• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  *
5  * based in part on anv driver which is:
6  * Copyright © 2015 Intel Corporation
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the next
16  * paragraph) shall be included in all copies or substantial portions of the
17  * Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25  * IN THE SOFTWARE.
26  */
27 
28 #include "util/mesa-sha1.h"
29 #include "util/u_atomic.h"
30 #include "radv_debug.h"
31 #include "radv_private.h"
32 #include "radv_shader.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36 #include "vk_util.h"
37 
38 #include <llvm-c/Core.h>
39 #include <llvm-c/TargetMachine.h>
40 
41 #include "sid.h"
42 #include "gfx9d.h"
43 #include "ac_binary.h"
44 #include "ac_llvm_util.h"
45 #include "ac_nir_to_llvm.h"
46 #include "vk_format.h"
47 #include "util/debug.h"
48 #include "ac_exp_param.h"
49 #include "ac_shader_util.h"
50 
51 static void
radv_pipeline_destroy(struct radv_device * device,struct radv_pipeline * pipeline,const VkAllocationCallbacks * allocator)52 radv_pipeline_destroy(struct radv_device *device,
53                       struct radv_pipeline *pipeline,
54                       const VkAllocationCallbacks* allocator)
55 {
56 	for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
57 		if (pipeline->shaders[i])
58 			radv_shader_variant_destroy(device, pipeline->shaders[i]);
59 
60 	if (pipeline->gs_copy_shader)
61 		radv_shader_variant_destroy(device, pipeline->gs_copy_shader);
62 
63 	vk_free2(&device->alloc, allocator, pipeline);
64 }
65 
radv_DestroyPipeline(VkDevice _device,VkPipeline _pipeline,const VkAllocationCallbacks * pAllocator)66 void radv_DestroyPipeline(
67 	VkDevice                                    _device,
68 	VkPipeline                                  _pipeline,
69 	const VkAllocationCallbacks*                pAllocator)
70 {
71 	RADV_FROM_HANDLE(radv_device, device, _device);
72 	RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
73 
74 	if (!_pipeline)
75 		return;
76 
77 	radv_pipeline_destroy(device, pipeline, pAllocator);
78 }
79 
radv_dump_pipeline_stats(struct radv_device * device,struct radv_pipeline * pipeline)80 static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline)
81 {
82 	int i;
83 
84 	for (i = 0; i < MESA_SHADER_STAGES; i++) {
85 		if (!pipeline->shaders[i])
86 			continue;
87 
88 		radv_shader_dump_stats(device, pipeline->shaders[i], i, stderr);
89 	}
90 }
91 
get_hash_flags(struct radv_device * device)92 static uint32_t get_hash_flags(struct radv_device *device)
93 {
94 	uint32_t hash_flags = 0;
95 
96 	if (device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH)
97 		hash_flags |= RADV_HASH_SHADER_UNSAFE_MATH;
98 	if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
99 		hash_flags |= RADV_HASH_SHADER_SISCHED;
100 	return hash_flags;
101 }
102 
103 static VkResult
radv_pipeline_scratch_init(struct radv_device * device,struct radv_pipeline * pipeline)104 radv_pipeline_scratch_init(struct radv_device *device,
105                            struct radv_pipeline *pipeline)
106 {
107 	unsigned scratch_bytes_per_wave = 0;
108 	unsigned max_waves = 0;
109 	unsigned min_waves = 1;
110 
111 	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
112 		if (pipeline->shaders[i]) {
113 			unsigned max_stage_waves = device->scratch_waves;
114 
115 			scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave,
116 			                              pipeline->shaders[i]->config.scratch_bytes_per_wave);
117 
118 			max_stage_waves = MIN2(max_stage_waves,
119 			          4 * device->physical_device->rad_info.num_good_compute_units *
120 			          (256 / pipeline->shaders[i]->config.num_vgprs));
121 			max_waves = MAX2(max_waves, max_stage_waves);
122 		}
123 	}
124 
125 	if (pipeline->shaders[MESA_SHADER_COMPUTE]) {
126 		unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] *
127 		                      pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] *
128 		                      pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2];
129 		min_waves = MAX2(min_waves, round_up_u32(group_size, 64));
130 	}
131 
132 	if (scratch_bytes_per_wave)
133 		max_waves = MIN2(max_waves, 0xffffffffu / scratch_bytes_per_wave);
134 
135 	if (scratch_bytes_per_wave && max_waves < min_waves) {
136 		/* Not really true at this moment, but will be true on first
137 		 * execution. Avoid having hanging shaders. */
138 		return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
139 	}
140 	pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
141 	pipeline->max_waves = max_waves;
142 	return VK_SUCCESS;
143 }
144 
si_translate_blend_function(VkBlendOp op)145 static uint32_t si_translate_blend_function(VkBlendOp op)
146 {
147 	switch (op) {
148 	case VK_BLEND_OP_ADD:
149 		return V_028780_COMB_DST_PLUS_SRC;
150 	case VK_BLEND_OP_SUBTRACT:
151 		return V_028780_COMB_SRC_MINUS_DST;
152 	case VK_BLEND_OP_REVERSE_SUBTRACT:
153 		return V_028780_COMB_DST_MINUS_SRC;
154 	case VK_BLEND_OP_MIN:
155 		return V_028780_COMB_MIN_DST_SRC;
156 	case VK_BLEND_OP_MAX:
157 		return V_028780_COMB_MAX_DST_SRC;
158 	default:
159 		return 0;
160 	}
161 }
162 
si_translate_blend_factor(VkBlendFactor factor)163 static uint32_t si_translate_blend_factor(VkBlendFactor factor)
164 {
165 	switch (factor) {
166 	case VK_BLEND_FACTOR_ZERO:
167 		return V_028780_BLEND_ZERO;
168 	case VK_BLEND_FACTOR_ONE:
169 		return V_028780_BLEND_ONE;
170 	case VK_BLEND_FACTOR_SRC_COLOR:
171 		return V_028780_BLEND_SRC_COLOR;
172 	case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
173 		return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
174 	case VK_BLEND_FACTOR_DST_COLOR:
175 		return V_028780_BLEND_DST_COLOR;
176 	case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
177 		return V_028780_BLEND_ONE_MINUS_DST_COLOR;
178 	case VK_BLEND_FACTOR_SRC_ALPHA:
179 		return V_028780_BLEND_SRC_ALPHA;
180 	case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
181 		return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
182 	case VK_BLEND_FACTOR_DST_ALPHA:
183 		return V_028780_BLEND_DST_ALPHA;
184 	case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
185 		return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
186 	case VK_BLEND_FACTOR_CONSTANT_COLOR:
187 		return V_028780_BLEND_CONSTANT_COLOR;
188 	case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
189 		return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
190 	case VK_BLEND_FACTOR_CONSTANT_ALPHA:
191 		return V_028780_BLEND_CONSTANT_ALPHA;
192 	case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
193 		return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
194 	case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
195 		return V_028780_BLEND_SRC_ALPHA_SATURATE;
196 	case VK_BLEND_FACTOR_SRC1_COLOR:
197 		return V_028780_BLEND_SRC1_COLOR;
198 	case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
199 		return V_028780_BLEND_INV_SRC1_COLOR;
200 	case VK_BLEND_FACTOR_SRC1_ALPHA:
201 		return V_028780_BLEND_SRC1_ALPHA;
202 	case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
203 		return V_028780_BLEND_INV_SRC1_ALPHA;
204 	default:
205 		return 0;
206 	}
207 }
208 
si_translate_blend_opt_function(VkBlendOp op)209 static uint32_t si_translate_blend_opt_function(VkBlendOp op)
210 {
211 	switch (op) {
212 	case VK_BLEND_OP_ADD:
213 		return V_028760_OPT_COMB_ADD;
214 	case VK_BLEND_OP_SUBTRACT:
215 		return V_028760_OPT_COMB_SUBTRACT;
216 	case VK_BLEND_OP_REVERSE_SUBTRACT:
217 		return V_028760_OPT_COMB_REVSUBTRACT;
218 	case VK_BLEND_OP_MIN:
219 		return V_028760_OPT_COMB_MIN;
220 	case VK_BLEND_OP_MAX:
221 		return V_028760_OPT_COMB_MAX;
222 	default:
223 		return V_028760_OPT_COMB_BLEND_DISABLED;
224 	}
225 }
226 
si_translate_blend_opt_factor(VkBlendFactor factor,bool is_alpha)227 static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha)
228 {
229 	switch (factor) {
230 	case VK_BLEND_FACTOR_ZERO:
231 		return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL;
232 	case VK_BLEND_FACTOR_ONE:
233 		return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE;
234 	case VK_BLEND_FACTOR_SRC_COLOR:
235 		return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0
236 				: V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0;
237 	case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
238 		return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1
239 				: V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1;
240 	case VK_BLEND_FACTOR_SRC_ALPHA:
241 		return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0;
242 	case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
243 		return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1;
244 	case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
245 		return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE
246 				: V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
247 	default:
248 		return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
249 	}
250 }
251 
252 /**
253  * Get rid of DST in the blend factors by commuting the operands:
254  *    func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
255  */
si_blend_remove_dst(unsigned * func,unsigned * src_factor,unsigned * dst_factor,unsigned expected_dst,unsigned replacement_src)256 static void si_blend_remove_dst(unsigned *func, unsigned *src_factor,
257 				unsigned *dst_factor, unsigned expected_dst,
258 				unsigned replacement_src)
259 {
260 	if (*src_factor == expected_dst &&
261 	    *dst_factor == VK_BLEND_FACTOR_ZERO) {
262 		*src_factor = VK_BLEND_FACTOR_ZERO;
263 		*dst_factor = replacement_src;
264 
265 		/* Commuting the operands requires reversing subtractions. */
266 		if (*func == VK_BLEND_OP_SUBTRACT)
267 			*func = VK_BLEND_OP_REVERSE_SUBTRACT;
268 		else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
269 			*func = VK_BLEND_OP_SUBTRACT;
270 	}
271 }
272 
si_blend_factor_uses_dst(unsigned factor)273 static bool si_blend_factor_uses_dst(unsigned factor)
274 {
275 	return factor == VK_BLEND_FACTOR_DST_COLOR ||
276 		factor == VK_BLEND_FACTOR_DST_ALPHA ||
277 		factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
278 		factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA ||
279 		factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
280 }
281 
is_dual_src(VkBlendFactor factor)282 static bool is_dual_src(VkBlendFactor factor)
283 {
284 	switch (factor) {
285 	case VK_BLEND_FACTOR_SRC1_COLOR:
286 	case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
287 	case VK_BLEND_FACTOR_SRC1_ALPHA:
288 	case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
289 		return true;
290 	default:
291 		return false;
292 	}
293 }
294 
si_choose_spi_color_format(VkFormat vk_format,bool blend_enable,bool blend_need_alpha)295 static unsigned si_choose_spi_color_format(VkFormat vk_format,
296 					    bool blend_enable,
297 					    bool blend_need_alpha)
298 {
299 	const struct vk_format_description *desc = vk_format_description(vk_format);
300 	unsigned format, ntype, swap;
301 
302 	/* Alpha is needed for alpha-to-coverage.
303 	 * Blending may be with or without alpha.
304 	 */
305 	unsigned normal = 0; /* most optimal, may not support blending or export alpha */
306 	unsigned alpha = 0; /* exports alpha, but may not support blending */
307 	unsigned blend = 0; /* supports blending, but may not export alpha */
308 	unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
309 
310 	format = radv_translate_colorformat(vk_format);
311 	ntype = radv_translate_color_numformat(vk_format, desc,
312 					       vk_format_get_first_non_void_channel(vk_format));
313 	swap = radv_translate_colorswap(vk_format, false);
314 
315 	/* Choose the SPI color formats. These are required values for Stoney/RB+.
316 	 * Other chips have multiple choices, though they are not necessarily better.
