
217 }
218
219 /**
220 * The register allocator by default prefers to allocate low register numbers,
221 * since it was written for hardware (gen4/5 Intel) that is limited in its
222 * multithreadedness by the number of registers used in a given shader.
223 *
224 * However, for hardware without that restriction, densely packed register
225 * allocation can put serious constraints on instruction scheduling. This
226 * function tells the allocator to rotate around the registers if possible as
227 * it allocates the nodes.
228 */
229 void
ra_set_allocate_round_robin(struct ra_regs * regs)230 ra_set_allocate_round_robin(struct ra_regs *regs)
231 {
232 regs->round_robin = true;
233 }
234
235 static void
ra_add_conflict_list(struct ra_regs * regs,unsigned int r1,unsigned int r2)236 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
237 {
238 struct ra_reg *reg1 = ®s->regs[r1];
239
240 if (reg1->conflict_list) {
241 if (reg1->conflict_list_size == reg1->num_conflicts) {
242 reg1->conflict_list_size *= 2;
243 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
244 unsigned int, reg1->conflict_list_size);
245 }
246 reg1->conflict_list[reg1->num_conflicts++] = r2;
247 }
248 BITSET_SET(reg1->conflicts, r2);
249 }
250
251 void
ra_add_reg_conflict(struct ra_regs * regs,unsigned int r1,unsigned int r2)252 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
253 {
254 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
255 ra_add_conflict_list(regs, r1, r2);
256 ra_add_conflict_list(regs, r2, r1);
257 }
258 }
259
260 /**
261 * Adds a conflict between base_reg and reg, and also between reg and
262 * anything that base_reg conflicts with.
263 *
264 * This can simplify code for setting up multiple register classes
265 * which are aggregates of some base hardware registers, compared to
266 * explicitly using ra_add_reg_conflict.
267 */
268 void
ra_add_transitive_reg_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg)269 ra_add_transitive_reg_conflict(struct ra_regs *regs,
270 unsigned int base_reg, unsigned int reg)
271 {
272 unsigned int i;
273
274 ra_add_reg_conflict(regs, reg, base_reg);
275
276 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
277 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
278 }
279 }
280
281 /**
282 * Makes every conflict on the given register transitive. In other words,
283 * every register that conflicts with r will now conflict with every other
284 * register conflicting with r.
285 *
286 * This can simplify code for setting up multiple register classes
287 * which are aggregates of some base hardware registers, compared to
288 * explicitly using ra_add_reg_conflict.
289 */
290 void
ra_make_reg_conflicts_transitive(struct ra_regs * regs,unsigned int r)291 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
292 {
293 struct ra_reg *reg = ®s->regs[r];
294 BITSET_WORD tmp;
295 int c;
296
297 BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
298 struct ra_reg *other = ®s->regs[c];
299 unsigned i;
300 for (i = 0; i < BITSET_WORDS(regs->count); i++)
301 other->conflicts[i] |= reg->conflicts[i];
302 }
303 }
304
305 unsigned int
ra_alloc_reg_class(struct ra_regs * regs)306 ra_alloc_reg_class(struct ra_regs *regs)
307 {
308 struct ra_class *class;
309
310 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
311 regs->class_count + 1);
312
313 class = rzalloc(regs, struct ra_class);
314 regs->classes[regs->class_count] = class;
315
316 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
317
318 return regs->class_count++;
319 }
320
321 void
ra_class_add_reg(struct ra_regs * regs,unsigned int c,unsigned int r)322 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
323 {
324 struct ra_class *class = regs->classes[c];
325
326 BITSET_SET(class->regs, r);
327 class->p++;
328 }
329
330 /**
331 * Returns true if the register belongs to the given class.
332 */
333 static bool
reg_belongs_to_class(unsigned int r,struct ra_class * c)334 reg_belongs_to_class(unsigned int r, struct ra_class *c)
335 {
336 return BITSET_TEST(c->regs, r);
337 }
338
339 /**
340 * Must be called after all conflicts and register classes have been
341 * set up and before the register set is used for allocation.
342 * To avoid costly q value computation, use the q_values paramater
343 * to pass precomputed q values to this function.
344 */
345 void
ra_set_finalize(struct ra_regs * regs,unsigned int ** q_values)346 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
347 {
348 unsigned int b, c;
349
350 for (b = 0; b < regs->class_count; b++) {
351 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
352 }
353
354 if (q_values) {
355 for (b = 0; b < regs->class_count; b++) {
356 for (c = 0; c < regs->class_count; c++) {
357 regs->classes[b]->q[c] = q_values[b][c];
358 }
359 }
360 } else {
361 /* Compute, for each class B and C, how many regs of B an
362 * allocation to C could conflict with.
