• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 #include <stdarg.h>
38 #include <limits.h>
39 
40 // ICU PATCH: Customize header file paths for ICU.
41 // The file fixed-dtoa.h is not needed.
42 
43 #include "double-conversion-strtod.h"
44 #include "double-conversion-bignum.h"
45 #include "double-conversion-cached-powers.h"
46 #include "double-conversion-ieee.h"
47 
48 // ICU PATCH: Wrap in ICU namespace
49 U_NAMESPACE_BEGIN
50 
51 namespace double_conversion {
52 
53 // 2^53 = 9007199254740992.
54 // Any integer with at most 15 decimal digits will hence fit into a double
55 // (which has a 53bit significand) without loss of precision.
56 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
57 // 2^64 = 18446744073709551616 > 10^19
58 static const int kMaxUint64DecimalDigits = 19;
59 
60 // Max double: 1.7976931348623157 x 10^308
61 // Min non-zero double: 4.9406564584124654 x 10^-324
62 // Any x >= 10^309 is interpreted as +infinity.
63 // Any x <= 10^-324 is interpreted as 0.
64 // Note that 2.5e-324 (despite being smaller than the min double) will be read
65 // as non-zero (equal to the min non-zero double).
66 static const int kMaxDecimalPower = 309;
67 static const int kMinDecimalPower = -324;
68 
69 // 2^64 = 18446744073709551616
70 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
71 
72 
73 static const double exact_powers_of_ten[] = {
74   1.0,  // 10^0
75   10.0,
76   100.0,
77   1000.0,
78   10000.0,
79   100000.0,
80   1000000.0,
81   10000000.0,
82   100000000.0,
83   1000000000.0,
84   10000000000.0,  // 10^10
85   100000000000.0,
86   1000000000000.0,
87   10000000000000.0,
88   100000000000000.0,
89   1000000000000000.0,
90   10000000000000000.0,
91   100000000000000000.0,
92   1000000000000000000.0,
93   10000000000000000000.0,
94   100000000000000000000.0,  // 10^20
95   1000000000000000000000.0,
96   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
97   10000000000000000000000.0
98 };
99 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
100 
101 // Maximum number of significant digits in the decimal representation.
102 // In fact the value is 772 (see conversions.cc), but to give us some margin
103 // we round up to 780.
104 static const int kMaxSignificantDecimalDigits = 780;
105 
TrimLeadingZeros(Vector<const char> buffer)106 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
107   for (int i = 0; i < buffer.length(); i++) {
108     if (buffer[i] != '0') {
109       return buffer.SubVector(i, buffer.length());
110     }
111   }
112   return Vector<const char>(buffer.start(), 0);
113 }
114 
115 
TrimTrailingZeros(Vector<const char> buffer)116 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
117   for (int i = buffer.length() - 1; i >= 0; --i) {
118     if (buffer[i] != '0') {
119       return buffer.SubVector(0, i + 1);
120     }
121   }
122   return Vector<const char>(buffer.start(), 0);
123 }
124 
125 
CutToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)126 static void CutToMaxSignificantDigits(Vector<const char> buffer,
127                                        int exponent,
128                                        char* significant_buffer,
129                                        int* significant_exponent) {
130   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
131     significant_buffer[i] = buffer[i];
132   }
133   // The input buffer has been trimmed. Therefore the last digit must be
134   // different from '0'.
135   ASSERT(buffer[buffer.length() - 1] != '0');
136   // Set the last digit to be non-zero. This is sufficient to guarantee
137   // correct rounding.
138   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
139   *significant_exponent =
140       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
141 }
142 
143 
144 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
145 // If possible the input-buffer is reused, but if the buffer needs to be
146 // modified (due to cutting), then the input needs to be copied into the
147 // buffer_copy_space.
TrimAndCut(Vector<const char> buffer,int exponent,char * buffer_copy_space,int space_size,Vector<const char> * trimmed,int * updated_exponent)148 static void TrimAndCut(Vector<const char> buffer, int exponent,
149                        char* buffer_copy_space, int space_size,
150                        Vector<const char>* trimmed, int* updated_exponent) {
151   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
152   Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
153   exponent += left_trimmed.length() - right_trimmed.length();
154   if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
155     (void) space_size;  // Mark variable as used.
156     ASSERT(space_size >= kMaxSignificantDecimalDigits);
157     CutToMaxSignificantDigits(right_trimmed, exponent,
158                               buffer_copy_space, updated_exponent);
159     *trimmed = Vector<const char>(buffer_copy_space,
160                                  kMaxSignificantDecimalDigits);
161   } else {
162     *trimmed = right_trimmed;
163     *updated_exponent = exponent;
164   }
165 }
166 
167 
168 // Reads digits from the buffer and converts them to a uint64.
