1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include <stdbool.h>
29 #include <string.h>
30 #include <unistd.h>
31 #include <fcntl.h>
32 #include "radv_debug.h"
33 #include "radv_private.h"
34 #include "radv_shader.h"
35 #include "radv_cs.h"
36 #include "util/disk_cache.h"
37 #include "util/strtod.h"
38 #include "vk_util.h"
39 #include <xf86drm.h>
40 #include <amdgpu.h>
41 #include <amdgpu_drm.h>
42 #include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
43 #include "ac_llvm_util.h"
44 #include "vk_format.h"
45 #include "sid.h"
46 #include "gfx9d.h"
47 #include "util/debug.h"
48
49 static int
radv_device_get_cache_uuid(enum radeon_family family,void * uuid)50 radv_device_get_cache_uuid(enum radeon_family family, void *uuid)
51 {
52 uint32_t mesa_timestamp, llvm_timestamp;
53 uint16_t f = family;
54 memset(uuid, 0, VK_UUID_SIZE);
55 if (!disk_cache_get_function_timestamp(radv_device_get_cache_uuid, &mesa_timestamp) ||
56 !disk_cache_get_function_timestamp(LLVMInitializeAMDGPUTargetInfo, &llvm_timestamp))
57 return -1;
58
59 memcpy(uuid, &mesa_timestamp, 4);
60 memcpy((char*)uuid + 4, &llvm_timestamp, 4);
61 memcpy((char*)uuid + 8, &f, 2);
62 snprintf((char*)uuid + 10, VK_UUID_SIZE - 10, "radv");
63 return 0;
64 }
65
66 static void
radv_get_driver_uuid(void * uuid)67 radv_get_driver_uuid(void *uuid)
68 {
69 ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
70 }
71
72 static void
radv_get_device_uuid(struct radeon_info * info,void * uuid)73 radv_get_device_uuid(struct radeon_info *info, void *uuid)
74 {
75 ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
76 }
77
78 static void
radv_get_device_name(enum radeon_family family,char * name,size_t name_len)79 radv_get_device_name(enum radeon_family family, char *name, size_t name_len)
80 {
81 const char *chip_string;
82 char llvm_string[32] = {};
83
84 switch (family) {
85 case CHIP_TAHITI: chip_string = "AMD RADV TAHITI"; break;
86 case CHIP_PITCAIRN: chip_string = "AMD RADV PITCAIRN"; break;
87 case CHIP_VERDE: chip_string = "AMD RADV CAPE VERDE"; break;
88 case CHIP_OLAND: chip_string = "AMD RADV OLAND"; break;
89 case CHIP_HAINAN: chip_string = "AMD RADV HAINAN"; break;
90 case CHIP_BONAIRE: chip_string = "AMD RADV BONAIRE"; break;
91 case CHIP_KAVERI: chip_string = "AMD RADV KAVERI"; break;
92 case CHIP_KABINI: chip_string = "AMD RADV KABINI"; break;
93 case CHIP_HAWAII: chip_string = "AMD RADV HAWAII"; break;
94 case CHIP_MULLINS: chip_string = "AMD RADV MULLINS"; break;
95 case CHIP_TONGA: chip_string = "AMD RADV TONGA"; break;
96 case CHIP_ICELAND: chip_string = "AMD RADV ICELAND"; break;
97 case CHIP_CARRIZO: chip_string = "AMD RADV CARRIZO"; break;
98 case CHIP_FIJI: chip_string = "AMD RADV FIJI"; break;
99 case CHIP_POLARIS10: chip_string = "AMD RADV POLARIS10"; break;
100 case CHIP_POLARIS11: chip_string = "AMD RADV POLARIS11"; break;
101 case CHIP_POLARIS12: chip_string = "AMD RADV POLARIS12"; break;
102 case CHIP_STONEY: chip_string = "AMD RADV STONEY"; break;
103 case CHIP_VEGA10: chip_string = "AMD RADV VEGA"; break;
104 case CHIP_RAVEN: chip_string = "AMD RADV RAVEN"; break;
105 default: chip_string = "AMD RADV unknown"; break;
106 }
107
108 if (HAVE_LLVM > 0) {
109 snprintf(llvm_string, sizeof(llvm_string),
110 " (LLVM %i.%i.%i)", (HAVE_LLVM >> 8) & 0xff,
111 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
112 }
113
114 snprintf(name, name_len, "%s%s", chip_string, llvm_string);
115 }
116
117 static void
radv_physical_device_init_mem_types(struct radv_physical_device * device)118 radv_physical_device_init_mem_types(struct radv_physical_device *device)
119 {
120 STATIC_ASSERT(RADV_MEM_HEAP_COUNT <= VK_MAX_MEMORY_HEAPS);
121 uint64_t visible_vram_size = MIN2(device->rad_info.vram_size,
122 device->rad_info.vram_vis_size);
123
124 int vram_index = -1, visible_vram_index = -1, gart_index = -1;
125 device->memory_properties.memoryHeapCount = 0;
126 if (device->rad_info.vram_size - visible_vram_size > 0) {
127 vram_index = device->memory_properties.memoryHeapCount++;
128 device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap) {
129 .size = device->rad_info.vram_size - visible_vram_size,
130 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
131 };
132 }
133 if (visible_vram_size) {
134 visible_vram_index = device->memory_properties.memoryHeapCount++;
135 device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap) {
136 .size = visible_vram_size,
137 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
138 };
139 }
140 if (device->rad_info.gart_size > 0) {
141 gart_index = device->memory_properties.memoryHeapCount++;
142 device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap) {
143 .size = device->rad_info.gart_size,
144 .flags = device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
145 };
146 }
147
148 STATIC_ASSERT(RADV_MEM_TYPE_COUNT <= VK_MAX_MEMORY_TYPES);
149 unsigned type_count = 0;
150 if (vram_index >= 0) {
151 device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM;
152 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
153 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
154 .heapIndex = vram_index,
155 };
156 }
157 if (gart_index >= 0) {
158 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_WRITE_COMBINE;
159 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
160 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
161 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
162 (device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT),
163 .heapIndex = gart_index,
164 };
165 }
166 if (visible_vram_index >= 0) {
167 device->mem_type_indices[type_count] = RADV_MEM_TYPE_VRAM_CPU_ACCESS;
168 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
169 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
170 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
171 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
172 .heapIndex = visible_vram_index,
173 };
174 }
175 if (gart_index >= 0) {
176 device->mem_type_indices[type_count] = RADV_MEM_TYPE_GTT_CACHED;
177 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType) {
178 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
179 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
180 VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
181 (device->rad_info.has_dedicated_vram ? 0 : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT),
182 .heapIndex = gart_index,
183 };
184 }
185 device->memory_properties.memoryTypeCount = type_count;
186 }
187
188 static VkResult
radv_physical_device_init(struct radv_physical_device * device,struct radv_instance * instance,drmDevicePtr drm_device)189 radv_physical_device_init(struct radv_physical_device *device,
190 struct radv_instance *instance,
191 drmDevicePtr drm_device)
192 {
193 const char *path = drm_device->nodes[DRM_NODE_RENDER];
194 VkResult result;
195 drmVersionPtr version;
196 int fd;
197
198 fd = open(path, O_RDWR | O_CLOEXEC);
199 if (fd < 0)
200 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
201
202 version = drmGetVersion(fd);
203 if (!version) {
204 close(fd);
205 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
206 "failed to get version %s: %m", path);
207 }
208
209 if (strcmp(version->name, "amdgpu")) {
210 drmFreeVersion(version);
211 close(fd);
212 return VK_ERROR_INCOMPATIBLE_DRIVER;
213 }
214 drmFreeVersion(version);
215
216 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
217 device->instance = instance;
218 assert(strlen(path) < ARRAY_SIZE(device->path));
219 strncpy(device->path, path, ARRAY_SIZE(device->path));
220
221 device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags,
222 instance->perftest_flags);
223 if (!device->ws) {
224 result = VK_ERROR_INCOMPATIBLE_DRIVER;
225 goto fail;
226 }
227
228 device->local_fd = fd;
229 device->ws->query_info(device->ws, &device->rad_info);
230
231 radv_get_device_name(device->rad_info.family, device->name, sizeof(device->name));
232
233 if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) {
234 device->ws->destroy(device->ws);
235 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
236 "cannot generate UUID");
237 goto fail;
238 }
239
240 /* These flags affect shader compilation. */
241 uint64_t shader_env_flags =
242 (device->instance->perftest_flags & RADV_PERFTEST_SISCHED ? 0x1 : 0) |
243 (device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH ? 0x2 : 0);
244
245 /* The gpu id is already embeded in the uuid so we just pass "radv"
246 * when creating the cache.
247 */
248 char buf[VK_UUID_SIZE * 2 + 1];
249 disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
250 device->disk_cache = disk_cache_create(device->name, buf, shader_env_flags);
251
252 fprintf(stderr, "WARNING: radv is not a conformant vulkan implementation, testing use only.\n");
253
254 radv_get_driver_uuid(&device->device_uuid);
255 radv_get_device_uuid(&device->rad_info, &device->device_uuid);
256
257 if (device->rad_info.family == CHIP_STONEY ||
258 device->rad_info.chip_class >= GFX9) {
259 device->has_rbplus = true;
260 device->rbplus_allowed = device->rad_info.family == CHIP_STONEY;
261 }
262
263 /* The mere presense of CLEAR_STATE in the IB causes random GPU hangs
264 * on SI.
265 */
266 device->has_clear_state = device->rad_info.chip_class >= CIK;
267
268 device->cpdma_prefetch_writes_memory = device->rad_info.chip_class <= VI;
269
270 /* Vega10/Raven need a special workaround for a hardware bug. */
271 device->has_scissor_bug = device->rad_info.family == CHIP_VEGA10 ||
272 device->rad_info.family == CHIP_RAVEN;
273
274 radv_physical_device_init_mem_types(device);
275
276 result = radv_init_wsi(device);
277 if (result != VK_SUCCESS) {
278 device->ws->destroy(device->ws);
279 goto fail;
280 }
281
282 return VK_SUCCESS;
283
284 fail:
285 close(fd);
286 return result;
287 }
288
289 static void
radv_physical_device_finish(struct radv_physical_device * device)290 radv_physical_device_finish(struct radv_physical_device *device)
291 {
292 radv_finish_wsi(device);
293 device->ws->destroy(device->ws);
294 disk_cache_destroy(device->disk_cache);
295 close(device->local_fd);
296 }
297
298 static void *
default_alloc_func(void * pUserData,size_t size,size_t align,VkSystemAllocationScope allocationScope)299 default_alloc_func(void *pUserData, size_t size, size_t align,
300 VkSystemAllocationScope allocationScope)
301 {
302 return malloc(size);
303 }
304
305 static void *
default_realloc_func(void * pUserData,void * pOriginal,size_t size,size_t align,VkSystemAllocationScope allocationScope)306 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
307 size_t align, VkSystemAllocationScope allocationScope)
308 {
309 return realloc(pOriginal, size);
310 }
311
312 static void
default_free_func(void * pUserData,void * pMemory)313 default_free_func(void *pUserData, void *pMemory)
314 {
315 free(pMemory);
316 }
317
318 static const VkAllocationCallbacks default_alloc = {
319 .pUserData = NULL,
320 .pfnAllocation = default_alloc_func,
321 .pfnReallocation = default_realloc_func,
322 .pfnFree = default_free_func,
323 };
324
325 static const struct debug_control radv_debug_options[] = {
326 {"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
327 {"nodcc", RADV_DEBUG_NO_DCC},
328 {"shaders", RADV_DEBUG_DUMP_SHADERS},
329 {"nocache", RADV_DEBUG_NO_CACHE},
330 {"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
331 {"nohiz", RADV_DEBUG_NO_HIZ},
332 {"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
333 {"unsafemath", RADV_DEBUG_UNSAFE_MATH},
334 {"allbos", RADV_DEBUG_ALL_BOS},
335 {"noibs", RADV_DEBUG_NO_IBS},
336 {"spirv", RADV_DEBUG_DUMP_SPIRV},
337 {"vmfaults", RADV_DEBUG_VM_FAULTS},
338 {"zerovram", RADV_DEBUG_ZERO_VRAM},
339 {"syncshaders", RADV_DEBUG_SYNC_SHADERS},
340 {"nosisched", RADV_DEBUG_NO_SISCHED},
341 {"preoptir", RADV_DEBUG_PREOPTIR},
342 {NULL, 0}
343 };
344
345 const char *
radv_get_debug_option_name(int id)346 radv_get_debug_option_name(int id)
347 {
348 assert(id < ARRAY_SIZE(radv_debug_options) - 1);
349 return radv_debug_options[id].string;
350 }
351
352 static const struct debug_control radv_perftest_options[] = {
353 {"nobatchchain", RADV_PERFTEST_NO_BATCHCHAIN},
354 {"sisched", RADV_PERFTEST_SISCHED},
355 {"localbos", RADV_PERFTEST_LOCAL_BOS},
356 {"binning", RADV_PERFTEST_BINNING},
357 {NULL, 0}
358 };
359
360 const char *
radv_get_perftest_option_name(int id)361 radv_get_perftest_option_name(int id)
362 {
363 assert(id < ARRAY_SIZE(radv_debug_options) - 1);
364 return radv_perftest_options[id].string;
365 }
366
367 static void
radv_handle_per_app_options(struct radv_instance * instance,const VkApplicationInfo * info)368 radv_handle_per_app_options(struct radv_instance *instance,
369 const VkApplicationInfo *info)
370 {
371 const char *name = info ? info->pApplicationName : NULL;
372
373 if (!name)
374 return;
375
376 if (!strcmp(name, "Talos - Linux - 32bit") ||
377 !strcmp(name, "Talos - Linux - 64bit")) {
378 /* Force enable LLVM sisched for Talos because it looks safe
379 * and it gives few more FPS.
380 */
381 instance->perftest_flags |= RADV_PERFTEST_SISCHED;
382 }
383 }
384
radv_CreateInstance(const VkInstanceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkInstance * pInstance)385 VkResult radv_CreateInstance(
386 const VkInstanceCreateInfo* pCreateInfo,
387 const VkAllocationCallbacks* pAllocator,
388 VkInstance* pInstance)
389 {
390 struct radv_instance *instance;
391 VkResult result;
392
393 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
394
395 uint32_t client_version;
396 if (pCreateInfo->pApplicationInfo &&
397 pCreateInfo->pApplicationInfo->apiVersion != 0) {
398 client_version = pCreateInfo->pApplicationInfo->apiVersion;
399 } else {
400 client_version = VK_MAKE_VERSION(1, 0, 0);
401 }
402
403 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
404 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
405 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
406 "Client requested version %d.%d.%d",
407 VK_VERSION_MAJOR(client_version),
408 VK_VERSION_MINOR(client_version),
409 VK_VERSION_PATCH(client_version));
410 }
411
412 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
413 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
414 if (!radv_instance_extension_supported(ext_name))
415 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
416 }
417
418 instance = vk_zalloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
419 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
420 if (!instance)
421 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
422
423 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
424
425 if (pAllocator)
426 instance->alloc = *pAllocator;
427 else
428 instance->alloc = default_alloc;
429
430 instance->apiVersion = client_version;
431 instance->physicalDeviceCount = -1;
432
433 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
434 if (result != VK_SUCCESS) {
435 vk_free2(&default_alloc, pAllocator, instance);
436 return vk_error(result);
437 }
438
439 _mesa_locale_init();
440
441 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
442
443 instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"),
444 radv_debug_options);
445
446 instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"),
447 radv_perftest_options);
448
449 radv_handle_per_app_options(instance, pCreateInfo->pApplicationInfo);
450
451 if (instance->debug_flags & RADV_DEBUG_NO_SISCHED) {
452 /* Disable sisched when the user requests it, this is mostly
453 * useful when the driver force-enable sisched for the given
454 * application.