363 */
364 for (b = 0; b < regs->class_count; b++) {
365 for (c = 0; c < regs->class_count; c++) {
366 unsigned int rc;
367 int max_conflicts = 0;
368
369 for (rc = 0; rc < regs->count; rc++) {
370 int conflicts = 0;
371 unsigned int i;
372
373 if (!reg_belongs_to_class(rc, regs->classes[c]))
374 continue;
375
376 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
377 unsigned int rb = regs->regs[rc].conflict_list[i];
378 if (reg_belongs_to_class(rb, regs->classes[b]))
379 conflicts++;
380 }
381 max_conflicts = MAX2(max_conflicts, conflicts);
382 }
383 regs->classes[b]->q[c] = max_conflicts;
384 }
385 }
386 }
387
388 for (b = 0; b < regs->count; b++) {
389 ralloc_free(regs->regs[b].conflict_list);
390 regs->regs[b].conflict_list = NULL;
391 }
392 }
393
394 static void
ra_add_node_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)395 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
396 {
397 BITSET_SET(g->nodes[n1].adjacency, n2);
398
399 assert(n1 != n2);
400
401 int n1_class = g->nodes[n1].class;
402 int n2_class = g->nodes[n2].class;
403 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
404
405 if (g->nodes[n1].adjacency_count >=
406 g->nodes[n1].adjacency_list_size) {
407 g->nodes[n1].adjacency_list_size *= 2;
408 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
409 unsigned int,
410 g->nodes[n1].adjacency_list_size);
411 }
412
413 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
414 g->nodes[n1].adjacency_count++;
415 }
416
417 struct ra_graph *
ra_alloc_interference_graph(struct ra_regs * regs,unsigned int count)418 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
419 {
420 struct ra_graph *g;
421 unsigned int i;
422
423 g = rzalloc(NULL, struct ra_graph);
424 g->regs = regs;
425 g->nodes = rzalloc_array(g, struct ra_node, count);
426 g->count = count;
427
428 g->stack = rzalloc_array(g, unsigned int, count);
429
430 for (i = 0; i < count; i++) {
431 int bitset_count = BITSET_WORDS(count);
432 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
433
434 g->nodes[i].adjacency_list_size = 4;
435 g->nodes[i].adjacency_list =
436 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
437 g->nodes[i].adjacency_count = 0;
438 g->nodes[i].q_total = 0;
439
440 g->nodes[i].reg = NO_REG;
441 }
442
443 return g;
444 }
445
ra_set_select_reg_callback(struct ra_graph * g,unsigned int (* callback)(struct ra_graph * g,BITSET_WORD * regs,void * data),void * data)446 void ra_set_select_reg_callback(struct ra_graph *g,
447 unsigned int (*callback)(struct ra_graph *g,
448 BITSET_WORD *regs,
449 void *data),
450 void *data)
451 {
452 g->select_reg_callback = callback;
453 g->select_reg_callback_data = data;
454 }
455
456 void
ra_set_node_class(struct ra_graph * g,unsigned int n,unsigned int class)457 ra_set_node_class(struct ra_graph *g,
458 unsigned int n, unsigned int class)
459 {
460 g->nodes[n].class = class;
461 }
462
463 void
ra_add_node_interference(struct ra_graph * g,unsigned int n1,unsigned int n2)464 ra_add_node_interference(struct ra_graph *g,
465 unsigned int n1, unsigned int n2)
466 {
467 if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
468 ra_add_node_adjacency(g, n1, n2);
469 ra_add_node_adjacency(g, n2, n1);
470 }
471 }
472
473 static bool
pq_test(struct ra_graph * g,unsigned int n)474 pq_test(struct ra_graph *g, unsigned int n)
475 {
476 int n_class = g->nodes[n].class;
477
478 return g->nodes[n].q_total < g->regs->classes[n_class]->p;
479 }
480
481 static void
decrement_q(struct ra_graph * g,unsigned int n)482 decrement_q(struct ra_graph *g, unsigned int n)
483 {
484 unsigned int i;
485 int n_class = g->nodes[n].class;
486
487 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
488 unsigned int n2 = g->nodes[n].adjacency_list[i];
489 unsigned int n2_class = g->nodes[n2].class;
490
491 if (!g->nodes[n2].in_stack) {
492 assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]);
493 g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class];
494 }
495 }
496 }
497
498 /**
499 * Simplifies the interference graph by pushing all
500 * trivially-colorable nodes into a stack of nodes to be colored,
501 * removing them from the graph, and rinsing and repeating.