317 	 */
318 	switch (format) {
319 	case V_028C70_COLOR_5_6_5:
320 	case V_028C70_COLOR_1_5_5_5:
321 	case V_028C70_COLOR_5_5_5_1:
322 	case V_028C70_COLOR_4_4_4_4:
323 	case V_028C70_COLOR_10_11_11:
324 	case V_028C70_COLOR_11_11_10:
325 	case V_028C70_COLOR_8:
326 	case V_028C70_COLOR_8_8:
327 	case V_028C70_COLOR_8_8_8_8:
328 	case V_028C70_COLOR_10_10_10_2:
329 	case V_028C70_COLOR_2_10_10_10:
330 		if (ntype == V_028C70_NUMBER_UINT)
331 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
332 		else if (ntype == V_028C70_NUMBER_SINT)
333 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
334 		else
335 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
336 		break;
337 
338 	case V_028C70_COLOR_16:
339 	case V_028C70_COLOR_16_16:
340 	case V_028C70_COLOR_16_16_16_16:
341 		if (ntype == V_028C70_NUMBER_UNORM ||
342 		    ntype == V_028C70_NUMBER_SNORM) {
343 			/* UNORM16 and SNORM16 don't support blending */
344 			if (ntype == V_028C70_NUMBER_UNORM)
345 				normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
346 			else
347 				normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
348 
349 			/* Use 32 bits per channel for blending. */
350 			if (format == V_028C70_COLOR_16) {
351 				if (swap == V_028C70_SWAP_STD) { /* R */
352 					blend = V_028714_SPI_SHADER_32_R;
353 					blend_alpha = V_028714_SPI_SHADER_32_AR;
354 				} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
355 					blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
356 				else
357 					assert(0);
358 			} else if (format == V_028C70_COLOR_16_16) {
359 				if (swap == V_028C70_SWAP_STD) { /* RG */
360 					blend = V_028714_SPI_SHADER_32_GR;
361 					blend_alpha = V_028714_SPI_SHADER_32_ABGR;
362 				} else if (swap == V_028C70_SWAP_ALT) /* RA */
363 					blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
364 				else
365 					assert(0);
366 			} else /* 16_16_16_16 */
367 				blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
368 		} else if (ntype == V_028C70_NUMBER_UINT)
369 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
370 		else if (ntype == V_028C70_NUMBER_SINT)
371 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
372 		else if (ntype == V_028C70_NUMBER_FLOAT)
373 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
374 		else
375 			assert(0);
376 		break;
377 
378 	case V_028C70_COLOR_32:
379 		if (swap == V_028C70_SWAP_STD) { /* R */
380 			blend = normal = V_028714_SPI_SHADER_32_R;
381 			alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
382 		} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
383 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
384 		else
385 			assert(0);
386 		break;
387 
388 	case V_028C70_COLOR_32_32:
389 		if (swap == V_028C70_SWAP_STD) { /* RG */
390 			blend = normal = V_028714_SPI_SHADER_32_GR;
391 			alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
392 		} else if (swap == V_028C70_SWAP_ALT) /* RA */
393 			alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
394 		else
395 			assert(0);
396 		break;
397 
398 	case V_028C70_COLOR_32_32_32_32:
399 	case V_028C70_COLOR_8_24:
400 	case V_028C70_COLOR_24_8:
401 	case V_028C70_COLOR_X24_8_32_FLOAT:
402 		alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
403 		break;
404 
405 	default:
406 		unreachable("unhandled blend format");
407 	}
408 
409 	if (blend_enable && blend_need_alpha)
410 		return blend_alpha;
411 	else if(blend_need_alpha)
412 		return alpha;
413 	else if(blend_enable)
414 		return blend;
415 	else
416 		return normal;
417 }
418 
419 static void
radv_pipeline_compute_spi_color_formats(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo,uint32_t blend_enable,uint32_t blend_need_alpha,bool single_cb_enable,bool blend_mrt0_is_dual_src)420 radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
421 					const VkGraphicsPipelineCreateInfo *pCreateInfo,
422 					uint32_t blend_enable,
423 					uint32_t blend_need_alpha,
424 					bool single_cb_enable,
425 					bool blend_mrt0_is_dual_src)
426 {
427 	RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
428 	struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
429 	struct radv_blend_state *blend = &pipeline->graphics.blend;
430 	unsigned col_format = 0;
431 
432 	for (unsigned i = 0; i < (single_cb_enable ? 1 : subpass->color_count); ++i) {
433 		unsigned cf;
434 
435 		if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) {
436 			cf = V_028714_SPI_SHADER_ZERO;
437 		} else {
438 			struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment;
439 
440 			cf = si_choose_spi_color_format(attachment->format,
441 			                                blend_enable & (1 << i),
442 			                                blend_need_alpha & (1 << i));
443 		}
444 
445 		col_format |= cf << (4 * i);
446 	}
447 
448 	blend->cb_shader_mask = ac_get_cb_shader_mask(col_format);
449 
450 	if (blend_mrt0_is_dual_src)
451 		col_format |= (col_format & 0xf) << 4;
452 	blend->spi_shader_col_format = col_format;
453 }
454 
455 static bool
format_is_int8(VkFormat format)456 format_is_int8(VkFormat format)
457 {
458 	const struct vk_format_description *desc = vk_format_description(format);
459 	int channel =  vk_format_get_first_non_void_channel(format);
460 
461 	return channel >= 0 && desc->channel[channel].pure_integer &&
462 	       desc->channel[channel].size == 8;
463 }
464 
465 static bool
format_is_int10(VkFormat format)466 format_is_int10(VkFormat format)
467 {
468 	const struct vk_format_description *desc = vk_format_description(format);
469 
470 	if (desc->nr_channels != 4)
471 		return false;
472 	for (unsigned i = 0; i < 4; i++) {
473 		if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
474 			return true;
475 	}
476 	return false;
477 }
478 
radv_format_meta_fs_key(VkFormat format)479 unsigned radv_format_meta_fs_key(VkFormat format)
480 {
481 	unsigned col_format = si_choose_spi_color_format(format, false, false) - 1;
482 	bool is_int8 = format_is_int8(format);
483 	bool is_int10 = format_is_int10(format);
484 
485 	return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0);
486 }
487 
488 static void
radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo * pCreateInfo,unsigned * is_int8,unsigned * is_int10)489 radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo,
490 				    unsigned *is_int8, unsigned *is_int10)
491 {
492 	RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
493 	struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
494 	*is_int8 = 0;
495 	*is_int10 = 0;
496 
497 	for (unsigned i = 0; i < subpass->color_count; ++i) {
498 		struct radv_render_pass_attachment *attachment;
499 
500 		if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
501 			continue;
502 
503 		attachment = pass->attachments + subpass->color_attachments[i].attachment;
504 
505 		if (format_is_int8(attachment->format))
506 			*is_int8 |= 1 << i;
507 		if (format_is_int10(attachment->format))
508 			*is_int10 |= 1 << i;
509 	}
510 }
511 
512 static void
radv_pipeline_init_blend_state(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo,const struct radv_graphics_pipeline_create_info * extra)513 radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
514 			       const VkGraphicsPipelineCreateInfo *pCreateInfo,
515 			       const struct radv_graphics_pipeline_create_info *extra)
516 {
517 	const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
518 	const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
519 	struct radv_blend_state *blend = &pipeline->graphics.blend;
520 	unsigned mode = V_028808_CB_NORMAL;
521 	uint32_t blend_enable = 0, blend_need_alpha = 0;
522 	bool blend_mrt0_is_dual_src = false;
523 	int i;
524 	bool single_cb_enable = false;
525 
526 	if (!vkblend)
527 		return;
528 
529 	if (extra && extra->custom_blend_mode) {
530 		single_cb_enable = true;
531 		mode = extra->custom_blend_mode;
532 	}
533 	blend->cb_color_control = 0;
534 	if (vkblend->logicOpEnable)
535 		blend->cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4));
536 	else
537 		blend->cb_color_control |= S_028808_ROP3(0xcc);
538 
539 	blend->db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) |
540 		S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
541 		S_028B70_ALPHA_TO_MASK_OFFSET2(2) |
542 		S_028B70_ALPHA_TO_MASK_OFFSET3(2);
543 
544 	if (vkms && vkms->alphaToCoverageEnable) {
545 		blend->db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
546 	}
547 
548 	blend->cb_target_mask = 0;
549 	for (i = 0; i < vkblend->attachmentCount; i++) {
550 		const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
551 		unsigned blend_cntl = 0;
552 		unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt;
553 		VkBlendOp eqRGB = att->colorBlendOp;
554 		VkBlendFactor srcRGB = att->srcColorBlendFactor;
555 		VkBlendFactor dstRGB = att->dstColorBlendFactor;
556 		VkBlendOp eqA = att->alphaBlendOp;
557 		VkBlendFactor srcA = att->srcAlphaBlendFactor;
558 		VkBlendFactor dstA = att->dstAlphaBlendFactor;
559 
560 		blend->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
561 
562 		if (!att->colorWriteMask)
563 			continue;
564 
565 		blend->cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
566 		if (!att->blendEnable) {
567 			blend->cb_blend_control[i] = blend_cntl;
568 			continue;
569 		}
570 
571 		if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
572 			if (i == 0)
573 				blend_mrt0_is_dual_src = true;
574 
575 		if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
576 			srcRGB = VK_BLEND_FACTOR_ONE;
577 			dstRGB = VK_BLEND_FACTOR_ONE;
578 		}
579 		if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
580 			srcA = VK_BLEND_FACTOR_ONE;
581 			dstA = VK_BLEND_FACTOR_ONE;
582 		}
583 
584 		/* Blending optimizations for RB+.
585 		 * These transformations don't change the behavior.
586 		 *
587 		 * First, get rid of DST in the blend factors:
588 		 *    func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
589 		 */
590 		si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB,
591 				    VK_BLEND_FACTOR_DST_COLOR,
592 				    VK_BLEND_FACTOR_SRC_COLOR);
593 
594 		si_blend_remove_dst(&eqA, &srcA, &dstA,
595 				    VK_BLEND_FACTOR_DST_COLOR,
596 				    VK_BLEND_FACTOR_SRC_COLOR);
597 
598 		si_blend_remove_dst(&eqA, &srcA, &dstA,
599 				    VK_BLEND_FACTOR_DST_ALPHA,
600 				    VK_BLEND_FACTOR_SRC_ALPHA);
601 
602 		/* Look up the ideal settings from tables. */
603 		srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false);
604 		dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false);
605 		srcA_opt = si_translate_blend_opt_factor(srcA, true);
606 		dstA_opt = si_translate_blend_opt_factor(dstA, true);
607 
608 				/* Handle interdependencies. */
609 		if (si_blend_factor_uses_dst(srcRGB))
610 			dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
611 		if (si_blend_factor_uses_dst(srcA))
612 			dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE;
613 
614 		if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE &&
615 		    (dstRGB == VK_BLEND_FACTOR_ZERO ||
616 		     dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
617 		     dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE))
618 			dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0;
619 
620 		/* Set the final value. */
621 		blend->sx_mrt_blend_opt[i] =
622 			S_028760_COLOR_SRC_OPT(srcRGB_opt) |
623 			S_028760_COLOR_DST_OPT(dstRGB_opt) |
624 			S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) |
625 			S_028760_ALPHA_SRC_OPT(srcA_opt) |
626 			S_028760_ALPHA_DST_OPT(dstA_opt) |
627 			S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA));
628 		blend_cntl |= S_028780_ENABLE(1);
629 
630 		blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
631 		blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
632 		blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
633 		if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
634 			blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
635 			blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
636 			blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
637 			blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
638 		}
639 		blend->cb_blend_control[i] = blend_cntl;
640 
641 		blend_enable |= 1 << i;
642 
643 		if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
644 		    dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
645 		    srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
646 		    dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
647 		    srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
648 		    dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
649 			blend_need_alpha |= 1 << i;
650 	}
651 	for (i = vkblend->attachmentCount; i < 8; i++) {
652 		blend->cb_blend_control[i] = 0;
653 		blend->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
654 	}
655 
656 	/* disable RB+ for now */
657 	if (pipeline->device->physical_device->has_rbplus)
658 		blend->cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1);
659 
660 	if (blend->cb_target_mask)
661 		blend->cb_color_control |= S_028808_MODE(mode);
662 	else
663 		blend->cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
664 
665 	radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo,
666 						blend_enable, blend_need_alpha, single_cb_enable, blend_mrt0_is_dual_src);
667 }
668 
si_translate_stencil_op(enum VkStencilOp op)669 static uint32_t si_translate_stencil_op(enum VkStencilOp op)
670 {
671 	switch (op) {
672 	case VK_STENCIL_OP_KEEP:
673 		return V_02842C_STENCIL_KEEP;
674 	case VK_STENCIL_OP_ZERO:
675 		return V_02842C_STENCIL_ZERO;
676 	case VK_STENCIL_OP_REPLACE:
677 		return V_02842C_STENCIL_REPLACE_TEST;
678 	case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
679 		return V_02842C_STENCIL_ADD_CLAMP;
680 	case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
681 		return V_02842C_STENCIL_SUB_CLAMP;
682 	case VK_STENCIL_OP_INVERT:
683 		return V_02842C_STENCIL_INVERT;
684 	case VK_STENCIL_OP_INCREMENT_AND_WRAP:
685 		return V_02842C_STENCIL_ADD_WRAP;
686 	case VK_STENCIL_OP_DECREMENT_AND_WRAP:
687 		return V_02842C_STENCIL_SUB_WRAP;
688 	default:
689 		return 0;
690 	}
691 }
692 static void
radv_pipeline_init_depth_stencil_state(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo,const struct radv_graphics_pipeline_create_info * extra)693 radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline,
694 				       const VkGraphicsPipelineCreateInfo *pCreateInfo,
695 				       const struct radv_graphics_pipeline_create_info *extra)
696 {
697 	const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState;
698 	struct radv_depth_stencil_state *ds = &pipeline->graphics.ds;
699 
700 	if (!vkds)
701 		return;
702 
703 	RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
704 	struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
705 	if (subpass->depth_stencil_attachment.attachment == VK_ATTACHMENT_UNUSED)
706 		return;
707 
708 	struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment.attachment;
709 	bool has_depth_attachment = vk_format_is_depth(attachment->format);
710 	bool has_stencil_attachment = vk_format_is_stencil(attachment->format);
711 
712 	if (has_depth_attachment) {
713 		ds->db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
714 		                       S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
715 		                       S_028800_ZFUNC(vkds->depthCompareOp) |
716 		                       S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
717 	}
718 
719 	if (has_stencil_attachment && vkds->stencilTestEnable) {
720 		ds->db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
721 		ds->db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
722 		ds->db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
723 		ds->db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
724 		ds->db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
725 
726 		ds->db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
727 		ds->db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
728 		ds->db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
729 		ds->db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
730 	}
731 
732 	if (extra) {
733 
734 		ds->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
735 		ds->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
736 
737 		ds->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize);
738 		ds->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace);
739 		ds->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace);
740 		ds->db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
741 		ds->db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
742 	}
743 }
744 
si_translate_fill(VkPolygonMode func)745 static uint32_t si_translate_fill(VkPolygonMode func)
746 {
747 	switch(func) {
748 	case VK_POLYGON_MODE_FILL:
749 		return V_028814_X_DRAW_TRIANGLES;
750 	case VK_POLYGON_MODE_LINE:
751 		return V_028814_X_DRAW_LINES;
752 	case VK_POLYGON_MODE_POINT:
753 		return V_028814_X_DRAW_POINTS;
754 	default:
755 		assert(0);
756 		return V_028814_X_DRAW_POINTS;
757 	}
758 }
759 static void
radv_pipeline_init_raster_state(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo)760 radv_pipeline_init_raster_state(struct radv_pipeline *pipeline,
761 				const VkGraphicsPipelineCreateInfo *pCreateInfo)
762 {
763 	const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
764 	struct radv_raster_state *raster = &pipeline->graphics.raster;
765 
766 	raster->spi_interp_control =
767 		S_0286D4_FLAT_SHADE_ENA(1) |
768 		S_0286D4_PNT_SPRITE_ENA(1) |
769 		S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
770 		S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
