1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstring>
37 using namespace clang;
38
getBestDynamicClassType() const39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40 const Expr *E = ignoreParenBaseCasts();
41
42 QualType DerivedType = E->getType();
43 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44 DerivedType = PTy->getPointeeType();
45
46 if (DerivedType->isDependentType())
47 return nullptr;
48
49 const RecordType *Ty = DerivedType->castAs<RecordType>();
50 Decl *D = Ty->getDecl();
51 return cast<CXXRecordDecl>(D);
52 }
53
skipRValueSubobjectAdjustments(SmallVectorImpl<const Expr * > & CommaLHSs,SmallVectorImpl<SubobjectAdjustment> & Adjustments) const54 const Expr *Expr::skipRValueSubobjectAdjustments(
55 SmallVectorImpl<const Expr *> &CommaLHSs,
56 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57 const Expr *E = this;
58 while (true) {
59 E = E->IgnoreParens();
60
61 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62 if ((CE->getCastKind() == CK_DerivedToBase ||
63 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64 E->getType()->isRecordType()) {
65 E = CE->getSubExpr();
66 CXXRecordDecl *Derived
67 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69 continue;
70 }
71
72 if (CE->getCastKind() == CK_NoOp) {
73 E = CE->getSubExpr();
74 continue;
75 }
76 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77 if (!ME->isArrow()) {
78 assert(ME->getBase()->getType()->isRecordType());
79 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81 E = ME->getBase();
82 Adjustments.push_back(SubobjectAdjustment(Field));
83 continue;
84 }
85 }
86 }
87 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88 if (BO->isPtrMemOp()) {
89 assert(BO->getRHS()->isRValue());
90 E = BO->getLHS();
91 const MemberPointerType *MPT =
92 BO->getRHS()->getType()->getAs<MemberPointerType>();
93 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94 continue;
95 } else if (BO->getOpcode() == BO_Comma) {
96 CommaLHSs.push_back(BO->getLHS());
97 E = BO->getRHS();
98 continue;
99 }
100 }
101
102 // Nothing changed.
103 break;
104 }
105 return E;
106 }
107
108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
109 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
110 /// but also int expressions which are produced by things like comparisons in
111 /// C.
isKnownToHaveBooleanValue() const112 bool Expr::isKnownToHaveBooleanValue() const {
113 const Expr *E = IgnoreParens();
114
115 // If this value has _Bool type, it is obvious 0/1.
116 if (E->getType()->isBooleanType()) return true;
117 // If this is a non-scalar-integer type, we don't care enough to try.
118 if (!E->getType()->isIntegralOrEnumerationType()) return false;
119
120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
121 switch (UO->getOpcode()) {
122 case UO_Plus:
123 return UO->getSubExpr()->isKnownToHaveBooleanValue();
124 case UO_LNot:
125 return true;
126 default:
127 return false;
128 }
129 }
130
131 // Only look through implicit casts. If the user writes
132 // '(int) (a && b)' treat it as an arbitrary int.
133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
134 return CE->getSubExpr()->isKnownToHaveBooleanValue();
135
136 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
137 switch (BO->getOpcode()) {
138 default: return false;
139 case BO_LT: // Relational operators.
140 case BO_GT:
141 case BO_LE:
142 case BO_GE:
143 case BO_EQ: // Equality operators.
144 case BO_NE:
145 case BO_LAnd: // AND operator.
146 case BO_LOr: // Logical OR operator.
147 return true;
148
149 case BO_And: // Bitwise AND operator.
150 case BO_Xor: // Bitwise XOR operator.
151 case BO_Or: // Bitwise OR operator.
152 // Handle things like (x==2)|(y==12).
153 return BO->getLHS()->isKnownToHaveBooleanValue() &&
154 BO->getRHS()->isKnownToHaveBooleanValue();
155
156 case BO_Comma:
157 case BO_Assign:
158 return BO->getRHS()->isKnownToHaveBooleanValue();
159 }
160 }
161
162 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
163 return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
164 CO->getFalseExpr()->isKnownToHaveBooleanValue();
165
166 return false;
167 }
168
169 // Amusing macro metaprogramming hack: check whether a class provides
170 // a more specific implementation of getExprLoc().
171 //
172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
173 namespace {
174 /// This implementation is used when a class provides a custom
175 /// implementation of getExprLoc.
176 template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)177 SourceLocation getExprLocImpl(const Expr *expr,
178 SourceLocation (T::*v)() const) {
179 return static_cast<const E*>(expr)->getExprLoc();
180 }
181
182 /// This implementation is used when a class doesn't provide
183 /// a custom implementation of getExprLoc. Overload resolution
184 /// should pick it over the implementation above because it's
185 /// more specialized according to function template partial ordering.
186 template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)187 SourceLocation getExprLocImpl(const Expr *expr,
188 SourceLocation (Expr::*v)() const) {
189 return static_cast<const E*>(expr)->getLocStart();
190 }
191 }
192
getExprLoc() const193 SourceLocation Expr::getExprLoc() const {
194 switch (getStmtClass()) {
195 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
196 #define ABSTRACT_STMT(type)
197 #define STMT(type, base) \
198 case Stmt::type##Class: break;
199 #define EXPR(type, base) \
200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
201 #include "clang/AST/StmtNodes.inc"
202 }
203 llvm_unreachable("unknown expression kind");
204 }
205
206 //===----------------------------------------------------------------------===//
207 // Primary Expressions.