169 // Reads in as many digits as fit into a uint64.
170 // When the string starts with "1844674407370955161" no further digit is read.
171 // Since 2^64 = 18446744073709551616 it would still be possible read another
172 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)173 static uint64_t ReadUint64(Vector<const char> buffer,
174                            int* number_of_read_digits) {
175   uint64_t result = 0;
176   int i = 0;
177   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
178     int digit = buffer[i++] - '0';
179     ASSERT(0 <= digit && digit <= 9);
180     result = 10 * result + digit;
181   }
182   *number_of_read_digits = i;
183   return result;
184 }
185 
186 
187 // Reads a DiyFp from the buffer.
188 // The returned DiyFp is not necessarily normalized.
189 // If remaining_decimals is zero then the returned DiyFp is accurate.
190 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)191 static void ReadDiyFp(Vector<const char> buffer,
192                       DiyFp* result,
193                       int* remaining_decimals) {
194   int read_digits;
195   uint64_t significand = ReadUint64(buffer, &read_digits);
196   if (buffer.length() == read_digits) {
197     *result = DiyFp(significand, 0);
198     *remaining_decimals = 0;
199   } else {
200     // Round the significand.
201     if (buffer[read_digits] >= '5') {
202       significand++;
203     }
204     // Compute the binary exponent.
205     int exponent = 0;
206     *result = DiyFp(significand, exponent);
207     *remaining_decimals = buffer.length() - read_digits;
208   }
209 }
210 
211 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)212 static bool DoubleStrtod(Vector<const char> trimmed,
213                          int exponent,
214                          double* result) {
215 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
216   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
217   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
218   // result is not accurate.
219   // We know that Windows32 uses 64 bits and is therefore accurate.
220   // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
221   // the same problem.
222   return false;
223 #endif
224   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
225     int read_digits;
226     // The trimmed input fits into a double.
227     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
228     // can compute the result-double simply by multiplying (resp. dividing) the
229     // two numbers.
230     // This is possible because IEEE guarantees that floating-point operations
231     // return the best possible approximation.
232     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
233       // 10^-exponent fits into a double.
234       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
235       ASSERT(read_digits == trimmed.length());
236       *result /= exact_powers_of_ten[-exponent];
237       return true;
238     }
239     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
240       // 10^exponent fits into a double.
241       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
242       ASSERT(read_digits == trimmed.length());
243       *result *= exact_powers_of_ten[exponent];
244       return true;
245     }
246     int remaining_digits =
247         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
248     if ((0 <= exponent) &&
249         (exponent - remaining_digits < kExactPowersOfTenSize)) {
250       // The trimmed string was short and we can multiply it with
251       // 10^remaining_digits. As a result the remaining exponent now fits
252       // into a double too.
253       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
254       ASSERT(read_digits == trimmed.length());
255       *result *= exact_powers_of_ten[remaining_digits];
256       *result *= exact_powers_of_ten[exponent - remaining_digits];
257       return true;
258     }
259   }
260   return false;
261 }
262 
263 
264 // Returns 10^exponent as an exact DiyFp.
265 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)266 static DiyFp AdjustmentPowerOfTen(int exponent) {
267   ASSERT(0 < exponent);
268   ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
269   // Simply hardcode the remaining powers for the given decimal exponent
270   // distance.
271   ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
272   switch (exponent) {
273     case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
274     case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
275     case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
276     case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
277     case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
278     case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
279     case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
280     default:
281       UNREACHABLE();
282   }
283 }
284 
285 
286 // If the function returns true then the result is the correct double.
287 // Otherwise it is either the correct double or the double that is just below
288 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)289 static bool DiyFpStrtod(Vector<const char> buffer,
290                         int exponent,
291                         double* result) {
292   DiyFp input;
293   int remaining_decimals;
294   ReadDiyFp(buffer, &input, &remaining_decimals);
295   // Since we may have dropped some digits the input is not accurate.
296   // If remaining_decimals is different than 0 than the error is at most
297   // .5 ulp (unit in the last place).
298   // We don't want to deal with fractions and therefore keep a common
299   // denominator.
300   const int kDenominatorLog = 3;
301   const int kDenominator = 1 << kDenominatorLog;
302   // Move the remaining decimals into the exponent.