771 		S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
772 		S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
773 		S_0286D4_PNT_SPRITE_TOP_1(0); // vulkan is top to bottom - 1.0 at bottom
774 
775 
776 	raster->pa_cl_clip_cntl = S_028810_PS_UCP_MODE(3) |
777 		S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
778 		S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
779 		S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
780 		S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
781 		S_028810_DX_LINEAR_ATTR_CLIP_ENA(1);
782 
783 	raster->pa_su_vtx_cntl =
784 		S_028BE4_PIX_CENTER(1) | // TODO verify
785 		S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
786 		S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH);
787 
788 	raster->pa_su_sc_mode_cntl =
789 		S_028814_FACE(vkraster->frontFace) |
790 		S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
791 		S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
792 		S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
793 		S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
794 		S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
795 		S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
796 		S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
797 		S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0);
798 
799 }
800 
radv_pipeline_get_ps_iter_samples(const VkPipelineMultisampleStateCreateInfo * vkms)801 static uint8_t radv_pipeline_get_ps_iter_samples(const VkPipelineMultisampleStateCreateInfo *vkms)
802 {
803 	uint32_t num_samples = vkms->rasterizationSamples;
804 	uint32_t ps_iter_samples = 1;
805 
806 	if (vkms->sampleShadingEnable) {
807 		ps_iter_samples = ceil(vkms->minSampleShading * num_samples);
808 		ps_iter_samples = util_next_power_of_two(ps_iter_samples);
809 	}
810 	return ps_iter_samples;
811 }
812 
813 static void
radv_pipeline_init_multisample_state(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo)814 radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
815 				     const VkGraphicsPipelineCreateInfo *pCreateInfo)
816 {
817 	const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
818 	struct radv_multisample_state *ms = &pipeline->graphics.ms;
819 	unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
820 	int ps_iter_samples = 1;
821 	uint32_t mask = 0xffff;
822 
823 	if (vkms)
824 		ms->num_samples = vkms->rasterizationSamples;
825 	else
826 		ms->num_samples = 1;
827 
828 	if (vkms)
829 		ps_iter_samples = radv_pipeline_get_ps_iter_samples(vkms);
830 	if (vkms && !vkms->sampleShadingEnable && pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.force_persample) {
831 		ps_iter_samples = ms->num_samples;
832 	}
833 
834 	ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
835 	ms->pa_sc_aa_config = 0;
836 	ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
837 		S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
838 	ms->pa_sc_mode_cntl_1 =
839 		S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
840 		S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
841 		/* always 1: */
842 		S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
843 		S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
844 		S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
845 		S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
846 		S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
847 		S_028A4C_FORCE_EOV_REZ_ENABLE(1);
848 	ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9) |
849 	                        S_028A48_VPORT_SCISSOR_ENABLE(1);
850 
851 	if (ms->num_samples > 1) {
852 		unsigned log_samples = util_logbase2(ms->num_samples);
853 		unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples);
854 		ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1);
855 		ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
856 		ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) |
857 			S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
858 			S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
859 			S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
860 		ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
861 			S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) |
862 			S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
863 		ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
864 		if (ps_iter_samples > 1)
865 			pipeline->graphics.spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2);
866 	}
867 
868 	const struct VkPipelineRasterizationStateRasterizationOrderAMD *raster_order =
869 		vk_find_struct_const(pCreateInfo->pRasterizationState->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD);
870 	if (raster_order && raster_order->rasterizationOrder == VK_RASTERIZATION_ORDER_RELAXED_AMD) {
871 		ms->pa_sc_mode_cntl_1 |= S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(1) |
872 					S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7);
873 	}
874 
875 	if (vkms && vkms->pSampleMask) {
876 		mask = vkms->pSampleMask[0] & 0xffff;
877 	}
878 
879 	ms->pa_sc_aa_mask[0] = mask | (mask << 16);
880 	ms->pa_sc_aa_mask[1] = mask | (mask << 16);
881 }
882 
883 static bool
radv_prim_can_use_guardband(enum VkPrimitiveTopology topology)884 radv_prim_can_use_guardband(enum VkPrimitiveTopology topology)
885 {
886 	switch (topology) {
887 	case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
888 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
889 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
890 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
891 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
892 		return false;
893 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
894 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
895 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
896 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
897 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
898 	case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
899 		return true;
900 	default:
901 		unreachable("unhandled primitive type");
902 	}
903 }
904 
905 static uint32_t
si_translate_prim(enum VkPrimitiveTopology topology)906 si_translate_prim(enum VkPrimitiveTopology topology)
907 {
908 	switch (topology) {
909 	case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
910 		return V_008958_DI_PT_POINTLIST;
911 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
912 		return V_008958_DI_PT_LINELIST;
913 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
914 		return V_008958_DI_PT_LINESTRIP;
915 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
916 		return V_008958_DI_PT_TRILIST;
917 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
918 		return V_008958_DI_PT_TRISTRIP;
919 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
920 		return V_008958_DI_PT_TRIFAN;
921 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
922 		return V_008958_DI_PT_LINELIST_ADJ;
923 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
924 		return V_008958_DI_PT_LINESTRIP_ADJ;
925 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
926 		return V_008958_DI_PT_TRILIST_ADJ;
927 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
928 		return V_008958_DI_PT_TRISTRIP_ADJ;
929 	case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
930 		return V_008958_DI_PT_PATCH;
931 	default:
932 		assert(0);
933 		return 0;
934 	}
935 }
936 
937 static uint32_t
si_conv_gl_prim_to_gs_out(unsigned gl_prim)938 si_conv_gl_prim_to_gs_out(unsigned gl_prim)
939 {
940 	switch (gl_prim) {
941 	case 0: /* GL_POINTS */
942 		return V_028A6C_OUTPRIM_TYPE_POINTLIST;
943 	case 1: /* GL_LINES */
944 	case 3: /* GL_LINE_STRIP */
945 	case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
946 	case 0x8E7A: /* GL_ISOLINES */
947 		return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
948 
949 	case 4: /* GL_TRIANGLES */
950 	case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
951 	case 5: /* GL_TRIANGLE_STRIP */
952 	case 7: /* GL_QUADS */
953 		return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
954 	default:
955 		assert(0);
956 		return 0;
957 	}
958 }
959 
960 static uint32_t
si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)961 si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
962 {
963 	switch (topology) {
964 	case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
965 	case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
966 		return V_028A6C_OUTPRIM_TYPE_POINTLIST;
967 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
968 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
969 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
970 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
971 		return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
972 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
973 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
974 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
975 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
976 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
977 		return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
978 	default:
979 		assert(0);
980 		return 0;
981 	}
982 }
983 
si_map_swizzle(unsigned swizzle)984 static unsigned si_map_swizzle(unsigned swizzle)
985 {
986 	switch (swizzle) {
987 	case VK_SWIZZLE_Y:
988 		return V_008F0C_SQ_SEL_Y;
989 	case VK_SWIZZLE_Z:
990 		return V_008F0C_SQ_SEL_Z;
991 	case VK_SWIZZLE_W:
992 		return V_008F0C_SQ_SEL_W;
993 	case VK_SWIZZLE_0:
994 		return V_008F0C_SQ_SEL_0;
995 	case VK_SWIZZLE_1:
996 		return V_008F0C_SQ_SEL_1;
997 	default: /* VK_SWIZZLE_X */
998 		return V_008F0C_SQ_SEL_X;
999 	}
1000 }
1001 
1002 
radv_dynamic_state_mask(VkDynamicState state)1003 static unsigned radv_dynamic_state_mask(VkDynamicState state)
1004 {
1005 	switch(state) {
1006 	case VK_DYNAMIC_STATE_VIEWPORT:
1007 		return RADV_DYNAMIC_VIEWPORT;
1008 	case VK_DYNAMIC_STATE_SCISSOR:
1009 		return RADV_DYNAMIC_SCISSOR;
1010 	case VK_DYNAMIC_STATE_LINE_WIDTH:
1011 		return RADV_DYNAMIC_LINE_WIDTH;
1012 	case VK_DYNAMIC_STATE_DEPTH_BIAS:
1013 		return RADV_DYNAMIC_DEPTH_BIAS;
1014 	case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
1015 		return RADV_DYNAMIC_BLEND_CONSTANTS;
1016 	case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
1017 		return RADV_DYNAMIC_DEPTH_BOUNDS;
1018 	case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
1019 		return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
1020 	case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
1021 		return RADV_DYNAMIC_STENCIL_WRITE_MASK;
1022 	case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
1023 		return RADV_DYNAMIC_STENCIL_REFERENCE;
1024 	case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
1025 		return RADV_DYNAMIC_DISCARD_RECTANGLE;
1026 	default:
1027 		unreachable("Unhandled dynamic state");
1028 	}
1029 }
1030 
1031 static void
radv_pipeline_init_dynamic_state(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo)1032 radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
1033 				 const VkGraphicsPipelineCreateInfo *pCreateInfo)
1034 {
1035 	uint32_t states = RADV_DYNAMIC_ALL;
1036 	RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
1037 	struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1038 
1039 	pipeline->dynamic_state = default_dynamic_state;
1040 
1041 	if (pCreateInfo->pDynamicState) {
1042 		/* Remove all of the states that are marked as dynamic */
1043 		uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1044 		for (uint32_t s = 0; s < count; s++)
1045 			states &= ~radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
1046 	}
1047 
1048 	struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
1049 
1050 	/* Section 9.2 of the Vulkan 1.0.15 spec says:
1051 	 *
1052 	 *    pViewportState is [...] NULL if the pipeline
1053 	 *    has rasterization disabled.
1054 	 */
1055 	if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1056 		assert(pCreateInfo->pViewportState);
1057 
1058 		dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1059 		if (states & RADV_DYNAMIC_VIEWPORT) {
1060 			typed_memcpy(dynamic->viewport.viewports,
1061 				     pCreateInfo->pViewportState->pViewports,
1062 				     pCreateInfo->pViewportState->viewportCount);
1063 		}
1064 
1065 		dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1066 		if (states & RADV_DYNAMIC_SCISSOR) {
1067 			typed_memcpy(dynamic->scissor.scissors,
1068 				     pCreateInfo->pViewportState->pScissors,
1069 				     pCreateInfo->pViewportState->scissorCount);
1070 		}
1071 	}
1072 
1073 	if (states & RADV_DYNAMIC_LINE_WIDTH) {
1074 		assert(pCreateInfo->pRasterizationState);
1075 		dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1076 	}
1077 
1078 	if (states & RADV_DYNAMIC_DEPTH_BIAS) {
1079 		assert(pCreateInfo->pRasterizationState);
1080 		dynamic->depth_bias.bias =
1081 			pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1082 		dynamic->depth_bias.clamp =
1083 			pCreateInfo->pRasterizationState->depthBiasClamp;
1084 		dynamic->depth_bias.slope =
1085 			pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1086 	}
1087 
1088 	/* Section 9.2 of the Vulkan 1.0.15 spec says:
1089 	 *
1090 	 *    pColorBlendState is [...] NULL if the pipeline has rasterization
1091 	 *    disabled or if the subpass of the render pass the pipeline is
1092 	 *    created against does not use any color attachments.
1093 	 */
1094 	bool uses_color_att = false;
1095 	for (unsigned i = 0; i < subpass->color_count; ++i) {
1096 		if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1097 			uses_color_att = true;
1098 			break;
1099 		}
1100 	}
1101 
1102 	if (uses_color_att && states & RADV_DYNAMIC_BLEND_CONSTANTS) {
1103 		assert(pCreateInfo->pColorBlendState);
1104 		typed_memcpy(dynamic->blend_constants,
1105 			     pCreateInfo->pColorBlendState->blendConstants, 4);
1106 	}
1107 
1108 	/* If there is no depthstencil attachment, then don't read
1109 	 * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1110 	 * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1111 	 * no need to override the depthstencil defaults in
1112 	 * radv_pipeline::dynamic_state when there is no depthstencil attachment.
1113 	 *
1114 	 * Section 9.2 of the Vulkan 1.0.15 spec says:
1115 	 *
1116 	 *    pDepthStencilState is [...] NULL if the pipeline has rasterization
1117 	 *    disabled or if the subpass of the render pass the pipeline is created
1118 	 *    against does not use a depth/stencil attachment.
1119 	 */
1120 	if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1121 	    subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
1122 		assert(pCreateInfo->pDepthStencilState);
1123 
1124 		if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
1125 			dynamic->depth_bounds.min =
1126 				pCreateInfo->pDepthStencilState->minDepthBounds;
1127 			dynamic->depth_bounds.max =
1128 				pCreateInfo->pDepthStencilState->maxDepthBounds;
1129 		}
1130 
1131 		if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
1132 			dynamic->stencil_compare_mask.front =
1133 				pCreateInfo->pDepthStencilState->front.compareMask;
1134 			dynamic->stencil_compare_mask.back =
1135 				pCreateInfo->pDepthStencilState->back.compareMask;
1136 		}
1137 
1138 		if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
1139 			dynamic->stencil_write_mask.front =
1140 				pCreateInfo->pDepthStencilState->front.writeMask;
1141 			dynamic->stencil_write_mask.back =
1142 				pCreateInfo->pDepthStencilState->back.writeMask;
1143 		}
1144 
1145 		if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
1146 			dynamic->stencil_reference.front =
1147 				pCreateInfo->pDepthStencilState->front.reference;
1148 			dynamic->stencil_reference.back =
1149 				pCreateInfo->pDepthStencilState->back.reference;
1150 		}
1151 	}
1152 
1153 	const  VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info =
1154 			vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT);
1155 	if (discard_rectangle_info) {
1156 		dynamic->discard_rectangle.count = discard_rectangle_info->discardRectangleCount;
1157 		typed_memcpy(dynamic->discard_rectangle.rectangles,
1158 		             discard_rectangle_info->pDiscardRectangles,
1159 		             discard_rectangle_info->discardRectangleCount);
1160 
1161 		unsigned mask = 0;
1162 
1163 		for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) {
1164 			/* Interpret i as a bitmask, and then set the bit in the mask if
1165 			 * that combination of rectangles in which the pixel is contained
1166 			 * should pass the cliprect test. */
1167 			unsigned relevant_subset = i & ((1u << discard_rectangle_info->discardRectangleCount) - 1);
1168 
1169 			if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT &&
1170 			    !relevant_subset)
1171 				continue;
1172 
1173 			if (discard_rectangle_info->discardRectangleMode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT &&
1174 			    relevant_subset)
1175 				continue;
1176 
1177 			mask |= 1u << i;
1178 		}
1179 		pipeline->graphics.pa_sc_cliprect_rule = mask;
1180 	} else {
1181 		states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
1182 
1183 		/* Allow from all rectangle combinations */
1184 		pipeline->graphics.pa_sc_cliprect_rule = 0xffff;
1185 	}
1186 	pipeline->dynamic_state.mask = states;
1187 }
1188 
calculate_gfx9_gs_info(const VkGraphicsPipelineCreateInfo * pCreateInfo,struct radv_pipeline * pipeline)1189 static void calculate_gfx9_gs_info(const VkGraphicsPipelineCreateInfo *pCreateInfo,
1190                                    struct radv_pipeline *pipeline)
1191 {
1192 	struct ac_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
1193 	struct ac_es_output_info *es_info = radv_pipeline_has_tess(pipeline) ?