455 */
456 instance->perftest_flags &= ~RADV_PERFTEST_SISCHED;
457 }
458
459 *pInstance = radv_instance_to_handle(instance);
460
461 return VK_SUCCESS;
462 }
463
radv_DestroyInstance(VkInstance _instance,const VkAllocationCallbacks * pAllocator)464 void radv_DestroyInstance(
465 VkInstance _instance,
466 const VkAllocationCallbacks* pAllocator)
467 {
468 RADV_FROM_HANDLE(radv_instance, instance, _instance);
469
470 if (!instance)
471 return;
472
473 for (int i = 0; i < instance->physicalDeviceCount; ++i) {
474 radv_physical_device_finish(instance->physicalDevices + i);
475 }
476
477 VG(VALGRIND_DESTROY_MEMPOOL(instance));
478
479 _mesa_locale_fini();
480
481 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
482
483 vk_free(&instance->alloc, instance);
484 }
485
486 static VkResult
radv_enumerate_devices(struct radv_instance * instance)487 radv_enumerate_devices(struct radv_instance *instance)
488 {
489 /* TODO: Check for more devices ? */
490 drmDevicePtr devices[8];
491 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
492 int max_devices;
493
494 instance->physicalDeviceCount = 0;
495
496 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
497 if (max_devices < 1)
498 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
499
500 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
501 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
502 devices[i]->bustype == DRM_BUS_PCI &&
503 devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) {
504
505 result = radv_physical_device_init(instance->physicalDevices +
506 instance->physicalDeviceCount,
507 instance,
508 devices[i]);
509 if (result == VK_SUCCESS)
510 ++instance->physicalDeviceCount;
511 else if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
512 break;
513 }
514 }
515 drmFreeDevices(devices, max_devices);
516
517 return result;
518 }
519
radv_EnumeratePhysicalDevices(VkInstance _instance,uint32_t * pPhysicalDeviceCount,VkPhysicalDevice * pPhysicalDevices)520 VkResult radv_EnumeratePhysicalDevices(
521 VkInstance _instance,
522 uint32_t* pPhysicalDeviceCount,
523 VkPhysicalDevice* pPhysicalDevices)
524 {
525 RADV_FROM_HANDLE(radv_instance, instance, _instance);
526 VkResult result;
527
528 if (instance->physicalDeviceCount < 0) {
529 result = radv_enumerate_devices(instance);
530 if (result != VK_SUCCESS &&
531 result != VK_ERROR_INCOMPATIBLE_DRIVER)
532 return result;
533 }
534
535 if (!pPhysicalDevices) {
536 *pPhysicalDeviceCount = instance->physicalDeviceCount;
537 } else {
538 *pPhysicalDeviceCount = MIN2(*pPhysicalDeviceCount, instance->physicalDeviceCount);
539 for (unsigned i = 0; i < *pPhysicalDeviceCount; ++i)
540 pPhysicalDevices[i] = radv_physical_device_to_handle(instance->physicalDevices + i);
541 }
542
543 return *pPhysicalDeviceCount < instance->physicalDeviceCount ? VK_INCOMPLETE
544 : VK_SUCCESS;
545 }
546
radv_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice,VkPhysicalDeviceFeatures * pFeatures)547 void radv_GetPhysicalDeviceFeatures(
548 VkPhysicalDevice physicalDevice,
549 VkPhysicalDeviceFeatures* pFeatures)
550 {
551 memset(pFeatures, 0, sizeof(*pFeatures));
552
553 *pFeatures = (VkPhysicalDeviceFeatures) {
554 .robustBufferAccess = true,
555 .fullDrawIndexUint32 = true,
556 .imageCubeArray = true,
557 .independentBlend = true,
558 .geometryShader = true,
559 .tessellationShader = true,
560 .sampleRateShading = true,
561 .dualSrcBlend = true,
562 .logicOp = true,
563 .multiDrawIndirect = true,
564 .drawIndirectFirstInstance = true,
565 .depthClamp = true,
566 .depthBiasClamp = true,
567 .fillModeNonSolid = true,
568 .depthBounds = true,
569 .wideLines = true,
570 .largePoints = true,
571 .alphaToOne = true,
572 .multiViewport = true,
573 .samplerAnisotropy = true,
574 .textureCompressionETC2 = false,
575 .textureCompressionASTC_LDR = false,
576 .textureCompressionBC = true,
577 .occlusionQueryPrecise = true,
578 .pipelineStatisticsQuery = true,
579 .vertexPipelineStoresAndAtomics = true,
580 .fragmentStoresAndAtomics = true,
581 .shaderTessellationAndGeometryPointSize = true,
582 .shaderImageGatherExtended = true,
583 .shaderStorageImageExtendedFormats = true,
584 .shaderStorageImageMultisample = false,
585 .shaderUniformBufferArrayDynamicIndexing = true,
586 .shaderSampledImageArrayDynamicIndexing = true,
587 .shaderStorageBufferArrayDynamicIndexing = true,
588 .shaderStorageImageArrayDynamicIndexing = true,
589 .shaderStorageImageReadWithoutFormat = true,
590 .shaderStorageImageWriteWithoutFormat = true,
591 .shaderClipDistance = true,
592 .shaderCullDistance = true,
593 .shaderFloat64 = true,
594 .shaderInt64 = true,
595 .shaderInt16 = false,
596 .sparseBinding = true,
597 .variableMultisampleRate = true,
598 .inheritedQueries = true,
599 };
600 }
601
radv_GetPhysicalDeviceFeatures2KHR(VkPhysicalDevice physicalDevice,VkPhysicalDeviceFeatures2KHR * pFeatures)602 void radv_GetPhysicalDeviceFeatures2KHR(
603 VkPhysicalDevice physicalDevice,
604 VkPhysicalDeviceFeatures2KHR *pFeatures)
605 {
606 vk_foreach_struct(ext, pFeatures->pNext) {
607 switch (ext->sType) {
608 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR: {
609 VkPhysicalDeviceVariablePointerFeaturesKHR *features = (void *)ext;
610 features->variablePointersStorageBuffer = true;
611 features->variablePointers = false;
612 break;
613 }
614 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX: {
615 VkPhysicalDeviceMultiviewFeaturesKHX *features = (VkPhysicalDeviceMultiviewFeaturesKHX*)ext;
616 features->multiview = true;
617 features->multiviewGeometryShader = true;
618 features->multiviewTessellationShader = true;
619 break;
620 }
621 default:
622 break;
623 }
624 }
625 return radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
626 }
627
radv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties * pProperties)628 void radv_GetPhysicalDeviceProperties(
629 VkPhysicalDevice physicalDevice,
630 VkPhysicalDeviceProperties* pProperties)
631 {
632 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
633 VkSampleCountFlags sample_counts = 0xf;
634
635 /* make sure that the entire descriptor set is addressable with a signed
636 * 32-bit int. So the sum of all limits scaled by descriptor size has to
637 * be at most 2 GiB. the combined image & samples object count as one of
638 * both. This limit is for the pipeline layout, not for the set layout, but
639 * there is no set limit, so we just set a pipeline limit. I don't think
640 * any app is going to hit this soon. */
641 size_t max_descriptor_set_size = ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS) /
642 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
643 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
644 32 /* sampler, largest when combined with image */ +
645 64 /* sampled image */ +
646 64 /* storage image */);
647
648 VkPhysicalDeviceLimits limits = {
649 .maxImageDimension1D = (1 << 14),
650 .maxImageDimension2D = (1 << 14),
651 .maxImageDimension3D = (1 << 11),
652 .maxImageDimensionCube = (1 << 14),
653 .maxImageArrayLayers = (1 << 11),
654 .maxTexelBufferElements = 128 * 1024 * 1024,
655 .maxUniformBufferRange = UINT32_MAX,
656 .maxStorageBufferRange = UINT32_MAX,
657 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
658 .maxMemoryAllocationCount = UINT32_MAX,
659 .maxSamplerAllocationCount = 64 * 1024,
660 .bufferImageGranularity = 64, /* A cache line */
661 .sparseAddressSpaceSize = 0xffffffffu, /* buffer max size */
662 .maxBoundDescriptorSets = MAX_SETS,
663 .maxPerStageDescriptorSamplers = max_descriptor_set_size,
664 .maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
665 .maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
666 .maxPerStageDescriptorSampledImages = max_descriptor_set_size,
667 .maxPerStageDescriptorStorageImages = max_descriptor_set_size,
668 .maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
669 .maxPerStageResources = max_descriptor_set_size,
670 .maxDescriptorSetSamplers = max_descriptor_set_size,
671 .maxDescriptorSetUniformBuffers = max_descriptor_set_size,
672 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
673 .maxDescriptorSetStorageBuffers = max_descriptor_set_size,
674 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
675 .maxDescriptorSetSampledImages = max_descriptor_set_size,
676 .maxDescriptorSetStorageImages = max_descriptor_set_size,
677 .maxDescriptorSetInputAttachments = max_descriptor_set_size,
678 .maxVertexInputAttributes = 32,
679 .maxVertexInputBindings = 32,
680 .maxVertexInputAttributeOffset = 2047,
681 .maxVertexInputBindingStride = 2048,
682 .maxVertexOutputComponents = 128,
683 .maxTessellationGenerationLevel = 64,
684 .maxTessellationPatchSize = 32,
685 .maxTessellationControlPerVertexInputComponents = 128,
686 .maxTessellationControlPerVertexOutputComponents = 128,
687 .maxTessellationControlPerPatchOutputComponents = 120,
688 .maxTessellationControlTotalOutputComponents = 4096,
689 .maxTessellationEvaluationInputComponents = 128,
690 .maxTessellationEvaluationOutputComponents = 128,
691 .maxGeometryShaderInvocations = 127,
692 .maxGeometryInputComponents = 64,
693 .maxGeometryOutputComponents = 128,
694 .maxGeometryOutputVertices = 256,
695 .maxGeometryTotalOutputComponents = 1024,
696 .maxFragmentInputComponents = 128,
697 .maxFragmentOutputAttachments = 8,
698 .maxFragmentDualSrcAttachments = 1,
699 .maxFragmentCombinedOutputResources = 8,
700 .maxComputeSharedMemorySize = 32768,
701 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
702 .maxComputeWorkGroupInvocations = 2048,
703 .maxComputeWorkGroupSize = {
704 2048,
705 2048,
706 2048
707 },
708 .subPixelPrecisionBits = 4 /* FIXME */,
709 .subTexelPrecisionBits = 4 /* FIXME */,
710 .mipmapPrecisionBits = 4 /* FIXME */,
711 .maxDrawIndexedIndexValue = UINT32_MAX,
712 .maxDrawIndirectCount = UINT32_MAX,
713 .maxSamplerLodBias = 16,
714 .maxSamplerAnisotropy = 16,
715 .maxViewports = MAX_VIEWPORTS,
716 .maxViewportDimensions = { (1 << 14), (1 << 14) },
717 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
718 .viewportSubPixelBits = 13, /* We take a float? */
719 .minMemoryMapAlignment = 4096, /* A page */
720 .minTexelBufferOffsetAlignment = 1,
721 .minUniformBufferOffsetAlignment = 4,
722 .minStorageBufferOffsetAlignment = 4,
723 .minTexelOffset = -32,
724 .maxTexelOffset = 31,
725 .minTexelGatherOffset = -32,
726 .maxTexelGatherOffset = 31,
727 .minInterpolationOffset = -2,
728 .maxInterpolationOffset = 2,
729 .subPixelInterpolationOffsetBits = 8,
730 .maxFramebufferWidth = (1 << 14),
731 .maxFramebufferHeight = (1 << 14),
732 .maxFramebufferLayers = (1 << 10),
733 .framebufferColorSampleCounts = sample_counts,
734 .framebufferDepthSampleCounts = sample_counts,
735 .framebufferStencilSampleCounts = sample_counts,
736 .framebufferNoAttachmentsSampleCounts = sample_counts,
737 .maxColorAttachments = MAX_RTS,
738 .sampledImageColorSampleCounts = sample_counts,
739 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
740 .sampledImageDepthSampleCounts = sample_counts,
741 .sampledImageStencilSampleCounts = sample_counts,
742 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
743 .maxSampleMaskWords = 1,
744 .timestampComputeAndGraphics = true,
745 .timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
746 .maxClipDistances = 8,
747 .maxCullDistances = 8,
748 .maxCombinedClipAndCullDistances = 8,
749 .discreteQueuePriorities = 1,
750 .pointSizeRange = { 0.125, 255.875 },
751 .lineWidthRange = { 0.0, 7.9921875 },
752 .pointSizeGranularity = (1.0 / 8.0),
753 .lineWidthGranularity = (1.0 / 128.0),
754 .strictLines = false, /* FINISHME */
755 .standardSampleLocations = true,
756 .optimalBufferCopyOffsetAlignment = 128,
757 .optimalBufferCopyRowPitchAlignment = 128,
758 .nonCoherentAtomSize = 64,
759 };
760
761 *pProperties = (VkPhysicalDeviceProperties) {
762 .apiVersion = radv_physical_device_api_version(pdevice),
763 .driverVersion = vk_get_driver_version(),
764 .vendorID = ATI_VENDOR_ID,
765 .deviceID = pdevice->rad_info.pci_id,
766 .deviceType = pdevice->rad_info.has_dedicated_vram ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU : VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
767 .limits = limits,
768 .sparseProperties = {0},
769 };
770
771 strcpy(pProperties->deviceName, pdevice->name);
772 memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
773 }
774
radv_GetPhysicalDeviceProperties2KHR(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties2KHR * pProperties)775 void radv_GetPhysicalDeviceProperties2KHR(
776 VkPhysicalDevice physicalDevice,
777 VkPhysicalDeviceProperties2KHR *pProperties)
778 {
779 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
780 radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
781
782 vk_foreach_struct(ext, pProperties->pNext) {
783 switch (ext->sType) {
784 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
785 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
786 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
787 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
788 break;
789 }
790 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR: {
791 VkPhysicalDeviceIDPropertiesKHR *properties = (VkPhysicalDeviceIDPropertiesKHR*)ext;
792 memcpy(properties->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
793 memcpy(properties->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
794 properties->deviceLUIDValid = false;
795 break;
796 }
797 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX: {
798 VkPhysicalDeviceMultiviewPropertiesKHX *properties = (VkPhysicalDeviceMultiviewPropertiesKHX*)ext;
799 properties->maxMultiviewViewCount = MAX_VIEWS;
800 properties->maxMultiviewInstanceIndex = INT_MAX;
801 break;
802 }
803 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR: {
804 VkPhysicalDevicePointClippingPropertiesKHR *properties =
805 (VkPhysicalDevicePointClippingPropertiesKHR*)ext;
806 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR;
807 break;
808 }
809 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
810 VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
811 (VkPhysicalDeviceDiscardRectanglePropertiesEXT*)ext;
812 properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
813 break;
814 }
815 default:
816 break;
817 }
818 }
819 }
820
radv_get_physical_device_queue_family_properties(struct radv_physical_device * pdevice,uint32_t * pCount,VkQueueFamilyProperties ** pQueueFamilyProperties)821 static void radv_get_physical_device_queue_family_properties(
822 struct radv_physical_device* pdevice,
823 uint32_t* pCount,
824 VkQueueFamilyProperties** pQueueFamilyProperties)
825 {
826 int num_queue_families = 1;
827 int idx;
828 if (pdevice->rad_info.num_compute_rings > 0 &&
829 pdevice->rad_info.chip_class >= CIK &&
830 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
831 num_queue_families++;
832
833 if (pQueueFamilyProperties == NULL) {
834 *pCount = num_queue_families;
835 return;
836 }
837
838 if (!*pCount)
839 return;
840
841 idx = 0;
842 if (*pCount >= 1) {
843 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
844 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
845 VK_QUEUE_COMPUTE_BIT |
846 VK_QUEUE_TRANSFER_BIT |
847 VK_QUEUE_SPARSE_BINDING_BIT,
848 .queueCount = 1,
849 .timestampValidBits = 64,
850 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
851 };
852 idx++;
853 }
854
855 if (pdevice->rad_info.num_compute_rings > 0 &&
856 pdevice->rad_info.chip_class >= CIK &&
857 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
858 if (*pCount > idx) {
859 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
860 .queueFlags = VK_QUEUE_COMPUTE_BIT |
861 VK_QUEUE_TRANSFER_BIT |
862 VK_QUEUE_SPARSE_BINDING_BIT,
863 .queueCount = pdevice->rad_info.num_compute_rings,
864 .timestampValidBits = 64,
865 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
866 };
867 idx++;
868 }
869 }
870 *pCount = idx;
871 }
872
radv_GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice,uint32_t * pCount,VkQueueFamilyProperties * pQueueFamilyProperties)873 void radv_GetPhysicalDeviceQueueFamilyProperties(
874 VkPhysicalDevice physicalDevice,
875 uint32_t* pCount,
876 VkQueueFamilyProperties* pQueueFamilyProperties)
877 {
878 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
879 if (!pQueueFamilyProperties) {
880 return radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
881 return;
882 }
883 VkQueueFamilyProperties *properties[] = {
884 pQueueFamilyProperties + 0,
885 pQueueFamilyProperties + 1,
886 pQueueFamilyProperties + 2,
887 };
888 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
889 assert(*pCount <= 3);
890 }
891
radv_GetPhysicalDeviceQueueFamilyProperties2KHR(VkPhysicalDevice physicalDevice,uint32_t * pCount,VkQueueFamilyProperties2KHR * pQueueFamilyProperties)892 void radv_GetPhysicalDeviceQueueFamilyProperties2KHR(
893 VkPhysicalDevice physicalDevice,
894 uint32_t* pCount,
895 VkQueueFamilyProperties2KHR *pQueueFamilyProperties)
896 {
897 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
898 if (!pQueueFamilyProperties) {
899 return radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
900 return;
901 }
902 VkQueueFamilyProperties *properties[] = {
903 &pQueueFamilyProperties[0].queueFamilyProperties,
904 &pQueueFamilyProperties[1].queueFamilyProperties,
905 &pQueueFamilyProperties[2].queueFamilyProperties,
906 };
907 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
908 assert(*pCount <= 3);
909 }
910
radv_GetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryProperties * pMemoryProperties)911 void radv_GetPhysicalDeviceMemoryProperties(
912 VkPhysicalDevice physicalDevice,
913 VkPhysicalDeviceMemoryProperties *pMemoryProperties)
914 {
915 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
916
917 *pMemoryProperties = physical_device->memory_properties;
918 }
919
radv_GetPhysicalDeviceMemoryProperties2KHR(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryProperties2KHR * pMemoryProperties)920 void radv_GetPhysicalDeviceMemoryProperties2KHR(
921 VkPhysicalDevice physicalDevice,
922 VkPhysicalDeviceMemoryProperties2KHR *pMemoryProperties)
923 {
924 return radv_GetPhysicalDeviceMemoryProperties(physicalDevice,
925 &pMemoryProperties->memoryProperties);
926 }
927
928 static enum radeon_ctx_priority
radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT * pObj)929 radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT *pObj)
930 {
931 /* Default to MEDIUM when a specific global priority isn't requested */
932 if (!pObj)
933 return RADEON_CTX_PRIORITY_MEDIUM;
934
935 switch(pObj->globalPriority) {
936 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
937 return RADEON_CTX_PRIORITY_REALTIME;
938 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
939 return RADEON_CTX_PRIORITY_HIGH;
940 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
941 return RADEON_CTX_PRIORITY_MEDIUM;
942 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
943 return RADEON_CTX_PRIORITY_LOW;
944 default:
945 unreachable("Illegal global priority value");
946 return RADEON_CTX_PRIORITY_INVALID;
947 }
948 }
949
950 static int
radv_queue_init(struct radv_device * device,struct radv_queue * queue,uint32_t queue_family_index,int idx,const VkDeviceQueueGlobalPriorityCreateInfoEXT * global_priority)951 radv_queue_init(struct radv_device *device, struct radv_queue *queue,
952 uint32_t queue_family_index, int idx,
953 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority)
954 {
955 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
956 queue->device = device;
957 queue->queue_family_index = queue_family_index;
958 queue->queue_idx = idx;
959 queue->priority = radv_get_queue_global_priority(global_priority);
960
961 queue->hw_ctx = device->ws->ctx_create(device->ws, queue->priority);
962 if (!queue->hw_ctx)
963 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
964
965 return VK_SUCCESS;
966 }
967
968 static void
radv_queue_finish(struct radv_queue * queue)969 radv_queue_finish(struct radv_queue *queue)
970 {
971 if (queue->hw_ctx)
972 queue->device->ws->ctx_destroy(queue->hw_ctx);
973
974 if (queue->initial_full_flush_preamble_cs)
975 queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
976 if (queue->initial_preamble_cs)
977 queue->device->ws->cs_destroy(queue->initial_preamble_cs);
978 if (queue->continue_preamble_cs)
979 queue->device->ws->cs_destroy(queue->continue_preamble_cs);
980 if (queue->descriptor_bo)
981 queue->device->ws->buffer_destroy(queue->descriptor_bo);
982 if (queue->scratch_bo)
983 queue->device->ws->buffer_destroy(queue->scratch_bo);
984 if (queue->esgs_ring_bo)
985 queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
986 if (queue->gsvs_ring_bo)
987 queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
988 if (queue->tess_factor_ring_bo)
989 queue->device->ws->buffer_destroy(queue->tess_factor_ring_bo);
990 if (queue->tess_offchip_ring_bo)
991 queue->device->ws->buffer_destroy(queue->tess_offchip_ring_bo);
992 if (queue->compute_scratch_bo)
993 queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
994 }
995
996 static void
radv_device_init_gs_info(struct radv_device * device)997 radv_device_init_gs_info(struct radv_device *device)
998 {
999 switch (device->physical_device->rad_info.family) {
1000 case CHIP_OLAND:
1001 case CHIP_HAINAN:
1002 case CHIP_KAVERI:
1003 case CHIP_KABINI:
1004 case CHIP_MULLINS:
1005 case CHIP_ICELAND:
1006 case CHIP_CARRIZO:
1007 case CHIP_STONEY:
1008 device->gs_table_depth = 16;
1009 return;
1010 case CHIP_TAHITI:
1011 case CHIP_PITCAIRN:
1012 case CHIP_VERDE:
1013 case CHIP_BONAIRE:
1014 case CHIP_HAWAII:
1015 case CHIP_TONGA:
1016 case CHIP_FIJI:
1017 case CHIP_POLARIS10:
1018 case CHIP_POLARIS11:
1019 case CHIP_POLARIS12:
1020 case CHIP_VEGA10:
1021 case CHIP_RAVEN:
1022 device->gs_table_depth = 32;
1023 return;
1024 default:
1025 unreachable("unknown GPU");
1026 }
1027 }
1028
radv_CreateDevice(VkPhysicalDevice physicalDevice,const VkDeviceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDevice * pDevice)1029 VkResult radv_CreateDevice(
1030 VkPhysicalDevice physicalDevice,
1031 const VkDeviceCreateInfo* pCreateInfo,
1032 const VkAllocationCallbacks* pAllocator,
1033 VkDevice* pDevice)
1034 {
1035 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
1036 VkResult result;
1037 struct radv_device *device;
1038
1039 bool keep_shader_info = false;
1040
1041 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1042 const char *ext_name = pCreateInfo->ppEnabledExtensionNames[i];
1043 if (!radv_physical_device_extension_supported(physical_device, ext_name))
1044 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1045
1046 if (strcmp(ext_name, VK_AMD_SHADER_INFO_EXTENSION_NAME) == 0)
1047 keep_shader_info = true;
1048 }
1049
1050 /* Check enabled features */
1051 if (pCreateInfo->pEnabledFeatures) {
1052 VkPhysicalDeviceFeatures supported_features;
1053 radv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1054 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1055 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1056 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1057 for (uint32_t i = 0; i < num_features; i++) {
1058 if (enabled_feature[i] && !supported_feature[i])
1059 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1060 }
1061 }
1062
1063 device = vk_zalloc2(&physical_device->instance->alloc, pAllocator,
1064 sizeof(*device), 8,
1065 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1066 if (!device)
1067 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1068
1069 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1070 device->instance = physical_device->instance;
1071 device->physical_device = physical_device;
1072
1073 device->ws = physical_device->ws;
1074 if (pAllocator)
1075 device->alloc = *pAllocator;
1076 else
1077 device->alloc = physical_device->instance->alloc;
1078
1079 mtx_init(&device->shader_slab_mutex, mtx_plain);
1080 list_inithead(&device->shader_slabs);
1081
1082 for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1083 const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
1084 uint32_t qfi = queue_create->queueFamilyIndex;
1085 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority =
1086 vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1087
1088 assert(!global_priority || device->physical_device->rad_info.has_ctx_priority);
1089
1090 device->queues[qfi] = vk_alloc(&device->alloc,
1091 queue_create->queueCount * sizeof(struct radv_queue), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1092 if (!device->queues[qfi]) {
1093 result = VK_ERROR_OUT_OF_HOST_MEMORY;
1094 goto fail;
1095 }
1096
1097 memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
1098
1099 device->queue_count[qfi] = queue_create->queueCount;
1100
1101 for (unsigned q = 0; q < queue_create->queueCount; q++) {
1102 result = radv_queue_init(device, &device->queues[qfi][q], qfi, q, global_priority);
1103 if (result != VK_SUCCESS)
1104 goto fail;
1105 }
1106 }
1107
1108 device->pbb_allowed = device->physical_device->rad_info.chip_class >= GFX9 &&
1109 (device->instance->perftest_flags & RADV_PERFTEST_BINNING);
1110
1111 /* Disabled and not implemented for now. */
1112 device->dfsm_allowed = device->pbb_allowed && false;
1113
1114 #ifdef ANDROID
1115 device->always_use_syncobj = device->physical_device->rad_info.has_syncobj_wait_for_submit;
1116 #endif
1117
1118 #if HAVE_LLVM < 0x0400
1119 device->llvm_supports_spill = false;
1120 #else
1121 device->llvm_supports_spill = true;
1122 #endif
1123
1124 /* The maximum number of scratch waves. Scratch space isn't divided
1125 * evenly between CUs. The number is only a function of the number of CUs.
