1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL (ES) Module
3 * -----------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Calibration tools.
22 *//*--------------------------------------------------------------------*/
23
24 #include "glsCalibration.hpp"
25 #include "tcuTestLog.hpp"
26 #include "tcuVectorUtil.hpp"
27 #include "deStringUtil.hpp"
28 #include "deMath.h"
29 #include "deClock.h"
30
31 #include <algorithm>
32 #include <limits>
33
34 using std::string;
35 using std::vector;
36 using tcu::Vec2;
37 using tcu::TestLog;
38 using tcu::TestNode;
39 using namespace glu;
40
41 namespace deqp
42 {
43 namespace gls
44 {
45
46 // Reorders input arbitrarily, linear complexity and no allocations
47 template<typename T>
destructiveMedian(vector<T> & data)48 float destructiveMedian (vector<T>& data)
49 {
50 const typename vector<T>::iterator mid = data.begin()+data.size()/2;
51
52 std::nth_element(data.begin(), mid, data.end());
53
54 if (data.size()%2 == 0) // Even number of elements, need average of two centermost elements
55 return (*mid + *std::max_element(data.begin(), mid))*0.5f; // Data is partially sorted around mid, mid is half an item after center
56 else
57 return *mid;
58 }
59
theilSenLinearRegression(const std::vector<tcu::Vec2> & dataPoints)60 LineParameters theilSenLinearRegression (const std::vector<tcu::Vec2>& dataPoints)
61 {
62 const float epsilon = 1e-6f;
63
64 const int numDataPoints = (int)dataPoints.size();
65 vector<float> pairwiseCoefficients;
66 vector<float> pointwiseOffsets;
67 LineParameters result (0.0f, 0.0f);
68
69 // Compute the pairwise coefficients.
70 for (int i = 0; i < numDataPoints; i++)
71 {
72 const Vec2& ptA = dataPoints[i];
73
74 for (int j = 0; j < i; j++)
75 {
76 const Vec2& ptB = dataPoints[j];
77
78 if (de::abs(ptA.x() - ptB.x()) > epsilon)
79 pairwiseCoefficients.push_back((ptA.y() - ptB.y()) / (ptA.x() - ptB.x()));
80 }
81 }
82
83 // Find the median of the pairwise coefficients.
84 // \note If there are no data point pairs with differing x values, the coefficient variable will stay zero as initialized.
85 if (!pairwiseCoefficients.empty())
86 result.coefficient = destructiveMedian(pairwiseCoefficients);
87
88 // Compute the offsets corresponding to the median coefficient, for all data points.
89 for (int i = 0; i < numDataPoints; i++)
90 pointwiseOffsets.push_back(dataPoints[i].y() - result.coefficient*dataPoints[i].x());
91
92 // Find the median of the offsets.
93 // \note If there are no data points, the offset variable will stay zero as initialized.
94 if (!pointwiseOffsets.empty())
95 result.offset = destructiveMedian(pointwiseOffsets);
96
97 return result;
98 }
99
100 // Sample from given values using linear interpolation at a given position as if values were laid to range [0, 1]
101 template <typename T>
linearSample(const std::vector<T> & values,float position)102 static float linearSample (const std::vector<T>& values, float position)
103 {
104 DE_ASSERT(position >= 0.0f);
105 DE_ASSERT(position <= 1.0f);
106
107 const int maxNdx = (int)values.size() - 1;
108 const float floatNdx = (float)maxNdx * position;
109 const int lowerNdx = (int)deFloatFloor(floatNdx);
110 const int higherNdx = lowerNdx + (lowerNdx == maxNdx ? 0 : 1); // Use only last element if position is 1.0
111 const float interpolationFactor = floatNdx - (float)lowerNdx;
112
113 DE_ASSERT(lowerNdx >= 0 && lowerNdx < (int)values.size());
114 DE_ASSERT(higherNdx >= 0 && higherNdx < (int)values.size());
115 DE_ASSERT(interpolationFactor >= 0 && interpolationFactor < 1.0f);
116
117 return tcu::mix((float)values[lowerNdx], (float)values[higherNdx], interpolationFactor);
118 }
119
theilSenSiegelLinearRegression(const std::vector<tcu::Vec2> & dataPoints,float reportedConfidence)120 LineParametersWithConfidence theilSenSiegelLinearRegression (const std::vector<tcu::Vec2>& dataPoints, float reportedConfidence)
121 {
122 DE_ASSERT(!dataPoints.empty());
123
124 // Siegel's variation
125
126 const float epsilon = 1e-6f;
127 const int numDataPoints = (int)dataPoints.size();
128 std::vector<float> medianSlopes;
129 std::vector<float> pointwiseOffsets;
130 LineParametersWithConfidence result;
131
132 // Compute the median slope via each element
133 for (int i = 0; i < numDataPoints; i++)
134 {
135 const tcu::Vec2& ptA = dataPoints[i];
136 std::vector<float> slopes;
137
138 slopes.reserve(numDataPoints);
139
140 for (int j = 0; j < numDataPoints; j++)
141 {
142 const tcu::Vec2& ptB = dataPoints[j];
143
144 if (de::abs(ptA.x() - ptB.x()) > epsilon)
145 slopes.push_back((ptA.y() - ptB.y()) / (ptA.x() - ptB.x()));
146 }
147
148 // Add median of slopes through point i
149 medianSlopes.push_back(destructiveMedian(slopes));
150 }
151
152 DE_ASSERT(!medianSlopes.empty());
153
154 // Find the median of the pairwise coefficients.