208 //===----------------------------------------------------------------------===//
209
210 /// \brief Compute the type-, value-, and instantiation-dependence of a
211 /// declaration reference
212 /// based on the declaration being referenced.
computeDeclRefDependence(const ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
214 QualType T, bool &TypeDependent,
215 bool &ValueDependent,
216 bool &InstantiationDependent) {
217 TypeDependent = false;
218 ValueDependent = false;
219 InstantiationDependent = false;
220
221 // (TD) C++ [temp.dep.expr]p3:
222 // An id-expression is type-dependent if it contains:
223 //
224 // and
225 //
226 // (VD) C++ [temp.dep.constexpr]p2:
227 // An identifier is value-dependent if it is:
228
229 // (TD) - an identifier that was declared with dependent type
230 // (VD) - a name declared with a dependent type,
231 if (T->isDependentType()) {
232 TypeDependent = true;
233 ValueDependent = true;
234 InstantiationDependent = true;
235 return;
236 } else if (T->isInstantiationDependentType()) {
237 InstantiationDependent = true;
238 }
239
240 // (TD) - a conversion-function-id that specifies a dependent type
241 if (D->getDeclName().getNameKind()
242 == DeclarationName::CXXConversionFunctionName) {
243 QualType T = D->getDeclName().getCXXNameType();
244 if (T->isDependentType()) {
245 TypeDependent = true;
246 ValueDependent = true;
247 InstantiationDependent = true;
248 return;
249 }
250
251 if (T->isInstantiationDependentType())
252 InstantiationDependent = true;
253 }
254
255 // (VD) - the name of a non-type template parameter,
256 if (isa<NonTypeTemplateParmDecl>(D)) {
257 ValueDependent = true;
258 InstantiationDependent = true;
259 return;
260 }
261
262 // (VD) - a constant with integral or enumeration type and is
263 // initialized with an expression that is value-dependent.
264 // (VD) - a constant with literal type and is initialized with an
265 // expression that is value-dependent [C++11].
266 // (VD) - FIXME: Missing from the standard:
267 // - an entity with reference type and is initialized with an
268 // expression that is value-dependent [C++11]
269 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
270 if ((Ctx.getLangOpts().CPlusPlus11 ?
271 Var->getType()->isLiteralType(Ctx) :
272 Var->getType()->isIntegralOrEnumerationType()) &&
273 (Var->getType().isConstQualified() ||
274 Var->getType()->isReferenceType())) {
275 if (const Expr *Init = Var->getAnyInitializer())
276 if (Init->isValueDependent()) {
277 ValueDependent = true;
278 InstantiationDependent = true;
279 }
280 }
281
282 // (VD) - FIXME: Missing from the standard:
283 // - a member function or a static data member of the current
284 // instantiation
285 if (Var->isStaticDataMember() &&
286 Var->getDeclContext()->isDependentContext()) {
287 ValueDependent = true;
288 InstantiationDependent = true;
289 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
290 if (TInfo->getType()->isIncompleteArrayType())
291 TypeDependent = true;
292 }
293
294 return;
295 }
296
297 // (VD) - FIXME: Missing from the standard:
298 // - a member function or a static data member of the current
299 // instantiation
300 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
301 ValueDependent = true;
302 InstantiationDependent = true;
303 }
304 }
305
computeDependence(const ASTContext & Ctx)306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
307 bool TypeDependent = false;
308 bool ValueDependent = false;
309 bool InstantiationDependent = false;
310 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
311 ValueDependent, InstantiationDependent);
312
313 ExprBits.TypeDependent |= TypeDependent;
314 ExprBits.ValueDependent |= ValueDependent;
315 ExprBits.InstantiationDependent |= InstantiationDependent;
316
317 // Is the declaration a parameter pack?
318 if (getDecl()->isParameterPack())
319 ExprBits.ContainsUnexpandedParameterPack = true;
320 }
321
DeclRefExpr(const ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
323 NestedNameSpecifierLoc QualifierLoc,
324 SourceLocation TemplateKWLoc,
325 ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
326 const DeclarationNameInfo &NameInfo,
327 NamedDecl *FoundD,
328 const TemplateArgumentListInfo *TemplateArgs,
329 QualType T, ExprValueKind VK)
330 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
331 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
332 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
333 if (QualifierLoc) {
334 new (getTrailingObjects<NestedNameSpecifierLoc>())
335 NestedNameSpecifierLoc(QualifierLoc);
336 auto *NNS = QualifierLoc.getNestedNameSpecifier();
337 if (NNS->isInstantiationDependent())
338 ExprBits.InstantiationDependent = true;
339 if (NNS->containsUnexpandedParameterPack())
340 ExprBits.ContainsUnexpandedParameterPack = true;
341 }
342 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
343 if (FoundD)
344 *getTrailingObjects<NamedDecl *>() = FoundD;
345 DeclRefExprBits.HasTemplateKWAndArgsInfo
346 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
347 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
348 RefersToEnclosingVariableOrCapture;
349 if (TemplateArgs) {
350 bool Dependent = false;
351 bool InstantiationDependent = false;
352 bool ContainsUnexpandedParameterPack = false;
353 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
354 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
355 Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
356 assert(!Dependent && "built a DeclRefExpr with dependent template args");
357 ExprBits.InstantiationDependent |= InstantiationDependent;
358 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
359 } else if (TemplateKWLoc.isValid()) {
360 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
361 TemplateKWLoc);
362 }
363 DeclRefExprBits.HadMultipleCandidates = 0;
364
365 computeDependence(Ctx);
366 }
367
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)368 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
369 NestedNameSpecifierLoc QualifierLoc,
370 SourceLocation TemplateKWLoc,
371 ValueDecl *D,
372 bool RefersToEnclosingVariableOrCapture,
373 SourceLocation NameLoc,
374 QualType T,
375 ExprValueKind VK,
376 NamedDecl *FoundD,
377 const TemplateArgumentListInfo *TemplateArgs) {
378 return Create(Context, QualifierLoc, TemplateKWLoc, D,
379 RefersToEnclosingVariableOrCapture,
380 DeclarationNameInfo(D->getDeclName(), NameLoc),
381 T, VK, FoundD, TemplateArgs);
382 }
383
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)384 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
385 NestedNameSpecifierLoc QualifierLoc,
386 SourceLocation TemplateKWLoc,
387 ValueDecl *D,
388 bool RefersToEnclosingVariableOrCapture,
389 const DeclarationNameInfo &NameInfo,
390 QualType T,
391 ExprValueKind VK,
392 NamedDecl *FoundD,
393 const TemplateArgumentListInfo *TemplateArgs) {
394 // Filter out cases where the found Decl is the same as the value refenenced.