502 *
503 * If we encounter a case where we can't push any nodes on the stack, then
504 * we optimistically choose a node and push it on the stack. We heuristically
505 * push the node with the lowest total q value, since it has the fewest
506 * neighbors and therefore is most likely to be allocated.
507 */
508 static void
ra_simplify(struct ra_graph * g)509 ra_simplify(struct ra_graph *g)
510 {
511 bool progress = true;
512 unsigned int stack_optimistic_start = UINT_MAX;
513 int i;
514
515 while (progress) {
516 unsigned int best_optimistic_node = ~0;
517 unsigned int lowest_q_total = ~0;
518
519 progress = false;
520
521 for (i = g->count - 1; i >= 0; i--) {
522 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
523 continue;
524
525 if (pq_test(g, i)) {
526 decrement_q(g, i);
527 g->stack[g->stack_count] = i;
528 g->stack_count++;
529 g->nodes[i].in_stack = true;
530 progress = true;
531 } else {
532 unsigned int new_q_total = g->nodes[i].q_total;
533 if (new_q_total < lowest_q_total) {
534 best_optimistic_node = i;
535 lowest_q_total = new_q_total;
536 }
537 }
538 }
539
540 if (!progress && best_optimistic_node != ~0U) {
541 if (stack_optimistic_start == UINT_MAX)
542 stack_optimistic_start = g->stack_count;
543
544 decrement_q(g, best_optimistic_node);
545 g->stack[g->stack_count] = best_optimistic_node;
546 g->stack_count++;
547 g->nodes[best_optimistic_node].in_stack = true;
548 progress = true;
549 }
550 }
551
552 g->stack_optimistic_start = stack_optimistic_start;
553 }
554
555 static bool
ra_any_neighbors_conflict(struct ra_graph * g,unsigned int n,unsigned int r)556 ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
557 {
558 unsigned int i;
559
560 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
561 unsigned int n2 = g->nodes[n].adjacency_list[i];
562
563 if (!g->nodes[n2].in_stack &&
564 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
565 return true;
566 }
567 }
568
569 return false;
570 }
571
572 /* Computes a bitfield of what regs are available for a given register
573 * selection.
574 *
575 * This lets drivers implement a more complicated policy than our simple first
576 * or round robin policies (which don't require knowing the whole bitset)
577 */
578 static bool
ra_compute_available_regs(struct ra_graph * g,unsigned int n,BITSET_WORD * regs)579 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
580 {
581 struct ra_class *c = g->regs->classes[g->nodes[n].class];
582
583 /* Populate with the set of regs that are in the node's class. */
584 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
585
586 /* Remove any regs that conflict with nodes that we're adjacent to and have
587 * already colored.
588 */
589 for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
590 unsigned int n2 = g->nodes[n].adjacency_list[i];
591 unsigned int r = g->nodes[n2].reg;
592
593 if (!g->nodes[n2].in_stack) {
594 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
595 regs[j] &= ~g->regs->regs[r].conflicts[j];
596 }
597 }
598
599 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
600 if (regs[i])
601 return true;
602 }
603
604 return false;
605 }
606
607 /**
608 * Pops nodes from the stack back into the graph, coloring them with
609 * registers as they go.
610 *
611 * If all nodes were trivially colorable, then this must succeed. If
612 * not (optimistic coloring), then it may return false;
613 */
614 static bool
ra_select(struct ra_graph * g)615 ra_select(struct ra_graph *g)
616 {
617 int start_search_reg = 0;
618 BITSET_WORD *select_regs = NULL;
619
620 if (g->select_reg_callback)
621 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
622
623 while (g->stack_count != 0) {
624 unsigned int ri;
625 unsigned int r = -1;
626 int n = g->stack[g->stack_count - 1];
627 struct ra_class *c = g->regs->classes[g->nodes[n].class];
628
629 /* set this to false even if we return here so that
630 * ra_get_best_spill_node() considers this node later.
631 */
632 g->nodes[n].in_stack = false;
633
634 if (g->select_reg_callback) {
635 if (!ra_compute_available_regs(g, n, select_regs)) {
636 free(select_regs);
637 return false;
638 }
639
640 r = g->select_reg_callback(g, select_regs, g->select_reg_callback_data);
641 } else {
642 /* Find the lowest-numbered reg which is not used by a member
643 * of the graph adjacent to us.
