1 //===- ThreadSafetyTIL.cpp -------------------------------------*- C++ --*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT in the llvm repository for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
11 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
12 using namespace clang;
13 using namespace threadSafety;
14 using namespace til;
15
getUnaryOpcodeString(TIL_UnaryOpcode Op)16 StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) {
17 switch (Op) {
18 case UOP_Minus: return "-";
19 case UOP_BitNot: return "~";
20 case UOP_LogicNot: return "!";
21 }
22 return "";
23 }
24
getBinaryOpcodeString(TIL_BinaryOpcode Op)25 StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) {
26 switch (Op) {
27 case BOP_Mul: return "*";
28 case BOP_Div: return "/";
29 case BOP_Rem: return "%";
30 case BOP_Add: return "+";
31 case BOP_Sub: return "-";
32 case BOP_Shl: return "<<";
33 case BOP_Shr: return ">>";
34 case BOP_BitAnd: return "&";
35 case BOP_BitXor: return "^";
36 case BOP_BitOr: return "|";
37 case BOP_Eq: return "==";
38 case BOP_Neq: return "!=";
39 case BOP_Lt: return "<";
40 case BOP_Leq: return "<=";
41 case BOP_LogicAnd: return "&&";
42 case BOP_LogicOr: return "||";
43 }
44 return "";
45 }
46
47
force()48 SExpr* Future::force() {
49 Status = FS_evaluating;
50 Result = compute();
51 Status = FS_done;
52 return Result;
53 }
54
55
addPredecessor(BasicBlock * Pred)56 unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {
57 unsigned Idx = Predecessors.size();
58 Predecessors.reserveCheck(1, Arena);
59 Predecessors.push_back(Pred);
60 for (SExpr *E : Args) {
61 if (Phi* Ph = dyn_cast<Phi>(E)) {
62 Ph->values().reserveCheck(1, Arena);
63 Ph->values().push_back(nullptr);
64 }
65 }
66 return Idx;
67 }
68
69
reservePredecessors(unsigned NumPreds)70 void BasicBlock::reservePredecessors(unsigned NumPreds) {
71 Predecessors.reserve(NumPreds, Arena);
72 for (SExpr *E : Args) {
73 if (Phi* Ph = dyn_cast<Phi>(E)) {
74 Ph->values().reserve(NumPreds, Arena);
75 }
76 }
77 }
78
79
80 // If E is a variable, then trace back through any aliases or redundant
81 // Phi nodes to find the canonical definition.
getCanonicalVal(const SExpr * E)82 const SExpr *til::getCanonicalVal(const SExpr *E) {
83 while (true) {
84 if (auto *V = dyn_cast<Variable>(E)) {
85 if (V->kind() == Variable::VK_Let) {
86 E = V->definition();
87 continue;
88 }
89 }
90 if (const Phi *Ph = dyn_cast<Phi>(E)) {
91 if (Ph->status() == Phi::PH_SingleVal) {
92 E = Ph->values()[0];
93 continue;
94 }
95 }
96 break;
97 }
98 return E;
99 }
100
101
102 // If E is a variable, then trace back through any aliases or redundant
103 // Phi nodes to find the canonical definition.
104 // The non-const version will simplify incomplete Phi nodes.
simplifyToCanonicalVal(SExpr * E)105 SExpr *til::simplifyToCanonicalVal(SExpr *E) {
106 while (true) {
107 if (auto *V = dyn_cast<Variable>(E)) {
108 if (V->kind() != Variable::VK_Let)
109 return V;
110 // Eliminate redundant variables, e.g. x = y, or x = 5,
111 // but keep anything more complicated.
112 if (til::ThreadSafetyTIL::isTrivial(V->definition())) {
113 E = V->definition();
114 continue;
115 }
116 return V;
117 }
118 if (auto *Ph = dyn_cast<Phi>(E)) {
119 if (Ph->status() == Phi::PH_Incomplete)
120 simplifyIncompleteArg(Ph);
121 // Eliminate redundant Phi nodes.
122 if (Ph->status() == Phi::PH_SingleVal) {
123 E = Ph->values()[0];
124 continue;
125 }
126 }
127 return E;
128 }
129 }
130
131
132 // Trace the arguments of an incomplete Phi node to see if they have the same
133 // canonical definition. If so, mark the Phi node as redundant.