395 if (D == FoundD)
396 FoundD = nullptr;
397
398 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
399 std::size_t Size =
400 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
401 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
402 QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
403 HasTemplateKWAndArgsInfo ? 1 : 0,
404 TemplateArgs ? TemplateArgs->size() : 0);
405
406 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
407 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
408 RefersToEnclosingVariableOrCapture,
409 NameInfo, FoundD, TemplateArgs, T, VK);
410 }
411
CreateEmpty(const ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)412 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
413 bool HasQualifier,
414 bool HasFoundDecl,
415 bool HasTemplateKWAndArgsInfo,
416 unsigned NumTemplateArgs) {
417 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
418 std::size_t Size =
419 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
420 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
421 HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
422 NumTemplateArgs);
423 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
424 return new (Mem) DeclRefExpr(EmptyShell());
425 }
426
getLocStart() const427 SourceLocation DeclRefExpr::getLocStart() const {
428 if (hasQualifier())
429 return getQualifierLoc().getBeginLoc();
430 return getNameInfo().getLocStart();
431 }
getLocEnd() const432 SourceLocation DeclRefExpr::getLocEnd() const {
433 if (hasExplicitTemplateArgs())
434 return getRAngleLoc();
435 return getNameInfo().getLocEnd();
436 }
437
PredefinedExpr(SourceLocation L,QualType FNTy,IdentType IT,StringLiteral * SL)438 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
439 StringLiteral *SL)
440 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
441 FNTy->isDependentType(), FNTy->isDependentType(),
442 FNTy->isInstantiationDependentType(),
443 /*ContainsUnexpandedParameterPack=*/false),
444 Loc(L), Type(IT), FnName(SL) {}
445
getFunctionName()446 StringLiteral *PredefinedExpr::getFunctionName() {
447 return cast_or_null<StringLiteral>(FnName);
448 }
449
getIdentTypeName(PredefinedExpr::IdentType IT)450 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
451 switch (IT) {
452 case Func:
453 return "__func__";
454 case Function:
455 return "__FUNCTION__";
456 case FuncDName:
457 return "__FUNCDNAME__";
458 case LFunction:
459 return "L__FUNCTION__";
460 case PrettyFunction:
461 return "__PRETTY_FUNCTION__";
462 case FuncSig:
463 return "__FUNCSIG__";
464 case PrettyFunctionNoVirtual:
465 break;
466 }
467 llvm_unreachable("Unknown ident type for PredefinedExpr");
468 }
469
470 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
471 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)472 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
473 ASTContext &Context = CurrentDecl->getASTContext();
474
475 if (IT == PredefinedExpr::FuncDName) {
476 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
477 std::unique_ptr<MangleContext> MC;
478 MC.reset(Context.createMangleContext());
479
480 if (MC->shouldMangleDeclName(ND)) {
481 SmallString<256> Buffer;
482 llvm::raw_svector_ostream Out(Buffer);
483 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
484 MC->mangleCXXCtor(CD, Ctor_Base, Out);
485 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
486 MC->mangleCXXDtor(DD, Dtor_Base, Out);
487 else
488 MC->mangleName(ND, Out);
489
490 if (!Buffer.empty() && Buffer.front() == '\01')
491 return Buffer.substr(1);
492 return Buffer.str();
493 } else
494 return ND->getIdentifier()->getName();
495 }
496 return "";
497 }
498 if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
499 std::unique_ptr<MangleContext> MC;
500 MC.reset(Context.createMangleContext());
501 SmallString<256> Buffer;
502 llvm::raw_svector_ostream Out(Buffer);
503 auto DC = CurrentDecl->getDeclContext();
504 if (DC->isFileContext())
505 MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
506 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
507 MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
508 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
509 MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
510 else
511 MC->mangleBlock(DC, BD, Out);
512 return Out.str();
513 }
514 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
515 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
516 return FD->getNameAsString();
517
518 SmallString<256> Name;
519 llvm::raw_svector_ostream Out(Name);
520
521 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
522 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
523 Out << "virtual ";
524 if (MD->isStatic())
525 Out << "static ";
526 }
527
528 PrintingPolicy Policy(Context.getLangOpts());
529 std::string Proto;
530 llvm::raw_string_ostream POut(Proto);
531
532 const FunctionDecl *Decl = FD;
533 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
534 Decl = Pattern;
535 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
536 const FunctionProtoType *FT = nullptr;
537 if (FD->hasWrittenPrototype())
538 FT = dyn_cast<FunctionProtoType>(AFT);
539
540 if (IT == FuncSig) {
541 switch (FT->getCallConv()) {
542 case CC_C: POut << "__cdecl "; break;
543 case CC_X86StdCall: POut << "__stdcall "; break;
544 case CC_X86FastCall: POut << "__fastcall "; break;
545 case CC_X86ThisCall: POut << "__thiscall "; break;
546 case CC_X86VectorCall: POut << "__vectorcall "; break;
547 // Only bother printing the conventions that MSVC knows about.
548 default: break;
549 }
550 }
551
552 FD->printQualifiedName(POut, Policy);
553
554 POut << "(";
555 if (FT) {
556 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
557 if (i) POut << ", ";
558 POut << Decl->getParamDecl(i)->getType().stream(Policy);
559 }
560
561 if (FT->isVariadic()) {
562 if (FD->getNumParams()) POut << ", ";
563 POut << "...";
564 }
565 }
566 POut << ")";
567
568 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569 const FunctionType *FT = MD->getType()->castAs<FunctionType>();
570 if (FT->isConst())
571 POut << " const";
572 if (FT->isVolatile())
573 POut << " volatile";
574 RefQualifierKind Ref = MD->getRefQualifier();
575 if (Ref == RQ_LValue)
576 POut << " &";
577 else if (Ref == RQ_RValue)
578 POut << " &&";
579 }
580
581 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
582 SpecsTy Specs;
583 const DeclContext *Ctx = FD->getDeclContext();
584 while (Ctx && isa<NamedDecl>(Ctx)) {
585 const ClassTemplateSpecializationDecl *Spec
586 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
587 if (Spec && !Spec->isExplicitSpecialization())
588 Specs.push_back(Spec);
589 Ctx = Ctx->getParent();
590 }
591
592 std::string TemplateParams;
593 llvm::raw_string_ostream TOut(TemplateParams);
594 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
595 I != E; ++I) {
596 const TemplateParameterList *Params
597 = (*I)->getSpecializedTemplate()->getTemplateParameters();
598 const TemplateArgumentList &Args = (*I)->getTemplateArgs();
599 assert(Params->size() == Args.size());
600 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
601 StringRef Param = Params->getParam(i)->getName();
602 if (Param.empty()) continue;
603 TOut << Param << " = ";
604 Args.get(i).print(Policy, TOut);
605 TOut << ", ";
606 }
607 }
608
609 FunctionTemplateSpecializationInfo *FSI
610 = FD->getTemplateSpecializationInfo();
611 if (FSI && !FSI->isExplicitSpecialization()) {
612 const TemplateParameterList* Params
613 = FSI->getTemplate()->getTemplateParameters();
614 const TemplateArgumentList* Args = FSI->TemplateArguments;
615 assert(Params->size() == Args->size());
616 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
617 StringRef Param = Params->getParam(i)->getName();
618 if (Param.empty()) continue;
619 TOut << Param << " = ";
620 Args->get(i).print(Policy, TOut);
621 TOut << ", ";
622 }
623 }
624
625 TOut.flush();
626 if (!TemplateParams.empty()) {
627 // remove the trailing comma and space
628 TemplateParams.resize(TemplateParams.size() - 2);
629 POut << " [" << TemplateParams << "]";
630 }
631
632 POut.flush();
633
634 // Print "auto" for all deduced return types. This includes C++1y return
635 // type deduction and lambdas. For trailing return types resolve the
636 // decltype expression. Otherwise print the real type when this is
637 // not a constructor or destructor.