303   exponent += remaining_decimals;
304   uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
305 
306   int old_e = input.e();
307   input.Normalize();
308   error <<= old_e - input.e();
309 
310   ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
311   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
312     *result = 0.0;
313     return true;
314   }
315   DiyFp cached_power;
316   int cached_decimal_exponent;
317   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
318                                                      &cached_power,
319                                                      &cached_decimal_exponent);
320 
321   if (cached_decimal_exponent != exponent) {
322     int adjustment_exponent = exponent - cached_decimal_exponent;
323     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
324     input.Multiply(adjustment_power);
325     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
326       // The product of input with the adjustment power fits into a 64 bit
327       // integer.
328       ASSERT(DiyFp::kSignificandSize == 64);
329     } else {
330       // The adjustment power is exact. There is hence only an error of 0.5.
331       error += kDenominator / 2;
332     }
333   }
334 
335   input.Multiply(cached_power);
336   // The error introduced by a multiplication of a*b equals
337   //   error_a + error_b + error_a*error_b/2^64 + 0.5
338   // Substituting a with 'input' and b with 'cached_power' we have
339   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
340   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
341   int error_b = kDenominator / 2;
342   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
343   int fixed_error = kDenominator / 2;
344   error += error_b + error_ab + fixed_error;
345 
346   old_e = input.e();
347   input.Normalize();
348   error <<= old_e - input.e();
349 
350   // See if the double's significand changes if we add/subtract the error.
351   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
352   int effective_significand_size =
353       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
354   int precision_digits_count =
355       DiyFp::kSignificandSize - effective_significand_size;
356   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
357     // This can only happen for very small denormals. In this case the
358     // half-way multiplied by the denominator exceeds the range of an uint64.
359     // Simply shift everything to the right.
360     int shift_amount = (precision_digits_count + kDenominatorLog) -
361         DiyFp::kSignificandSize + 1;
362     input.set_f(input.f() >> shift_amount);
363     input.set_e(input.e() + shift_amount);
364     // We add 1 for the lost precision of error, and kDenominator for
365     // the lost precision of input.f().
366     error = (error >> shift_amount) + 1 + kDenominator;
367     precision_digits_count -= shift_amount;
368   }
369   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
370   ASSERT(DiyFp::kSignificandSize == 64);
371   ASSERT(precision_digits_count < 64);
372   uint64_t one64 = 1;
373   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
374   uint64_t precision_bits = input.f() & precision_bits_mask;
375   uint64_t half_way = one64 << (precision_digits_count - 1);
376   precision_bits *= kDenominator;
377   half_way *= kDenominator;
378   DiyFp rounded_input(input.f() >> precision_digits_count,
379                       input.e() + precision_digits_count);
380   if (precision_bits >= half_way + error) {
381     rounded_input.set_f(rounded_input.f() + 1);
382   }
383   // If the last_bits are too close to the half-way case than we are too
384   // inaccurate and round down. In this case we return false so that we can
385   // fall back to a more precise algorithm.
386 
387   *result = Double(rounded_input).value();
388   if (half_way - error < precision_bits && precision_bits < half_way + error) {
389     // Too imprecise. The caller will have to fall back to a slower version.
390     // However the returned number is guaranteed to be either the correct
391     // double, or the next-lower double.
392     return false;
393   } else {
394     return true;
395   }
396 }
397 
398 
399 // Returns
400 //   - -1 if buffer*10^exponent < diy_fp.
401 //   -  0 if buffer*10^exponent == diy_fp.
402 //   - +1 if buffer*10^exponent > diy_fp.
403 // Preconditions:
404 //   buffer.length() + exponent <= kMaxDecimalPower + 1
405 //   buffer.length() + exponent > kMinDecimalPower
406 //   buffer.length() <= kMaxDecimalSignificantDigits
CompareBufferWithDiyFp(Vector<const char> buffer,int exponent,DiyFp diy_fp)407 static int CompareBufferWithDiyFp(Vector<const char> buffer,
408                                   int exponent,
409                                   DiyFp diy_fp) {
410   ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
411   ASSERT(buffer.length() + exponent > kMinDecimalPower);
412   ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
413   // Make sure that the Bignum will be able to hold all our numbers.
414   // Our Bignum implementation has a separate field for exponents. Shifts will
415   // consume at most one bigit (< 64 bits).
416   // ln(10) == 3.3219...
417   ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
418   Bignum buffer_bignum;
419   Bignum diy_fp_bignum;
420   buffer_bignum.AssignDecimalString(buffer);
421   diy_fp_bignum.AssignUInt64(diy_fp.f());
422   if (exponent >= 0) {
423     buffer_bignum.MultiplyByPowerOfTen(exponent);
424   } else {
425     diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
426   }
427   if (diy_fp.e() > 0) {
428     diy_fp_bignum.ShiftLeft(diy_fp.e());
429   } else {
430     buffer_bignum.ShiftLeft(-diy_fp.e());
431   }
432   return Bignum::Compare(buffer_bignum, diy_fp_bignum);
433 }
434 
435 
436 // Returns true if the guess is the correct double.