155 std::sort(medianSlopes.begin(), medianSlopes.end());
156 result.coefficient = linearSample(medianSlopes, 0.5f);
157
158 // Compute the offsets corresponding to the median coefficient, for all data points.
159 for (int i = 0; i < numDataPoints; i++)
160 pointwiseOffsets.push_back(dataPoints[i].y() - result.coefficient*dataPoints[i].x());
161
162 // Find the median of the offsets.
163 std::sort(pointwiseOffsets.begin(), pointwiseOffsets.end());
164 result.offset = linearSample(pointwiseOffsets, 0.5f);
165
166 // calculate confidence intervals
167 result.coefficientConfidenceLower = linearSample(medianSlopes, 0.5f - reportedConfidence*0.5f);
168 result.coefficientConfidenceUpper = linearSample(medianSlopes, 0.5f + reportedConfidence*0.5f);
169
170 result.offsetConfidenceLower = linearSample(pointwiseOffsets, 0.5f - reportedConfidence*0.5f);
171 result.offsetConfidenceUpper = linearSample(pointwiseOffsets, 0.5f + reportedConfidence*0.5f);
172
173 result.confidence = reportedConfidence;
174
175 return result;
176 }
177
isDone(void) const178 bool MeasureState::isDone (void) const
179 {
180 return (int)frameTimes.size() >= maxNumFrames || (frameTimes.size() >= 2 &&
181 frameTimes[frameTimes.size()-2] >= (deUint64)frameShortcutTime &&
182 frameTimes[frameTimes.size()-1] >= (deUint64)frameShortcutTime);
183 }
184
getTotalTime(void) const185 deUint64 MeasureState::getTotalTime (void) const
186 {
187 deUint64 time = 0;
188 for (int i = 0; i < (int)frameTimes.size(); i++)
189 time += frameTimes[i];
190 return time;
191 }
192
clear(void)193 void MeasureState::clear (void)
194 {
195 maxNumFrames = 0;
196 frameShortcutTime = std::numeric_limits<float>::infinity();
197 numDrawCalls = 0;
198 frameTimes.clear();
199 }
200
start(int maxNumFrames_,float frameShortcutTime_,int numDrawCalls_)201 void MeasureState::start (int maxNumFrames_, float frameShortcutTime_, int numDrawCalls_)
202 {
203 frameTimes.clear();
204 frameTimes.reserve(maxNumFrames_);
205 maxNumFrames = maxNumFrames_;
206 frameShortcutTime = frameShortcutTime_;
207 numDrawCalls = numDrawCalls_;
208 }
209
TheilSenCalibrator(void)210 TheilSenCalibrator::TheilSenCalibrator (void)
211 : m_params (1 /* initial calls */, 10 /* calibrate iter frames */, 2000.0f /* calibrate iter shortcut threshold */, 31 /* max calibration iterations */,
212 1000.0f/30.0f /* target frame time */, 1000.0f/60.0f /* frame time cap */, 1000.0f /* target measure duration */)
213 , m_state (INTERNALSTATE_LAST)
214 {
215 clear();
216 }
217
TheilSenCalibrator(const CalibratorParameters & params)218 TheilSenCalibrator::TheilSenCalibrator (const CalibratorParameters& params)
219 : m_params (params)
220 , m_state (INTERNALSTATE_LAST)
221 {
222 clear();
223 }
224
~TheilSenCalibrator()225 TheilSenCalibrator::~TheilSenCalibrator()
226 {
227 }
228
clear(void)229 void TheilSenCalibrator::clear (void)
230 {
231 m_measureState.clear();
232 m_calibrateIterations.clear();
233 m_state = INTERNALSTATE_CALIBRATING;
234 }
235
clear(const CalibratorParameters & params)236 void TheilSenCalibrator::clear (const CalibratorParameters& params)
237 {
238 m_params = params;
239 clear();
240 }
241
getState(void) const242 TheilSenCalibrator::State TheilSenCalibrator::getState (void) const
243 {
244 if (m_state == INTERNALSTATE_FINISHED)
245 return STATE_FINISHED;
246 else
247 {
248 DE_ASSERT(m_state == INTERNALSTATE_CALIBRATING || !m_measureState.isDone());
249 return m_measureState.isDone() ? STATE_RECOMPUTE_PARAMS : STATE_MEASURE;
250 }
251 }
252