638 if (isa<CXXMethodDecl>(FD) &&
639 cast<CXXMethodDecl>(FD)->getParent()->isLambda())
640 Proto = "auto " + Proto;
641 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
642 FT->getReturnType()
643 ->getAs<DecltypeType>()
644 ->getUnderlyingType()
645 .getAsStringInternal(Proto, Policy);
646 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
647 AFT->getReturnType().getAsStringInternal(Proto, Policy);
648
649 Out << Proto;
650
651 return Name.str().str();
652 }
653 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
654 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
655 // Skip to its enclosing function or method, but not its enclosing
656 // CapturedDecl.
657 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
658 const Decl *D = Decl::castFromDeclContext(DC);
659 return ComputeName(IT, D);
660 }
661 llvm_unreachable("CapturedDecl not inside a function or method");
662 }
663 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
664 SmallString<256> Name;
665 llvm::raw_svector_ostream Out(Name);
666 Out << (MD->isInstanceMethod() ? '-' : '+');
667 Out << '[';
668
669 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
670 // a null check to avoid a crash.
671 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
672 Out << *ID;
673
674 if (const ObjCCategoryImplDecl *CID =
675 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
676 Out << '(' << *CID << ')';
677
678 Out << ' ';
679 MD->getSelector().print(Out);
680 Out << ']';
681
682 return Name.str().str();
683 }
684 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
685 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
686 return "top level";
687 }
688 return "";
689 }
690
setIntValue(const ASTContext & C,const llvm::APInt & Val)691 void APNumericStorage::setIntValue(const ASTContext &C,
692 const llvm::APInt &Val) {
693 if (hasAllocation())
694 C.Deallocate(pVal);
695
696 BitWidth = Val.getBitWidth();
697 unsigned NumWords = Val.getNumWords();
698 const uint64_t* Words = Val.getRawData();
699 if (NumWords > 1) {
700 pVal = new (C) uint64_t[NumWords];
701 std::copy(Words, Words + NumWords, pVal);
702 } else if (NumWords == 1)
703 VAL = Words[0];
704 else
705 VAL = 0;
706 }
707
IntegerLiteral(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)708 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
709 QualType type, SourceLocation l)
710 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
711 false, false),
712 Loc(l) {
713 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
714 assert(V.getBitWidth() == C.getIntWidth(type) &&
715 "Integer type is not the correct size for constant.");
716 setValue(C, V);
717 }
718
719 IntegerLiteral *
Create(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)720 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
721 QualType type, SourceLocation l) {
722 return new (C) IntegerLiteral(C, V, type, l);
723 }
724
725 IntegerLiteral *
Create(const ASTContext & C,EmptyShell Empty)726 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
727 return new (C) IntegerLiteral(Empty);
728 }
729
FloatingLiteral(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)730 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
731 bool isexact, QualType Type, SourceLocation L)
732 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
733 false, false), Loc(L) {
734 setSemantics(V.getSemantics());
735 FloatingLiteralBits.IsExact = isexact;
736 setValue(C, V);
737 }
738
FloatingLiteral(const ASTContext & C,EmptyShell Empty)739 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
740 : Expr(FloatingLiteralClass, Empty) {
741 setRawSemantics(IEEEhalf);
742 FloatingLiteralBits.IsExact = false;
743 }
744
745 FloatingLiteral *
Create(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)746 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
747 bool isexact, QualType Type, SourceLocation L) {
748 return new (C) FloatingLiteral(C, V, isexact, Type, L);
749 }
750
751 FloatingLiteral *
Create(const ASTContext & C,EmptyShell Empty)752 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
753 return new (C) FloatingLiteral(C, Empty);
754 }
755
getSemantics() const756 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
757 switch(FloatingLiteralBits.Semantics) {
758 case IEEEhalf:
759 return llvm::APFloat::IEEEhalf;
760 case IEEEsingle:
761 return llvm::APFloat::IEEEsingle;
762 case IEEEdouble:
763 return llvm::APFloat::IEEEdouble;
764 case x87DoubleExtended:
765 return llvm::APFloat::x87DoubleExtended;
766 case IEEEquad:
767 return llvm::APFloat::IEEEquad;
768 case PPCDoubleDouble:
769 return llvm::APFloat::PPCDoubleDouble;
770 }
771 llvm_unreachable("Unrecognised floating semantics");
772 }
773
setSemantics(const llvm::fltSemantics & Sem)774 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
775 if (&Sem == &llvm::APFloat::IEEEhalf)
776 FloatingLiteralBits.Semantics = IEEEhalf;
777 else if (&Sem == &llvm::APFloat::IEEEsingle)
778 FloatingLiteralBits.Semantics = IEEEsingle;
779 else if (&Sem == &llvm::APFloat::IEEEdouble)
780 FloatingLiteralBits.Semantics = IEEEdouble;
781 else if (&Sem == &llvm::APFloat::x87DoubleExtended)
782 FloatingLiteralBits.Semantics = x87DoubleExtended;
783 else if (&Sem == &llvm::APFloat::IEEEquad)
784 FloatingLiteralBits.Semantics = IEEEquad;
785 else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
786 FloatingLiteralBits.Semantics = PPCDoubleDouble;
787 else
788 llvm_unreachable("Unknown floating semantics");
789 }
790
791 /// getValueAsApproximateDouble - This returns the value as an inaccurate
792 /// double. Note that this may cause loss of precision, but is useful for
793 /// debugging dumps, etc.