437 // Returns false, when guess is either correct or the next-lower double.
ComputeGuess(Vector<const char> trimmed,int exponent,double * guess)438 static bool ComputeGuess(Vector<const char> trimmed, int exponent,
439                          double* guess) {
440   if (trimmed.length() == 0) {
441     *guess = 0.0;
442     return true;
443   }
444   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
445     *guess = Double::Infinity();
446     return true;
447   }
448   if (exponent + trimmed.length() <= kMinDecimalPower) {
449     *guess = 0.0;
450     return true;
451   }
452 
453   if (DoubleStrtod(trimmed, exponent, guess) ||
454       DiyFpStrtod(trimmed, exponent, guess)) {
455     return true;
456   }
457   if (*guess == Double::Infinity()) {
458     return true;
459   }
460   return false;
461 }
462 
Strtod(Vector<const char> buffer,int exponent)463 double Strtod(Vector<const char> buffer, int exponent) {
464   char copy_buffer[kMaxSignificantDecimalDigits];
465   Vector<const char> trimmed;
466   int updated_exponent;
467   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
468              &trimmed, &updated_exponent);
469   exponent = updated_exponent;
470 
471   double guess;
472   bool is_correct = ComputeGuess(trimmed, exponent, &guess);
473   if (is_correct) return guess;
474 
475   DiyFp upper_boundary = Double(guess).UpperBoundary();
476   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
477   if (comparison < 0) {
478     return guess;
479   } else if (comparison > 0) {
480     return Double(guess).NextDouble();
481   } else if ((Double(guess).Significand() & 1) == 0) {
482     // Round towards even.
483     return guess;
484   } else {
485     return Double(guess).NextDouble();
486   }
487 }
488 
Strtof(Vector<const char> buffer,int exponent)489 float Strtof(Vector<const char> buffer, int exponent) {
490   char copy_buffer[kMaxSignificantDecimalDigits];
491   Vector<const char> trimmed;
492   int updated_exponent;
493   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
494              &trimmed, &updated_exponent);
495   exponent = updated_exponent;
496 
497   double double_guess;
498   bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
499 
500   float float_guess = static_cast<float>(double_guess);
501   if (float_guess == double_guess) {
502     // This shortcut triggers for integer values.
503     return float_guess;
504   }
505 
506   // We must catch double-rounding. Say the double has been rounded up, and is
507   // now a boundary of a float, and rounds up again. This is why we have to
508   // look at previous too.
509   // Example (in decimal numbers):
510   //    input: 12349
511   //    high-precision (4 digits): 1235
512   //    low-precision (3 digits):
513   //       when read from input: 123
514   //       when rounded from high precision: 124.
515   // To do this we simply look at the neigbors of the correct result and see
516   // if they would round to the same float. If the guess is not correct we have
517   // to look at four values (since two different doubles could be the correct
518   // double).
519 
520   double double_next = Double(double_guess).NextDouble();
521   double double_previous = Double(double_guess).PreviousDouble();
522 
523   float f1 = static_cast<float>(double_previous);
524   float f2 = float_guess;
525   float f3 = static_cast<float>(double_next);
526   float f4;
527   if (is_correct) {
528     f4 = f3;
529   } else {
530     double double_next2 = Double(double_next).NextDouble();
531     f4 = static_cast<float>(double_next2);
532   }
533   (void) f2;  // Mark variable as used.
534   ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
535 
536   // If the guess doesn't lie near a single-precision boundary we can simply
537   // return its float-value.
538   if (f1 == f4) {
539     return float_guess;
540   }
541 
542   ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
543          (f1 == f2 && f2 != f3 && f3 == f4) ||
544          (f1 == f2 && f2 == f3 && f3 != f4));
545 
546   // guess and next are the two possible canditates (in the same way that
547   // double_guess was the lower candidate for a double-precision guess).
548   float guess = f1;
549   float next = f4;
550   DiyFp upper_boundary;
551   if (guess == 0.0f) {
552     float min_float = 1e-45f;
553     upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
554   } else {
555     upper_boundary = Single(guess).UpperBoundary();
556   }
557   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
558   if (comparison < 0) {
559     return guess;
560   } else if (comparison > 0) {
561     return next;
562   } else if ((Single(guess).Significand() & 1) == 0) {
563     // Round towards even.
564     return guess;
565   } else {
566     return next;
567   }
568 }
569 
570 }  // namespace double_conversion
571 
572 // ICU PATCH: Close ICU namespace
573 U_NAMESPACE_END
574 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
575