1194 		&gs_info->tes.es_info : &gs_info->vs.es_info;
1195 	unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
1196 	bool uses_adjacency;
1197 	switch(pCreateInfo->pInputAssemblyState->topology) {
1198 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
1199 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
1200 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
1201 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
1202 		uses_adjacency = true;
1203 		break;
1204 	default:
1205 		uses_adjacency = false;
1206 		break;
1207 	}
1208 
1209 	/* All these are in dwords: */
1210 	/* We can't allow using the whole LDS, because GS waves compete with
1211 	 * other shader stages for LDS space. */
1212 	const unsigned max_lds_size = 8 * 1024;
1213 	const unsigned esgs_itemsize = es_info->esgs_itemsize / 4;
1214 	unsigned esgs_lds_size;
1215 
1216 	/* All these are per subgroup: */
1217 	const unsigned max_out_prims = 32 * 1024;
1218 	const unsigned max_es_verts = 255;
1219 	const unsigned ideal_gs_prims = 64;
1220 	unsigned max_gs_prims, gs_prims;
1221 	unsigned min_es_verts, es_verts, worst_case_es_verts;
1222 
1223 	if (uses_adjacency || gs_num_invocations > 1)
1224 		max_gs_prims = 127 / gs_num_invocations;
1225 	else
1226 		max_gs_prims = 255;
1227 
1228 	/* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
1229 	 * Make sure we don't go over the maximum value.
1230 	 */
1231 	if (gs_info->gs.vertices_out > 0) {
1232 		max_gs_prims = MIN2(max_gs_prims,
1233 				    max_out_prims /
1234 				    (gs_info->gs.vertices_out * gs_num_invocations));
1235 	}
1236 	assert(max_gs_prims > 0);
1237 
1238 	/* If the primitive has adjacency, halve the number of vertices
1239 	 * that will be reused in multiple primitives.
1240 	 */
1241 	min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
1242 
1243 	gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
1244 	worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
1245 
1246 	/* Compute ESGS LDS size based on the worst case number of ES vertices
1247 	 * needed to create the target number of GS prims per subgroup.
1248 	 */
1249 	esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1250 
1251 	/* If total LDS usage is too big, refactor partitions based on ratio
1252 	 * of ESGS item sizes.
1253 	 */
1254 	if (esgs_lds_size > max_lds_size) {
1255 		/* Our target GS Prims Per Subgroup was too large. Calculate
1256 		 * the maximum number of GS Prims Per Subgroup that will fit
1257 		 * into LDS, capped by the maximum that the hardware can support.
1258 		 */
1259 		gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)),
1260 				max_gs_prims);
1261 		assert(gs_prims > 0);
1262 		worst_case_es_verts = MIN2(min_es_verts * gs_prims,
1263 					   max_es_verts);
1264 
1265 		esgs_lds_size = esgs_itemsize * worst_case_es_verts;
1266 		assert(esgs_lds_size <= max_lds_size);
1267 	}
1268 
1269 	/* Now calculate remaining ESGS information. */
1270 	if (esgs_lds_size)
1271 		es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
1272 	else
1273 		es_verts = max_es_verts;
1274 
1275 	/* Vertices for adjacency primitives are not always reused, so restore
1276 	 * it for ES_VERTS_PER_SUBGRP.
1277 	 */
1278 	min_es_verts = gs_info->gs.vertices_in;
1279 
1280 	/* For normal primitives, the VGT only checks if they are past the ES
1281 	 * verts per subgroup after allocating a full GS primitive and if they
1282 	 * are, kick off a new subgroup.  But if those additional ES verts are
1283 	 * unique (e.g. not reused) we need to make sure there is enough LDS
1284 	 * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
1285 	 */
1286 	es_verts -= min_es_verts - 1;
1287 
1288 	uint32_t es_verts_per_subgroup = es_verts;
1289 	uint32_t gs_prims_per_subgroup = gs_prims;
1290 	uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
1291 	uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
1292 	pipeline->graphics.gs.lds_size = align(esgs_lds_size, 128) / 128;
1293 	pipeline->graphics.gs.vgt_gs_onchip_cntl =
1294 	                       S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) |
1295 	                       S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) |
1296 	                       S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup);
1297 	pipeline->graphics.gs.vgt_gs_max_prims_per_subgroup =
1298 	                       S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup);
1299 	pipeline->graphics.gs.vgt_esgs_ring_itemsize  = esgs_itemsize;
1300 	assert(max_prims_per_subgroup <= max_out_prims);
1301 }
1302 
1303 static void
calculate_gs_ring_sizes(struct radv_pipeline * pipeline)1304 calculate_gs_ring_sizes(struct radv_pipeline *pipeline)
1305 {
1306 	struct radv_device *device = pipeline->device;
1307 	unsigned num_se = device->physical_device->rad_info.max_se;
1308 	unsigned wave_size = 64;
1309 	unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
1310 	unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
1311 	unsigned alignment = 256 * num_se;
1312 	/* The maximum size is 63.999 MB per SE. */
1313 	unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
1314 	struct ac_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
1315 	struct ac_es_output_info *es_info;
1316 	if (pipeline->device->physical_device->rad_info.chip_class >= GFX9)
1317 		es_info = radv_pipeline_has_tess(pipeline) ? &gs_info->tes.es_info : &gs_info->vs.es_info;
1318 	else
1319 		es_info = radv_pipeline_has_tess(pipeline) ?
1320 			&pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.es_info :
1321 			&pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.es_info;
1322 
1323 	/* Calculate the minimum size. */
1324 	unsigned min_esgs_ring_size = align(es_info->esgs_itemsize * gs_vertex_reuse *
1325 					    wave_size, alignment);
1326 	/* These are recommended sizes, not minimum sizes. */
1327 	unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
1328 		es_info->esgs_itemsize * gs_info->gs.vertices_in;
1329 	unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
1330 		gs_info->gs.max_gsvs_emit_size * 1; // no streams in VK (gs->max_gs_stream + 1);
1331 
1332 	min_esgs_ring_size = align(min_esgs_ring_size, alignment);
1333 	esgs_ring_size = align(esgs_ring_size, alignment);
1334 	gsvs_ring_size = align(gsvs_ring_size, alignment);
1335 
1336 	if (pipeline->device->physical_device->rad_info.chip_class <= VI)
1337 		pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
1338 
1339 	pipeline->graphics.gs.vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4;
1340 	pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
1341 }
1342 
si_multiwave_lds_size_workaround(struct radv_device * device,unsigned * lds_size)1343 static void si_multiwave_lds_size_workaround(struct radv_device *device,
1344 					     unsigned *lds_size)
1345 {
1346 	/* SPI barrier management bug:
1347 	 *   Make sure we have at least 4k of LDS in use to avoid the bug.
1348 	 *   It applies to workgroup sizes of more than one wavefront.
1349 	 */
1350 	if (device->physical_device->rad_info.family == CHIP_BONAIRE ||
1351 	    device->physical_device->rad_info.family == CHIP_KABINI ||
1352 	    device->physical_device->rad_info.family == CHIP_MULLINS)
1353 		*lds_size = MAX2(*lds_size, 8);
1354 }
1355 
1356 struct radv_shader_variant *
radv_get_vertex_shader(struct radv_pipeline * pipeline)1357 radv_get_vertex_shader(struct radv_pipeline *pipeline)
1358 {
1359 	if (pipeline->shaders[MESA_SHADER_VERTEX])
1360 		return pipeline->shaders[MESA_SHADER_VERTEX];
1361 	if (pipeline->shaders[MESA_SHADER_TESS_CTRL])
1362 		return pipeline->shaders[MESA_SHADER_TESS_CTRL];
1363 	return pipeline->shaders[MESA_SHADER_GEOMETRY];
1364 }
1365 
1366 static struct radv_shader_variant *
radv_get_tess_eval_shader(struct radv_pipeline * pipeline)1367 radv_get_tess_eval_shader(struct radv_pipeline *pipeline)
1368 {
1369 	if (pipeline->shaders[MESA_SHADER_TESS_EVAL])
1370 		return pipeline->shaders[MESA_SHADER_TESS_EVAL];
1371 	return pipeline->shaders[MESA_SHADER_GEOMETRY];
1372 }
1373 
1374 static void
calculate_tess_state(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo)1375 calculate_tess_state(struct radv_pipeline *pipeline,
1376 		     const VkGraphicsPipelineCreateInfo *pCreateInfo)
1377 {
1378 	unsigned num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints;
1379 	unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs;
1380 	unsigned num_tcs_patch_outputs;
1381 	unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size;
1382 	unsigned input_patch_size, output_patch_size, output_patch0_offset;
1383 	unsigned lds_size, hardware_lds_size;
1384 	unsigned perpatch_output_offset;
1385 	unsigned num_patches;
1386 	struct radv_tessellation_state *tess = &pipeline->graphics.tess;
1387 
1388 	/* This calculates how shader inputs and outputs among VS, TCS, and TES
1389 	 * are laid out in LDS. */
1390 	num_tcs_inputs = util_last_bit64(radv_get_vertex_shader(pipeline)->info.vs.outputs_written);
1391 
1392 	num_tcs_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written); //tcs->outputs_written
1393 	num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT
1394 	num_tcs_patch_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.patch_outputs_written);
1395 
1396 	/* Ensure that we only need one wave per SIMD so we don't need to check
1397 	 * resource usage. Also ensures that the number of tcs in and out
1398 	 * vertices per threadgroup are at most 256.
1399 	 */
1400 	input_vertex_size = num_tcs_inputs * 16;
1401 	output_vertex_size = num_tcs_outputs * 16;
1402 
1403 	input_patch_size = num_tcs_input_cp * input_vertex_size;
1404 
1405 	pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
1406 	output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
1407 	/* Ensure that we only need one wave per SIMD so we don't need to check
1408 	 * resource usage. Also ensures that the number of tcs in and out
1409 	 * vertices per threadgroup are at most 256.
1410 	 */
1411 	num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
1412 
1413 	/* Make sure that the data fits in LDS. This assumes the shaders only
1414 	 * use LDS for the inputs and outputs.
1415 	 */
1416 	hardware_lds_size = pipeline->device->physical_device->rad_info.chip_class >= CIK ? 65536 : 32768;
1417 	num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
1418 
1419 	/* Make sure the output data fits in the offchip buffer */
1420 	num_patches = MIN2(num_patches,
1421 			    (pipeline->device->tess_offchip_block_dw_size * 4) /
1422 			    output_patch_size);
1423 
1424 	/* Not necessary for correctness, but improves performance. The
1425 	 * specific value is taken from the proprietary driver.
1426 	 */
1427 	num_patches = MIN2(num_patches, 40);
1428 
1429 	/* SI bug workaround - limit LS-HS threadgroups to only one wave. */
1430 	if (pipeline->device->physical_device->rad_info.chip_class == SI) {
1431 		unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
1432 		num_patches = MIN2(num_patches, one_wave);
1433 	}
1434 
1435 	output_patch0_offset = input_patch_size * num_patches;
1436 	perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
1437 
1438 	lds_size = output_patch0_offset + output_patch_size * num_patches;
1439 
1440 	if (pipeline->device->physical_device->rad_info.chip_class >= CIK) {
1441 		assert(lds_size <= 65536);
1442 		lds_size = align(lds_size, 512) / 512;
1443 	} else {
1444 		assert(lds_size <= 32768);
1445 		lds_size = align(lds_size, 256) / 256;
1446 	}
1447 	si_multiwave_lds_size_workaround(pipeline->device, &lds_size);
1448 
1449 	tess->lds_size = lds_size;
1450 
1451 	tess->tcs_in_layout = (input_patch_size / 4) |
1452 		((input_vertex_size / 4) << 13);
1453 	tess->tcs_out_layout = (output_patch_size / 4) |
1454 		((output_vertex_size / 4) << 13);
1455 	tess->tcs_out_offsets = (output_patch0_offset / 16) |
1456 		((perpatch_output_offset / 16) << 16);
1457 	tess->offchip_layout = (pervertex_output_patch_size * num_patches << 16) |
1458 		(num_tcs_output_cp << 9) | num_patches;
1459 
1460 	tess->ls_hs_config = S_028B58_NUM_PATCHES(num_patches) |
1461 		S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
1462 		S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
1463 	tess->num_patches = num_patches;
1464 	tess->num_tcs_input_cp = num_tcs_input_cp;
1465 
1466 	struct radv_shader_variant *tes = radv_get_tess_eval_shader(pipeline);
1467 	unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0;
1468 
1469 	switch (tes->info.tes.primitive_mode) {
1470 	case GL_TRIANGLES:
1471 		type = V_028B6C_TESS_TRIANGLE;
1472 		break;
1473 	case GL_QUADS:
1474 		type = V_028B6C_TESS_QUAD;
1475 		break;
1476 	case GL_ISOLINES:
1477 		type = V_028B6C_TESS_ISOLINE;
1478 		break;
1479 	}
1480 
1481 	switch (tes->info.tes.spacing) {
1482 	case TESS_SPACING_EQUAL:
1483 		partitioning = V_028B6C_PART_INTEGER;
1484 		break;
1485 	case TESS_SPACING_FRACTIONAL_ODD:
1486 		partitioning = V_028B6C_PART_FRAC_ODD;
1487 		break;
1488 	case TESS_SPACING_FRACTIONAL_EVEN:
1489 		partitioning = V_028B6C_PART_FRAC_EVEN;
1490 		break;
1491 	default:
1492 		break;
1493 	}
1494 
1495 	bool ccw = tes->info.tes.ccw;
1496 	const VkPipelineTessellationDomainOriginStateCreateInfoKHR *domain_origin_state =
1497 	              vk_find_struct_const(pCreateInfo->pTessellationState,
1498 	                                   PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR);
1499 
1500 	if (domain_origin_state && domain_origin_state->domainOrigin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR)
1501 		ccw = !ccw;
1502 
1503 	if (tes->info.tes.point_mode)
1504 		topology = V_028B6C_OUTPUT_POINT;
1505 	else if (tes->info.tes.primitive_mode == GL_ISOLINES)
1506 		topology = V_028B6C_OUTPUT_LINE;
1507 	else if (ccw)
1508 		topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
1509 	else
1510 		topology = V_028B6C_OUTPUT_TRIANGLE_CW;
1511 
1512 	if (pipeline->device->has_distributed_tess) {
1513 		if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI ||
1514 		    pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10)
1515 			distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
1516 		else
1517 			distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
1518 	} else
1519 		distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
1520 
1521 	tess->tf_param = S_028B6C_TYPE(type) |
1522 		S_028B6C_PARTITIONING(partitioning) |
1523 		S_028B6C_TOPOLOGY(topology) |
1524 		S_028B6C_DISTRIBUTION_MODE(distribution_mode);
1525 }
1526 
1527 static const struct radv_prim_vertex_count prim_size_table[] = {
1528 	[V_008958_DI_PT_NONE] = {0, 0},
1529 	[V_008958_DI_PT_POINTLIST] = {1, 1},
1530 	[V_008958_DI_PT_LINELIST] = {2, 2},
1531 	[V_008958_DI_PT_LINESTRIP] = {2, 1},
1532 	[V_008958_DI_PT_TRILIST] = {3, 3},
1533 	[V_008958_DI_PT_TRIFAN] = {3, 1},
1534 	[V_008958_DI_PT_TRISTRIP] = {3, 1},
1535 	[V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
1536 	[V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1},
1537 	[V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
1538 	[V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},
1539 	[V_008958_DI_PT_RECTLIST] = {3, 3},
1540 	[V_008958_DI_PT_LINELOOP] = {2, 1},
1541 	[V_008958_DI_PT_POLYGON] = {3, 1},
1542 	[V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
1543 };
1544 
get_vs_output_info(struct radv_pipeline * pipeline)1545 static struct ac_vs_output_info *get_vs_output_info(struct radv_pipeline *pipeline)
1546 {
1547 	if (radv_pipeline_has_gs(pipeline))
1548 		return &pipeline->gs_copy_shader->info.vs.outinfo;
1549 	else if (radv_pipeline_has_tess(pipeline))
1550 		return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
1551 	else
1552 		return &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outinfo;
1553 }
1554 
calculate_vgt_gs_mode(struct radv_pipeline * pipeline)1555 static void calculate_vgt_gs_mode(struct radv_pipeline *pipeline)
1556 {
1557 	struct ac_vs_output_info *outinfo = get_vs_output_info(pipeline);
1558 
1559 	pipeline->graphics.vgt_primitiveid_en = false;
1560 	pipeline->graphics.vgt_gs_mode = 0;
1561 
1562 	if (radv_pipeline_has_gs(pipeline)) {
1563 		struct radv_shader_variant *gs =
1564 			pipeline->shaders[MESA_SHADER_GEOMETRY];
1565 
1566 		pipeline->graphics.vgt_gs_mode =
1567 			ac_vgt_gs_mode(gs->info.gs.vertices_out,
1568 				       pipeline->device->physical_device->rad_info.chip_class);
1569 	} else if (outinfo->export_prim_id) {
1570 		pipeline->graphics.vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
1571 		pipeline->graphics.vgt_primitiveid_en = true;
1572 	}
1573 }
1574 
calculate_vs_outinfo(struct radv_pipeline * pipeline)1575 static void calculate_vs_outinfo(struct radv_pipeline *pipeline)
1576 {
1577 	struct ac_vs_output_info *outinfo = get_vs_output_info(pipeline);
1578 
1579 	unsigned clip_dist_mask, cull_dist_mask, total_mask;
1580 	clip_dist_mask = outinfo->clip_dist_mask;
1581 	cull_dist_mask = outinfo->cull_dist_mask;
1582 	total_mask = clip_dist_mask | cull_dist_mask;
1583 
1584 	bool misc_vec_ena = outinfo->writes_pointsize ||
1585 		outinfo->writes_layer ||
1586 		outinfo->writes_viewport_index;
1587 	pipeline->graphics.vs.pa_cl_vs_out_cntl =
1588 		S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
1589 		S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
1590 		S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
1591 		S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1592 		S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
1593 		S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
1594 		S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
1595 		cull_dist_mask << 8 |
1596 		clip_dist_mask;
1597 
1598 	pipeline->graphics.vs.spi_shader_pos_format =
1599 		S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1600 		S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ?