1126 * We can decrease the constant to decrease the scratch buffer size.
1127 *
1128 * sctx->scratch_waves must be >= the maximum posible size of
1129 * 1 threadgroup, so that the hw doesn't hang from being unable
1130 * to start any.
1131 *
1132 * The recommended value is 4 per CU at most. Higher numbers don't
1133 * bring much benefit, but they still occupy chip resources (think
1134 * async compute). I've seen ~2% performance difference between 4 and 32.
1135 */
1136 uint32_t max_threads_per_block = 2048;
1137 device->scratch_waves = MAX2(32 * physical_device->rad_info.num_good_compute_units,
1138 max_threads_per_block / 64);
1139
1140 device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1) |
1141 S_00B800_FORCE_START_AT_000(1);
1142
1143 if (device->physical_device->rad_info.chip_class >= CIK) {
1144 /* If the KMD allows it (there is a KMD hw register for it),
1145 * allow launching waves out-of-order.
1146 */
1147 device->dispatch_initiator |= S_00B800_ORDER_MODE(1);
1148 }
1149
1150 radv_device_init_gs_info(device);
1151
1152 device->tess_offchip_block_dw_size =
1153 device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192;
1154 device->has_distributed_tess =
1155 device->physical_device->rad_info.chip_class >= VI &&
1156 device->physical_device->rad_info.max_se >= 2;
1157
1158 if (getenv("RADV_TRACE_FILE")) {
1159 keep_shader_info = true;
1160
1161 if (!radv_init_trace(device))
1162 goto fail;
1163 }
1164
1165 device->keep_shader_info = keep_shader_info;
1166
1167 result = radv_device_init_meta(device);
1168 if (result != VK_SUCCESS)
1169 goto fail;
1170
1171 radv_device_init_msaa(device);
1172
1173 for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) {
1174 device->empty_cs[family] = device->ws->cs_create(device->ws, family);
1175 switch (family) {
1176 case RADV_QUEUE_GENERAL:
1177 radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
1178 radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_LOAD_ENABLE(1));
1179 radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_SHADOW_ENABLE(1));
1180 break;
1181 case RADV_QUEUE_COMPUTE:
1182 radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0));
1183 radeon_emit(device->empty_cs[family], 0);
1184 break;
1185 }
1186 device->ws->cs_finalize(device->empty_cs[family]);
1187 }
1188
1189 if (device->physical_device->rad_info.chip_class >= CIK)
1190 cik_create_gfx_config(device);
1191
1192 VkPipelineCacheCreateInfo ci;
1193 ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
1194 ci.pNext = NULL;
1195 ci.flags = 0;
1196 ci.pInitialData = NULL;
1197 ci.initialDataSize = 0;
1198 VkPipelineCache pc;
1199 result = radv_CreatePipelineCache(radv_device_to_handle(device),
1200 &ci, NULL, &pc);
1201 if (result != VK_SUCCESS)
1202 goto fail_meta;
1203
1204 device->mem_cache = radv_pipeline_cache_from_handle(pc);
1205
1206 *pDevice = radv_device_to_handle(device);
1207 return VK_SUCCESS;
1208
1209 fail_meta:
1210 radv_device_finish_meta(device);
1211 fail:
1212 if (device->trace_bo)
1213 device->ws->buffer_destroy(device->trace_bo);
1214
1215 if (device->gfx_init)
1216 device->ws->buffer_destroy(device->gfx_init);
1217
1218 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
1219 for (unsigned q = 0; q < device->queue_count[i]; q++)
1220 radv_queue_finish(&device->queues[i][q]);
1221 if (device->queue_count[i])
1222 vk_free(&device->alloc, device->queues[i]);
1223 }
1224
1225 vk_free(&device->alloc, device);
1226 return result;
1227 }
1228
radv_DestroyDevice(VkDevice _device,const VkAllocationCallbacks * pAllocator)1229 void radv_DestroyDevice(
1230 VkDevice _device,
1231 const VkAllocationCallbacks* pAllocator)
1232 {
1233 RADV_FROM_HANDLE(radv_device, device, _device);
1234
1235 if (!device)
1236 return;
1237
1238 if (device->trace_bo)
1239 device->ws->buffer_destroy(device->trace_bo);
1240
1241 if (device->gfx_init)
1242 device->ws->buffer_destroy(device->gfx_init);
1243
1244 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
1245 for (unsigned q = 0; q < device->queue_count[i]; q++)
1246 radv_queue_finish(&device->queues[i][q]);
1247 if (device->queue_count[i])
1248 vk_free(&device->alloc, device->queues[i]);
1249 if (device->empty_cs[i])
1250 device->ws->cs_destroy(device->empty_cs[i]);
1251 }
1252 radv_device_finish_meta(device);
1253
1254 VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
1255 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
1256
1257 radv_destroy_shader_slabs(device);
1258
1259 vk_free(&device->alloc, device);
1260 }
1261
radv_EnumerateInstanceLayerProperties(uint32_t * pPropertyCount,VkLayerProperties * pProperties)1262 VkResult radv_EnumerateInstanceLayerProperties(
1263 uint32_t* pPropertyCount,
1264 VkLayerProperties* pProperties)
1265 {
1266 if (pProperties == NULL) {
1267 *pPropertyCount = 0;
1268 return VK_SUCCESS;
1269 }
1270
1271 /* None supported at this time */
1272 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1273 }
1274
radv_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice,uint32_t * pPropertyCount,VkLayerProperties * pProperties)1275 VkResult radv_EnumerateDeviceLayerProperties(
1276 VkPhysicalDevice physicalDevice,
1277 uint32_t* pPropertyCount,
1278 VkLayerProperties* pProperties)
1279 {
1280 if (pProperties == NULL) {
1281 *pPropertyCount = 0;
1282 return VK_SUCCESS;
1283 }
1284
1285 /* None supported at this time */
1286 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1287 }
1288
radv_GetDeviceQueue(VkDevice _device,uint32_t queueFamilyIndex,uint32_t queueIndex,VkQueue * pQueue)1289 void radv_GetDeviceQueue(
1290 VkDevice _device,
1291 uint32_t queueFamilyIndex,
1292 uint32_t queueIndex,
1293 VkQueue* pQueue)
1294 {
1295 RADV_FROM_HANDLE(radv_device, device, _device);
1296
1297 *pQueue = radv_queue_to_handle(&device->queues[queueFamilyIndex][queueIndex]);
1298 }
1299
1300 static void
fill_geom_tess_rings(struct radv_queue * queue,uint32_t * map,bool add_sample_positions,uint32_t esgs_ring_size,struct radeon_winsys_bo * esgs_ring_bo,uint32_t gsvs_ring_size,struct radeon_winsys_bo * gsvs_ring_bo,uint32_t tess_factor_ring_size,struct radeon_winsys_bo * tess_factor_ring_bo,uint32_t tess_offchip_ring_size,struct radeon_winsys_bo * tess_offchip_ring_bo)1301 fill_geom_tess_rings(struct radv_queue *queue,
1302 uint32_t *map,
1303 bool add_sample_positions,
1304 uint32_t esgs_ring_size,
1305 struct radeon_winsys_bo *esgs_ring_bo,
1306 uint32_t gsvs_ring_size,
1307 struct radeon_winsys_bo *gsvs_ring_bo,
1308 uint32_t tess_factor_ring_size,
1309 struct radeon_winsys_bo *tess_factor_ring_bo,
1310 uint32_t tess_offchip_ring_size,
1311 struct radeon_winsys_bo *tess_offchip_ring_bo)
1312 {
1313 uint64_t esgs_va = 0, gsvs_va = 0;
1314 uint64_t tess_factor_va = 0, tess_offchip_va = 0;
1315 uint32_t *desc = &map[4];
1316
1317 if (esgs_ring_bo)
1318 esgs_va = radv_buffer_get_va(esgs_ring_bo);
1319 if (gsvs_ring_bo)
1320 gsvs_va = radv_buffer_get_va(gsvs_ring_bo);
1321 if (tess_factor_ring_bo)
1322 tess_factor_va = radv_buffer_get_va(tess_factor_ring_bo);
1323 if (tess_offchip_ring_bo)
1324 tess_offchip_va = radv_buffer_get_va(tess_offchip_ring_bo);
1325
1326 /* stride 0, num records - size, add tid, swizzle, elsize4,
1327 index stride 64 */
1328 desc[0] = esgs_va;
1329 desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) |
1330 S_008F04_STRIDE(0) |
1331 S_008F04_SWIZZLE_ENABLE(true);
1332 desc[2] = esgs_ring_size;
1333 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1334 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1335 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1336 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1337 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1338 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
1339 S_008F0C_ELEMENT_SIZE(1) |
1340 S_008F0C_INDEX_STRIDE(3) |
1341 S_008F0C_ADD_TID_ENABLE(true);
1342
1343 desc += 4;
1344 /* GS entry for ES->GS ring */
1345 /* stride 0, num records - size, elsize0,
1346 index stride 0 */
1347 desc[0] = esgs_va;
1348 desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32)|
1349 S_008F04_STRIDE(0) |
1350 S_008F04_SWIZZLE_ENABLE(false);
1351 desc[2] = esgs_ring_size;
1352 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1353 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1354 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1355 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1356 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1357 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
1358 S_008F0C_ELEMENT_SIZE(0) |
1359 S_008F0C_INDEX_STRIDE(0) |
1360 S_008F0C_ADD_TID_ENABLE(false);
1361
1362 desc += 4;
1363 /* VS entry for GS->VS ring */
1364 /* stride 0, num records - size, elsize0,
1365 index stride 0 */
1366 desc[0] = gsvs_va;
1367 desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32)|
1368 S_008F04_STRIDE(0) |
1369 S_008F04_SWIZZLE_ENABLE(false);
1370 desc[2] = gsvs_ring_size;
1371 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1372 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1373 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1374 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1375 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1376 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
1377 S_008F0C_ELEMENT_SIZE(0) |
1378 S_008F0C_INDEX_STRIDE(0) |
1379 S_008F0C_ADD_TID_ENABLE(false);
1380 desc += 4;
1381
1382 /* stride gsvs_itemsize, num records 64
1383 elsize 4, index stride 16 */
1384 /* shader will patch stride and desc[2] */
1385 desc[0] = gsvs_va;
1386 desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32)|
1387 S_008F04_STRIDE(0) |
1388 S_008F04_SWIZZLE_ENABLE(true);
1389 desc[2] = 0;
1390 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1391 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1392 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1393 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1394 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1395 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
1396 S_008F0C_ELEMENT_SIZE(1) |
1397 S_008F0C_INDEX_STRIDE(1) |
1398 S_008F0C_ADD_TID_ENABLE(true);
1399 desc += 4;
1400
1401 desc[0] = tess_factor_va;
1402 desc[1] = S_008F04_BASE_ADDRESS_HI(tess_factor_va >> 32) |
1403 S_008F04_STRIDE(0) |
1404 S_008F04_SWIZZLE_ENABLE(false);
1405 desc[2] = tess_factor_ring_size;
1406 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1407 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1408 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1409 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1410 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1411 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
1412 S_008F0C_ELEMENT_SIZE(0) |
1413 S_008F0C_INDEX_STRIDE(0) |
1414 S_008F0C_ADD_TID_ENABLE(false);
1415 desc += 4;
1416
1417 desc[0] = tess_offchip_va;
1418 desc[1] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32) |
1419 S_008F04_STRIDE(0) |
1420 S_008F04_SWIZZLE_ENABLE(false);
1421 desc[2] = tess_offchip_ring_size;
1422 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1423 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1424 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1425 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1426 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1427 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
1428 S_008F0C_ELEMENT_SIZE(0) |
1429 S_008F0C_INDEX_STRIDE(0) |
1430 S_008F0C_ADD_TID_ENABLE(false);
1431 desc += 4;
1432
1433 /* add sample positions after all rings */
1434 memcpy(desc, queue->device->sample_locations_1x, 8);
1435 desc += 2;
1436 memcpy(desc, queue->device->sample_locations_2x, 16);
1437 desc += 4;
1438 memcpy(desc, queue->device->sample_locations_4x, 32);
1439 desc += 8;
1440 memcpy(desc, queue->device->sample_locations_8x, 64);
1441 desc += 16;
1442 memcpy(desc, queue->device->sample_locations_16x, 128);
1443 }
1444
1445 static unsigned
radv_get_hs_offchip_param(struct radv_device * device,uint32_t * max_offchip_buffers_p)1446 radv_get_hs_offchip_param(struct radv_device *device, uint32_t *max_offchip_buffers_p)
1447 {
1448 bool double_offchip_buffers = device->physical_device->rad_info.chip_class >= CIK &&
1449 device->physical_device->rad_info.family != CHIP_CARRIZO &&
1450 device->physical_device->rad_info.family != CHIP_STONEY;
1451 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
1452 unsigned max_offchip_buffers = max_offchip_buffers_per_se *
1453 device->physical_device->rad_info.max_se;
1454 unsigned offchip_granularity;
1455 unsigned hs_offchip_param;
1456 switch (device->tess_offchip_block_dw_size) {
1457 default:
1458 assert(0);
1459 /* fall through */
1460 case 8192:
1461 offchip_granularity = V_03093C_X_8K_DWORDS;
1462 break;
1463 case 4096:
1464 offchip_granularity = V_03093C_X_4K_DWORDS;
1465 break;
1466 }
1467
1468 switch (device->physical_device->rad_info.chip_class) {
1469 case SI:
1470 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
1471 break;
1472 case CIK:
1473 case VI:
1474 case GFX9:
1475 default:
1476 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
1477 break;
1478 }
1479
1480 *max_offchip_buffers_p = max_offchip_buffers;
1481 if (device->physical_device->rad_info.chip_class >= CIK) {
1482 if (device->physical_device->rad_info.chip_class >= VI)
1483 --max_offchip_buffers;
1484 hs_offchip_param =
1485 S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
1486 S_03093C_OFFCHIP_GRANULARITY(offchip_granularity);
1487 } else {
1488 hs_offchip_param =
1489 S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers);
1490 }
1491 return hs_offchip_param;
1492 }
1493
1494 static VkResult
radv_get_preamble_cs(struct radv_queue * queue,uint32_t scratch_size,uint32_t compute_scratch_size,uint32_t esgs_ring_size,uint32_t gsvs_ring_size,bool needs_tess_rings,bool needs_sample_positions,struct radeon_winsys_cs ** initial_full_flush_preamble_cs,struct radeon_winsys_cs ** initial_preamble_cs,struct radeon_winsys_cs ** continue_preamble_cs)1495 radv_get_preamble_cs(struct radv_queue *queue,
1496 uint32_t scratch_size,
1497 uint32_t compute_scratch_size,
1498 uint32_t esgs_ring_size,
1499 uint32_t gsvs_ring_size,
1500 bool needs_tess_rings,
1501 bool needs_sample_positions,
1502 struct radeon_winsys_cs **initial_full_flush_preamble_cs,
1503 struct radeon_winsys_cs **initial_preamble_cs,
1504 struct radeon_winsys_cs **continue_preamble_cs)
1505 {
1506 struct radeon_winsys_bo *scratch_bo = NULL;
1507 struct radeon_winsys_bo *descriptor_bo = NULL;
1508 struct radeon_winsys_bo *compute_scratch_bo = NULL;
1509 struct radeon_winsys_bo *esgs_ring_bo = NULL;
1510 struct radeon_winsys_bo *gsvs_ring_bo = NULL;
1511 struct radeon_winsys_bo *tess_factor_ring_bo = NULL;
1512 struct radeon_winsys_bo *tess_offchip_ring_bo = NULL;
1513 struct radeon_winsys_cs *dest_cs[3] = {0};
1514 bool add_tess_rings = false, add_sample_positions = false;
1515 unsigned tess_factor_ring_size = 0, tess_offchip_ring_size = 0;
1516 unsigned max_offchip_buffers;
1517 unsigned hs_offchip_param = 0;
1518 uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING;
1519 if (!queue->has_tess_rings) {
1520 if (needs_tess_rings)
1521 add_tess_rings = true;
1522 }
1523 if (!queue->has_sample_positions) {
1524 if (needs_sample_positions)
1525 add_sample_positions = true;
1526 }
1527 tess_factor_ring_size = 32768 * queue->device->physical_device->rad_info.max_se;
1528 hs_offchip_param = radv_get_hs_offchip_param(queue->device,
1529 &max_offchip_buffers);
1530 tess_offchip_ring_size = max_offchip_buffers *
1531 queue->device->tess_offchip_block_dw_size * 4;
1532
1533 if (scratch_size <= queue->scratch_size &&
1534 compute_scratch_size <= queue->compute_scratch_size &&
1535 esgs_ring_size <= queue->esgs_ring_size &&
1536 gsvs_ring_size <= queue->gsvs_ring_size &&
1537 !add_tess_rings && !add_sample_positions &&
1538 queue->initial_preamble_cs) {
1539 *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
1540 *initial_preamble_cs = queue->initial_preamble_cs;
1541 *continue_preamble_cs = queue->continue_preamble_cs;
1542 if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
1543 *continue_preamble_cs = NULL;
1544 return VK_SUCCESS;
1545 }
1546
1547 if (scratch_size > queue->scratch_size) {
1548 scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
1549 scratch_size,
1550 4096,
1551 RADEON_DOMAIN_VRAM,
1552 ring_bo_flags);
1553 if (!scratch_bo)
1554 goto fail;
1555 } else
1556 scratch_bo = queue->scratch_bo;
1557
1558 if (compute_scratch_size > queue->compute_scratch_size) {
1559 compute_scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
1560 compute_scratch_size,
1561 4096,
1562 RADEON_DOMAIN_VRAM,
1563 ring_bo_flags);
1564 if (!compute_scratch_bo)
1565 goto fail;
1566
1567 } else
1568 compute_scratch_bo = queue->compute_scratch_bo;
1569
1570 if (esgs_ring_size > queue->esgs_ring_size) {
1571 esgs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
1572 esgs_ring_size,
1573 4096,
1574 RADEON_DOMAIN_VRAM,
1575 ring_bo_flags);
1576 if (!esgs_ring_bo)
1577 goto fail;
1578 } else {
1579 esgs_ring_bo = queue->esgs_ring_bo;
1580 esgs_ring_size = queue->esgs_ring_size;
1581 }
1582
1583 if (gsvs_ring_size > queue->gsvs_ring_size) {
1584 gsvs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
1585 gsvs_ring_size,
1586 4096,
1587 RADEON_DOMAIN_VRAM,
1588 ring_bo_flags);
1589 if (!gsvs_ring_bo)
1590 goto fail;
1591 } else {
1592 gsvs_ring_bo = queue->gsvs_ring_bo;
1593 gsvs_ring_size = queue->gsvs_ring_size;
1594 }
1595
1596 if (add_tess_rings) {
1597 tess_factor_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
1598 tess_factor_ring_size,
1599 256,
1600 RADEON_DOMAIN_VRAM,
1601 ring_bo_flags);
1602 if (!tess_factor_ring_bo)
1603 goto fail;
1604 tess_offchip_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
1605 tess_offchip_ring_size,
1606 256,
1607 RADEON_DOMAIN_VRAM,
1608 ring_bo_flags);
1609 if (!tess_offchip_ring_bo)
1610 goto fail;
1611 } else {
1612 tess_factor_ring_bo = queue->tess_factor_ring_bo;
1613 tess_offchip_ring_bo = queue->tess_offchip_ring_bo;
1614 }
1615
1616 if (scratch_bo != queue->scratch_bo ||
1617 esgs_ring_bo != queue->esgs_ring_bo ||
1618 gsvs_ring_bo != queue->gsvs_ring_bo ||
1619 tess_factor_ring_bo != queue->tess_factor_ring_bo ||