recordIteration(deUint64 iterationTime)253 void TheilSenCalibrator::recordIteration (deUint64 iterationTime)
254 {
255 DE_ASSERT((m_state == INTERNALSTATE_CALIBRATING || m_state == INTERNALSTATE_RUNNING) && !m_measureState.isDone());
256 m_measureState.frameTimes.push_back(iterationTime);
257
258 if (m_state == INTERNALSTATE_RUNNING && m_measureState.isDone())
259 m_state = INTERNALSTATE_FINISHED;
260 }
261
recomputeParameters(void)262 void TheilSenCalibrator::recomputeParameters (void)
263 {
264 DE_ASSERT(m_state == INTERNALSTATE_CALIBRATING);
265 DE_ASSERT(m_measureState.isDone());
266
267 // Minimum and maximum acceptable frame times.
268 const float minGoodFrameTimeUs = m_params.targetFrameTimeUs * 0.95f;
269 const float maxGoodFrameTimeUs = m_params.targetFrameTimeUs * 1.15f;
270
271 const int numIterations = (int)m_calibrateIterations.size();
272
273 // Record frame time.
274 if (numIterations > 0)
275 {
276 m_calibrateIterations.back().frameTime = (float)((double)m_measureState.getTotalTime() / (double)m_measureState.frameTimes.size());
277
278 // Check if we're good enough to stop calibrating.
279 {
280 bool endCalibration = false;
281
282 // Is the maximum calibration iteration limit reached?
283 endCalibration = endCalibration || (int)m_calibrateIterations.size() >= m_params.maxCalibrateIterations;
284
285 // Do a few past iterations have frame time in acceptable range?
286 {
287 const int numRelevantPastIterations = 2;
288
289 if (!endCalibration && (int)m_calibrateIterations.size() >= numRelevantPastIterations)
290 {
291 const CalibrateIteration* const past = &m_calibrateIterations[m_calibrateIterations.size() - numRelevantPastIterations];
292 bool allInGoodRange = true;
293
294 for (int i = 0; i < numRelevantPastIterations && allInGoodRange; i++)
295 {
296 const float frameTimeUs = past[i].frameTime;
297 if (!de::inRange(frameTimeUs, minGoodFrameTimeUs, maxGoodFrameTimeUs))
298 allInGoodRange = false;
299 }
300
301 endCalibration = endCalibration || allInGoodRange;
302 }
303 }
304
305 // Do a few past iterations have similar-enough call counts?
306 {
307 const int numRelevantPastIterations = 3;
308 if (!endCalibration && (int)m_calibrateIterations.size() >= numRelevantPastIterations)
309 {
310 const CalibrateIteration* const past = &m_calibrateIterations[m_calibrateIterations.size() - numRelevantPastIterations];
311 int minCallCount = std::numeric_limits<int>::max();
312 int maxCallCount = std::numeric_limits<int>::min();
313
314 for (int i = 0; i < numRelevantPastIterations; i++)
315 {
316 minCallCount = de::min(minCallCount, past[i].numDrawCalls);
317 maxCallCount = de::max(maxCallCount, past[i].numDrawCalls);
318 }
319
320 if ((float)(maxCallCount - minCallCount) <= (float)minCallCount * 0.1f)
321 endCalibration = true;
322 }
323 }
324
325 // Is call count just 1, and frame time still way too high?
326 endCalibration = endCalibration || (m_calibrateIterations.back().numDrawCalls == 1 && m_calibrateIterations.back().frameTime > m_params.targetFrameTimeUs*2.0f);
327
328 if (endCalibration)
329 {
330 const int minFrames = 10;
331 const int maxFrames = 60;
332 int numMeasureFrames = deClamp32(deRoundFloatToInt32(m_params.targetMeasureDurationUs / m_calibrateIterations.back().frameTime), minFrames, maxFrames);
333
334 m_state = INTERNALSTATE_RUNNING;
335 m_measureState.start(numMeasureFrames, m_params.calibrateIterationShortcutThreshold, m_calibrateIterations.back().numDrawCalls);
336 return;
337 }
338 }
339 }
340
341 DE_ASSERT(m_state == INTERNALSTATE_CALIBRATING);
342
343 // Estimate new call count.