134 // getCanonicalVal() will recursively call simplifyIncompletePhi().
simplifyIncompleteArg(til::Phi * Ph)135 void til::simplifyIncompleteArg(til::Phi *Ph) {
136 assert(Ph && Ph->status() == Phi::PH_Incomplete);
137
138 // eliminate infinite recursion -- assume that this node is not redundant.
139 Ph->setStatus(Phi::PH_MultiVal);
140
141 SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
142 for (unsigned i=1, n=Ph->values().size(); i<n; ++i) {
143 SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
144 if (Ei == Ph)
145 continue; // Recursive reference to itself. Don't count.
146 if (Ei != E0) {
147 return; // Status is already set to MultiVal.
148 }
149 }
150 Ph->setStatus(Phi::PH_SingleVal);
151 }
152
153
154 // Renumbers the arguments and instructions to have unique, sequential IDs.
renumberInstrs(int ID)155 int BasicBlock::renumberInstrs(int ID) {
156 for (auto *Arg : Args)
157 Arg->setID(this, ID++);
158 for (auto *Instr : Instrs)
159 Instr->setID(this, ID++);
160 TermInstr->setID(this, ID++);
161 return ID;
162 }
163
164 // Sorts the CFGs blocks using a reverse post-order depth-first traversal.
165 // Each block will be written into the Blocks array in order, and its BlockID
166 // will be set to the index in the array. Sorting should start from the entry
167 // block, and ID should be the total number of blocks.
topologicalSort(SimpleArray<BasicBlock * > & Blocks,int ID)168 int BasicBlock::topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {
169 if (Visited) return ID;
170 Visited = true;
171 for (auto *Block : successors())
172 ID = Block->topologicalSort(Blocks, ID);
173 // set ID and update block array in place.
174 // We may lose pointers to unreachable blocks.
175 assert(ID > 0);
176 BlockID = --ID;
177 Blocks[BlockID] = this;
178 return ID;
179 }
180
181 // Performs a reverse topological traversal, starting from the exit block and
182 // following back-edges. The dominator is serialized before any predecessors,
183 // which guarantees that all blocks are serialized after their dominator and
184 // before their post-dominator (because it's a reverse topological traversal).
185 // ID should be initially set to 0.
186 //
187 // This sort assumes that (1) dominators have been computed, (2) there are no
188 // critical edges, and (3) the entry block is reachable from the exit block
189 // and no blocks are accessable via traversal of back-edges from the exit that
190 // weren't accessable via forward edges from the entry.
topologicalFinalSort(SimpleArray<BasicBlock * > & Blocks,int ID)191 int BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {
192 // Visited is assumed to have been set by the topologicalSort. This pass
193 // assumes !Visited means that we've visited this node before.
194 if (!Visited) return ID;
195 Visited = false;
196 if (DominatorNode.Parent)
197 ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);
198 for (auto *Pred : Predecessors)
199 ID = Pred->topologicalFinalSort(Blocks, ID);
200 assert(static_cast<size_t>(ID) < Blocks.size());
201 BlockID = ID++;
202 Blocks[BlockID] = this;
203 return ID;
204 }
205
206 // Computes the immediate dominator of the current block. Assumes that all of
207 // its predecessors have already computed their dominators. This is achieved
208 // by visiting the nodes in topological order.
computeDominator()209 void BasicBlock::computeDominator() {
210 BasicBlock *Candidate = nullptr;
211 // Walk backwards from each predecessor to find the common dominator node.
212 for (auto *Pred : Predecessors) {
213 // Skip back-edges
214 if (Pred->BlockID >= BlockID) continue;
215 // If we don't yet have a candidate for dominator yet, take this one.
216 if (Candidate == nullptr) {
217 Candidate = Pred;
218 continue;
219 }
220 // Walk the alternate and current candidate back to find a common ancestor.
221 auto *Alternate = Pred;
222 while (Alternate != Candidate) {
223 if (Candidate->BlockID > Alternate->BlockID)
224 Candidate = Candidate->DominatorNode.Parent;
225 else
226 Alternate = Alternate->DominatorNode.Parent;
227 }
228 }
229 DominatorNode.Parent = Candidate;
230 DominatorNode.SizeOfSubTree = 1;
231 }
232
233 // Computes the immediate post-dominator of the current block. Assumes that all
234 // of its successors have already computed their post-dominators. This is
235 // achieved visiting the nodes in reverse topological order.
computePostDominator()236 void BasicBlock::computePostDominator() {
237 BasicBlock *Candidate = nullptr;
238 // Walk back from each predecessor to find the common post-dominator node.