1620 tess_offchip_ring_bo != queue->tess_offchip_ring_bo || add_sample_positions) {
1621 uint32_t size = 0;
1622 if (gsvs_ring_bo || esgs_ring_bo ||
1623 tess_factor_ring_bo || tess_offchip_ring_bo || add_sample_positions) {
1624 size = 112; /* 2 dword + 2 padding + 4 dword * 6 */
1625 if (add_sample_positions)
1626 size += 256; /* 32+16+8+4+2+1 samples * 4 * 2 = 248 bytes. */
1627 }
1628 else if (scratch_bo)
1629 size = 8; /* 2 dword */
1630
1631 descriptor_bo = queue->device->ws->buffer_create(queue->device->ws,
1632 size,
1633 4096,
1634 RADEON_DOMAIN_VRAM,
1635 RADEON_FLAG_CPU_ACCESS |
1636 RADEON_FLAG_NO_INTERPROCESS_SHARING |
1637 RADEON_FLAG_READ_ONLY);
1638 if (!descriptor_bo)
1639 goto fail;
1640 } else
1641 descriptor_bo = queue->descriptor_bo;
1642
1643 for(int i = 0; i < 3; ++i) {
1644 struct radeon_winsys_cs *cs = NULL;
1645 cs = queue->device->ws->cs_create(queue->device->ws,
1646 queue->queue_family_index ? RING_COMPUTE : RING_GFX);
1647 if (!cs)
1648 goto fail;
1649
1650 dest_cs[i] = cs;
1651
1652 if (scratch_bo)
1653 radv_cs_add_buffer(queue->device->ws, cs, scratch_bo, 8);
1654
1655 if (esgs_ring_bo)
1656 radv_cs_add_buffer(queue->device->ws, cs, esgs_ring_bo, 8);
1657
1658 if (gsvs_ring_bo)
1659 radv_cs_add_buffer(queue->device->ws, cs, gsvs_ring_bo, 8);
1660
1661 if (tess_factor_ring_bo)
1662 radv_cs_add_buffer(queue->device->ws, cs, tess_factor_ring_bo, 8);
1663
1664 if (tess_offchip_ring_bo)
1665 radv_cs_add_buffer(queue->device->ws, cs, tess_offchip_ring_bo, 8);
1666
1667 if (descriptor_bo)
1668 radv_cs_add_buffer(queue->device->ws, cs, descriptor_bo, 8);
1669
1670 if (descriptor_bo != queue->descriptor_bo) {
1671 uint32_t *map = (uint32_t*)queue->device->ws->buffer_map(descriptor_bo);
1672
1673 if (scratch_bo) {
1674 uint64_t scratch_va = radv_buffer_get_va(scratch_bo);
1675 uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
1676 S_008F04_SWIZZLE_ENABLE(1);
1677 map[0] = scratch_va;
1678 map[1] = rsrc1;
1679 }
1680
1681 if (esgs_ring_bo || gsvs_ring_bo || tess_factor_ring_bo || tess_offchip_ring_bo ||
1682 add_sample_positions)
1683 fill_geom_tess_rings(queue, map, add_sample_positions,
1684 esgs_ring_size, esgs_ring_bo,
1685 gsvs_ring_size, gsvs_ring_bo,
1686 tess_factor_ring_size, tess_factor_ring_bo,
1687 tess_offchip_ring_size, tess_offchip_ring_bo);
1688
1689 queue->device->ws->buffer_unmap(descriptor_bo);
1690 }
1691
1692 if (esgs_ring_bo || gsvs_ring_bo || tess_factor_ring_bo || tess_offchip_ring_bo) {
1693 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1694 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1695 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1696 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1697 }
1698
1699 if (esgs_ring_bo || gsvs_ring_bo) {
1700 if (queue->device->physical_device->rad_info.chip_class >= CIK) {
1701 radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2);
1702 radeon_emit(cs, esgs_ring_size >> 8);
1703 radeon_emit(cs, gsvs_ring_size >> 8);
1704 } else {
1705 radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2);
1706 radeon_emit(cs, esgs_ring_size >> 8);
1707 radeon_emit(cs, gsvs_ring_size >> 8);
1708 }
1709 }
1710
1711 if (tess_factor_ring_bo) {
1712 uint64_t tf_va = radv_buffer_get_va(tess_factor_ring_bo);
1713 if (queue->device->physical_device->rad_info.chip_class >= CIK) {
1714 radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE,
1715 S_030938_SIZE(tess_factor_ring_size / 4));
1716 radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE,
1717 tf_va >> 8);
1718 if (queue->device->physical_device->rad_info.chip_class >= GFX9) {
1719 radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI,
1720 tf_va >> 40);
1721 }
1722 radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM, hs_offchip_param);
1723 } else {
1724 radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE,
1725 S_008988_SIZE(tess_factor_ring_size / 4));
1726 radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE,
1727 tf_va >> 8);
1728 radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM,
1729 hs_offchip_param);
1730 }
1731 }
1732
1733 if (descriptor_bo) {
1734 uint64_t va = radv_buffer_get_va(descriptor_bo);
1735 if (queue->device->physical_device->rad_info.chip_class >= GFX9) {
1736 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
1737 R_00B130_SPI_SHADER_USER_DATA_VS_0,
1738 R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
1739 R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
1740
1741 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
1742 radeon_set_sh_reg_seq(cs, regs[i], 2);
1743 radeon_emit(cs, va);
1744 radeon_emit(cs, va >> 32);
1745 }
1746 } else {
1747 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
1748 R_00B130_SPI_SHADER_USER_DATA_VS_0,
1749 R_00B230_SPI_SHADER_USER_DATA_GS_0,
1750 R_00B330_SPI_SHADER_USER_DATA_ES_0,
1751 R_00B430_SPI_SHADER_USER_DATA_HS_0,
1752 R_00B530_SPI_SHADER_USER_DATA_LS_0};
1753
1754 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
1755 radeon_set_sh_reg_seq(cs, regs[i], 2);
1756 radeon_emit(cs, va);
1757 radeon_emit(cs, va >> 32);
1758 }
1759 }
1760 }
1761
1762 if (compute_scratch_bo) {
1763 uint64_t scratch_va = radv_buffer_get_va(compute_scratch_bo);
1764 uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
1765 S_008F04_SWIZZLE_ENABLE(1);
1766
1767 radv_cs_add_buffer(queue->device->ws, cs, compute_scratch_bo, 8);
1768
1769 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
1770 radeon_emit(cs, scratch_va);
1771 radeon_emit(cs, rsrc1);
1772 }
1773
1774 if (i == 0) {
1775 si_cs_emit_cache_flush(cs,
1776 queue->device->physical_device->rad_info.chip_class,
1777 NULL, 0,
1778 queue->queue_family_index == RING_COMPUTE &&
1779 queue->device->physical_device->rad_info.chip_class >= CIK,
1780 (queue->queue_family_index == RADV_QUEUE_COMPUTE ? RADV_CMD_FLAG_CS_PARTIAL_FLUSH : (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) |
1781 RADV_CMD_FLAG_INV_ICACHE |
1782 RADV_CMD_FLAG_INV_SMEM_L1 |
1783 RADV_CMD_FLAG_INV_VMEM_L1 |
1784 RADV_CMD_FLAG_INV_GLOBAL_L2);
1785 } else if (i == 1) {
1786 si_cs_emit_cache_flush(cs,
1787 queue->device->physical_device->rad_info.chip_class,
1788 NULL, 0,
1789 queue->queue_family_index == RING_COMPUTE &&
1790 queue->device->physical_device->rad_info.chip_class >= CIK,
1791 RADV_CMD_FLAG_INV_ICACHE |
1792 RADV_CMD_FLAG_INV_SMEM_L1 |
1793 RADV_CMD_FLAG_INV_VMEM_L1 |
1794 RADV_CMD_FLAG_INV_GLOBAL_L2);
1795 }
1796
1797 if (!queue->device->ws->cs_finalize(cs))
1798 goto fail;
1799 }
1800
1801 if (queue->initial_full_flush_preamble_cs)
1802 queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
1803
1804 if (queue->initial_preamble_cs)
1805 queue->device->ws->cs_destroy(queue->initial_preamble_cs);
1806
1807 if (queue->continue_preamble_cs)
1808 queue->device->ws->cs_destroy(queue->continue_preamble_cs);
1809
1810 queue->initial_full_flush_preamble_cs = dest_cs[0];
1811 queue->initial_preamble_cs = dest_cs[1];
1812 queue->continue_preamble_cs = dest_cs[2];
1813
1814 if (scratch_bo != queue->scratch_bo) {
1815 if (queue->scratch_bo)
1816 queue->device->ws->buffer_destroy(queue->scratch_bo);
1817 queue->scratch_bo = scratch_bo;
1818 queue->scratch_size = scratch_size;
1819 }
1820
1821 if (compute_scratch_bo != queue->compute_scratch_bo) {
1822 if (queue->compute_scratch_bo)
1823 queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
1824 queue->compute_scratch_bo = compute_scratch_bo;
1825 queue->compute_scratch_size = compute_scratch_size;
1826 }
1827
1828 if (esgs_ring_bo != queue->esgs_ring_bo) {
1829 if (queue->esgs_ring_bo)
1830 queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
1831 queue->esgs_ring_bo = esgs_ring_bo;
1832 queue->esgs_ring_size = esgs_ring_size;
1833 }
1834
1835 if (gsvs_ring_bo != queue->gsvs_ring_bo) {
1836 if (queue->gsvs_ring_bo)
1837 queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
1838 queue->gsvs_ring_bo = gsvs_ring_bo;
1839 queue->gsvs_ring_size = gsvs_ring_size;
1840 }
1841
1842 if (tess_factor_ring_bo != queue->tess_factor_ring_bo) {
1843 queue->tess_factor_ring_bo = tess_factor_ring_bo;
1844 }
1845
1846 if (tess_offchip_ring_bo != queue->tess_offchip_ring_bo) {
1847 queue->tess_offchip_ring_bo = tess_offchip_ring_bo;
1848 queue->has_tess_rings = true;
1849 }
1850
1851 if (descriptor_bo != queue->descriptor_bo) {
1852 if (queue->descriptor_bo)
1853 queue->device->ws->buffer_destroy(queue->descriptor_bo);
1854
1855 queue->descriptor_bo = descriptor_bo;
1856 }
1857
1858 if (add_sample_positions)
1859 queue->has_sample_positions = true;
1860
1861 *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
1862 *initial_preamble_cs = queue->initial_preamble_cs;
1863 *continue_preamble_cs = queue->continue_preamble_cs;
1864 if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
1865 *continue_preamble_cs = NULL;
1866 return VK_SUCCESS;
1867 fail:
1868 for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
1869 if (dest_cs[i])
1870 queue->device->ws->cs_destroy(dest_cs[i]);
1871 if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
1872 queue->device->ws->buffer_destroy(descriptor_bo);
1873 if (scratch_bo && scratch_bo != queue->scratch_bo)
1874 queue->device->ws->buffer_destroy(scratch_bo);
1875 if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
1876 queue->device->ws->buffer_destroy(compute_scratch_bo);
1877 if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
1878 queue->device->ws->buffer_destroy(esgs_ring_bo);
1879 if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
1880 queue->device->ws->buffer_destroy(gsvs_ring_bo);
1881 if (tess_factor_ring_bo && tess_factor_ring_bo != queue->tess_factor_ring_bo)
1882 queue->device->ws->buffer_destroy(tess_factor_ring_bo);
1883 if (tess_offchip_ring_bo && tess_offchip_ring_bo != queue->tess_offchip_ring_bo)
1884 queue->device->ws->buffer_destroy(tess_offchip_ring_bo);
1885 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1886 }
1887
radv_alloc_sem_counts(struct radv_winsys_sem_counts * counts,int num_sems,const VkSemaphore * sems,VkFence _fence,bool reset_temp)1888 static VkResult radv_alloc_sem_counts(struct radv_winsys_sem_counts *counts,
1889 int num_sems,
1890 const VkSemaphore *sems,
1891 VkFence _fence,
1892 bool reset_temp)
1893 {
1894 int syncobj_idx = 0, sem_idx = 0;
1895
1896 if (num_sems == 0 && _fence == VK_NULL_HANDLE)
1897 return VK_SUCCESS;
1898
1899 for (uint32_t i = 0; i < num_sems; i++) {
1900 RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]);
1901
1902 if (sem->temp_syncobj || sem->syncobj)
1903 counts->syncobj_count++;
1904 else
1905 counts->sem_count++;
1906 }
1907
1908 if (_fence != VK_NULL_HANDLE) {
1909 RADV_FROM_HANDLE(radv_fence, fence, _fence);
1910 if (fence->temp_syncobj || fence->syncobj)
1911 counts->syncobj_count++;
1912 }
1913
1914 if (counts->syncobj_count) {
1915 counts->syncobj = (uint32_t *)malloc(sizeof(uint32_t) * counts->syncobj_count);
1916 if (!counts->syncobj)
1917 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1918 }
1919
1920 if (counts->sem_count) {
1921 counts->sem = (struct radeon_winsys_sem **)malloc(sizeof(struct radeon_winsys_sem *) * counts->sem_count);
1922 if (!counts->sem) {
1923 free(counts->syncobj);
1924 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1925 }
1926 }
1927
1928 for (uint32_t i = 0; i < num_sems; i++) {
1929 RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]);
1930
1931 if (sem->temp_syncobj) {
1932 counts->syncobj[syncobj_idx++] = sem->temp_syncobj;
1933 }
1934 else if (sem->syncobj)
1935 counts->syncobj[syncobj_idx++] = sem->syncobj;
1936 else {
1937 assert(sem->sem);
1938 counts->sem[sem_idx++] = sem->sem;
1939 }
1940 }
1941
1942 if (_fence != VK_NULL_HANDLE) {
1943 RADV_FROM_HANDLE(radv_fence, fence, _fence);
1944 if (fence->temp_syncobj)
1945 counts->syncobj[syncobj_idx++] = fence->temp_syncobj;
1946 else if (fence->syncobj)
1947 counts->syncobj[syncobj_idx++] = fence->syncobj;
1948 }
1949
1950 return VK_SUCCESS;
1951 }
1952
radv_free_sem_info(struct radv_winsys_sem_info * sem_info)1953 void radv_free_sem_info(struct radv_winsys_sem_info *sem_info)
1954 {
1955 free(sem_info->wait.syncobj);
1956 free(sem_info->wait.sem);
1957 free(sem_info->signal.syncobj);
1958 free(sem_info->signal.sem);
1959 }
1960
1961
radv_free_temp_syncobjs(struct radv_device * device,int num_sems,const VkSemaphore * sems)1962 static void radv_free_temp_syncobjs(struct radv_device *device,
1963 int num_sems,
1964 const VkSemaphore *sems)
1965 {
1966 for (uint32_t i = 0; i < num_sems; i++) {
1967 RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]);
1968
1969 if (sem->temp_syncobj) {
1970 device->ws->destroy_syncobj(device->ws, sem->temp_syncobj);
1971 sem->temp_syncobj = 0;
1972 }
1973 }
1974 }
1975
radv_alloc_sem_info(struct radv_winsys_sem_info * sem_info,int num_wait_sems,const VkSemaphore * wait_sems,int num_signal_sems,const VkSemaphore * signal_sems,VkFence fence)1976 VkResult radv_alloc_sem_info(struct radv_winsys_sem_info *sem_info,
1977 int num_wait_sems,
1978 const VkSemaphore *wait_sems,
1979 int num_signal_sems,
1980 const VkSemaphore *signal_sems,
1981 VkFence fence)
1982 {
1983 VkResult ret;
1984 memset(sem_info, 0, sizeof(*sem_info));
1985
1986 ret = radv_alloc_sem_counts(&sem_info->wait, num_wait_sems, wait_sems, VK_NULL_HANDLE, true);
1987 if (ret)
1988 return ret;
1989 ret = radv_alloc_sem_counts(&sem_info->signal, num_signal_sems, signal_sems, fence, false);
1990 if (ret)
1991 radv_free_sem_info(sem_info);
1992
1993 /* caller can override these */
1994 sem_info->cs_emit_wait = true;
1995 sem_info->cs_emit_signal = true;
1996 return ret;
1997 }
1998
1999 /* Signals fence as soon as all the work currently put on queue is done. */
radv_signal_fence(struct radv_queue * queue,struct radv_fence * fence)2000 static VkResult radv_signal_fence(struct radv_queue *queue,
2001 struct radv_fence *fence)
2002 {
2003 int ret;
2004 VkResult result;
2005 struct radv_winsys_sem_info sem_info;
2006
2007 result = radv_alloc_sem_info(&sem_info, 0, NULL, 0, NULL,
2008 radv_fence_to_handle(fence));
2009 if (result != VK_SUCCESS)
2010 return result;
2011
2012 ret = queue->device->ws->cs_submit(queue->hw_ctx, queue->queue_idx,
2013 &queue->device->empty_cs[queue->queue_family_index],
2014 1, NULL, NULL, &sem_info,
2015 false, fence->fence);
2016 radv_free_sem_info(&sem_info);
2017
2018 /* TODO: find a better error */
2019 if (ret)
2020 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2021
2022 return VK_SUCCESS;
2023 }
2024
radv_QueueSubmit(VkQueue _queue,uint32_t submitCount,const VkSubmitInfo * pSubmits,VkFence _fence)2025 VkResult radv_QueueSubmit(
2026 VkQueue _queue,
2027 uint32_t submitCount,
2028 const VkSubmitInfo* pSubmits,
2029 VkFence _fence)
2030 {
2031 RADV_FROM_HANDLE(radv_queue, queue, _queue);
2032 RADV_FROM_HANDLE(radv_fence, fence, _fence);
2033 struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL;
2034 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
2035 int ret;
2036 uint32_t max_cs_submission = queue->device->trace_bo ? 1 : UINT32_MAX;
2037 uint32_t scratch_size = 0;
2038 uint32_t compute_scratch_size = 0;
2039 uint32_t esgs_ring_size = 0, gsvs_ring_size = 0;
2040 struct radeon_winsys_cs *initial_preamble_cs = NULL, *initial_flush_preamble_cs = NULL, *continue_preamble_cs = NULL;
2041 VkResult result;
2042 bool fence_emitted = false;
2043 bool tess_rings_needed = false;
2044 bool sample_positions_needed = false;
2045
2046 /* Do this first so failing to allocate scratch buffers can't result in
2047 * partially executed submissions. */
2048 for (uint32_t i = 0; i < submitCount; i++) {
2049 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
2050 RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer,
2051 pSubmits[i].pCommandBuffers[j]);
2052
2053 scratch_size = MAX2(scratch_size, cmd_buffer->scratch_size_needed);
2054 compute_scratch_size = MAX2(compute_scratch_size,
2055 cmd_buffer->compute_scratch_size_needed);
2056 esgs_ring_size = MAX2(esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
2057 gsvs_ring_size = MAX2(gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
2058 tess_rings_needed |= cmd_buffer->tess_rings_needed;
2059 sample_positions_needed |= cmd_buffer->sample_positions_needed;
2060 }
2061 }
2062
2063 result = radv_get_preamble_cs(queue, scratch_size, compute_scratch_size,
2064 esgs_ring_size, gsvs_ring_size, tess_rings_needed,
2065 sample_positions_needed, &initial_flush_preamble_cs,
2066 &initial_preamble_cs, &continue_preamble_cs);
2067 if (result != VK_SUCCESS)
2068 return result;
2069
2070 for (uint32_t i = 0; i < submitCount; i++) {
2071 struct radeon_winsys_cs **cs_array;
2072 bool do_flush = !i || pSubmits[i].pWaitDstStageMask;
2073 bool can_patch = true;
2074 uint32_t advance;
2075 struct radv_winsys_sem_info sem_info;
2076
2077 result = radv_alloc_sem_info(&sem_info,
2078 pSubmits[i].waitSemaphoreCount,
2079 pSubmits[i].pWaitSemaphores,
2080 pSubmits[i].signalSemaphoreCount,
2081 pSubmits[i].pSignalSemaphores,
2082 _fence);
2083 if (result != VK_SUCCESS)
2084 return result;
2085
2086 if (!pSubmits[i].commandBufferCount) {
2087 if (pSubmits[i].waitSemaphoreCount || pSubmits[i].signalSemaphoreCount) {
2088 ret = queue->device->ws->cs_submit(ctx, queue->queue_idx,
2089 &queue->device->empty_cs[queue->queue_family_index],
2090 1, NULL, NULL,
2091 &sem_info,
2092 false, base_fence);
2093 if (ret) {
2094 radv_loge("failed to submit CS %d\n", i);
2095 abort();
2096 }
2097 fence_emitted = true;
2098 }
2099 radv_free_sem_info(&sem_info);
2100 continue;
2101 }
2102
2103 cs_array = malloc(sizeof(struct radeon_winsys_cs *) *
2104 (pSubmits[i].commandBufferCount));
2105
2106 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
2107 RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer,
2108 pSubmits[i].pCommandBuffers[j]);
2109 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
2110
2111 cs_array[j] = cmd_buffer->cs;
2112 if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
2113 can_patch = false;
2114
2115 cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING;
2116 }
2117
2118 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j += advance) {
2119 struct radeon_winsys_cs *initial_preamble = (do_flush && !j) ? initial_flush_preamble_cs : initial_preamble_cs;