344 {
345 int newCallCount;
346
347 if (numIterations == 0)
348 newCallCount = m_params.numInitialCalls;
349 else
350 {
351 vector<Vec2> dataPoints;
352 for (int i = 0; i < numIterations; i++)
353 {
354 if (m_calibrateIterations[i].numDrawCalls == 1 || m_calibrateIterations[i].frameTime > m_params.frameTimeCapUs*1.05f) // Only account for measurements not too near the cap.
355 dataPoints.push_back(Vec2((float)m_calibrateIterations[i].numDrawCalls, m_calibrateIterations[i].frameTime));
356 }
357
358 if (numIterations == 1)
359 dataPoints.push_back(Vec2(0.0f, 0.0f)); // If there's just one measurement so far, this will help in getting the next estimate.
360
361 {
362 const float targetFrameTimeUs = m_params.targetFrameTimeUs;
363 const float coeffEpsilon = 0.001f; // Coefficient must be large enough (and positive) to be considered sensible.
364
365 const LineParameters estimatorLine = theilSenLinearRegression(dataPoints);
366
367 int prevMaxCalls = 0;
368
369 // Find the maximum of the past call counts.
370 for (int i = 0; i < numIterations; i++)
371 prevMaxCalls = de::max(prevMaxCalls, m_calibrateIterations[i].numDrawCalls);
372
373 if (estimatorLine.coefficient < coeffEpsilon) // Coefficient not good for sensible estimation; increase call count enough to get a reasonably different value.
374 newCallCount = 2*prevMaxCalls;
375 else
376 {
377 // Solve newCallCount such that approximately targetFrameTime = offset + coefficient*newCallCount.
378 newCallCount = (int)((targetFrameTimeUs - estimatorLine.offset) / estimatorLine.coefficient + 0.5f);
379
380 // We should generally prefer FPS counts below the target rather than above (i.e. higher frame times rather than lower).
381 if (estimatorLine.offset + estimatorLine.coefficient*(float)newCallCount < minGoodFrameTimeUs)
382 newCallCount++;
383 }
384
385 // Make sure we have at least minimum amount of calls, and don't allow increasing call count too much in one iteration.
386 newCallCount = de::clamp(newCallCount, 1, prevMaxCalls*10);
387 }
388 }
389
390 m_measureState.start(m_params.maxCalibrateIterationFrames, m_params.calibrateIterationShortcutThreshold, newCallCount);
391 m_calibrateIterations.push_back(CalibrateIteration(newCallCount, 0.0f));
392 }
393 }
394
logCalibrationInfo(tcu::TestLog & log,const TheilSenCalibrator & calibrator)395 void logCalibrationInfo (tcu::TestLog& log, const TheilSenCalibrator& calibrator)
396 {
397 const CalibratorParameters& params = calibrator.getParameters();
398 const std::vector<CalibrateIteration>& calibrateIterations = calibrator.getCalibrationInfo();
399
400 // Write out default calibration info.
401
402 log << TestLog::Section("CalibrationInfo", "Calibration Info")
403 << TestLog::Message << "Target frame time: " << params.targetFrameTimeUs << " us (" << 1000000 / params.targetFrameTimeUs << " fps)" << TestLog::EndMessage;
404
405 for (int iterNdx = 0; iterNdx < (int)calibrateIterations.size(); iterNdx++)
406 {
407 log << TestLog::Message << " iteration " << iterNdx << ": " << calibrateIterations[iterNdx].numDrawCalls << " calls => "
408 << de::floatToString(calibrateIterations[iterNdx].frameTime, 2) << " us ("
409 << de::floatToString(1000000.0f / calibrateIterations[iterNdx].frameTime, 2) << " fps)" << TestLog::EndMessage;
410 }
411 log << TestLog::Integer("CallCount", "Calibrated call count", "", QP_KEY_TAG_NONE, calibrator.getMeasureState().numDrawCalls)
412 << TestLog::Integer("FrameCount", "Calibrated frame count", "", QP_KEY_TAG_NONE, (int)calibrator.getMeasureState().frameTimes.size());
413 log << TestLog::EndSection;
414 }
415
416 } // gls
417 } // deqp
418