getValueAsApproximateDouble() const794 double FloatingLiteral::getValueAsApproximateDouble() const {
795 llvm::APFloat V = getValue();
796 bool ignored;
797 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
798 &ignored);
799 return V.convertToDouble();
800 }
801
mapCharByteWidth(TargetInfo const & target,StringKind k)802 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
803 int CharByteWidth = 0;
804 switch(k) {
805 case Ascii:
806 case UTF8:
807 CharByteWidth = target.getCharWidth();
808 break;
809 case Wide:
810 CharByteWidth = target.getWCharWidth();
811 break;
812 case UTF16:
813 CharByteWidth = target.getChar16Width();
814 break;
815 case UTF32:
816 CharByteWidth = target.getChar32Width();
817 break;
818 }
819 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
820 CharByteWidth /= 8;
821 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
822 && "character byte widths supported are 1, 2, and 4 only");
823 return CharByteWidth;
824 }
825
Create(const ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)826 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
827 StringKind Kind, bool Pascal, QualType Ty,
828 const SourceLocation *Loc,
829 unsigned NumStrs) {
830 assert(C.getAsConstantArrayType(Ty) &&
831 "StringLiteral must be of constant array type!");
832
833 // Allocate enough space for the StringLiteral plus an array of locations for
834 // any concatenated string tokens.
835 void *Mem = C.Allocate(sizeof(StringLiteral)+
836 sizeof(SourceLocation)*(NumStrs-1),
837 llvm::alignOf<StringLiteral>());
838 StringLiteral *SL = new (Mem) StringLiteral(Ty);
839
840 // OPTIMIZE: could allocate this appended to the StringLiteral.
841 SL->setString(C,Str,Kind,Pascal);
842
843 SL->TokLocs[0] = Loc[0];
844 SL->NumConcatenated = NumStrs;
845
846 if (NumStrs != 1)
847 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
848 return SL;
849 }
850
CreateEmpty(const ASTContext & C,unsigned NumStrs)851 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
852 unsigned NumStrs) {
853 void *Mem = C.Allocate(sizeof(StringLiteral)+
854 sizeof(SourceLocation)*(NumStrs-1),
855 llvm::alignOf<StringLiteral>());
856 StringLiteral *SL = new (Mem) StringLiteral(QualType());
857 SL->CharByteWidth = 0;
858 SL->Length = 0;
859 SL->NumConcatenated = NumStrs;
860 return SL;
861 }
862
outputString(raw_ostream & OS) const863 void StringLiteral::outputString(raw_ostream &OS) const {
864 switch (getKind()) {
865 case Ascii: break; // no prefix.
866 case Wide: OS << 'L'; break;
867 case UTF8: OS << "u8"; break;
868 case UTF16: OS << 'u'; break;
869 case UTF32: OS << 'U'; break;
870 }
871 OS << '"';
872 static const char Hex[] = "0123456789ABCDEF";
873
874 unsigned LastSlashX = getLength();
875 for (unsigned I = 0, N = getLength(); I != N; ++I) {
876 switch (uint32_t Char = getCodeUnit(I)) {
877 default:
878 // FIXME: Convert UTF-8 back to codepoints before rendering.
879
880 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
881 // Leave invalid surrogates alone; we'll use \x for those.
882 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
883 Char <= 0xdbff) {
884 uint32_t Trail = getCodeUnit(I + 1);
885 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
886 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
887 ++I;
888 }
889 }
890
891 if (Char > 0xff) {
892 // If this is a wide string, output characters over 0xff using \x
893 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
894 // codepoint: use \x escapes for invalid codepoints.
895 if (getKind() == Wide ||
896 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
897 // FIXME: Is this the best way to print wchar_t?
898 OS << "\\x";
899 int Shift = 28;
900 while ((Char >> Shift) == 0)
901 Shift -= 4;
902 for (/**/; Shift >= 0; Shift -= 4)
903 OS << Hex[(Char >> Shift) & 15];
904 LastSlashX = I;
905 break;
906 }
907
908 if (Char > 0xffff)
909 OS << "\\U00"
910 << Hex[(Char >> 20) & 15]
911 << Hex[(Char >> 16) & 15];
912 else
913 OS << "\\u";
914 OS << Hex[(Char >> 12) & 15]
915 << Hex[(Char >> 8) & 15]
916 << Hex[(Char >> 4) & 15]
917 << Hex[(Char >> 0) & 15];
918 break;
919 }
920
921 // If we used \x... for the previous character, and this character is a
922 // hexadecimal digit, prevent it being slurped as part of the \x.
923 if (LastSlashX + 1 == I) {
924 switch (Char) {
925 case '0': case '1': case '2': case '3': case '4':
926 case '5': case '6': case '7': case '8': case '9':
927 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
928 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
929 OS << "\"\"";
930 }
931 }
932
933 assert(Char <= 0xff &&
934 "Characters above 0xff should already have been handled.");
935
936 if (isPrintable(Char))
937 OS << (char)Char;
938 else // Output anything hard as an octal escape.
939 OS << '\\'
940 << (char)('0' + ((Char >> 6) & 7))
941 << (char)('0' + ((Char >> 3) & 7))
942 << (char)('0' + ((Char >> 0) & 7));
943 break;
944 // Handle some common non-printable cases to make dumps prettier.
945 case '\\': OS << "\\\\"; break;
946 case '"': OS << "\\\""; break;
947 case '\n': OS << "\\n"; break;
948 case '\t': OS << "\\t"; break;
949 case '\a': OS << "\\a"; break;
950 case '\b': OS << "\\b"; break;
951 }
952 }
953 OS << '"';
954 }
955
setString(const ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)956 void StringLiteral::setString(const ASTContext &C, StringRef Str,
957 StringKind Kind, bool IsPascal) {
958 //FIXME: we assume that the string data comes from a target that uses the same
959 // code unit size and endianess for the type of string.