2120 advance = MIN2(max_cs_submission,
2121 pSubmits[i].commandBufferCount - j);
2122
2123 if (queue->device->trace_bo)
2124 *queue->device->trace_id_ptr = 0;
2125
2126 sem_info.cs_emit_wait = j == 0;
2127 sem_info.cs_emit_signal = j + advance == pSubmits[i].commandBufferCount;
2128
2129 ret = queue->device->ws->cs_submit(ctx, queue->queue_idx, cs_array + j,
2130 advance, initial_preamble, continue_preamble_cs,
2131 &sem_info,
2132 can_patch, base_fence);
2133
2134 if (ret) {
2135 radv_loge("failed to submit CS %d\n", i);
2136 abort();
2137 }
2138 fence_emitted = true;
2139 if (queue->device->trace_bo) {
2140 radv_check_gpu_hangs(queue, cs_array[j]);
2141 }
2142 }
2143
2144 radv_free_temp_syncobjs(queue->device,
2145 pSubmits[i].waitSemaphoreCount,
2146 pSubmits[i].pWaitSemaphores);
2147 radv_free_sem_info(&sem_info);
2148 free(cs_array);
2149 }
2150
2151 if (fence) {
2152 if (!fence_emitted) {
2153 radv_signal_fence(queue, fence);
2154 }
2155 fence->submitted = true;
2156 }
2157
2158 return VK_SUCCESS;
2159 }
2160
radv_QueueWaitIdle(VkQueue _queue)2161 VkResult radv_QueueWaitIdle(
2162 VkQueue _queue)
2163 {
2164 RADV_FROM_HANDLE(radv_queue, queue, _queue);
2165
2166 queue->device->ws->ctx_wait_idle(queue->hw_ctx,
2167 radv_queue_family_to_ring(queue->queue_family_index),
2168 queue->queue_idx);
2169 return VK_SUCCESS;
2170 }
2171
radv_DeviceWaitIdle(VkDevice _device)2172 VkResult radv_DeviceWaitIdle(
2173 VkDevice _device)
2174 {
2175 RADV_FROM_HANDLE(radv_device, device, _device);
2176
2177 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
2178 for (unsigned q = 0; q < device->queue_count[i]; q++) {
2179 radv_QueueWaitIdle(radv_queue_to_handle(&device->queues[i][q]));
2180 }
2181 }
2182 return VK_SUCCESS;
2183 }
2184
radv_GetInstanceProcAddr(VkInstance instance,const char * pName)2185 PFN_vkVoidFunction radv_GetInstanceProcAddr(
2186 VkInstance instance,
2187 const char* pName)
2188 {
2189 return radv_lookup_entrypoint(pName);
2190 }
2191
2192 /* The loader wants us to expose a second GetInstanceProcAddr function
2193 * to work around certain LD_PRELOAD issues seen in apps.
2194 */
2195 PUBLIC
2196 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2197 VkInstance instance,
2198 const char* pName);
2199
2200 PUBLIC
vk_icdGetInstanceProcAddr(VkInstance instance,const char * pName)2201 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
2202 VkInstance instance,
2203 const char* pName)
2204 {
2205 return radv_GetInstanceProcAddr(instance, pName);
2206 }
2207
radv_GetDeviceProcAddr(VkDevice device,const char * pName)2208 PFN_vkVoidFunction radv_GetDeviceProcAddr(
2209 VkDevice device,
2210 const char* pName)
2211 {
2212 return radv_lookup_entrypoint(pName);
2213 }
2214
radv_get_memory_fd(struct radv_device * device,struct radv_device_memory * memory,int * pFD)2215 bool radv_get_memory_fd(struct radv_device *device,
2216 struct radv_device_memory *memory,
2217 int *pFD)
2218 {
2219 struct radeon_bo_metadata metadata;
2220
2221 if (memory->image) {
2222 radv_init_metadata(device, memory->image, &metadata);
2223 device->ws->buffer_set_metadata(memory->bo, &metadata);
2224 }
2225
2226 return device->ws->buffer_get_fd(device->ws, memory->bo,
2227 pFD);
2228 }
2229
radv_alloc_memory(struct radv_device * device,const VkMemoryAllocateInfo * pAllocateInfo,const VkAllocationCallbacks * pAllocator,VkDeviceMemory * pMem)2230 static VkResult radv_alloc_memory(struct radv_device *device,
2231 const VkMemoryAllocateInfo* pAllocateInfo,
2232 const VkAllocationCallbacks* pAllocator,
2233 VkDeviceMemory* pMem)
2234 {
2235 struct radv_device_memory *mem;
2236 VkResult result;
2237 enum radeon_bo_domain domain;
2238 uint32_t flags = 0;
2239 enum radv_mem_type mem_type_index = device->physical_device->mem_type_indices[pAllocateInfo->memoryTypeIndex];
2240
2241 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2242
2243 if (pAllocateInfo->allocationSize == 0) {
2244 /* Apparently, this is allowed */
2245 *pMem = VK_NULL_HANDLE;
2246 return VK_SUCCESS;
2247 }
2248
2249 const VkImportMemoryFdInfoKHR *import_info =
2250 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2251 const VkMemoryDedicatedAllocateInfoKHR *dedicate_info =
2252 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
2253 const VkExportMemoryAllocateInfoKHR *export_info =
2254 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO_KHR);
2255
2256 const struct wsi_memory_allocate_info *wsi_info =
2257 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2258
2259 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2260 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2261 if (mem == NULL)
2262 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2263
2264 if (wsi_info && wsi_info->implicit_sync)
2265 flags |= RADEON_FLAG_IMPLICIT_SYNC;
2266
2267 if (dedicate_info) {
2268 mem->image = radv_image_from_handle(dedicate_info->image);
2269 mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
2270 } else {
2271 mem->image = NULL;
2272 mem->buffer = NULL;
2273 }
2274
2275 if (import_info) {
2276 assert(import_info->handleType ==
2277 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
2278 import_info->handleType ==
2279 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2280 mem->bo = device->ws->buffer_from_fd(device->ws, import_info->fd,
2281 NULL, NULL);
2282 if (!mem->bo) {
2283 result = VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR;
2284 goto fail;
2285 } else {
2286 close(import_info->fd);
2287 goto out_success;
2288 }
2289 }
2290
2291 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
2292 if (mem_type_index == RADV_MEM_TYPE_GTT_WRITE_COMBINE ||
2293 mem_type_index == RADV_MEM_TYPE_GTT_CACHED)
2294 domain = RADEON_DOMAIN_GTT;
2295 else
2296 domain = RADEON_DOMAIN_VRAM;
2297
2298 if (mem_type_index == RADV_MEM_TYPE_VRAM)
2299 flags |= RADEON_FLAG_NO_CPU_ACCESS;
2300 else
2301 flags |= RADEON_FLAG_CPU_ACCESS;
2302
2303 if (mem_type_index == RADV_MEM_TYPE_GTT_WRITE_COMBINE)
2304 flags |= RADEON_FLAG_GTT_WC;
2305
2306 if (!dedicate_info && !import_info && (!export_info || !export_info->handleTypes))
2307 flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
2308
2309 mem->bo = device->ws->buffer_create(device->ws, alloc_size, device->physical_device->rad_info.max_alignment,
2310 domain, flags);
2311
2312 if (!mem->bo) {
2313 result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
2314 goto fail;
2315 }
2316 mem->type_index = mem_type_index;
2317 out_success:
2318 *pMem = radv_device_memory_to_handle(mem);
2319
2320 return VK_SUCCESS;
2321
2322 fail:
2323 vk_free2(&device->alloc, pAllocator, mem);
2324
2325 return result;
2326 }
2327
radv_AllocateMemory(VkDevice _device,const VkMemoryAllocateInfo * pAllocateInfo,const VkAllocationCallbacks * pAllocator,VkDeviceMemory * pMem)2328 VkResult radv_AllocateMemory(
2329 VkDevice _device,
2330 const VkMemoryAllocateInfo* pAllocateInfo,
2331 const VkAllocationCallbacks* pAllocator,
2332 VkDeviceMemory* pMem)
2333 {
2334 RADV_FROM_HANDLE(radv_device, device, _device);
2335 return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
2336 }
2337
radv_FreeMemory(VkDevice _device,VkDeviceMemory _mem,const VkAllocationCallbacks * pAllocator)2338 void radv_FreeMemory(
2339 VkDevice _device,
2340 VkDeviceMemory _mem,
2341 const VkAllocationCallbacks* pAllocator)
2342 {
2343 RADV_FROM_HANDLE(radv_device, device, _device);
2344 RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
2345
2346 if (mem == NULL)
2347 return;
2348
2349 device->ws->buffer_destroy(mem->bo);
2350 mem->bo = NULL;
2351
2352 vk_free2(&device->alloc, pAllocator, mem);
2353 }
2354
radv_MapMemory(VkDevice _device,VkDeviceMemory _memory,VkDeviceSize offset,VkDeviceSize size,VkMemoryMapFlags flags,void ** ppData)2355 VkResult radv_MapMemory(
2356 VkDevice _device,
2357 VkDeviceMemory _memory,
2358 VkDeviceSize offset,
2359 VkDeviceSize size,
2360 VkMemoryMapFlags flags,
2361 void** ppData)
2362 {
2363 RADV_FROM_HANDLE(radv_device, device, _device);
2364 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
2365
2366 if (mem == NULL) {
2367 *ppData = NULL;
2368 return VK_SUCCESS;
2369 }
2370
2371 *ppData = device->ws->buffer_map(mem->bo);
2372 if (*ppData) {
2373 *ppData += offset;
2374 return VK_SUCCESS;
2375 }
2376
2377 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2378 }
2379
radv_UnmapMemory(VkDevice _device,VkDeviceMemory _memory)2380 void radv_UnmapMemory(
2381 VkDevice _device,
2382 VkDeviceMemory _memory)
2383 {
2384 RADV_FROM_HANDLE(radv_device, device, _device);
2385 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
2386
2387 if (mem == NULL)
2388 return;
2389
2390 device->ws->buffer_unmap(mem->bo);
2391 }
2392
radv_FlushMappedMemoryRanges(VkDevice _device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)2393 VkResult radv_FlushMappedMemoryRanges(
2394 VkDevice _device,
2395 uint32_t memoryRangeCount,
2396 const VkMappedMemoryRange* pMemoryRanges)
2397 {
2398 return VK_SUCCESS;
2399 }
2400
radv_InvalidateMappedMemoryRanges(VkDevice _device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)2401 VkResult radv_InvalidateMappedMemoryRanges(
2402 VkDevice _device,
2403 uint32_t memoryRangeCount,
2404 const VkMappedMemoryRange* pMemoryRanges)
2405 {
2406 return VK_SUCCESS;
2407 }
2408
radv_GetBufferMemoryRequirements(VkDevice _device,VkBuffer _buffer,VkMemoryRequirements * pMemoryRequirements)2409 void radv_GetBufferMemoryRequirements(
2410 VkDevice _device,
2411 VkBuffer _buffer,
2412 VkMemoryRequirements* pMemoryRequirements)
2413 {
2414 RADV_FROM_HANDLE(radv_device, device, _device);
2415 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
2416
2417 pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
2418
2419 if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
2420 pMemoryRequirements->alignment = 4096;
2421 else
2422 pMemoryRequirements->alignment = 16;
2423
2424 pMemoryRequirements->size = align64(buffer->size, pMemoryRequirements->alignment);
2425 }
2426
radv_GetBufferMemoryRequirements2KHR(VkDevice device,const VkBufferMemoryRequirementsInfo2KHR * pInfo,VkMemoryRequirements2KHR * pMemoryRequirements)2427 void radv_GetBufferMemoryRequirements2KHR(
2428 VkDevice device,
2429 const VkBufferMemoryRequirementsInfo2KHR* pInfo,
2430 VkMemoryRequirements2KHR* pMemoryRequirements)
2431 {
2432 radv_GetBufferMemoryRequirements(device, pInfo->buffer,
2433 &pMemoryRequirements->memoryRequirements);
2434 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
2435 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2436 switch (ext->sType) {
2437 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
2438 VkMemoryDedicatedRequirementsKHR *req =
2439 (VkMemoryDedicatedRequirementsKHR *) ext;
2440 req->requiresDedicatedAllocation = buffer->shareable;
2441 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
2442 break;
2443 }
2444 default:
2445 break;
2446 }
2447 }
2448 }
2449
radv_GetImageMemoryRequirements(VkDevice _device,VkImage _image,VkMemoryRequirements * pMemoryRequirements)2450 void radv_GetImageMemoryRequirements(
2451 VkDevice _device,
2452 VkImage _image,
2453 VkMemoryRequirements* pMemoryRequirements)
2454 {
2455 RADV_FROM_HANDLE(radv_device, device, _device);
2456 RADV_FROM_HANDLE(radv_image, image, _image);
2457
2458 pMemoryRequirements->memoryTypeBits = (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
2459
2460 pMemoryRequirements->size = image->size;
2461 pMemoryRequirements->alignment = image->alignment;
2462 }
2463
radv_GetImageMemoryRequirements2KHR(VkDevice device,const VkImageMemoryRequirementsInfo2KHR * pInfo,VkMemoryRequirements2KHR * pMemoryRequirements)2464 void radv_GetImageMemoryRequirements2KHR(
2465 VkDevice device,
2466 const VkImageMemoryRequirementsInfo2KHR* pInfo,
2467 VkMemoryRequirements2KHR* pMemoryRequirements)
2468 {
2469 radv_GetImageMemoryRequirements(device, pInfo->image,
2470 &pMemoryRequirements->memoryRequirements);
2471
2472 RADV_FROM_HANDLE(radv_image, image, pInfo->image);
2473
2474 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2475 switch (ext->sType) {
2476 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
2477 VkMemoryDedicatedRequirementsKHR *req =
2478 (VkMemoryDedicatedRequirementsKHR *) ext;
2479 req->requiresDedicatedAllocation = image->shareable;
2480 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
2481 break;
2482 }
2483 default:
2484 break;
2485 }
2486 }
2487 }
2488
radv_GetImageSparseMemoryRequirements(VkDevice device,VkImage image,uint32_t * pSparseMemoryRequirementCount,VkSparseImageMemoryRequirements * pSparseMemoryRequirements)2489 void radv_GetImageSparseMemoryRequirements(
2490 VkDevice device,
2491 VkImage image,
2492 uint32_t* pSparseMemoryRequirementCount,
2493 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2494 {
2495 stub();
2496 }
2497
radv_GetImageSparseMemoryRequirements2KHR(VkDevice device,const VkImageSparseMemoryRequirementsInfo2KHR * pInfo,uint32_t * pSparseMemoryRequirementCount,VkSparseImageMemoryRequirements2KHR * pSparseMemoryRequirements)2498 void radv_GetImageSparseMemoryRequirements2KHR(
2499 VkDevice device,
2500 const VkImageSparseMemoryRequirementsInfo2KHR* pInfo,
2501 uint32_t* pSparseMemoryRequirementCount,
2502 VkSparseImageMemoryRequirements2KHR* pSparseMemoryRequirements)
2503 {
2504 stub();
2505 }
2506
radv_GetDeviceMemoryCommitment(VkDevice device,VkDeviceMemory memory,VkDeviceSize * pCommittedMemoryInBytes)2507 void radv_GetDeviceMemoryCommitment(
2508 VkDevice device,
2509 VkDeviceMemory memory,
2510 VkDeviceSize* pCommittedMemoryInBytes)
2511 {
2512 *pCommittedMemoryInBytes = 0;
2513 }
2514
radv_BindBufferMemory2KHR(VkDevice device,uint32_t bindInfoCount,const VkBindBufferMemoryInfoKHR * pBindInfos)2515 VkResult radv_BindBufferMemory2KHR(VkDevice device,
2516 uint32_t bindInfoCount,
2517 const VkBindBufferMemoryInfoKHR *pBindInfos)
2518 {
2519 for (uint32_t i = 0; i < bindInfoCount; ++i) {
2520 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
2521 RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer);
2522
2523 if (mem) {
2524 buffer->bo = mem->bo;
2525 buffer->offset = pBindInfos[i].memoryOffset;
2526 } else {
2527 buffer->bo = NULL;
2528 }
2529 }
2530 return VK_SUCCESS;
2531 }
2532
radv_BindBufferMemory(VkDevice device,VkBuffer buffer,VkDeviceMemory memory,VkDeviceSize memoryOffset)2533 VkResult radv_BindBufferMemory(
2534 VkDevice device,
2535 VkBuffer buffer,
2536 VkDeviceMemory memory,
2537 VkDeviceSize memoryOffset)
2538 {
2539 const VkBindBufferMemoryInfoKHR info = {
2540 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
2541 .buffer = buffer,
2542 .memory = memory,
2543 .memoryOffset = memoryOffset
2544 };
2545
2546 return radv_BindBufferMemory2KHR(device, 1, &info);
2547 }
2548
radv_BindImageMemory2KHR(VkDevice device,uint32_t bindInfoCount,const VkBindImageMemoryInfoKHR * pBindInfos)2549 VkResult radv_BindImageMemory2KHR(VkDevice device,
2550 uint32_t bindInfoCount,
2551 const VkBindImageMemoryInfoKHR *pBindInfos)
2552 {
2553 for (uint32_t i = 0; i < bindInfoCount; ++i) {
2554 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
2555 RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image);
2556
2557 if (mem) {
2558 image->bo = mem->bo;
2559 image->offset = pBindInfos[i].memoryOffset;
2560 } else {
2561 image->bo = NULL;
2562 image->offset = 0;
2563 }
2564 }
2565 return VK_SUCCESS;
2566 }
2567
2568
radv_BindImageMemory(VkDevice device,VkImage image,VkDeviceMemory memory,VkDeviceSize memoryOffset)2569 VkResult radv_BindImageMemory(
2570 VkDevice device,
2571 VkImage image,
2572 VkDeviceMemory memory,
2573 VkDeviceSize memoryOffset)
2574 {
2575 const VkBindImageMemoryInfoKHR info = {
2576 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
2577 .image = image,
2578 .memory = memory,
2579 .memoryOffset = memoryOffset
2580 };
2581
2582 return radv_BindImageMemory2KHR(device, 1, &info);
2583 }
2584
2585
2586 static void
radv_sparse_buffer_bind_memory(struct radv_device * device,const VkSparseBufferMemoryBindInfo * bind)2587 radv_sparse_buffer_bind_memory(struct radv_device *device,
2588 const VkSparseBufferMemoryBindInfo *bind)
2589 {
2590 RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
2591
2592 for (uint32_t i = 0; i < bind->bindCount; ++i) {
2593 struct radv_device_memory *mem = NULL;
2594
2595 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
2596 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
2597
2598 device->ws->buffer_virtual_bind(buffer->bo,
2599 bind->pBinds[i].resourceOffset,
2600 bind->pBinds[i].size,
2601 mem ? mem->bo : NULL,
2602 bind->pBinds[i].memoryOffset);
2603 }
2604 }
2605
2606 static void
radv_sparse_image_opaque_bind_memory(struct radv_device * device,const VkSparseImageOpaqueMemoryBindInfo * bind)2607 radv_sparse_image_opaque_bind_memory(struct radv_device *device,
2608 const VkSparseImageOpaqueMemoryBindInfo *bind)
2609 {
2610 RADV_FROM_HANDLE(radv_image, image, bind->image);
2611
2612 for (uint32_t i = 0; i < bind->bindCount; ++i) {
2613 struct radv_device_memory *mem = NULL;
2614
2615 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
2616 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
2617
2618 device->ws->buffer_virtual_bind(image->bo,
2619 bind->pBinds[i].resourceOffset,
2620 bind->pBinds[i].size,
2621 mem ? mem->bo : NULL,
2622 bind->pBinds[i].memoryOffset);
2623 }
2624 }
2625
radv_QueueBindSparse(VkQueue _queue,uint32_t bindInfoCount,const VkBindSparseInfo * pBindInfo,VkFence _fence)2626 VkResult radv_QueueBindSparse(
2627 VkQueue _queue,
2628 uint32_t bindInfoCount,
2629 const VkBindSparseInfo* pBindInfo,
2630 VkFence _fence)
2631 {
2632 RADV_FROM_HANDLE(radv_fence, fence, _fence);
2633 RADV_FROM_HANDLE(radv_queue, queue, _queue);
2634 struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL;
2635 bool fence_emitted = false;
2636
2637 for (uint32_t i = 0; i < bindInfoCount; ++i) {
2638 struct radv_winsys_sem_info sem_info;
2639 for (uint32_t j = 0; j < pBindInfo[i].bufferBindCount; ++j) {
2640 radv_sparse_buffer_bind_memory(queue->device,
2641 pBindInfo[i].pBufferBinds + j);
2642 }
2643
2644 for (uint32_t j = 0; j < pBindInfo[i].imageOpaqueBindCount; ++j) {
2645 radv_sparse_image_opaque_bind_memory(queue->device,
2646 pBindInfo[i].pImageOpaqueBinds + j);
2647 }
2648
2649 VkResult result;