1601 					    V_02870C_SPI_SHADER_4COMP :
1602 					    V_02870C_SPI_SHADER_NONE) |
1603 		S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ?
1604 					    V_02870C_SPI_SHADER_4COMP :
1605 					    V_02870C_SPI_SHADER_NONE) |
1606 		S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ?
1607 					    V_02870C_SPI_SHADER_4COMP :
1608 					    V_02870C_SPI_SHADER_NONE);
1609 
1610 	pipeline->graphics.vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(MAX2(1, outinfo->param_exports) - 1);
1611 	/* only emitted on pre-VI */
1612 	pipeline->graphics.vs.vgt_reuse_off = S_028AB4_REUSE_OFF(outinfo->writes_viewport_index);
1613 }
1614 
offset_to_ps_input(uint32_t offset,bool flat_shade)1615 static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade)
1616 {
1617 	uint32_t ps_input_cntl;
1618 	if (offset <= AC_EXP_PARAM_OFFSET_31) {
1619 		ps_input_cntl = S_028644_OFFSET(offset);
1620 		if (flat_shade)
1621 			ps_input_cntl |= S_028644_FLAT_SHADE(1);
1622 	} else {
1623 		/* The input is a DEFAULT_VAL constant. */
1624 		assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
1625 		       offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
1626 		offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
1627 		ps_input_cntl = S_028644_OFFSET(0x20) |
1628 			S_028644_DEFAULT_VAL(offset);
1629 	}
1630 	return ps_input_cntl;
1631 }
1632 
calculate_ps_inputs(struct radv_pipeline * pipeline)1633 static void calculate_ps_inputs(struct radv_pipeline *pipeline)
1634 {
1635 	struct radv_shader_variant *ps;
1636 	struct ac_vs_output_info *outinfo = get_vs_output_info(pipeline);
1637 
1638 	ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
1639 
1640 	unsigned ps_offset = 0;
1641 
1642 	if (ps->info.fs.prim_id_input) {
1643 		unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID];
1644 		if (vs_offset != AC_EXP_PARAM_UNDEFINED) {
1645 			pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true);
1646 			++ps_offset;
1647 		}
1648 	}
1649 
1650 	if (ps->info.fs.layer_input) {
1651 		unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER];
1652 		if (vs_offset != AC_EXP_PARAM_UNDEFINED)
1653 			pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true);
1654 		else
1655 			pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true);
1656 		++ps_offset;
1657 	}
1658 
1659 	if (ps->info.fs.has_pcoord) {
1660 		unsigned val;
1661 		val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
1662 		pipeline->graphics.ps_input_cntl[ps_offset] = val;
1663 		ps_offset++;
1664 	}
1665 
1666 	for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.fs.input_mask; ++i) {
1667 		unsigned vs_offset;
1668 		bool flat_shade;
1669 		if (!(ps->info.fs.input_mask & (1u << i)))
1670 			continue;
1671 
1672 		vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
1673 		if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
1674 			pipeline->graphics.ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20);
1675 			++ps_offset;
1676 			continue;
1677 		}
1678 
1679 		flat_shade = !!(ps->info.fs.flat_shaded_mask & (1u << ps_offset));
1680 
1681 		pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade);
1682 		++ps_offset;
1683 	}
1684 
1685 	pipeline->graphics.ps_input_cntl_num = ps_offset;
1686 }
1687 
1688 static void
radv_link_shaders(struct radv_pipeline * pipeline,nir_shader ** shaders)1689 radv_link_shaders(struct radv_pipeline *pipeline, nir_shader **shaders)
1690 {
1691 	nir_shader* ordered_shaders[MESA_SHADER_STAGES];
1692 	int shader_count = 0;
1693 
1694 	if(shaders[MESA_SHADER_FRAGMENT]) {
1695 		ordered_shaders[shader_count++] = shaders[MESA_SHADER_FRAGMENT];
1696 	}
1697 	if(shaders[MESA_SHADER_GEOMETRY]) {
1698 		ordered_shaders[shader_count++] = shaders[MESA_SHADER_GEOMETRY];
1699 	}
1700 	if(shaders[MESA_SHADER_TESS_EVAL]) {
1701 		ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_EVAL];
1702 	}
1703 	if(shaders[MESA_SHADER_TESS_CTRL]) {
1704 		ordered_shaders[shader_count++] = shaders[MESA_SHADER_TESS_CTRL];
1705 	}
1706 	if(shaders[MESA_SHADER_VERTEX]) {
1707 		ordered_shaders[shader_count++] = shaders[MESA_SHADER_VERTEX];
1708 	}
1709 
1710 	for (int i = 1; i < shader_count; ++i)  {
1711 		nir_lower_io_arrays_to_elements(ordered_shaders[i],
1712 						ordered_shaders[i - 1]);
1713 
1714 		nir_remove_dead_variables(ordered_shaders[i],
1715 					  nir_var_shader_out);
1716 		nir_remove_dead_variables(ordered_shaders[i - 1],
1717 					  nir_var_shader_in);
1718 
1719 		bool progress = nir_remove_unused_varyings(ordered_shaders[i],
1720 							   ordered_shaders[i - 1]);
1721 
1722 		if (progress) {
1723 			if (nir_lower_global_vars_to_local(ordered_shaders[i])) {
1724 				radv_lower_indirect_derefs(ordered_shaders[i],
1725 				                           pipeline->device->physical_device);
1726 			}
1727 			radv_optimize_nir(ordered_shaders[i]);
1728 
1729 			if (nir_lower_global_vars_to_local(ordered_shaders[i - 1])) {
1730 				radv_lower_indirect_derefs(ordered_shaders[i - 1],
1731 				                           pipeline->device->physical_device);
1732 			}
1733 			radv_optimize_nir(ordered_shaders[i - 1]);
1734 		}
1735 	}
1736 }
1737 
1738 
1739 static struct radv_pipeline_key
radv_generate_graphics_pipeline_key(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo,bool has_view_index)1740 radv_generate_graphics_pipeline_key(struct radv_pipeline *pipeline,
1741                                     const VkGraphicsPipelineCreateInfo *pCreateInfo,
1742                                     bool has_view_index)
1743 {
1744 	const VkPipelineVertexInputStateCreateInfo *input_state =
1745 	                                         pCreateInfo->pVertexInputState;
1746 	struct radv_pipeline_key key;
1747 	memset(&key, 0, sizeof(key));
1748 
1749 	key.has_multiview_view_index = has_view_index;
1750 
1751 	uint32_t binding_input_rate = 0;
1752 	for (unsigned i = 0; i < input_state->vertexBindingDescriptionCount; ++i) {
1753 		if (input_state->pVertexBindingDescriptions[i].inputRate)
1754 			binding_input_rate |= 1u << input_state->pVertexBindingDescriptions[i].binding;
1755 	}
1756 
1757 	for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
1758 		unsigned binding;
1759 		binding = input_state->pVertexAttributeDescriptions[i].binding;
1760 		if (binding_input_rate & (1u << binding))
1761 			key.instance_rate_inputs |= 1u << input_state->pVertexAttributeDescriptions[i].location;
1762 	}
1763 
1764 	if (pCreateInfo->pTessellationState)
1765 		key.tess_input_vertices = pCreateInfo->pTessellationState->patchControlPoints;
1766 
1767 
1768 	if (pCreateInfo->pMultisampleState &&
1769 	    pCreateInfo->pMultisampleState->rasterizationSamples > 1) {
1770 		uint32_t num_samples = pCreateInfo->pMultisampleState->rasterizationSamples;
1771 		uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(pCreateInfo->pMultisampleState);
1772 		key.multisample = true;
1773 		key.log2_num_samples = util_logbase2(num_samples);
1774 		key.log2_ps_iter_samples = util_logbase2(ps_iter_samples);
1775 	}
1776 
1777 	key.col_format = pipeline->graphics.blend.spi_shader_col_format;
1778 	if (pipeline->device->physical_device->rad_info.chip_class < VI)
1779 		radv_pipeline_compute_get_int_clamp(pCreateInfo, &key.is_int8, &key.is_int10);
1780 
1781 	return key;
1782 }
1783 
1784 static void
radv_fill_shader_keys(struct ac_shader_variant_key * keys,const struct radv_pipeline_key * key,nir_shader ** nir)1785 radv_fill_shader_keys(struct ac_shader_variant_key *keys,
1786                       const struct radv_pipeline_key *key,
1787                       nir_shader **nir)
1788 {
1789 	keys[MESA_SHADER_VERTEX].vs.instance_rate_inputs = key->instance_rate_inputs;
1790 
1791 	if (nir[MESA_SHADER_TESS_CTRL]) {
1792 		keys[MESA_SHADER_VERTEX].vs.as_ls = true;
1793 		keys[MESA_SHADER_TESS_CTRL].tcs.input_vertices = key->tess_input_vertices;
1794 		keys[MESA_SHADER_TESS_CTRL].tcs.primitive_mode = nir[MESA_SHADER_TESS_EVAL]->info.tess.primitive_mode;
1795 
1796 		keys[MESA_SHADER_TESS_CTRL].tcs.tes_reads_tess_factors = !!(nir[MESA_SHADER_TESS_EVAL]->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
1797 	}
1798 
1799 	if (nir[MESA_SHADER_GEOMETRY]) {
1800 		if (nir[MESA_SHADER_TESS_CTRL])
1801 			keys[MESA_SHADER_TESS_EVAL].tes.as_es = true;
1802 		else
1803 			keys[MESA_SHADER_VERTEX].vs.as_es = true;
1804 	}
1805 
1806 	for(int i = 0; i < MESA_SHADER_STAGES; ++i)
1807 		keys[i].has_multiview_view_index = key->has_multiview_view_index;
1808 
1809 	keys[MESA_SHADER_FRAGMENT].fs.multisample = key->multisample;
1810 	keys[MESA_SHADER_FRAGMENT].fs.col_format = key->col_format;
1811 	keys[MESA_SHADER_FRAGMENT].fs.is_int8 = key->is_int8;
1812 	keys[MESA_SHADER_FRAGMENT].fs.is_int10 = key->is_int10;
1813 	keys[MESA_SHADER_FRAGMENT].fs.log2_ps_iter_samples = key->log2_ps_iter_samples;
1814 	keys[MESA_SHADER_FRAGMENT].fs.log2_num_samples = key->log2_num_samples;
1815 }
1816 
1817 static void
merge_tess_info(struct shader_info * tes_info,const struct shader_info * tcs_info)1818 merge_tess_info(struct shader_info *tes_info,
1819                 const struct shader_info *tcs_info)
1820 {
1821 	/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
1822 	 *
1823 	 *    "PointMode. Controls generation of points rather than triangles
1824 	 *     or lines. This functionality defaults to disabled, and is
1825 	 *     enabled if either shader stage includes the execution mode.
1826 	 *
1827 	 * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
1828 	 * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
1829 	 * and OutputVertices, it says:
1830 	 *
1831 	 *    "One mode must be set in at least one of the tessellation
1832 	 *     shader stages."
1833 	 *
1834 	 * So, the fields can be set in either the TCS or TES, but they must
1835 	 * agree if set in both.  Our backend looks at TES, so bitwise-or in
1836 	 * the values from the TCS.