960 this->Kind = Kind;
961 this->IsPascal = IsPascal;
962
963 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
964 assert((Str.size()%CharByteWidth == 0)
965 && "size of data must be multiple of CharByteWidth");
966 Length = Str.size()/CharByteWidth;
967
968 switch(CharByteWidth) {
969 case 1: {
970 char *AStrData = new (C) char[Length];
971 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
972 StrData.asChar = AStrData;
973 break;
974 }
975 case 2: {
976 uint16_t *AStrData = new (C) uint16_t[Length];
977 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
978 StrData.asUInt16 = AStrData;
979 break;
980 }
981 case 4: {
982 uint32_t *AStrData = new (C) uint32_t[Length];
983 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
984 StrData.asUInt32 = AStrData;
985 break;
986 }
987 default:
988 llvm_unreachable("unsupported CharByteWidth");
989 }
990 }
991
992 /// getLocationOfByte - Return a source location that points to the specified
993 /// byte of this string literal.
994 ///
995 /// Strings are amazingly complex. They can be formed from multiple tokens and
996 /// can have escape sequences in them in addition to the usual trigraph and
997 /// escaped newline business. This routine handles this complexity.
998 ///
999 /// The *StartToken sets the first token to be searched in this function and
1000 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1001 /// returning, it updates the *StartToken to the TokNo of the token being found
1002 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1003 /// string.
1004 /// Using these two parameters can reduce the time complexity from O(n^2) to
1005 /// O(n) if one wants to get the location of byte for all the tokens in a
1006 /// string.
1007 ///
1008 SourceLocation
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target,unsigned * StartToken,unsigned * StartTokenByteOffset) const1009 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1010 const LangOptions &Features,
1011 const TargetInfo &Target, unsigned *StartToken,
1012 unsigned *StartTokenByteOffset) const {
1013 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
1014 "Only narrow string literals are currently supported");
1015
1016 // Loop over all of the tokens in this string until we find the one that
1017 // contains the byte we're looking for.
1018 unsigned TokNo = 0;
1019 unsigned StringOffset = 0;
1020 if (StartToken)
1021 TokNo = *StartToken;
1022 if (StartTokenByteOffset) {
1023 StringOffset = *StartTokenByteOffset;
1024 ByteNo -= StringOffset;
1025 }
1026 while (1) {
1027 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1028 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1029
1030 // Get the spelling of the string so that we can get the data that makes up
1031 // the string literal, not the identifier for the macro it is potentially
1032 // expanded through.
1033 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1034
1035 // Re-lex the token to get its length and original spelling.
1036 std::pair<FileID, unsigned> LocInfo =
1037 SM.getDecomposedLoc(StrTokSpellingLoc);
1038 bool Invalid = false;
1039 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1040 if (Invalid) {
1041 if (StartTokenByteOffset != nullptr)
1042 *StartTokenByteOffset = StringOffset;
1043 if (StartToken != nullptr)
1044 *StartToken = TokNo;
1045 return StrTokSpellingLoc;
1046 }
1047
1048 const char *StrData = Buffer.data()+LocInfo.second;
1049
1050 // Create a lexer starting at the beginning of this token.
1051 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1052 Buffer.begin(), StrData, Buffer.end());
1053 Token TheTok;
1054 TheLexer.LexFromRawLexer(TheTok);
1055
1056 // Use the StringLiteralParser to compute the length of the string in bytes.
1057 StringLiteralParser SLP(TheTok, SM, Features, Target);
1058 unsigned TokNumBytes = SLP.GetStringLength();
1059
1060 // If the byte is in this token, return the location of the byte.
1061 if (ByteNo < TokNumBytes ||
1062 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1063 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1064
1065 // Now that we know the offset of the token in the spelling, use the
1066 // preprocessor to get the offset in the original source.
1067 if (StartTokenByteOffset != nullptr)
1068 *StartTokenByteOffset = StringOffset;
1069 if (StartToken != nullptr)
1070 *StartToken = TokNo;
1071 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1072 }
1073
1074 // Move to the next string token.
1075 StringOffset += TokNumBytes;
1076 ++TokNo;
1077 ByteNo -= TokNumBytes;
1078 }
1079 }
1080
1081
1082
1083 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1084 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)1085 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1086 switch (Op) {
1087 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1088 #include "clang/AST/OperationKinds.def"
1089 }
1090 llvm_unreachable("Unknown unary operator");
1091 }
1092
1093 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)1094 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1095 switch (OO) {
1096 default: llvm_unreachable("No unary operator for overloaded function");
1097 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1098 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1099 case OO_Amp: return UO_AddrOf;
1100 case OO_Star: return UO_Deref;
1101 case OO_Plus: return UO_Plus;
1102 case OO_Minus: return UO_Minus;
1103 case OO_Tilde: return UO_Not;
1104 case OO_Exclaim: return UO_LNot;
1105 case OO_Coawait: return UO_Coawait;
1106 }
1107 }
1108
getOverloadedOperator(Opcode Opc)1109 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1110 switch (Opc) {
1111 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1112 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1113 case UO_AddrOf: return OO_Amp;
1114 case UO_Deref: return OO_Star;
1115 case UO_Plus: return OO_Plus;
1116 case UO_Minus: return OO_Minus;
1117 case UO_Not: return OO_Tilde;
1118 case UO_LNot: return OO_Exclaim;
1119 case UO_Coawait: return OO_Coawait;
1120 default: return OO_None;
1121 }
1122 }
1123
1124
1125 //===----------------------------------------------------------------------===//
1126 // Postfix Operators.