2650 result = radv_alloc_sem_info(&sem_info,
2651 pBindInfo[i].waitSemaphoreCount,
2652 pBindInfo[i].pWaitSemaphores,
2653 pBindInfo[i].signalSemaphoreCount,
2654 pBindInfo[i].pSignalSemaphores,
2655 _fence);
2656 if (result != VK_SUCCESS)
2657 return result;
2658
2659 if (pBindInfo[i].waitSemaphoreCount || pBindInfo[i].signalSemaphoreCount) {
2660 queue->device->ws->cs_submit(queue->hw_ctx, queue->queue_idx,
2661 &queue->device->empty_cs[queue->queue_family_index],
2662 1, NULL, NULL,
2663 &sem_info,
2664 false, base_fence);
2665 fence_emitted = true;
2666 if (fence)
2667 fence->submitted = true;
2668 }
2669
2670 radv_free_sem_info(&sem_info);
2671
2672 }
2673
2674 if (fence) {
2675 if (!fence_emitted) {
2676 radv_signal_fence(queue, fence);
2677 }
2678 fence->submitted = true;
2679 }
2680
2681 return VK_SUCCESS;
2682 }
2683
radv_CreateFence(VkDevice _device,const VkFenceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkFence * pFence)2684 VkResult radv_CreateFence(
2685 VkDevice _device,
2686 const VkFenceCreateInfo* pCreateInfo,
2687 const VkAllocationCallbacks* pAllocator,
2688 VkFence* pFence)
2689 {
2690 RADV_FROM_HANDLE(radv_device, device, _device);
2691 const VkExportFenceCreateInfoKHR *export =
2692 vk_find_struct_const(pCreateInfo->pNext, EXPORT_FENCE_CREATE_INFO_KHR);
2693 VkExternalFenceHandleTypeFlagsKHR handleTypes =
2694 export ? export->handleTypes : 0;
2695
2696 struct radv_fence *fence = vk_alloc2(&device->alloc, pAllocator,
2697 sizeof(*fence), 8,
2698 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2699
2700 if (!fence)
2701 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2702
2703 fence->submitted = false;
2704 fence->signalled = !!(pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT);
2705 fence->temp_syncobj = 0;
2706 if (device->always_use_syncobj || handleTypes) {
2707 int ret = device->ws->create_syncobj(device->ws, &fence->syncobj);
2708 if (ret) {
2709 vk_free2(&device->alloc, pAllocator, fence);
2710 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2711 }
2712 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
2713 device->ws->signal_syncobj(device->ws, fence->syncobj);
2714 }
2715 fence->fence = NULL;
2716 } else {
2717 fence->fence = device->ws->create_fence();
2718 if (!fence->fence) {
2719 vk_free2(&device->alloc, pAllocator, fence);
2720 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2721 }
2722 fence->syncobj = 0;
2723 }
2724
2725 *pFence = radv_fence_to_handle(fence);
2726
2727 return VK_SUCCESS;
2728 }
2729
radv_DestroyFence(VkDevice _device,VkFence _fence,const VkAllocationCallbacks * pAllocator)2730 void radv_DestroyFence(
2731 VkDevice _device,
2732 VkFence _fence,
2733 const VkAllocationCallbacks* pAllocator)
2734 {
2735 RADV_FROM_HANDLE(radv_device, device, _device);
2736 RADV_FROM_HANDLE(radv_fence, fence, _fence);
2737
2738 if (!fence)
2739 return;
2740
2741 if (fence->temp_syncobj)
2742 device->ws->destroy_syncobj(device->ws, fence->temp_syncobj);
2743 if (fence->syncobj)
2744 device->ws->destroy_syncobj(device->ws, fence->syncobj);
2745 if (fence->fence)
2746 device->ws->destroy_fence(fence->fence);
2747 vk_free2(&device->alloc, pAllocator, fence);
2748 }
2749
2750
radv_get_current_time()2751 static uint64_t radv_get_current_time()
2752 {
2753 struct timespec tv;
2754 clock_gettime(CLOCK_MONOTONIC, &tv);
2755 return tv.tv_nsec + tv.tv_sec*1000000000ull;
2756 }
2757
radv_get_absolute_timeout(uint64_t timeout)2758 static uint64_t radv_get_absolute_timeout(uint64_t timeout)
2759 {
2760 uint64_t current_time = radv_get_current_time();
2761
2762 timeout = MIN2(UINT64_MAX - current_time, timeout);
2763
2764 return current_time + timeout;
2765 }
2766
radv_WaitForFences(VkDevice _device,uint32_t fenceCount,const VkFence * pFences,VkBool32 waitAll,uint64_t timeout)2767 VkResult radv_WaitForFences(
2768 VkDevice _device,
2769 uint32_t fenceCount,
2770 const VkFence* pFences,
2771 VkBool32 waitAll,
2772 uint64_t timeout)
2773 {
2774 RADV_FROM_HANDLE(radv_device, device, _device);
2775 timeout = radv_get_absolute_timeout(timeout);
2776
2777 if (!waitAll && fenceCount > 1) {
2778 while(radv_get_current_time() <= timeout) {
2779 for (uint32_t i = 0; i < fenceCount; ++i) {
2780 if (radv_GetFenceStatus(_device, pFences[i]) == VK_SUCCESS)
2781 return VK_SUCCESS;
2782 }
2783 }
2784 return VK_TIMEOUT;
2785 }
2786
2787 for (uint32_t i = 0; i < fenceCount; ++i) {
2788 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
2789 bool expired = false;
2790
2791 if (fence->temp_syncobj) {
2792 if (!device->ws->wait_syncobj(device->ws, fence->temp_syncobj, timeout))
2793 return VK_TIMEOUT;
2794 continue;
2795 }
2796
2797 if (fence->syncobj) {
2798 if (!device->ws->wait_syncobj(device->ws, fence->syncobj, timeout))
2799 return VK_TIMEOUT;
2800 continue;
2801 }
2802
2803 if (fence->signalled)
2804 continue;
2805
2806 if (!fence->submitted) {
2807 while(radv_get_current_time() <= timeout && !fence->submitted)
2808 /* Do nothing */;
2809
2810 if (!fence->submitted)
2811 return VK_TIMEOUT;
2812
2813 /* Recheck as it may have been set by submitting operations. */
2814 if (fence->signalled)
2815 continue;
2816 }
2817
2818 expired = device->ws->fence_wait(device->ws, fence->fence, true, timeout);
2819 if (!expired)
2820 return VK_TIMEOUT;
2821
2822 fence->signalled = true;
2823 }
2824
2825 return VK_SUCCESS;
2826 }
2827
radv_ResetFences(VkDevice _device,uint32_t fenceCount,const VkFence * pFences)2828 VkResult radv_ResetFences(VkDevice _device,
2829 uint32_t fenceCount,
2830 const VkFence *pFences)
2831 {
2832 RADV_FROM_HANDLE(radv_device, device, _device);
2833
2834 for (unsigned i = 0; i < fenceCount; ++i) {
2835 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
2836 fence->submitted = fence->signalled = false;
2837
2838 /* Per spec, we first restore the permanent payload, and then reset, so
2839 * having a temp syncobj should not skip resetting the permanent syncobj. */
2840 if (fence->temp_syncobj) {
2841 device->ws->destroy_syncobj(device->ws, fence->temp_syncobj);
2842 fence->temp_syncobj = 0;
2843 }
2844
2845 if (fence->syncobj) {
2846 device->ws->reset_syncobj(device->ws, fence->syncobj);
2847 }
2848 }
2849
2850 return VK_SUCCESS;
2851 }
2852
radv_GetFenceStatus(VkDevice _device,VkFence _fence)2853 VkResult radv_GetFenceStatus(VkDevice _device, VkFence _fence)
2854 {
2855 RADV_FROM_HANDLE(radv_device, device, _device);
2856 RADV_FROM_HANDLE(radv_fence, fence, _fence);
2857
2858 if (fence->temp_syncobj) {
2859 bool success = device->ws->wait_syncobj(device->ws, fence->temp_syncobj, 0);
2860 return success ? VK_SUCCESS : VK_NOT_READY;
2861 }
2862
2863 if (fence->syncobj) {
2864 bool success = device->ws->wait_syncobj(device->ws, fence->syncobj, 0);
2865 return success ? VK_SUCCESS : VK_NOT_READY;
2866 }
2867
2868 if (fence->signalled)
2869 return VK_SUCCESS;
2870 if (!fence->submitted)
2871 return VK_NOT_READY;
2872 if (!device->ws->fence_wait(device->ws, fence->fence, false, 0))
2873 return VK_NOT_READY;
2874
2875 return VK_SUCCESS;
2876 }
2877
2878
2879 // Queue semaphore functions
2880
radv_CreateSemaphore(VkDevice _device,const VkSemaphoreCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkSemaphore * pSemaphore)2881 VkResult radv_CreateSemaphore(
2882 VkDevice _device,
2883 const VkSemaphoreCreateInfo* pCreateInfo,
2884 const VkAllocationCallbacks* pAllocator,
2885 VkSemaphore* pSemaphore)
2886 {
2887 RADV_FROM_HANDLE(radv_device, device, _device);
2888 const VkExportSemaphoreCreateInfoKHR *export =
2889 vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO_KHR);
2890 VkExternalSemaphoreHandleTypeFlagsKHR handleTypes =
2891 export ? export->handleTypes : 0;
2892
2893 struct radv_semaphore *sem = vk_alloc2(&device->alloc, pAllocator,
2894 sizeof(*sem), 8,
2895 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2896 if (!sem)
2897 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2898
2899 sem->temp_syncobj = 0;
2900 /* create a syncobject if we are going to export this semaphore */
2901 if (device->always_use_syncobj || handleTypes) {
2902 assert (device->physical_device->rad_info.has_syncobj);
2903 int ret = device->ws->create_syncobj(device->ws, &sem->syncobj);
2904 if (ret) {
2905 vk_free2(&device->alloc, pAllocator, sem);
2906 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2907 }
2908 sem->sem = NULL;
2909 } else {
2910 sem->sem = device->ws->create_sem(device->ws);
2911 if (!sem->sem) {
2912 vk_free2(&device->alloc, pAllocator, sem);
2913 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2914 }
2915 sem->syncobj = 0;
2916 }
2917
2918 *pSemaphore = radv_semaphore_to_handle(sem);
2919 return VK_SUCCESS;
2920 }
2921
radv_DestroySemaphore(VkDevice _device,VkSemaphore _semaphore,const VkAllocationCallbacks * pAllocator)2922 void radv_DestroySemaphore(
2923 VkDevice _device,
2924 VkSemaphore _semaphore,
2925 const VkAllocationCallbacks* pAllocator)
2926 {
2927 RADV_FROM_HANDLE(radv_device, device, _device);
2928 RADV_FROM_HANDLE(radv_semaphore, sem, _semaphore);
2929 if (!_semaphore)
2930 return;
2931
2932 if (sem->syncobj)
2933 device->ws->destroy_syncobj(device->ws, sem->syncobj);
2934 else
2935 device->ws->destroy_sem(sem->sem);
2936 vk_free2(&device->alloc, pAllocator, sem);
2937 }
2938
radv_CreateEvent(VkDevice _device,const VkEventCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkEvent * pEvent)2939 VkResult radv_CreateEvent(
2940 VkDevice _device,
2941 const VkEventCreateInfo* pCreateInfo,
2942 const VkAllocationCallbacks* pAllocator,
2943 VkEvent* pEvent)
2944 {
2945 RADV_FROM_HANDLE(radv_device, device, _device);
2946 struct radv_event *event = vk_alloc2(&device->alloc, pAllocator,
2947 sizeof(*event), 8,
2948 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2949
2950 if (!event)
2951 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2952
2953 event->bo = device->ws->buffer_create(device->ws, 8, 8,
2954 RADEON_DOMAIN_GTT,
2955 RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING);
2956 if (!event->bo) {
2957 vk_free2(&device->alloc, pAllocator, event);
2958 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2959 }
2960
2961 event->map = (uint64_t*)device->ws->buffer_map(event->bo);
2962
2963 *pEvent = radv_event_to_handle(event);
2964
2965 return VK_SUCCESS;
2966 }
2967
radv_DestroyEvent(VkDevice _device,VkEvent _event,const VkAllocationCallbacks * pAllocator)2968 void radv_DestroyEvent(
2969 VkDevice _device,
2970 VkEvent _event,
2971 const VkAllocationCallbacks* pAllocator)
2972 {
2973 RADV_FROM_HANDLE(radv_device, device, _device);
2974 RADV_FROM_HANDLE(radv_event, event, _event);
2975
2976 if (!event)
2977 return;
2978 device->ws->buffer_destroy(event->bo);
2979 vk_free2(&device->alloc, pAllocator, event);
2980 }
2981
radv_GetEventStatus(VkDevice _device,VkEvent _event)2982 VkResult radv_GetEventStatus(
2983 VkDevice _device,
2984 VkEvent _event)
2985 {
2986 RADV_FROM_HANDLE(radv_event, event, _event);
2987
2988 if (*event->map == 1)
2989 return VK_EVENT_SET;
2990 return VK_EVENT_RESET;
2991 }
2992
radv_SetEvent(VkDevice _device,VkEvent _event)2993 VkResult radv_SetEvent(
2994 VkDevice _device,
2995 VkEvent _event)
2996 {
2997 RADV_FROM_HANDLE(radv_event, event, _event);
2998 *event->map = 1;
2999
3000 return VK_SUCCESS;
3001 }
3002
radv_ResetEvent(VkDevice _device,VkEvent _event)3003 VkResult radv_ResetEvent(
3004 VkDevice _device,
3005 VkEvent _event)
3006 {
3007 RADV_FROM_HANDLE(radv_event, event, _event);
3008 *event->map = 0;
3009
3010 return VK_SUCCESS;
3011 }
3012
radv_CreateBuffer(VkDevice _device,const VkBufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBuffer * pBuffer)3013 VkResult radv_CreateBuffer(
3014 VkDevice _device,
3015 const VkBufferCreateInfo* pCreateInfo,
3016 const VkAllocationCallbacks* pAllocator,
3017 VkBuffer* pBuffer)
3018 {
3019 RADV_FROM_HANDLE(radv_device, device, _device);
3020 struct radv_buffer *buffer;
3021
3022 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3023
3024 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3025 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3026 if (buffer == NULL)
3027 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3028
3029 buffer->size = pCreateInfo->size;
3030 buffer->usage = pCreateInfo->usage;
3031 buffer->bo = NULL;
3032 buffer->offset = 0;
3033 buffer->flags = pCreateInfo->flags;
3034
3035 buffer->shareable = vk_find_struct_const(pCreateInfo->pNext,
3036 EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR) != NULL;
3037
3038 if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
3039 buffer->bo = device->ws->buffer_create(device->ws,
3040 align64(buffer->size, 4096),
3041 4096, 0, RADEON_FLAG_VIRTUAL);
3042 if (!buffer->bo) {
3043 vk_free2(&device->alloc, pAllocator, buffer);
3044 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3045 }
3046 }
3047
3048 *pBuffer = radv_buffer_to_handle(buffer);
3049
3050 return VK_SUCCESS;
3051 }
3052
radv_DestroyBuffer(VkDevice _device,VkBuffer _buffer,const VkAllocationCallbacks * pAllocator)3053 void radv_DestroyBuffer(
3054 VkDevice _device,
3055 VkBuffer _buffer,
3056 const VkAllocationCallbacks* pAllocator)
3057 {
3058 RADV_FROM_HANDLE(radv_device, device, _device);
3059 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
3060
3061 if (!buffer)
3062 return;
3063
3064 if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
3065 device->ws->buffer_destroy(buffer->bo);
3066
3067 vk_free2(&device->alloc, pAllocator, buffer);
3068 }
3069
3070 static inline unsigned
si_tile_mode_index(const struct radv_image * image,unsigned level,bool stencil)3071 si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil)
3072 {
3073 if (stencil)
3074 return image->surface.u.legacy.stencil_tiling_index[level];
3075 else
3076 return image->surface.u.legacy.tiling_index[level];
3077 }
3078
radv_surface_max_layer_count(struct radv_image_view * iview)3079 static uint32_t radv_surface_max_layer_count(struct radv_image_view *iview)
3080 {
3081 return iview->type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth : (iview->base_layer + iview->layer_count);
3082 }
3083
3084 static void
radv_initialise_color_surface(struct radv_device * device,struct radv_color_buffer_info * cb,struct radv_image_view * iview)3085 radv_initialise_color_surface(struct radv_device *device,
3086 struct radv_color_buffer_info *cb,
3087 struct radv_image_view *iview)
3088 {
3089 const struct vk_format_description *desc;
3090 unsigned ntype, format, swap, endian;
3091 unsigned blend_clamp = 0, blend_bypass = 0;
3092 uint64_t va;
3093 const struct radeon_surf *surf = &iview->image->surface;
3094
3095 desc = vk_format_description(iview->vk_format);
3096
3097 memset(cb, 0, sizeof(*cb));
3098
3099 /* Intensity is implemented as Red, so treat it that way. */
3100 cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == VK_SWIZZLE_1);
3101
3102 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
3103
3104 cb->cb_color_base = va >> 8;
3105
3106 if (device->physical_device->rad_info.chip_class >= GFX9) {
3107 struct gfx9_surf_meta_flags meta;
3108 if (iview->image->dcc_offset)
3109 meta = iview->image->surface.u.gfx9.dcc;
3110 else
3111 meta = iview->image->surface.u.gfx9.cmask;
3112
3113 cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(iview->image->surface.u.gfx9.surf.swizzle_mode) |
3114 S_028C74_FMASK_SW_MODE(iview->image->surface.u.gfx9.fmask.swizzle_mode) |
3115 S_028C74_RB_ALIGNED(meta.rb_aligned) |
3116 S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
3117
3118 cb->cb_color_base += iview->image->surface.u.gfx9.surf_offset >> 8;
3119 cb->cb_color_base |= iview->image->surface.tile_swizzle;
3120 } else {
3121 const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->base_mip];
3122 unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
3123
3124 cb->cb_color_base += level_info->offset >> 8;
3125 if (level_info->mode == RADEON_SURF_MODE_2D)
3126 cb->cb_color_base |= iview->image->surface.tile_swizzle;
3127
3128 pitch_tile_max = level_info->nblk_x / 8 - 1;
3129 slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
3130 tile_mode_index = si_tile_mode_index(iview->image, iview->base_mip, false);
3131
3132 cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
3133 cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
3134 cb->cb_color_cmask_slice = iview->image->cmask.slice_tile_max;
3135
3136 cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
3137
3138 if (iview->image->fmask.size) {
3139 if (device->physical_device->rad_info.chip_class >= CIK)
3140 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(iview->image->fmask.pitch_in_pixels / 8 - 1);
3141 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(iview->image->fmask.tile_mode_index);
3142 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(iview->image->fmask.slice_tile_max);
3143 } else {
3144 /* This must be set for fast clear to work without FMASK. */
3145 if (device->physical_device->rad_info.chip_class >= CIK)
3146 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
3147 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
3148 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
3149 }
3150 }
3151
3152 /* CMASK variables */
3153 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
3154 va += iview->image->cmask.offset;
3155 cb->cb_color_cmask = va >> 8;
3156
3157 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
3158 va += iview->image->dcc_offset;
3159 cb->cb_dcc_base = va >> 8;
3160 cb->cb_dcc_base |= iview->image->surface.tile_swizzle;
3161
3162 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
3163 cb->cb_color_view = S_028C6C_SLICE_START(iview->base_layer) |
3164 S_028C6C_SLICE_MAX(max_slice);
3165
3166 if (iview->image->info.samples > 1) {
3167 unsigned log_samples = util_logbase2(iview->image->info.samples);
3168
3169 cb->cb_color_attrib |= S_028C74_NUM_SAMPLES(log_samples) |
3170 S_028C74_NUM_FRAGMENTS(log_samples);
3171 }
3172
3173 if (iview->image->fmask.size) {
3174 va = radv_buffer_get_va(iview->bo) + iview->image->offset + iview->image->fmask.offset;
3175 cb->cb_color_fmask = va >> 8;
3176 cb->cb_color_fmask |= iview->image->fmask.tile_swizzle;
3177 } else {
3178 cb->cb_color_fmask = cb->cb_color_base;
3179 }
3180
3181 ntype = radv_translate_color_numformat(iview->vk_format,
3182 desc,