239 for (auto *Succ : successors()) {
240 // Skip back-edges
241 if (Succ->BlockID <= BlockID) continue;
242 // If we don't yet have a candidate for post-dominator yet, take this one.
243 if (Candidate == nullptr) {
244 Candidate = Succ;
245 continue;
246 }
247 // Walk the alternate and current candidate back to find a common ancestor.
248 auto *Alternate = Succ;
249 while (Alternate != Candidate) {
250 if (Candidate->BlockID < Alternate->BlockID)
251 Candidate = Candidate->PostDominatorNode.Parent;
252 else
253 Alternate = Alternate->PostDominatorNode.Parent;
254 }
255 }
256 PostDominatorNode.Parent = Candidate;
257 PostDominatorNode.SizeOfSubTree = 1;
258 }
259
260
261 // Renumber instructions in all blocks
renumberInstrs()262 void SCFG::renumberInstrs() {
263 int InstrID = 0;
264 for (auto *Block : Blocks)
265 InstrID = Block->renumberInstrs(InstrID);
266 }
267
268
computeNodeSize(BasicBlock * B,BasicBlock::TopologyNode BasicBlock::* TN)269 static inline void computeNodeSize(BasicBlock *B,
270 BasicBlock::TopologyNode BasicBlock::*TN) {
271 BasicBlock::TopologyNode *N = &(B->*TN);
272 if (N->Parent) {
273 BasicBlock::TopologyNode *P = &(N->Parent->*TN);
274 // Initially set ID relative to the (as yet uncomputed) parent ID
275 N->NodeID = P->SizeOfSubTree;
276 P->SizeOfSubTree += N->SizeOfSubTree;
277 }
278 }
279
computeNodeID(BasicBlock * B,BasicBlock::TopologyNode BasicBlock::* TN)280 static inline void computeNodeID(BasicBlock *B,
281 BasicBlock::TopologyNode BasicBlock::*TN) {
282 BasicBlock::TopologyNode *N = &(B->*TN);
283 if (N->Parent) {
284 BasicBlock::TopologyNode *P = &(N->Parent->*TN);
285 N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node.
286 }
287 }
288
289
290 // Normalizes a CFG. Normalization has a few major components:
291 // 1) Removing unreachable blocks.
292 // 2) Computing dominators and post-dominators
293 // 3) Topologically sorting the blocks into the "Blocks" array.
computeNormalForm()294 void SCFG::computeNormalForm() {
295 // Topologically sort the blocks starting from the entry block.
296 int NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());
297 if (NumUnreachableBlocks > 0) {
298 // If there were unreachable blocks shift everything down, and delete them.
299 for (size_t I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {
300 size_t NI = I - NumUnreachableBlocks;
301 Blocks[NI] = Blocks[I];
302 Blocks[NI]->BlockID = NI;
303 // FIXME: clean up predecessor pointers to unreachable blocks?
304 }
305 Blocks.drop(NumUnreachableBlocks);
306 }
307
308 // Compute dominators.
309 for (auto *Block : Blocks)
310 Block->computeDominator();
311
312 // Once dominators have been computed, the final sort may be performed.
313 int NumBlocks = Exit->topologicalFinalSort(Blocks, 0);
314 assert(static_cast<size_t>(NumBlocks) == Blocks.size());
315 (void) NumBlocks;
316
317 // Renumber the instructions now that we have a final sort.
318 renumberInstrs();
319
320 // Compute post-dominators and compute the sizes of each node in the
321 // dominator tree.
322 for (auto *Block : Blocks.reverse()) {
323 Block->computePostDominator();
324 computeNodeSize(Block, &BasicBlock::DominatorNode);
325 }
326 // Compute the sizes of each node in the post-dominator tree and assign IDs in
327 // the dominator tree.
328 for (auto *Block : Blocks) {
329 computeNodeID(Block, &BasicBlock::DominatorNode);
330 computeNodeSize(Block, &BasicBlock::PostDominatorNode);
331 }
332 // Assign IDs in the post-dominator tree.
333 for (auto *Block : Blocks.reverse()) {
334 computeNodeID(Block, &BasicBlock::PostDominatorNode);
335 }
336 }
337