1127 //===----------------------------------------------------------------------===//
1128
CallExpr(const ASTContext & C,StmtClass SC,Expr * fn,ArrayRef<Expr * > preargs,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1129 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
1130 ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
1131 ExprValueKind VK, SourceLocation rparenloc)
1132 : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(),
1133 fn->isValueDependent(), fn->isInstantiationDependent(),
1134 fn->containsUnexpandedParameterPack()),
1135 NumArgs(args.size()) {
1136
1137 unsigned NumPreArgs = preargs.size();
1138 SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs];
1139 SubExprs[FN] = fn;
1140 for (unsigned i = 0; i != NumPreArgs; ++i) {
1141 updateDependenciesFromArg(preargs[i]);
1142 SubExprs[i+PREARGS_START] = preargs[i];
1143 }
1144 for (unsigned i = 0; i != args.size(); ++i) {
1145 updateDependenciesFromArg(args[i]);
1146 SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1147 }
1148
1149 CallExprBits.NumPreArgs = NumPreArgs;
1150 RParenLoc = rparenloc;
1151 }
1152
CallExpr(const ASTContext & C,StmtClass SC,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1153 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
1154 ArrayRef<Expr *> args, QualType t, ExprValueKind VK,
1155 SourceLocation rparenloc)
1156 : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {}
1157
CallExpr(const ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1158 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
1159 QualType t, ExprValueKind VK, SourceLocation rparenloc)
1160 : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {
1161 }
1162
CallExpr(const ASTContext & C,StmtClass SC,EmptyShell Empty)1163 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1164 : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
1165
CallExpr(const ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)1166 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1167 EmptyShell Empty)
1168 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1169 // FIXME: Why do we allocate this?
1170 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]();
1171 CallExprBits.NumPreArgs = NumPreArgs;
1172 }
1173
updateDependenciesFromArg(Expr * Arg)1174 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
1175 if (Arg->isTypeDependent())
1176 ExprBits.TypeDependent = true;
1177 if (Arg->isValueDependent())
1178 ExprBits.ValueDependent = true;
1179 if (Arg->isInstantiationDependent())
1180 ExprBits.InstantiationDependent = true;
1181 if (Arg->containsUnexpandedParameterPack())
1182 ExprBits.ContainsUnexpandedParameterPack = true;
1183 }
1184
getCalleeDecl()1185 Decl *CallExpr::getCalleeDecl() {
1186 Expr *CEE = getCallee()->IgnoreParenImpCasts();
1187
1188 while (SubstNonTypeTemplateParmExpr *NTTP
1189 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1190 CEE = NTTP->getReplacement()->IgnoreParenCasts();
1191 }
1192
1193 // If we're calling a dereference, look at the pointer instead.
1194 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1195 if (BO->isPtrMemOp())
1196 CEE = BO->getRHS()->IgnoreParenCasts();
1197 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1198 if (UO->getOpcode() == UO_Deref)
1199 CEE = UO->getSubExpr()->IgnoreParenCasts();
1200 }
1201 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1202 return DRE->getDecl();
1203 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1204 return ME->getMemberDecl();
1205
1206 return nullptr;
1207 }
1208
getDirectCallee()1209 FunctionDecl *CallExpr::getDirectCallee() {
1210 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1211 }
1212
1213 /// setNumArgs - This changes the number of arguments present in this call.
1214 /// Any orphaned expressions are deleted by this, and any new operands are set
1215 /// to null.
setNumArgs(const ASTContext & C,unsigned NumArgs)1216 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1217 // No change, just return.
1218 if (NumArgs == getNumArgs()) return;
1219
1220 // If shrinking # arguments, just delete the extras and forgot them.
1221 if (NumArgs < getNumArgs()) {
1222 this->NumArgs = NumArgs;
1223 return;
1224 }
1225
1226 // Otherwise, we are growing the # arguments. New an bigger argument array.
1227 unsigned NumPreArgs = getNumPreArgs();
1228 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1229 // Copy over args.
1230 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1231 NewSubExprs[i] = SubExprs[i];
1232 // Null out new args.
1233 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1234 i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1235 NewSubExprs[i] = nullptr;
1236
1237 if (SubExprs) C.Deallocate(SubExprs);
1238 SubExprs = NewSubExprs;
1239 this->NumArgs = NumArgs;
1240 }
1241
1242 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1243 /// not, return 0.
getBuiltinCallee() const1244 unsigned CallExpr::getBuiltinCallee() const {
1245 // All simple function calls (e.g. func()) are implicitly cast to pointer to
1246 // function. As a result, we try and obtain the DeclRefExpr from the
1247 // ImplicitCastExpr.
1248 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1249 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1250 return 0;
1251
1252 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1253 if (!DRE)
1254 return 0;
1255
1256 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1257 if (!FDecl)
1258 return 0;
1259
1260 if (!FDecl->getIdentifier())
1261 return 0;
1262
1263 return FDecl->getBuiltinID();
1264 }
1265
isUnevaluatedBuiltinCall(const ASTContext & Ctx) const1266 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1267 if (unsigned BI = getBuiltinCallee())
1268 return Ctx.BuiltinInfo.isUnevaluated(BI);
1269 return false;
1270 }
1271
getCallReturnType(const ASTContext & Ctx) const1272 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1273 const Expr *Callee = getCallee();
1274 QualType CalleeType = Callee->getType();
1275 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1276 CalleeType = FnTypePtr->getPointeeType();
1277 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1278 CalleeType = BPT->getPointeeType();
1279 } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1280 if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1281 return Ctx.VoidTy;
1282
1283 // This should never be overloaded and so should never return null.