1837 	 */
1838 	assert(tcs_info->tess.tcs_vertices_out == 0 ||
1839 	       tes_info->tess.tcs_vertices_out == 0 ||
1840 	       tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
1841 	tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
1842 
1843 	assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
1844 	       tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
1845 	       tcs_info->tess.spacing == tes_info->tess.spacing);
1846 	tes_info->tess.spacing |= tcs_info->tess.spacing;
1847 
1848 	assert(tcs_info->tess.primitive_mode == 0 ||
1849 	       tes_info->tess.primitive_mode == 0 ||
1850 	       tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
1851 	tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
1852 	tes_info->tess.ccw |= tcs_info->tess.ccw;
1853 	tes_info->tess.point_mode |= tcs_info->tess.point_mode;
1854 }
1855 
1856 static
radv_create_shaders(struct radv_pipeline * pipeline,struct radv_device * device,struct radv_pipeline_cache * cache,struct radv_pipeline_key key,const VkPipelineShaderStageCreateInfo ** pStages)1857 void radv_create_shaders(struct radv_pipeline *pipeline,
1858                          struct radv_device *device,
1859                          struct radv_pipeline_cache *cache,
1860                          struct radv_pipeline_key key,
1861                          const VkPipelineShaderStageCreateInfo **pStages)
1862 {
1863 	struct radv_shader_module fs_m = {0};
1864 	struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
1865 	nir_shader *nir[MESA_SHADER_STAGES] = {0};
1866 	void *codes[MESA_SHADER_STAGES] = {0};
1867 	unsigned code_sizes[MESA_SHADER_STAGES] = {0};
1868 	struct ac_shader_variant_key keys[MESA_SHADER_STAGES] = {{{{0}}}};
1869 	unsigned char hash[20], gs_copy_hash[20];
1870 
1871 	for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
1872 		if (pStages[i]) {
1873 			modules[i] = radv_shader_module_from_handle(pStages[i]->module);
1874 			if (modules[i]->nir)
1875 				_mesa_sha1_compute(modules[i]->nir->info.name,
1876 				                   strlen(modules[i]->nir->info.name),
1877 				                   modules[i]->sha1);
1878 		}
1879 	}
1880 
1881 	radv_hash_shaders(hash, pStages, pipeline->layout, &key, get_hash_flags(device));
1882 	memcpy(gs_copy_hash, hash, 20);
1883 	gs_copy_hash[0] ^= 1;
1884 
1885 	if (modules[MESA_SHADER_GEOMETRY]) {
1886 		struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
1887 		radv_create_shader_variants_from_pipeline_cache(device, cache, gs_copy_hash, variants);
1888 		pipeline->gs_copy_shader = variants[MESA_SHADER_GEOMETRY];
1889 	}
1890 
1891 	if (radv_create_shader_variants_from_pipeline_cache(device, cache, hash, pipeline->shaders) &&
1892 	    (!modules[MESA_SHADER_GEOMETRY] || pipeline->gs_copy_shader)) {
1893 		for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
1894 			if (pipeline->shaders[i])
1895 				pipeline->active_stages |= mesa_to_vk_shader_stage(i);
1896 		}
1897 		return;
1898 	}
1899 
1900 	if (!modules[MESA_SHADER_FRAGMENT] && !modules[MESA_SHADER_COMPUTE]) {
1901 		nir_builder fs_b;
1902 		nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
1903 		fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs");
1904 		fs_m.nir = fs_b.shader;
1905 		modules[MESA_SHADER_FRAGMENT] = &fs_m;
1906 	}
1907 
1908 	/* Determine first and last stage. */
1909 	unsigned first = MESA_SHADER_STAGES;
1910 	unsigned last = 0;
1911 	for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1912 		if (!pStages[i])
1913 			continue;
1914 		if (first == MESA_SHADER_STAGES)
1915 			first = i;
1916 		last = i;
1917 	}
1918 
1919 	int prev = -1;
1920 	for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) {
1921 		const VkPipelineShaderStageCreateInfo *stage = pStages[i];
1922 
1923 		if (!modules[i])
1924 			continue;
1925 
1926 		nir[i] = radv_shader_compile_to_nir(device, modules[i],
1927 						    stage ? stage->pName : "main", i,
1928 						    stage ? stage->pSpecializationInfo : NULL);
1929 		pipeline->active_stages |= mesa_to_vk_shader_stage(i);
1930 
1931 		/* We don't want to alter meta shaders IR directly so clone it
1932 		 * first.
1933 		 */
1934 		if (nir[i]->info.name) {
1935 			nir[i] = nir_shader_clone(NULL, nir[i]);
1936 		}
1937 
1938 		if (first != last) {
1939 			nir_variable_mode mask = 0;
1940 
1941 			if (i != first)
1942 				mask = mask | nir_var_shader_in;
1943 
1944 			if (i != last)
1945 				mask = mask | nir_var_shader_out;
1946 
1947 			nir_lower_io_to_scalar_early(nir[i], mask);
1948 			radv_optimize_nir(nir[i]);
1949 		}
1950 
1951 		if (prev != -1) {
1952 			nir_compact_varyings(nir[prev], nir[i], true);
1953 		}
1954 		prev = i;
1955 	}
1956 
1957 	if (nir[MESA_SHADER_TESS_CTRL]) {
1958 		nir_lower_tes_patch_vertices(nir[MESA_SHADER_TESS_EVAL], nir[MESA_SHADER_TESS_CTRL]->info.tess.tcs_vertices_out);
1959 		merge_tess_info(&nir[MESA_SHADER_TESS_EVAL]->info, &nir[MESA_SHADER_TESS_CTRL]->info);
1960 	}
1961 
1962 	radv_link_shaders(pipeline, nir);
1963 
1964 	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
1965 		if (modules[i] && radv_can_dump_shader(device, modules[i]))
1966 			nir_print_shader(nir[i], stderr);
1967 	}
1968 
1969 	radv_fill_shader_keys(keys, &key, nir);
1970 
1971 	if (nir[MESA_SHADER_FRAGMENT]) {
1972 		if (!pipeline->shaders[MESA_SHADER_FRAGMENT]) {
1973 			pipeline->shaders[MESA_SHADER_FRAGMENT] =
1974 			       radv_shader_variant_create(device, modules[MESA_SHADER_FRAGMENT], &nir[MESA_SHADER_FRAGMENT], 1,
1975 			                                  pipeline->layout, keys + MESA_SHADER_FRAGMENT,
1976 			                                  &codes[MESA_SHADER_FRAGMENT], &code_sizes[MESA_SHADER_FRAGMENT]);
1977 		}
1978 
1979 		/* TODO: These are no longer used as keys we should refactor this */
1980 		keys[MESA_SHADER_VERTEX].vs.export_prim_id =
1981 		        pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input;
1982 		keys[MESA_SHADER_TESS_EVAL].tes.export_prim_id =
1983 		        pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input;
1984 	}
1985 
1986 	if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_TESS_CTRL]) {
1987 		if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) {
1988 			struct nir_shader *combined_nir[] = {nir[MESA_SHADER_VERTEX], nir[MESA_SHADER_TESS_CTRL]};
1989 			struct ac_shader_variant_key key = keys[MESA_SHADER_TESS_CTRL];
1990 			key.tcs.vs_key = keys[MESA_SHADER_VERTEX].vs;
1991 			pipeline->shaders[MESA_SHADER_TESS_CTRL] = radv_shader_variant_create(device, modules[MESA_SHADER_TESS_CTRL], combined_nir, 2,
1992 			                                                                      pipeline->layout,
1993 			                                                                      &key, &codes[MESA_SHADER_TESS_CTRL],
1994 			                                                                      &code_sizes[MESA_SHADER_TESS_CTRL]);
1995 		}
1996 		modules[MESA_SHADER_VERTEX] = NULL;
1997 	}
1998 
1999 	if (device->physical_device->rad_info.chip_class >= GFX9 && modules[MESA_SHADER_GEOMETRY]) {
2000 		gl_shader_stage pre_stage = modules[MESA_SHADER_TESS_EVAL] ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
2001 		if (!pipeline->shaders[MESA_SHADER_GEOMETRY]) {
2002 			struct nir_shader *combined_nir[] = {nir[pre_stage], nir[MESA_SHADER_GEOMETRY]};
2003 			pipeline->shaders[MESA_SHADER_GEOMETRY] = radv_shader_variant_create(device, modules[MESA_SHADER_GEOMETRY], combined_nir, 2,
2004 			                                                                     pipeline->layout,
2005 			                                                                     &keys[pre_stage] , &codes[MESA_SHADER_GEOMETRY],
2006 		                                                                     &code_sizes[MESA_SHADER_GEOMETRY]);
2007 		}
2008 		modules[pre_stage] = NULL;
2009 	}
2010 
2011 	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2012 		if(modules[i] && !pipeline->shaders[i]) {
2013 			pipeline->shaders[i] = radv_shader_variant_create(device, modules[i], &nir[i], 1,
2014 									  pipeline->layout,
2015 									  keys + i, &codes[i],
2016 									  &code_sizes[i]);
2017 		}
2018 	}
2019 
2020 	if(modules[MESA_SHADER_GEOMETRY]) {
2021 		void *gs_copy_code = NULL;
2022 		unsigned gs_copy_code_size = 0;
2023 		if (!pipeline->gs_copy_shader) {
2024 			pipeline->gs_copy_shader = radv_create_gs_copy_shader(
2025 					device, nir[MESA_SHADER_GEOMETRY], &gs_copy_code,
2026 					&gs_copy_code_size,
2027 					keys[MESA_SHADER_GEOMETRY].has_multiview_view_index);
2028 		}
2029 
2030 		if (pipeline->gs_copy_shader) {
2031 			void *code[MESA_SHADER_STAGES] = {0};
2032 			unsigned code_size[MESA_SHADER_STAGES] = {0};
2033 			struct radv_shader_variant *variants[MESA_SHADER_STAGES] = {0};
2034 
2035 			code[MESA_SHADER_GEOMETRY] = gs_copy_code;
2036 			code_size[MESA_SHADER_GEOMETRY] = gs_copy_code_size;
2037 			variants[MESA_SHADER_GEOMETRY] = pipeline->gs_copy_shader;
2038 
2039 			radv_pipeline_cache_insert_shaders(device, cache,
2040 							   gs_copy_hash,
2041 							   variants,
2042 							   (const void**)code,
2043 							   code_size);
2044 		}
2045 		free(gs_copy_code);
2046 	}
2047 
2048 	radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline->shaders,
2049 					   (const void**)codes, code_sizes);
2050 
2051 	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
2052 		free(codes[i]);
2053 		if (modules[i] && !pipeline->device->keep_shader_info)
2054 			ralloc_free(nir[i]);
2055 	}
2056 
2057 	if (fs_m.nir)
2058 		ralloc_free(fs_m.nir);
2059 }
2060 
2061 static uint32_t
radv_pipeline_stage_to_user_data_0(struct radv_pipeline * pipeline,gl_shader_stage stage,enum chip_class chip_class)2062 radv_pipeline_stage_to_user_data_0(struct radv_pipeline *pipeline,
2063 				   gl_shader_stage stage, enum chip_class chip_class)
2064 {
2065 	bool has_gs = radv_pipeline_has_gs(pipeline);
2066 	bool has_tess = radv_pipeline_has_tess(pipeline);
2067 	switch (stage) {
2068 	case MESA_SHADER_FRAGMENT:
2069 		return R_00B030_SPI_SHADER_USER_DATA_PS_0;
2070 	case MESA_SHADER_VERTEX:
2071 		if (chip_class >= GFX9) {
2072 			return has_tess ? R_00B430_SPI_SHADER_USER_DATA_LS_0 :
2073 			       has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
2074 			       R_00B130_SPI_SHADER_USER_DATA_VS_0;
2075 		}
2076 		if (has_tess)
2077 			return R_00B530_SPI_SHADER_USER_DATA_LS_0;
2078 		else
2079 			return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0;
2080 	case MESA_SHADER_GEOMETRY:
2081 		return chip_class >= GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
2082 		                            R_00B230_SPI_SHADER_USER_DATA_GS_0;
2083 	case MESA_SHADER_COMPUTE:
2084 		return R_00B900_COMPUTE_USER_DATA_0;
2085 	case MESA_SHADER_TESS_CTRL:
2086 		return chip_class >= GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 :
2087 		                            R_00B430_SPI_SHADER_USER_DATA_HS_0;
2088 	case MESA_SHADER_TESS_EVAL:
2089 		if (chip_class >= GFX9) {
2090 			return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 :
2091 			       R_00B130_SPI_SHADER_USER_DATA_VS_0;
2092 		}
2093 		if (has_gs)
2094 			return R_00B330_SPI_SHADER_USER_DATA_ES_0;
2095 		else
2096 			return R_00B130_SPI_SHADER_USER_DATA_VS_0;
2097 	default:
2098 		unreachable("unknown shader");
2099 	}
2100 }
2101 
2102 struct radv_bin_size_entry {
2103 	unsigned bpp;
2104 	VkExtent2D extent;
2105 };
2106 
2107 static VkExtent2D
radv_compute_bin_size(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo)2108 radv_compute_bin_size(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
2109 {
2110 	static const struct radv_bin_size_entry color_size_table[][3][9] = {
2111 		{
2112 			/* One RB / SE */
2113 			{
2114 				/* One shader engine */
2115 				{        0, {128,  128}},
2116 				{        1, { 64,  128}},
2117 				{        2, { 32,  128}},
2118 				{        3, { 16,  128}},
2119 				{       17, {  0,    0}},
2120 				{ UINT_MAX, {  0,    0}},
2121 			},
2122 			{
2123 				/* Two shader engines */
2124 				{        0, {128,  128}},
2125 				{        2, { 64,  128}},
2126 				{        3, { 32,  128}},
2127 				{        5, { 16,  128}},
2128 				{       17, {  0,    0}},
2129 				{ UINT_MAX, {  0,    0}},
2130 			},
2131 			{
2132 				/* Four shader engines */
2133 				{        0, {128,  128}},
2134 				{        3, { 64,  128}},
2135 				{        5, { 16,  128}},
2136 				{       17, {  0,    0}},
2137 				{ UINT_MAX, {  0,    0}},
2138 			},
2139 		},
2140 		{
2141 			/* Two RB / SE */
2142 			{
2143 				/* One shader engine */
2144 				{        0, {128,  128}},
2145 				{        2, { 64,  128}},
2146 				{        3, { 32,  128}},
2147 				{        5, { 16,  128}},
2148 				{       33, {  0,    0}},
2149 				{ UINT_MAX, {  0,    0}},
2150 			},
2151 			{
2152 				/* Two shader engines */