3183 vk_format_get_first_non_void_channel(iview->vk_format));
3184 format = radv_translate_colorformat(iview->vk_format);
3185 if (format == V_028C70_COLOR_INVALID || ntype == ~0u)
3186 radv_finishme("Illegal color\n");
3187 swap = radv_translate_colorswap(iview->vk_format, FALSE);
3188 endian = radv_colorformat_endian_swap(format);
3189
3190 /* blend clamp should be set for all NORM/SRGB types */
3191 if (ntype == V_028C70_NUMBER_UNORM ||
3192 ntype == V_028C70_NUMBER_SNORM ||
3193 ntype == V_028C70_NUMBER_SRGB)
3194 blend_clamp = 1;
3195
3196 /* set blend bypass according to docs if SINT/UINT or
3197 8/24 COLOR variants */
3198 if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
3199 format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
3200 format == V_028C70_COLOR_X24_8_32_FLOAT) {
3201 blend_clamp = 0;
3202 blend_bypass = 1;
3203 }
3204 #if 0
3205 if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
3206 (format == V_028C70_COLOR_8 ||
3207 format == V_028C70_COLOR_8_8 ||
3208 format == V_028C70_COLOR_8_8_8_8))
3209 ->color_is_int8 = true;
3210 #endif
3211 cb->cb_color_info = S_028C70_FORMAT(format) |
3212 S_028C70_COMP_SWAP(swap) |
3213 S_028C70_BLEND_CLAMP(blend_clamp) |
3214 S_028C70_BLEND_BYPASS(blend_bypass) |
3215 S_028C70_SIMPLE_FLOAT(1) |
3216 S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM &&
3217 ntype != V_028C70_NUMBER_SNORM &&
3218 ntype != V_028C70_NUMBER_SRGB &&
3219 format != V_028C70_COLOR_8_24 &&
3220 format != V_028C70_COLOR_24_8) |
3221 S_028C70_NUMBER_TYPE(ntype) |
3222 S_028C70_ENDIAN(endian);
3223 if ((iview->image->info.samples > 1) && iview->image->fmask.size) {
3224 cb->cb_color_info |= S_028C70_COMPRESSION(1);
3225 if (device->physical_device->rad_info.chip_class == SI) {
3226 unsigned fmask_bankh = util_logbase2(iview->image->fmask.bank_height);
3227 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
3228 }
3229 }
3230
3231 if (iview->image->cmask.size &&
3232 !(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS))
3233 cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
3234
3235 if (radv_vi_dcc_enabled(iview->image, iview->base_mip))
3236 cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
3237
3238 if (device->physical_device->rad_info.chip_class >= VI) {
3239 unsigned max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_256B;
3240 unsigned min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_32B;
3241 unsigned independent_64b_blocks = 0;
3242 unsigned max_compressed_block_size;
3243
3244 /* amdvlk: [min-compressed-block-size] should be set to 32 for dGPU and
3245 64 for APU because all of our APUs to date use DIMMs which have
3246 a request granularity size of 64B while all other chips have a
3247 32B request size */
3248 if (!device->physical_device->rad_info.has_dedicated_vram)
3249 min_compressed_block_size = V_028C78_MIN_BLOCK_SIZE_64B;
3250
3251 if (iview->image->info.samples > 1) {
3252 if (iview->image->surface.bpe == 1)
3253 max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
3254 else if (iview->image->surface.bpe == 2)
3255 max_uncompressed_block_size = V_028C78_MAX_BLOCK_SIZE_128B;
3256 }
3257
3258 if (iview->image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
3259 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
3260 independent_64b_blocks = 1;
3261 max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
3262 } else
3263 max_compressed_block_size = max_uncompressed_block_size;
3264
3265 cb->cb_dcc_control = S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
3266 S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) |
3267 S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
3268 S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks);
3269 }
3270
3271 /* This must be set for fast clear to work without FMASK. */
3272 if (!iview->image->fmask.size &&
3273 device->physical_device->rad_info.chip_class == SI) {
3274 unsigned bankh = util_logbase2(iview->image->surface.u.legacy.bankh);
3275 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
3276 }
3277
3278 if (device->physical_device->rad_info.chip_class >= GFX9) {
3279 unsigned mip0_depth = iview->image->type == VK_IMAGE_TYPE_3D ?
3280 (iview->extent.depth - 1) : (iview->image->info.array_size - 1);
3281
3282 cb->cb_color_view |= S_028C6C_MIP_LEVEL(iview->base_mip);
3283 cb->cb_color_attrib |= S_028C74_MIP0_DEPTH(mip0_depth) |
3284 S_028C74_RESOURCE_TYPE(iview->image->surface.u.gfx9.resource_type);
3285 cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(iview->extent.width - 1) |
3286 S_028C68_MIP0_HEIGHT(iview->extent.height - 1) |
3287 S_028C68_MAX_MIP(iview->image->info.levels - 1);
3288 }
3289 }
3290
3291 static void
radv_initialise_ds_surface(struct radv_device * device,struct radv_ds_buffer_info * ds,struct radv_image_view * iview)3292 radv_initialise_ds_surface(struct radv_device *device,
3293 struct radv_ds_buffer_info *ds,
3294 struct radv_image_view *iview)
3295 {
3296 unsigned level = iview->base_mip;
3297 unsigned format, stencil_format;
3298 uint64_t va, s_offs, z_offs;
3299 bool stencil_only = false;
3300 memset(ds, 0, sizeof(*ds));
3301 switch (iview->image->vk_format) {
3302 case VK_FORMAT_D24_UNORM_S8_UINT:
3303 case VK_FORMAT_X8_D24_UNORM_PACK32:
3304 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
3305 ds->offset_scale = 2.0f;
3306 break;
3307 case VK_FORMAT_D16_UNORM:
3308 case VK_FORMAT_D16_UNORM_S8_UINT:
3309 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
3310 ds->offset_scale = 4.0f;
3311 break;
3312 case VK_FORMAT_D32_SFLOAT:
3313 case VK_FORMAT_D32_SFLOAT_S8_UINT:
3314 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) |
3315 S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
3316 ds->offset_scale = 1.0f;
3317 break;
3318 case VK_FORMAT_S8_UINT:
3319 stencil_only = true;
3320 break;
3321 default:
3322 break;
3323 }
3324
3325 format = radv_translate_dbformat(iview->image->vk_format);
3326 stencil_format = iview->image->surface.has_stencil ?
3327 V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
3328
3329 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
3330 ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) |
3331 S_028008_SLICE_MAX(max_slice);
3332
3333 ds->db_htile_data_base = 0;
3334 ds->db_htile_surface = 0;
3335
3336 va = radv_buffer_get_va(iview->bo) + iview->image->offset;
3337 s_offs = z_offs = va;
3338
3339 if (device->physical_device->rad_info.chip_class >= GFX9) {
3340 assert(iview->image->surface.u.gfx9.surf_offset == 0);
3341 s_offs += iview->image->surface.u.gfx9.stencil_offset;
3342
3343 ds->db_z_info = S_028038_FORMAT(format) |
3344 S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) |
3345 S_028038_SW_MODE(iview->image->surface.u.gfx9.surf.swizzle_mode) |
3346 S_028038_MAXMIP(iview->image->info.levels - 1);
3347 ds->db_stencil_info = S_02803C_FORMAT(stencil_format) |
3348 S_02803C_SW_MODE(iview->image->surface.u.gfx9.stencil.swizzle_mode);
3349
3350 ds->db_z_info2 = S_028068_EPITCH(iview->image->surface.u.gfx9.surf.epitch);
3351 ds->db_stencil_info2 = S_02806C_EPITCH(iview->image->surface.u.gfx9.stencil.epitch);
3352 ds->db_depth_view |= S_028008_MIPID(level);
3353
3354 ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) |
3355 S_02801C_Y_MAX(iview->image->info.height - 1);
3356
3357 if (radv_htile_enabled(iview->image, level)) {
3358 ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
3359
3360 if (iview->image->tc_compatible_htile) {
3361 unsigned max_zplanes = 4;
3362
3363 if (iview->vk_format == VK_FORMAT_D16_UNORM &&
3364 iview->image->info.samples > 1)
3365 max_zplanes = 2;
3366
3367 ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes + 1) |
3368 S_028038_ITERATE_FLUSH(1);
3369 ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1);
3370 }
3371
3372 if (!iview->image->surface.has_stencil)
3373 /* Use all of the htile_buffer for depth if there's no stencil. */
3374 ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1);
3375 va = radv_buffer_get_va(iview->bo) + iview->image->offset +
3376 iview->image->htile_offset;
3377 ds->db_htile_data_base = va >> 8;
3378 ds->db_htile_surface = S_028ABC_FULL_CACHE(1) |
3379 S_028ABC_PIPE_ALIGNED(iview->image->surface.u.gfx9.htile.pipe_aligned) |
3380 S_028ABC_RB_ALIGNED(iview->image->surface.u.gfx9.htile.rb_aligned);
3381 }
3382 } else {
3383 const struct legacy_surf_level *level_info = &iview->image->surface.u.legacy.level[level];
3384
3385 if (stencil_only)
3386 level_info = &iview->image->surface.u.legacy.stencil_level[level];
3387
3388 z_offs += iview->image->surface.u.legacy.level[level].offset;
3389 s_offs += iview->image->surface.u.legacy.stencil_level[level].offset;
3390
3391 ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!iview->image->tc_compatible_htile);
3392 ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
3393 ds->db_stencil_info = S_028044_FORMAT(stencil_format);
3394
3395 if (iview->image->info.samples > 1)
3396 ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples));
3397
3398 if (device->physical_device->rad_info.chip_class >= CIK) {
3399 struct radeon_info *info = &device->physical_device->rad_info;
3400 unsigned tiling_index = iview->image->surface.u.legacy.tiling_index[level];
3401 unsigned stencil_index = iview->image->surface.u.legacy.stencil_tiling_index[level];
3402 unsigned macro_index = iview->image->surface.u.legacy.macro_tile_index;
3403 unsigned tile_mode = info->si_tile_mode_array[tiling_index];
3404 unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
3405 unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
3406
3407 if (stencil_only)
3408 tile_mode = stencil_tile_mode;
3409
3410 ds->db_depth_info |=
3411 S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
3412 S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
3413 S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
3414 S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
3415 S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
3416 S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
3417 ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
3418 ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
3419 } else {
3420 unsigned tile_mode_index = si_tile_mode_index(iview->image, level, false);
3421 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
3422 tile_mode_index = si_tile_mode_index(iview->image, level, true);
3423 ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
3424 if (stencil_only)
3425 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
3426 }
3427
3428 ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
3429 S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
3430 ds->db_depth_slice = S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
3431
3432 if (radv_htile_enabled(iview->image, level)) {
3433 ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1);
3434
3435 if (!iview->image->surface.has_stencil &&
3436 !iview->image->tc_compatible_htile)
3437 /* Use all of the htile_buffer for depth if there's no stencil. */
3438 ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
3439
3440 va = radv_buffer_get_va(iview->bo) + iview->image->offset +
3441 iview->image->htile_offset;
3442 ds->db_htile_data_base = va >> 8;
3443 ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
3444
3445 if (iview->image->tc_compatible_htile) {
3446 ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1);
3447
3448 if (iview->image->info.samples <= 1)
3449 ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(5);
3450 else if (iview->image->info.samples <= 4)
3451 ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(3);
3452 else
3453 ds->db_z_info|= S_028040_DECOMPRESS_ON_N_ZPLANES(2);
3454 }
3455 }
3456 }
3457
3458 ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
3459 ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
3460 }
3461
radv_CreateFramebuffer(VkDevice _device,const VkFramebufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkFramebuffer * pFramebuffer)3462 VkResult radv_CreateFramebuffer(
3463 VkDevice _device,
3464 const VkFramebufferCreateInfo* pCreateInfo,
3465 const VkAllocationCallbacks* pAllocator,
3466 VkFramebuffer* pFramebuffer)
3467 {
3468 RADV_FROM_HANDLE(radv_device, device, _device);
3469 struct radv_framebuffer *framebuffer;
3470
3471 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3472
3473 size_t size = sizeof(*framebuffer) +
3474 sizeof(struct radv_attachment_info) * pCreateInfo->attachmentCount;
3475 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3476 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3477 if (framebuffer == NULL)
3478 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3479
3480 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3481 framebuffer->width = pCreateInfo->width;
3482 framebuffer->height = pCreateInfo->height;
3483 framebuffer->layers = pCreateInfo->layers;
3484 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3485 VkImageView _iview = pCreateInfo->pAttachments[i];
3486 struct radv_image_view *iview = radv_image_view_from_handle(_iview);
3487 framebuffer->attachments[i].attachment = iview;
3488 if (iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT) {
3489 radv_initialise_color_surface(device, &framebuffer->attachments[i].cb, iview);
3490 } else if (iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
3491 radv_initialise_ds_surface(device, &framebuffer->attachments[i].ds, iview);
3492 }
3493 framebuffer->width = MIN2(framebuffer->width, iview->extent.width);
3494 framebuffer->height = MIN2(framebuffer->height, iview->extent.height);
3495 framebuffer->layers = MIN2(framebuffer->layers, radv_surface_max_layer_count(iview));
3496 }
3497
3498 *pFramebuffer = radv_framebuffer_to_handle(framebuffer);
3499 return VK_SUCCESS;
3500 }
3501
radv_DestroyFramebuffer(VkDevice _device,VkFramebuffer _fb,const VkAllocationCallbacks * pAllocator)3502 void radv_DestroyFramebuffer(
3503 VkDevice _device,
3504 VkFramebuffer _fb,
3505 const VkAllocationCallbacks* pAllocator)
3506 {
3507 RADV_FROM_HANDLE(radv_device, device, _device);
3508 RADV_FROM_HANDLE(radv_framebuffer, fb, _fb);
3509
3510 if (!fb)
3511 return;
3512 vk_free2(&device->alloc, pAllocator, fb);
3513 }
3514
radv_tex_wrap(VkSamplerAddressMode address_mode)3515 static unsigned radv_tex_wrap(VkSamplerAddressMode address_mode)
3516 {
3517 switch (address_mode) {
3518 case VK_SAMPLER_ADDRESS_MODE_REPEAT:
3519 return V_008F30_SQ_TEX_WRAP;
3520 case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
3521 return V_008F30_SQ_TEX_MIRROR;
3522 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
3523 return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
3524 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
3525 return V_008F30_SQ_TEX_CLAMP_BORDER;
3526 case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
3527 return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
3528 default:
3529 unreachable("illegal tex wrap mode");
3530 break;
3531 }
3532 }
3533
3534 static unsigned
radv_tex_compare(VkCompareOp op)3535 radv_tex_compare(VkCompareOp op)
3536 {
3537 switch (op) {
3538 case VK_COMPARE_OP_NEVER:
3539 return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
3540 case VK_COMPARE_OP_LESS:
3541 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
3542 case VK_COMPARE_OP_EQUAL:
3543 return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
3544 case VK_COMPARE_OP_LESS_OR_EQUAL:
3545 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
3546 case VK_COMPARE_OP_GREATER:
3547 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
3548 case VK_COMPARE_OP_NOT_EQUAL:
3549 return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
3550 case VK_COMPARE_OP_GREATER_OR_EQUAL:
3551 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
3552 case VK_COMPARE_OP_ALWAYS:
3553 return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
3554 default:
3555 unreachable("illegal compare mode");
3556 break;
3557 }
3558 }
3559
3560 static unsigned
radv_tex_filter(VkFilter filter,unsigned max_ansio)3561 radv_tex_filter(VkFilter filter, unsigned max_ansio)
3562 {
3563 switch (filter) {
3564 case VK_FILTER_NEAREST:
3565 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT :
3566 V_008F38_SQ_TEX_XY_FILTER_POINT);
3567 case VK_FILTER_LINEAR:
3568 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR :
3569 V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
3570 case VK_FILTER_CUBIC_IMG:
3571 default:
3572 fprintf(stderr, "illegal texture filter");
3573 return 0;
3574 }
3575 }
3576
3577 static unsigned
radv_tex_mipfilter(VkSamplerMipmapMode mode)3578 radv_tex_mipfilter(VkSamplerMipmapMode mode)
3579 {
3580 switch (mode) {
3581 case VK_SAMPLER_MIPMAP_MODE_NEAREST:
3582 return V_008F38_SQ_TEX_Z_FILTER_POINT;
3583 case VK_SAMPLER_MIPMAP_MODE_LINEAR:
3584 return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
3585 default:
3586 return V_008F38_SQ_TEX_Z_FILTER_NONE;
3587 }
3588 }
3589
3590 static unsigned
radv_tex_bordercolor(VkBorderColor bcolor)3591 radv_tex_bordercolor(VkBorderColor bcolor)
3592 {
3593 switch (bcolor) {
3594 case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
3595 case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
3596 return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
3597 case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
3598 case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
3599 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
3600 case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
3601 case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
3602 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
3603 default:
3604 break;
3605 }
3606 return 0;
3607 }
3608
3609 static unsigned
radv_tex_aniso_filter(unsigned filter)3610 radv_tex_aniso_filter(unsigned filter)
3611 {
3612 if (filter < 2)
3613 return 0;
3614 if (filter < 4)
3615 return 1;
3616 if (filter < 8)
3617 return 2;
3618 if (filter < 16)
3619 return 3;
3620 return 4;
3621 }
3622
3623 static void
radv_init_sampler(struct radv_device * device,struct radv_sampler * sampler,const VkSamplerCreateInfo * pCreateInfo)3624 radv_init_sampler(struct radv_device *device,
3625 struct radv_sampler *sampler,
3626 const VkSamplerCreateInfo *pCreateInfo)
3627 {
3628 uint32_t max_aniso = pCreateInfo->anisotropyEnable && pCreateInfo->maxAnisotropy > 1.0 ?