644 */
645 for (ri = 0; ri < g->regs->count; ri++) {
646 r = (start_search_reg + ri) % g->regs->count;
647 if (!reg_belongs_to_class(r, c))
648 continue;
649
650 if (!ra_any_neighbors_conflict(g, n, r))
651 break;
652 }
653
654 if (ri >= g->regs->count)
655 return false;
656 }
657
658 g->nodes[n].reg = r;
659 g->stack_count--;
660
661 /* Rotate the starting point except for any nodes above the lowest
662 * optimistically colorable node. The likelihood that we will succeed
663 * at allocating optimistically colorable nodes is highly dependent on
664 * the way that the previous nodes popped off the stack are laid out.
665 * The round-robin strategy increases the fragmentation of the register
666 * file and decreases the number of nearby nodes assigned to the same
667 * color, what increases the likelihood of spilling with respect to the
668 * dense packing strategy.
669 */
670 if (g->regs->round_robin &&
671 g->stack_count - 1 <= g->stack_optimistic_start)
672 start_search_reg = r + 1;
673 }
674
675 free(select_regs);
676
677 return true;
678 }
679
680 bool
ra_allocate(struct ra_graph * g)681 ra_allocate(struct ra_graph *g)
682 {
683 ra_simplify(g);
684 return ra_select(g);
685 }
686
687 unsigned int
ra_get_node_reg(struct ra_graph * g,unsigned int n)688 ra_get_node_reg(struct ra_graph *g, unsigned int n)
689 {
690 return g->nodes[n].reg;
691 }
692
693 /**
694 * Forces a node to a specific register. This can be used to avoid
695 * creating a register class containing one node when handling data
696 * that must live in a fixed location and is known to not conflict
697 * with other forced register assignment (as is common with shader
698 * input data). These nodes do not end up in the stack during
699 * ra_simplify(), and thus at ra_select() time it is as if they were
700 * the first popped off the stack and assigned their fixed locations.
701 * Nodes that use this function do not need to be assigned a register
702 * class.
703 *
704 * Must be called before ra_simplify().
705 */
706 void
ra_set_node_reg(struct ra_graph * g,unsigned int n,unsigned int reg)707 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
708 {
709 g->nodes[n].reg = reg;
710 g->nodes[n].in_stack = false;
711 }
712
713 static float
ra_get_spill_benefit(struct ra_graph * g,unsigned int n)714 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
715 {
716 unsigned int j;
717 float benefit = 0;
718 int n_class = g->nodes[n].class;
719
720 /* Define the benefit of eliminating an interference between n, n2
721 * through spilling as q(C, B) / p(C). This is similar to the
722 * "count number of edges" approach of traditional graph coloring,
723 * but takes classes into account.
724 */
725 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
726 unsigned int n2 = g->nodes[n].adjacency_list[j];
727 unsigned int n2_class = g->nodes[n2].class;
728 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
729 g->regs->classes[n_class]->p);
730 }
731
732 return benefit;
733 }
734
735 /**
736 * Returns a node number to be spilled according to the cost/benefit using
737 * the pq test, or -1 if there are no spillable nodes.
738 */
739 int
ra_get_best_spill_node(struct ra_graph * g)740 ra_get_best_spill_node(struct ra_graph *g)
741 {
742 unsigned int best_node = -1;
743 float best_benefit = 0.0;
744 unsigned int n;
745
746 /* Consider any nodes that we colored successfully or the node we failed to
747 * color for spilling. When we failed to color a node in ra_select(), we
748 * only considered these nodes, so spilling any other ones would not result
749 * in us making progress.
750 */
751 for (n = 0; n < g->count; n++) {
752 float cost = g->nodes[n].spill_cost;
753 float benefit;
754
755 if (cost <= 0.0f)
756 continue;
757
758 if (g->nodes[n].in_stack)
759 continue;
760
761 benefit = ra_get_spill_benefit(g, n);
762
763 if (benefit / cost > best_benefit) {
764 best_benefit = benefit / cost;
765 best_node = n;
766 }
767 }
768
769 return best_node;
770 }
771
772 /**
773 * Only nodes with a spill cost set (cost != 0.0) will be considered
774 * for register spilling.
775 */
776 void
ra_set_node_spill_cost(struct ra_graph * g,unsigned int n,float cost)777 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
778 {
779 g->nodes[n].spill_cost = cost;
780 }
781