2153 				{        0, {128,  128}},
2154 				{        3, { 64,  128}},
2155 				{        5, { 32,  128}},
2156 				{        9, { 16,  128}},
2157 				{       33, {  0,    0}},
2158 				{ UINT_MAX, {  0,    0}},
2159 			},
2160 			{
2161 				/* Four shader engines */
2162 				{        0, {256,  256}},
2163 				{        2, {128,  256}},
2164 				{        3, {128,  128}},
2165 				{        5, { 64,  128}},
2166 				{        9, { 16,  128}},
2167 				{       33, {  0,    0}},
2168 				{ UINT_MAX, {  0,    0}},
2169 			},
2170 		},
2171 		{
2172 			/* Four RB / SE */
2173 			{
2174 				/* One shader engine */
2175 				{        0, {128,  256}},
2176 				{        2, {128,  128}},
2177 				{        3, { 64,  128}},
2178 				{        5, { 32,  128}},
2179 				{        9, { 16,  128}},
2180 				{       33, {  0,    0}},
2181 				{ UINT_MAX, {  0,    0}},
2182 			},
2183 			{
2184 				/* Two shader engines */
2185 				{        0, {256,  256}},
2186 				{        2, {128,  256}},
2187 				{        3, {128,  128}},
2188 				{        5, { 64,  128}},
2189 				{        9, { 32,  128}},
2190 				{       17, { 16,  128}},
2191 				{       33, {  0,    0}},
2192 				{ UINT_MAX, {  0,    0}},
2193 			},
2194 			{
2195 				/* Four shader engines */
2196 				{        0, {256,  512}},
2197 				{        2, {256,  256}},
2198 				{        3, {128,  256}},
2199 				{        5, {128,  128}},
2200 				{        9, { 64,  128}},
2201 				{       17, { 16,  128}},
2202 				{       33, {  0,    0}},
2203 				{ UINT_MAX, {  0,    0}},
2204 			},
2205 		},
2206 	};
2207 	static const struct radv_bin_size_entry ds_size_table[][3][9] = {
2208 		{
2209 			// One RB / SE
2210 			{
2211 				// One shader engine
2212 				{        0, {128,  256}},
2213 				{        2, {128,  128}},
2214 				{        4, { 64,  128}},
2215 				{        7, { 32,  128}},
2216 				{       13, { 16,  128}},
2217 				{       49, {  0,    0}},
2218 				{ UINT_MAX, {  0,    0}},
2219 			},
2220 			{
2221 				// Two shader engines
2222 				{        0, {256,  256}},
2223 				{        2, {128,  256}},
2224 				{        4, {128,  128}},
2225 				{        7, { 64,  128}},
2226 				{       13, { 32,  128}},
2227 				{       25, { 16,  128}},
2228 				{       49, {  0,    0}},
2229 				{ UINT_MAX, {  0,    0}},
2230 			},
2231 			{
2232 				// Four shader engines
2233 				{        0, {256,  512}},
2234 				{        2, {256,  256}},
2235 				{        4, {128,  256}},
2236 				{        7, {128,  128}},
2237 				{       13, { 64,  128}},
2238 				{       25, { 16,  128}},
2239 				{       49, {  0,    0}},
2240 				{ UINT_MAX, {  0,    0}},
2241 			},
2242 		},
2243 		{
2244 			// Two RB / SE
2245 			{
2246 				// One shader engine
2247 				{        0, {256,  256}},
2248 				{        2, {128,  256}},
2249 				{        4, {128,  128}},
2250 				{        7, { 64,  128}},
2251 				{       13, { 32,  128}},
2252 				{       25, { 16,  128}},
2253 				{       97, {  0,    0}},
2254 				{ UINT_MAX, {  0,    0}},
2255 			},
2256 			{
2257 				// Two shader engines
2258 				{        0, {256,  512}},
2259 				{        2, {256,  256}},
2260 				{        4, {128,  256}},
2261 				{        7, {128,  128}},
2262 				{       13, { 64,  128}},
2263 				{       25, { 32,  128}},
2264 				{       49, { 16,  128}},
2265 				{       97, {  0,    0}},
2266 				{ UINT_MAX, {  0,    0}},
2267 			},
2268 			{
2269 				// Four shader engines
2270 				{        0, {512,  512}},
2271 				{        2, {256,  512}},
2272 				{        4, {256,  256}},
2273 				{        7, {128,  256}},
2274 				{       13, {128,  128}},
2275 				{       25, { 64,  128}},
2276 				{       49, { 16,  128}},
2277 				{       97, {  0,    0}},
2278 				{ UINT_MAX, {  0,    0}},
2279 			},
2280 		},
2281 		{
2282 			// Four RB / SE
2283 			{
2284 				// One shader engine
2285 				{        0, {256,  512}},
2286 				{        2, {256,  256}},
2287 				{        4, {128,  256}},
2288 				{        7, {128,  128}},
2289 				{       13, { 64,  128}},
2290 				{       25, { 32,  128}},
2291 				{       49, { 16,  128}},
2292 				{ UINT_MAX, {  0,    0}},
2293 			},
2294 			{
2295 				// Two shader engines
2296 				{        0, {512,  512}},
2297 				{        2, {256,  512}},
2298 				{        4, {256,  256}},
2299 				{        7, {128,  256}},
2300 				{       13, {128,  128}},
2301 				{       25, { 64,  128}},
2302 				{       49, { 32,  128}},
2303 				{       97, { 16,  128}},
2304 				{ UINT_MAX, {  0,    0}},
2305 			},
2306 			{
2307 				// Four shader engines
2308 				{        0, {512,  512}},
2309 				{        4, {256,  512}},
2310 				{        7, {256,  256}},
2311 				{       13, {128,  256}},
2312 				{       25, {128,  128}},
2313 				{       49, { 64,  128}},
2314 				{       97, { 16,  128}},
2315 				{ UINT_MAX, {  0,    0}},
2316 			},
2317 		},
2318 	};
2319 
2320 	RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
2321 	struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
2322 	VkExtent2D extent = {512, 512};
2323 
2324 	unsigned log_num_rb_per_se =
2325 	    util_logbase2_ceil(pipeline->device->physical_device->rad_info.num_render_backends /
2326 	                       pipeline->device->physical_device->rad_info.max_se);
2327 	unsigned log_num_se = util_logbase2_ceil(pipeline->device->physical_device->rad_info.max_se);
2328 
2329 	unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->graphics.ms.pa_sc_mode_cntl_1);
2330 	unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->graphics.ms.db_eqaa);
2331 	unsigned effective_samples = total_samples;
2332 	unsigned cb_target_mask = pipeline->graphics.blend.cb_target_mask;
2333 	unsigned color_bytes_per_pixel = 0;
2334 
2335 	for (unsigned i = 0; i < subpass->color_count; i++) {
2336 		if (!(cb_target_mask & (0xf << (i * 4))))
2337 			continue;
2338 
2339 		if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED)
2340 			continue;
2341 
2342 		VkFormat format = pass->attachments[subpass->color_attachments[i].attachment].format;
2343 		color_bytes_per_pixel += vk_format_get_blocksize(format);
2344 	}
2345 
2346 	/* MSAA images typically don't use all samples all the time. */
2347 	if (effective_samples >= 2 && ps_iter_samples <= 1)
2348 		effective_samples = 2;
2349 	color_bytes_per_pixel *= effective_samples;
2350 
2351 	const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se];
2352 	while(color_entry->bpp <= color_bytes_per_pixel)
2353 		++color_entry;
2354 
2355 	extent = color_entry->extent;
2356 
2357 	if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
2358 		struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment.attachment;
2359 
2360 		/* Coefficients taken from AMDVLK */
2361 		unsigned depth_coeff = vk_format_is_depth(attachment->format) ? 5 : 0;
2362 		unsigned stencil_coeff = vk_format_is_stencil(attachment->format) ? 1 : 0;
2363 		unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples;
2364 
2365 		const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se];
2366 		while(ds_entry->bpp <= ds_bytes_per_pixel)
2367 			++ds_entry;
2368 
2369 		extent.width = MIN2(extent.width, ds_entry->extent.width);
2370 		extent.height = MIN2(extent.height, ds_entry->extent.height);
2371 	}
2372 
2373 	return extent;
2374 }
2375 
2376 static void
radv_compute_binning_state(struct radv_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo)2377 radv_compute_binning_state(struct radv_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo)
2378 {
2379 	pipeline->graphics.bin.pa_sc_binner_cntl_0 =
2380 	                S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) |
2381 	                S_028C44_DISABLE_START_OF_PRIM(1);
2382 	pipeline->graphics.bin.db_dfsm_control = S_028060_PUNCHOUT_MODE(V_028060_FORCE_OFF);
2383 
2384 	if (!pipeline->device->pbb_allowed)
2385 		return;
2386 
2387 	VkExtent2D bin_size = radv_compute_bin_size(pipeline, pCreateInfo);
2388 	if (!bin_size.width || !bin_size.height)
2389 		return;
2390 
2391 	unsigned context_states_per_bin; /* allowed range: [1, 6] */
2392 	unsigned persistent_states_per_bin; /* allowed range: [1, 32] */
2393 	unsigned fpovs_per_batch; /* allowed range: [0, 255], 0 = unlimited */
2394 
2395 	switch (pipeline->device->physical_device->rad_info.family) {
2396 	case CHIP_VEGA10:
2397 		context_states_per_bin = 1;
2398 		persistent_states_per_bin = 1;
2399 		fpovs_per_batch = 63;
2400 		break;
2401 	case CHIP_RAVEN:
2402 		context_states_per_bin = 6;
2403 		persistent_states_per_bin = 32;
2404 		fpovs_per_batch = 63;
2405 		break;
2406 	default:
2407 		unreachable("unhandled family while determining binning state.");
2408 	}
2409 
2410 	pipeline->graphics.bin.pa_sc_binner_cntl_0 =
2411 	                S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) |
2412 	                S_028C44_BIN_SIZE_X(bin_size.width == 16) |
2413 	                S_028C44_BIN_SIZE_Y(bin_size.height == 16) |
2414 	                S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) |
2415 	                S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) |
2416 	                S_028C44_CONTEXT_STATES_PER_BIN(context_states_per_bin - 1) |
2417 	                S_028C44_PERSISTENT_STATES_PER_BIN(persistent_states_per_bin - 1) |
2418 	                S_028C44_DISABLE_START_OF_PRIM(1) |
2419 	                S_028C44_FPOVS_PER_BATCH(fpovs_per_batch) |
2420 	                S_028C44_OPTIMAL_BIN_SELECTION(1);
2421 
2422 	/* DFSM is not implemented yet */
2423 	assert(!pipeline->device->dfsm_allowed);
2424 }
2425 
2426 static VkResult
radv_pipeline_init(struct radv_pipeline * pipeline,struct radv_device * device,struct radv_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const struct radv_graphics_pipeline_create_info * extra,const VkAllocationCallbacks * alloc)2427 radv_pipeline_init(struct radv_pipeline *pipeline,
2428 		   struct radv_device *device,
2429 		   struct radv_pipeline_cache *cache,
2430 		   const VkGraphicsPipelineCreateInfo *pCreateInfo,
2431 		   const struct radv_graphics_pipeline_create_info *extra,
2432 		   const VkAllocationCallbacks *alloc)
2433 {
2434 	VkResult result;
2435 	bool has_view_index = false;
2436 
2437 	RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
2438 	struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
2439 	if (subpass->view_mask)
2440 		has_view_index = true;
2441 	if (alloc == NULL)
2442 		alloc = &device->alloc;
2443 
2444 	pipeline->device = device;
2445 	pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
2446 	assert(pipeline->layout);
2447 
2448 	radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
2449 	radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
2450 
2451 	const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
2452 	for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
2453 		gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
2454 		pStages[stage] = &pCreateInfo->pStages[i];
2455 	}
2456 
2457 	radv_create_shaders(pipeline, device, cache,
2458 	                    radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, has_view_index),
2459 	                    pStages);
2460 
2461 	pipeline->graphics.spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1);
2462 	radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo, extra);
2463 	radv_pipeline_init_raster_state(pipeline, pCreateInfo);
2464 	radv_pipeline_init_multisample_state(pipeline, pCreateInfo);
2465 	pipeline->graphics.prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
2466 	pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology);
2467 
2468 	if (radv_pipeline_has_gs(pipeline)) {
2469 		pipeline->graphics.gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
2470 		pipeline->graphics.can_use_guardband = pipeline->graphics.gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
2471 	} else {
2472 		pipeline->graphics.gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
2473 	}
2474 	if (extra && extra->use_rectlist) {
2475 		pipeline->graphics.prim = V_008958_DI_PT_RECTLIST;
2476 		pipeline->graphics.gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
2477 		pipeline->graphics.can_use_guardband = true;
2478 	}
2479 	pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
2480 	/* prim vertex count will need TESS changes */
2481 	pipeline->graphics.prim_vertex_count = prim_size_table[pipeline->graphics.prim];
2482 
2483 	/* Ensure that some export memory is always allocated, for two reasons:
2484 	 *
2485 	 * 1) Correctness: The hardware ignores the EXEC mask if no export
2486 	 *    memory is allocated, so KILL and alpha test do not work correctly
2487 	 *    without this.
2488 	 * 2) Performance: Every shader needs at least a NULL export, even when
2489 	 *    it writes no color/depth output. The NULL export instruction
2490 	 *    stalls without this setting.
2491 	 *
2492 	 * Don't add this to CB_SHADER_MASK.