3629 (uint32_t) pCreateInfo->maxAnisotropy : 0;
3630 uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
3631 bool is_vi = (device->physical_device->rad_info.chip_class >= VI);
3632
3633 sampler->state[0] = (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
3634 S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
3635 S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
3636 S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) |
3637 S_008F30_DEPTH_COMPARE_FUNC(radv_tex_compare(pCreateInfo->compareOp)) |
3638 S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
3639 S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) |
3640 S_008F30_ANISO_BIAS(max_aniso_ratio) |
3641 S_008F30_DISABLE_CUBE_WRAP(0) |
3642 S_008F30_COMPAT_MODE(is_vi));
3643 sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
3644 S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
3645 S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
3646 sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
3647 S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
3648 S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
3649 S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) |
3650 S_008F38_MIP_POINT_PRECLAMP(0) |
3651 S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.chip_class <= VI) |
3652 S_008F38_FILTER_PREC_FIX(1) |
3653 S_008F38_ANISO_OVERRIDE(is_vi));
3654 sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(0) |
3655 S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(pCreateInfo->borderColor)));
3656 }
3657
radv_CreateSampler(VkDevice _device,const VkSamplerCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkSampler * pSampler)3658 VkResult radv_CreateSampler(
3659 VkDevice _device,
3660 const VkSamplerCreateInfo* pCreateInfo,
3661 const VkAllocationCallbacks* pAllocator,
3662 VkSampler* pSampler)
3663 {
3664 RADV_FROM_HANDLE(radv_device, device, _device);
3665 struct radv_sampler *sampler;
3666
3667 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
3668
3669 sampler = vk_alloc2(&device->alloc, pAllocator, sizeof(*sampler), 8,
3670 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3671 if (!sampler)
3672 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3673
3674 radv_init_sampler(device, sampler, pCreateInfo);
3675 *pSampler = radv_sampler_to_handle(sampler);
3676
3677 return VK_SUCCESS;
3678 }
3679
radv_DestroySampler(VkDevice _device,VkSampler _sampler,const VkAllocationCallbacks * pAllocator)3680 void radv_DestroySampler(
3681 VkDevice _device,
3682 VkSampler _sampler,
3683 const VkAllocationCallbacks* pAllocator)
3684 {
3685 RADV_FROM_HANDLE(radv_device, device, _device);
3686 RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
3687
3688 if (!sampler)
3689 return;
3690 vk_free2(&device->alloc, pAllocator, sampler);
3691 }
3692
3693 /* vk_icd.h does not declare this function, so we declare it here to
3694 * suppress Wmissing-prototypes.
3695 */
3696 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3697 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion);
3698
3699 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t * pSupportedVersion)3700 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
3701 {
3702 /* For the full details on loader interface versioning, see
3703 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3704 * What follows is a condensed summary, to help you navigate the large and
3705 * confusing official doc.
3706 *
3707 * - Loader interface v0 is incompatible with later versions. We don't
3708 * support it.
3709 *
3710 * - In loader interface v1:
3711 * - The first ICD entrypoint called by the loader is
3712 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3713 * entrypoint.
3714 * - The ICD must statically expose no other Vulkan symbol unless it is
3715 * linked with -Bsymbolic.
3716 * - Each dispatchable Vulkan handle created by the ICD must be
3717 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3718 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3719 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3720 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3721 * such loader-managed surfaces.
3722 *
3723 * - Loader interface v2 differs from v1 in:
3724 * - The first ICD entrypoint called by the loader is
3725 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3726 * statically expose this entrypoint.
3727 *
3728 * - Loader interface v3 differs from v2 in:
3729 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3730 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3731 * because the loader no longer does so.
3732 */
3733 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3734 return VK_SUCCESS;
3735 }
3736
radv_GetMemoryFdKHR(VkDevice _device,const VkMemoryGetFdInfoKHR * pGetFdInfo,int * pFD)3737 VkResult radv_GetMemoryFdKHR(VkDevice _device,
3738 const VkMemoryGetFdInfoKHR *pGetFdInfo,
3739 int *pFD)
3740 {
3741 RADV_FROM_HANDLE(radv_device, device, _device);
3742 RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory);
3743
3744 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3745
3746 /* At the moment, we support only the below handle types. */
3747 assert(pGetFdInfo->handleType ==
3748 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
3749 pGetFdInfo->handleType ==
3750 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3751
3752 bool ret = radv_get_memory_fd(device, memory, pFD);
3753 if (ret == false)
3754 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
3755 return VK_SUCCESS;
3756 }
3757
radv_GetMemoryFdPropertiesKHR(VkDevice _device,VkExternalMemoryHandleTypeFlagBitsKHR handleType,int fd,VkMemoryFdPropertiesKHR * pMemoryFdProperties)3758 VkResult radv_GetMemoryFdPropertiesKHR(VkDevice _device,
3759 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
3760 int fd,
3761 VkMemoryFdPropertiesKHR *pMemoryFdProperties)
3762 {
3763 switch (handleType) {
3764 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3765 pMemoryFdProperties->memoryTypeBits = (1 << RADV_MEM_TYPE_COUNT) - 1;
3766 return VK_SUCCESS;
3767
3768 default:
3769 /* The valid usage section for this function says:
3770 *
3771 * "handleType must not be one of the handle types defined as
3772 * opaque."
3773 *
3774 * So opaque handle types fall into the default "unsupported" case.
3775 */
3776 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
3777 }
3778 }
3779
radv_import_opaque_fd(struct radv_device * device,int fd,uint32_t * syncobj)3780 static VkResult radv_import_opaque_fd(struct radv_device *device,
3781 int fd,
3782 uint32_t *syncobj)
3783 {
3784 uint32_t syncobj_handle = 0;
3785 int ret = device->ws->import_syncobj(device->ws, fd, &syncobj_handle);
3786 if (ret != 0)
3787 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
3788
3789 if (*syncobj)
3790 device->ws->destroy_syncobj(device->ws, *syncobj);
3791
3792 *syncobj = syncobj_handle;
3793 close(fd);
3794
3795 return VK_SUCCESS;
3796 }
3797
radv_import_sync_fd(struct radv_device * device,int fd,uint32_t * syncobj)3798 static VkResult radv_import_sync_fd(struct radv_device *device,
3799 int fd,
3800 uint32_t *syncobj)
3801 {
3802 /* If we create a syncobj we do it locally so that if we have an error, we don't
3803 * leave a syncobj in an undetermined state in the fence. */
3804 uint32_t syncobj_handle = *syncobj;
3805 if (!syncobj_handle) {
3806 int ret = device->ws->create_syncobj(device->ws, &syncobj_handle);
3807 if (ret) {
3808 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
3809 }
3810 }
3811
3812 if (fd == -1) {
3813 device->ws->signal_syncobj(device->ws, syncobj_handle);
3814 } else {
3815 int ret = device->ws->import_syncobj_from_sync_file(device->ws, syncobj_handle, fd);
3816 if (ret != 0)
3817 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
3818 }
3819
3820 *syncobj = syncobj_handle;
3821 if (fd != -1)
3822 close(fd);
3823
3824 return VK_SUCCESS;
3825 }
3826
radv_ImportSemaphoreFdKHR(VkDevice _device,const VkImportSemaphoreFdInfoKHR * pImportSemaphoreFdInfo)3827 VkResult radv_ImportSemaphoreFdKHR(VkDevice _device,
3828 const VkImportSemaphoreFdInfoKHR *pImportSemaphoreFdInfo)
3829 {
3830 RADV_FROM_HANDLE(radv_device, device, _device);
3831 RADV_FROM_HANDLE(radv_semaphore, sem, pImportSemaphoreFdInfo->semaphore);
3832 uint32_t *syncobj_dst = NULL;
3833
3834 if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR) {
3835 syncobj_dst = &sem->temp_syncobj;
3836 } else {
3837 syncobj_dst = &sem->syncobj;
3838 }
3839
3840 switch(pImportSemaphoreFdInfo->handleType) {
3841 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
3842 return radv_import_opaque_fd(device, pImportSemaphoreFdInfo->fd, syncobj_dst);
3843 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
3844 return radv_import_sync_fd(device, pImportSemaphoreFdInfo->fd, syncobj_dst);
3845 default:
3846 unreachable("Unhandled semaphore handle type");
3847 }
3848 }
3849
radv_GetSemaphoreFdKHR(VkDevice _device,const VkSemaphoreGetFdInfoKHR * pGetFdInfo,int * pFd)3850 VkResult radv_GetSemaphoreFdKHR(VkDevice _device,
3851 const VkSemaphoreGetFdInfoKHR *pGetFdInfo,
3852 int *pFd)
3853 {
3854 RADV_FROM_HANDLE(radv_device, device, _device);
3855 RADV_FROM_HANDLE(radv_semaphore, sem, pGetFdInfo->semaphore);
3856 int ret;
3857 uint32_t syncobj_handle;
3858
3859 if (sem->temp_syncobj)
3860 syncobj_handle = sem->temp_syncobj;
3861 else
3862 syncobj_handle = sem->syncobj;
3863
3864 switch(pGetFdInfo->handleType) {
3865 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
3866 ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
3867 break;
3868 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
3869 ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd);
3870 if (!ret) {
3871 if (sem->temp_syncobj) {
3872 close (sem->temp_syncobj);
3873 sem->temp_syncobj = 0;
3874 } else {
3875 device->ws->reset_syncobj(device->ws, syncobj_handle);
3876 }
3877 }
3878 break;
3879 default:
3880 unreachable("Unhandled semaphore handle type");
3881 }
3882
3883 if (ret)
3884 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
3885 return VK_SUCCESS;
3886 }
3887
radv_GetPhysicalDeviceExternalSemaphorePropertiesKHR(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceExternalSemaphoreInfoKHR * pExternalSemaphoreInfo,VkExternalSemaphorePropertiesKHR * pExternalSemaphoreProperties)3888 void radv_GetPhysicalDeviceExternalSemaphorePropertiesKHR(
3889 VkPhysicalDevice physicalDevice,
3890 const VkPhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo,
3891 VkExternalSemaphorePropertiesKHR* pExternalSemaphoreProperties)
3892 {
3893 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
3894
3895 /* Require has_syncobj_wait_for_submit for the syncobj signal ioctl introduced at virtually the same time */
3896 if (pdevice->rad_info.has_syncobj_wait_for_submit &&
3897 (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
3898 pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR)) {
3899 pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
3900 pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR | VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
3901 pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
3902 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
3903 } else if (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR) {
3904 pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
3905 pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
3906 pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
3907 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
3908 } else {
3909 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
3910 pExternalSemaphoreProperties->compatibleHandleTypes = 0;
3911 pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
3912 }
3913 }
3914
radv_ImportFenceFdKHR(VkDevice _device,const VkImportFenceFdInfoKHR * pImportFenceFdInfo)3915 VkResult radv_ImportFenceFdKHR(VkDevice _device,
3916 const VkImportFenceFdInfoKHR *pImportFenceFdInfo)
3917 {
3918 RADV_FROM_HANDLE(radv_device, device, _device);
3919 RADV_FROM_HANDLE(radv_fence, fence, pImportFenceFdInfo->fence);
3920 uint32_t *syncobj_dst = NULL;
3921
3922
3923 if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT_KHR) {
3924 syncobj_dst = &fence->temp_syncobj;
3925 } else {
3926 syncobj_dst = &fence->syncobj;
3927 }
3928
3929 switch(pImportFenceFdInfo->handleType) {
3930 case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
3931 return radv_import_opaque_fd(device, pImportFenceFdInfo->fd, syncobj_dst);
3932 case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
3933 return radv_import_sync_fd(device, pImportFenceFdInfo->fd, syncobj_dst);
3934 default:
3935 unreachable("Unhandled fence handle type");
3936 }
3937 }
3938
radv_GetFenceFdKHR(VkDevice _device,const VkFenceGetFdInfoKHR * pGetFdInfo,int * pFd)3939 VkResult radv_GetFenceFdKHR(VkDevice _device,
3940 const VkFenceGetFdInfoKHR *pGetFdInfo,
3941 int *pFd)
3942 {
3943 RADV_FROM_HANDLE(radv_device, device, _device);
3944 RADV_FROM_HANDLE(radv_fence, fence, pGetFdInfo->fence);
3945 int ret;
3946 uint32_t syncobj_handle;
3947
3948 if (fence->temp_syncobj)
3949 syncobj_handle = fence->temp_syncobj;
3950 else
3951 syncobj_handle = fence->syncobj;
3952
3953 switch(pGetFdInfo->handleType) {
3954 case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR:
3955 ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
3956 break;
3957 case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR:
3958 ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd);
3959 if (!ret) {
3960 if (fence->temp_syncobj) {
3961 close (fence->temp_syncobj);
3962 fence->temp_syncobj = 0;
3963 } else {
3964 device->ws->reset_syncobj(device->ws, syncobj_handle);
3965 }
3966 }
3967 break;
3968 default:
3969 unreachable("Unhandled fence handle type");
3970 }
3971
3972 if (ret)
3973 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
3974 return VK_SUCCESS;
3975 }
3976
radv_GetPhysicalDeviceExternalFencePropertiesKHR(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceExternalFenceInfoKHR * pExternalFenceInfo,VkExternalFencePropertiesKHR * pExternalFenceProperties)3977 void radv_GetPhysicalDeviceExternalFencePropertiesKHR(
3978 VkPhysicalDevice physicalDevice,
3979 const VkPhysicalDeviceExternalFenceInfoKHR* pExternalFenceInfo,
3980 VkExternalFencePropertiesKHR* pExternalFenceProperties)
3981 {
3982 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
3983
3984 if (pdevice->rad_info.has_syncobj_wait_for_submit &&
3985 (pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
3986 pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR)) {
3987 pExternalFenceProperties->exportFromImportedHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
3988 pExternalFenceProperties->compatibleHandleTypes = VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
3989 pExternalFenceProperties->externalFenceFeatures = VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT_KHR |
3990 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
3991 } else {
3992 pExternalFenceProperties->exportFromImportedHandleTypes = 0;
3993 pExternalFenceProperties->compatibleHandleTypes = 0;
3994 pExternalFenceProperties->externalFenceFeatures = 0;
3995 }
3996 }
3997
3998 VkResult
radv_CreateDebugReportCallbackEXT(VkInstance _instance,const VkDebugReportCallbackCreateInfoEXT * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDebugReportCallbackEXT * pCallback)3999 radv_CreateDebugReportCallbackEXT(VkInstance _instance,
4000 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
4001 const VkAllocationCallbacks* pAllocator,
4002 VkDebugReportCallbackEXT* pCallback)
4003 {
4004 RADV_FROM_HANDLE(radv_instance, instance, _instance);
4005 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
4006 pCreateInfo, pAllocator, &instance->alloc,
4007 pCallback);
4008 }
4009
4010 void
radv_DestroyDebugReportCallbackEXT(VkInstance _instance,VkDebugReportCallbackEXT _callback,const VkAllocationCallbacks * pAllocator)4011 radv_DestroyDebugReportCallbackEXT(VkInstance _instance,
4012 VkDebugReportCallbackEXT _callback,
4013 const VkAllocationCallbacks* pAllocator)
4014 {
4015 RADV_FROM_HANDLE(radv_instance, instance, _instance);
4016 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
4017 _callback, pAllocator, &instance->alloc);
4018 }
4019
4020 void
radv_DebugReportMessageEXT(VkInstance _instance,VkDebugReportFlagsEXT flags,VkDebugReportObjectTypeEXT objectType,uint64_t object,size_t location,int32_t messageCode,const char * pLayerPrefix,const char * pMessage)4021 radv_DebugReportMessageEXT(VkInstance _instance,
4022 VkDebugReportFlagsEXT flags,
4023 VkDebugReportObjectTypeEXT objectType,
4024 uint64_t object,
4025 size_t location,
4026 int32_t messageCode,
4027 const char* pLayerPrefix,
4028 const char* pMessage)
4029 {
4030 RADV_FROM_HANDLE(radv_instance, instance, _instance);
4031 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
4032 object, location, messageCode, pLayerPrefix, pMessage);
4033 }
4034