2493 	 */
2494 	struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
2495 	if (!pipeline->graphics.blend.spi_shader_col_format) {
2496 		if (!ps->info.fs.writes_z &&
2497 		    !ps->info.fs.writes_stencil &&
2498 		    !ps->info.fs.writes_sample_mask)
2499 			pipeline->graphics.blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2500 	}
2501 
2502 	unsigned z_order;
2503 	pipeline->graphics.db_shader_control = 0;
2504 	if (ps->info.fs.early_fragment_test || !ps->info.fs.writes_memory)
2505 		z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
2506 	else
2507 		z_order = V_02880C_LATE_Z;
2508 
2509 	pipeline->graphics.db_shader_control =
2510 		S_02880C_Z_EXPORT_ENABLE(ps->info.fs.writes_z) |
2511 		S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.fs.writes_stencil) |
2512 		S_02880C_KILL_ENABLE(!!ps->info.fs.can_discard) |
2513 		S_02880C_MASK_EXPORT_ENABLE(ps->info.fs.writes_sample_mask) |
2514 		S_02880C_Z_ORDER(z_order) |
2515 		S_02880C_DEPTH_BEFORE_SHADER(ps->info.fs.early_fragment_test) |
2516 		S_02880C_EXEC_ON_HIER_FAIL(ps->info.fs.writes_memory) |
2517 		S_02880C_EXEC_ON_NOOP(ps->info.fs.writes_memory);
2518 
2519 	if (pipeline->device->physical_device->has_rbplus)
2520 		pipeline->graphics.db_shader_control |= S_02880C_DUAL_QUAD_DISABLE(1);
2521 
2522 	unsigned shader_z_format =
2523 		ac_get_spi_shader_z_format(ps->info.fs.writes_z,
2524 					   ps->info.fs.writes_stencil,
2525 					   ps->info.fs.writes_sample_mask);
2526 	pipeline->graphics.shader_z_format = shader_z_format;
2527 
2528 	calculate_vgt_gs_mode(pipeline);
2529 	calculate_vs_outinfo(pipeline);
2530 	calculate_ps_inputs(pipeline);
2531 
2532 	for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2533 		if (pipeline->shaders[i]) {
2534 			pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets;
2535 		}
2536 	}
2537 
2538 	uint32_t stages = 0;
2539 	if (radv_pipeline_has_tess(pipeline)) {
2540 		stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
2541 			S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
2542 
2543 		if (radv_pipeline_has_gs(pipeline))
2544 			stages |=  S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
2545 				S_028B54_GS_EN(1) |
2546 				S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2547 		else
2548 			stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
2549 
2550 	} else if (radv_pipeline_has_gs(pipeline))
2551 		stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
2552 			S_028B54_GS_EN(1) |
2553 			S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
2554 
2555 	if (device->physical_device->rad_info.chip_class >= GFX9)
2556 		stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
2557 
2558 	pipeline->graphics.vgt_shader_stages_en = stages;
2559 
2560 	if (radv_pipeline_has_gs(pipeline)) {
2561 		calculate_gs_ring_sizes(pipeline);
2562 		if (device->physical_device->rad_info.chip_class >= GFX9)
2563 			calculate_gfx9_gs_info(pCreateInfo, pipeline);
2564 	}
2565 
2566 	if (radv_pipeline_has_tess(pipeline)) {
2567 		if (pipeline->graphics.prim == V_008958_DI_PT_PATCH) {
2568 			pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints;
2569 			pipeline->graphics.prim_vertex_count.incr = 1;
2570 		}
2571 		calculate_tess_state(pipeline, pCreateInfo);
2572 	}
2573 
2574 	if (radv_pipeline_has_tess(pipeline))
2575 		pipeline->graphics.primgroup_size = pipeline->graphics.tess.num_patches;
2576 	else if (radv_pipeline_has_gs(pipeline))
2577 		pipeline->graphics.primgroup_size = 64;
2578 	else
2579 		pipeline->graphics.primgroup_size = 128; /* recommended without a GS */
2580 
2581 	pipeline->graphics.partial_es_wave = false;
2582 	if (pipeline->device->has_distributed_tess) {
2583 		if (radv_pipeline_has_gs(pipeline)) {
2584 			if (device->physical_device->rad_info.chip_class <= VI)
2585 				pipeline->graphics.partial_es_wave = true;
2586 		}
2587 	}
2588 	/* GS requirement. */
2589 	if (SI_GS_PER_ES / pipeline->graphics.primgroup_size >= pipeline->device->gs_table_depth - 3)
2590 		pipeline->graphics.partial_es_wave = true;
2591 
2592 	pipeline->graphics.wd_switch_on_eop = false;
2593 	if (device->physical_device->rad_info.chip_class >= CIK) {
2594 		unsigned prim = pipeline->graphics.prim;
2595 		/* WD_SWITCH_ON_EOP has no effect on GPUs with less than
2596 		 * 4 shader engines. Set 1 to pass the assertion below.
2597 		 * The other cases are hardware requirements. */
2598 		if (device->physical_device->rad_info.max_se < 4 ||
2599 		    prim == V_008958_DI_PT_POLYGON ||
2600 		    prim == V_008958_DI_PT_LINELOOP ||
2601 		    prim == V_008958_DI_PT_TRIFAN ||
2602 		    prim == V_008958_DI_PT_TRISTRIP_ADJ ||
2603 		    (pipeline->graphics.prim_restart_enable &&
2604 		     (device->physical_device->rad_info.family < CHIP_POLARIS10 ||
2605 		      (prim != V_008958_DI_PT_POINTLIST &&
2606 		       prim != V_008958_DI_PT_LINESTRIP &&
2607 		       prim != V_008958_DI_PT_TRISTRIP))))
2608 			pipeline->graphics.wd_switch_on_eop = true;
2609 	}
2610 
2611 	pipeline->graphics.ia_switch_on_eoi = false;
2612 	if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input)
2613 		pipeline->graphics.ia_switch_on_eoi = true;
2614 	if (radv_pipeline_has_gs(pipeline) &&
2615 	    pipeline->shaders[MESA_SHADER_GEOMETRY]->info.info.uses_prim_id)
2616 		pipeline->graphics.ia_switch_on_eoi = true;
2617 	if (radv_pipeline_has_tess(pipeline)) {
2618 		/* SWITCH_ON_EOI must be set if PrimID is used. */
2619 		if (pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.info.uses_prim_id ||
2620 		    radv_get_tess_eval_shader(pipeline)->info.info.uses_prim_id)
2621 			pipeline->graphics.ia_switch_on_eoi = true;
2622 	}
2623 
2624 	pipeline->graphics.partial_vs_wave = false;
2625 	if (radv_pipeline_has_tess(pipeline)) {
2626 		/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
2627 		if ((device->physical_device->rad_info.family == CHIP_TAHITI ||
2628 		     device->physical_device->rad_info.family == CHIP_PITCAIRN ||
2629 		     device->physical_device->rad_info.family == CHIP_BONAIRE) &&
2630 		    radv_pipeline_has_gs(pipeline))
2631 			pipeline->graphics.partial_vs_wave = true;
2632 		/* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
2633 		if (device->has_distributed_tess) {
2634 			if (radv_pipeline_has_gs(pipeline)) {
2635 				if (device->physical_device->rad_info.family == CHIP_TONGA ||
2636 				    device->physical_device->rad_info.family == CHIP_FIJI ||
2637 				    device->physical_device->rad_info.family == CHIP_POLARIS10 ||
2638 				    device->physical_device->rad_info.family == CHIP_POLARIS11 ||
2639 				    device->physical_device->rad_info.family == CHIP_POLARIS12)
2640 					pipeline->graphics.partial_vs_wave = true;
2641 			} else {
2642 				pipeline->graphics.partial_vs_wave = true;
2643 			}
2644 		}
2645 	}
2646 
2647 	pipeline->graphics.base_ia_multi_vgt_param =
2648 		S_028AA8_PRIMGROUP_SIZE(pipeline->graphics.primgroup_size - 1) |
2649 		/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
2650 		S_028AA8_MAX_PRIMGRP_IN_WAVE(device->physical_device->rad_info.chip_class == VI ? 2 : 0) |
2651 		S_030960_EN_INST_OPT_BASIC(device->physical_device->rad_info.chip_class >= GFX9) |
2652 		S_030960_EN_INST_OPT_ADV(device->physical_device->rad_info.chip_class >= GFX9);
2653 
2654 	const VkPipelineVertexInputStateCreateInfo *vi_info =
2655 		pCreateInfo->pVertexInputState;
2656 	struct radv_vertex_elements_info *velems = &pipeline->vertex_elements;
2657 
2658 	for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
2659 		const VkVertexInputAttributeDescription *desc =
2660 			&vi_info->pVertexAttributeDescriptions[i];
2661 		unsigned loc = desc->location;
2662 		const struct vk_format_description *format_desc;
2663 		int first_non_void;
2664 		uint32_t num_format, data_format;
2665 		format_desc = vk_format_description(desc->format);
2666 		first_non_void = vk_format_get_first_non_void_channel(desc->format);
2667 
2668 		num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
2669 		data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
2670 
2671 		velems->rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) |
2672 			S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) |
2673 			S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) |
2674 			S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) |
2675 			S_008F0C_NUM_FORMAT(num_format) |
2676 			S_008F0C_DATA_FORMAT(data_format);
2677 		velems->format_size[loc] = format_desc->block.bits / 8;
2678 		velems->offset[loc] = desc->offset;
2679 		velems->binding[loc] = desc->binding;
2680 		velems->count = MAX2(velems->count, loc + 1);
2681 	}
2682 
2683 	for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
2684 		const VkVertexInputBindingDescription *desc =
2685 			&vi_info->pVertexBindingDescriptions[i];
2686 
2687 		pipeline->binding_stride[desc->binding] = desc->stride;
2688 	}
2689 
2690 	for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
2691 		pipeline->user_data_0[i] = radv_pipeline_stage_to_user_data_0(pipeline, i, device->physical_device->rad_info.chip_class);
2692 
2693 	struct ac_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX,
2694 							     AC_UD_VS_BASE_VERTEX_START_INSTANCE);
2695 	if (loc->sgpr_idx != -1) {
2696 		pipeline->graphics.vtx_base_sgpr = pipeline->user_data_0[MESA_SHADER_VERTEX];
2697 		pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4;
2698 		if (radv_get_vertex_shader(pipeline)->info.info.vs.needs_draw_id)
2699 			pipeline->graphics.vtx_emit_num = 3;
2700 		else
2701 			pipeline->graphics.vtx_emit_num = 2;
2702 	}
2703 
2704 	pipeline->graphics.vtx_reuse_depth = 30;
2705 	if (radv_pipeline_has_tess(pipeline) &&
2706 	    radv_get_tess_eval_shader(pipeline)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
2707 		pipeline->graphics.vtx_reuse_depth = 14;
2708 	}
2709 
2710 	if (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
2711 		radv_dump_pipeline_stats(device, pipeline);
2712 	}
2713 
2714 	radv_compute_binning_state(pipeline, pCreateInfo);
2715 
2716 	result = radv_pipeline_scratch_init(device, pipeline);
2717 	return result;
2718 }
2719 
2720 VkResult
radv_graphics_pipeline_create(VkDevice _device,VkPipelineCache _cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const struct radv_graphics_pipeline_create_info * extra,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)2721 radv_graphics_pipeline_create(
2722 	VkDevice _device,
2723 	VkPipelineCache _cache,
2724 	const VkGraphicsPipelineCreateInfo *pCreateInfo,
2725 	const struct radv_graphics_pipeline_create_info *extra,
2726 	const VkAllocationCallbacks *pAllocator,
2727 	VkPipeline *pPipeline)
2728 {
2729 	RADV_FROM_HANDLE(radv_device, device, _device);
2730 	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
2731 	struct radv_pipeline *pipeline;
2732 	VkResult result;
2733 
2734 	pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
2735 			      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2736 	if (pipeline == NULL)
2737 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2738 
2739 	result = radv_pipeline_init(pipeline, device, cache,
2740 				    pCreateInfo, extra, pAllocator);
2741 	if (result != VK_SUCCESS) {
2742 		radv_pipeline_destroy(device, pipeline, pAllocator);
2743 		return result;
2744 	}
2745 
2746 	*pPipeline = radv_pipeline_to_handle(pipeline);
2747 
2748 	return VK_SUCCESS;
2749 }
2750 
radv_CreateGraphicsPipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)2751 VkResult radv_CreateGraphicsPipelines(
2752 	VkDevice                                    _device,
2753 	VkPipelineCache                             pipelineCache,
2754 	uint32_t                                    count,
2755 	const VkGraphicsPipelineCreateInfo*         pCreateInfos,
2756 	const VkAllocationCallbacks*                pAllocator,
2757 	VkPipeline*                                 pPipelines)
2758 {
2759 	VkResult result = VK_SUCCESS;
2760 	unsigned i = 0;
2761 
2762 	for (; i < count; i++) {
2763 		VkResult r;
2764 		r = radv_graphics_pipeline_create(_device,
2765 						  pipelineCache,
2766 						  &pCreateInfos[i],
2767 						  NULL, pAllocator, &pPipelines[i]);
2768 		if (r != VK_SUCCESS) {
2769 			result = r;
2770 			pPipelines[i] = VK_NULL_HANDLE;
2771 		}
2772 	}
2773 
2774 	return result;
2775 }
2776 
radv_compute_pipeline_create(VkDevice _device,VkPipelineCache _cache,const VkComputePipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)2777 static VkResult radv_compute_pipeline_create(
2778 	VkDevice                                    _device,
2779 	VkPipelineCache                             _cache,
2780 	const VkComputePipelineCreateInfo*          pCreateInfo,
2781 	const VkAllocationCallbacks*                pAllocator,
2782 	VkPipeline*                                 pPipeline)
2783 {
2784 	RADV_FROM_HANDLE(radv_device, device, _device);
2785 	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
2786 	const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
2787 	struct radv_pipeline *pipeline;
2788 	VkResult result;
2789 
2790 	pipeline = vk_zalloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
2791 			      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2792 	if (pipeline == NULL)
2793 		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2794 
2795 	pipeline->device = device;
2796 	pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
2797 	assert(pipeline->layout);
2798 
2799 	pStages[MESA_SHADER_COMPUTE] = &pCreateInfo->stage;
2800 	radv_create_shaders(pipeline, device, cache, (struct radv_pipeline_key) {0}, pStages);
2801 
2802 	pipeline->user_data_0[MESA_SHADER_COMPUTE] = radv_pipeline_stage_to_user_data_0(pipeline, MESA_SHADER_COMPUTE, device->physical_device->rad_info.chip_class);
2803 	pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets;
2804 	result = radv_pipeline_scratch_init(device, pipeline);
2805 	if (result != VK_SUCCESS) {
2806 		radv_pipeline_destroy(device, pipeline, pAllocator);
2807 		return result;
2808 	}
2809 
2810 	*pPipeline = radv_pipeline_to_handle(pipeline);
2811 
2812 	if (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
2813 		radv_dump_pipeline_stats(device, pipeline);
2814 	}
2815 	return VK_SUCCESS;
2816 }
radv_CreateComputePipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkComputePipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)2817 VkResult radv_CreateComputePipelines(
2818 	VkDevice                                    _device,
2819 	VkPipelineCache                             pipelineCache,
2820 	uint32_t                                    count,
2821 	const VkComputePipelineCreateInfo*          pCreateInfos,
2822 	const VkAllocationCallbacks*                pAllocator,
2823 	VkPipeline*                                 pPipelines)
2824 {
2825 	VkResult result = VK_SUCCESS;
2826 
2827 	unsigned i = 0;
2828 	for (; i < count; i++) {
2829 		VkResult r;
2830 		r = radv_compute_pipeline_create(_device, pipelineCache,
2831 						 &pCreateInfos[i],
2832 						 pAllocator, &pPipelines[i]);
2833 		if (r != VK_SUCCESS) {
2834 			result = r;
2835 			pPipelines[i] = VK_NULL_HANDLE;
2836 		}
2837 	}
2838 
2839 	return result;
2840 }
2841