1284 CalleeType = Expr::findBoundMemberType(Callee);
1285 }
1286
1287 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1288 return FnType->getReturnType();
1289 }
1290
getLocStart() const1291 SourceLocation CallExpr::getLocStart() const {
1292 if (isa<CXXOperatorCallExpr>(this))
1293 return cast<CXXOperatorCallExpr>(this)->getLocStart();
1294
1295 SourceLocation begin = getCallee()->getLocStart();
1296 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1297 begin = getArg(0)->getLocStart();
1298 return begin;
1299 }
getLocEnd() const1300 SourceLocation CallExpr::getLocEnd() const {
1301 if (isa<CXXOperatorCallExpr>(this))
1302 return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1303
1304 SourceLocation end = getRParenLoc();
1305 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1306 end = getArg(getNumArgs() - 1)->getLocEnd();
1307 return end;
1308 }
1309
Create(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1310 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1311 SourceLocation OperatorLoc,
1312 TypeSourceInfo *tsi,
1313 ArrayRef<OffsetOfNode> comps,
1314 ArrayRef<Expr*> exprs,
1315 SourceLocation RParenLoc) {
1316 void *Mem = C.Allocate(
1317 totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1318
1319 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1320 RParenLoc);
1321 }
1322
CreateEmpty(const ASTContext & C,unsigned numComps,unsigned numExprs)1323 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1324 unsigned numComps, unsigned numExprs) {
1325 void *Mem =
1326 C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1327 return new (Mem) OffsetOfExpr(numComps, numExprs);
1328 }
1329
OffsetOfExpr(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1330 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1331 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1332 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1333 SourceLocation RParenLoc)
1334 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1335 /*TypeDependent=*/false,
1336 /*ValueDependent=*/tsi->getType()->isDependentType(),
1337 tsi->getType()->isInstantiationDependentType(),
1338 tsi->getType()->containsUnexpandedParameterPack()),
1339 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1340 NumComps(comps.size()), NumExprs(exprs.size())
1341 {
1342 for (unsigned i = 0; i != comps.size(); ++i) {
1343 setComponent(i, comps[i]);
1344 }
1345
1346 for (unsigned i = 0; i != exprs.size(); ++i) {
1347 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1348 ExprBits.ValueDependent = true;
1349 if (exprs[i]->containsUnexpandedParameterPack())
1350 ExprBits.ContainsUnexpandedParameterPack = true;
1351
1352 setIndexExpr(i, exprs[i]);
1353 }
1354 }
1355
getFieldName() const1356 IdentifierInfo *OffsetOfNode::getFieldName() const {
1357 assert(getKind() == Field || getKind() == Identifier);
1358 if (getKind() == Field)
1359 return getField()->getIdentifier();
1360
1361 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1362 }
1363
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind,Expr * E,QualType resultType,SourceLocation op,SourceLocation rp)1364 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1365 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1366 SourceLocation op, SourceLocation rp)
1367 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1368 false, // Never type-dependent (C++ [temp.dep.expr]p3).
1369 // Value-dependent if the argument is type-dependent.
1370 E->isTypeDependent(), E->isInstantiationDependent(),
1371 E->containsUnexpandedParameterPack()),
1372 OpLoc(op), RParenLoc(rp) {
1373 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1374 UnaryExprOrTypeTraitExprBits.IsType = false;
1375 Argument.Ex = E;
1376
1377 // Check to see if we are in the situation where alignof(decl) should be
1378 // dependent because decl's alignment is dependent.
1379 if (ExprKind == UETT_AlignOf) {
1380 if (!isValueDependent() || !isInstantiationDependent()) {
1381 E = E->IgnoreParens();
1382
1383 const ValueDecl *D = nullptr;
1384 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1385 D = DRE->getDecl();
1386 else if (const auto *ME = dyn_cast<MemberExpr>(E))
1387 D = ME->getMemberDecl();
1388
1389 if (D) {
1390 for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1391 if (I->isAlignmentDependent()) {
1392 setValueDependent(true);
1393 setInstantiationDependent(true);
1394 break;
1395 }
1396 }
1397 }
1398 }
1399 }
1400 }
1401
Create(const ASTContext & C,Expr * base,bool isarrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1402 MemberExpr *MemberExpr::Create(
1403 const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
1404 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1405 ValueDecl *memberdecl, DeclAccessPair founddecl,
1406 DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
1407 QualType ty, ExprValueKind vk, ExprObjectKind ok) {
1408
1409 bool hasQualOrFound = (QualifierLoc ||
1410 founddecl.getDecl() != memberdecl ||
1411 founddecl.getAccess() != memberdecl->getAccess());
1412
1413 bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
1414 std::size_t Size =
1415 totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1416 TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
1417 HasTemplateKWAndArgsInfo ? 1 : 0,
1418 targs ? targs->size() : 0);
1419
1420 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1421 MemberExpr *E = new (Mem)
1422 MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
1423
1424 if (hasQualOrFound) {
1425 // FIXME: Wrong. We should be looking at the member declaration we found.
1426 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1427 E->setValueDependent(true);
1428 E->setTypeDependent(true);
1429 E->setInstantiationDependent(true);
1430 }
1431 else if (QualifierLoc &&
1432 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1433 E->setInstantiationDependent(true);
1434
1435 E->HasQualifierOrFoundDecl = true;
1436
1437 MemberExprNameQualifier *NQ =
1438 E->getTrailingObjects<MemberExprNameQualifier>();
1439 NQ->QualifierLoc = QualifierLoc;
1440 NQ->FoundDecl = founddecl;
1441 }
1442
1443 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1444
1445 if (targs) {
1446 bool Dependent = false;
1447 bool InstantiationDependent = false;
1448 bool ContainsUnexpandedParameterPack = false;
1449 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1450 TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
1451 Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
1452 if (InstantiationDependent)
1453 E->setInstantiationDependent(true);
1454 } else if (TemplateKWLoc.isValid()) {
1455 E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1456 TemplateKWLoc);
1457 }
1458
1459 return E;
1460 }
1461
getLocStart() const1462 SourceLocation MemberExpr::getLocStart() const {
1463 if (isImplicitAccess()) {
1464 if (hasQualifier())
1465 return getQualifierLoc().getBeginLoc();
1466 return MemberLoc;
1467 }
1468
1469 // FIXME: We don't want this to happen. Rather, we should be able to
1470 // detect all kinds of implicit accesses more cleanly.
1471 SourceLocation BaseStartLoc = getBase()->getLocStart();
1472 if (BaseStartLoc.isValid())
1473 return BaseStartLoc;
1474 return MemberLoc;
1475 }
getLocEnd() const1476 SourceLocation MemberExpr::getLocEnd() const {
1477 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1478 if (hasExplicitTemplateArgs())
1479 EndLoc = getRAngleLoc();
1480 else if (EndLoc.isInvalid())
1481 EndLoc = getBase()->getLocEnd();
1482 return EndLoc;
1483 }
1484
CastConsistency() const1485 bool CastExpr::CastConsistency() const {
1486 switch (getCastKind()) {
1487 case CK_DerivedToBase:
1488 case CK_UncheckedDerivedToBase:
1489 case CK_DerivedToBaseMemberPointer:
1490 case CK_BaseToDerived:
1491 case CK_BaseToDerivedMemberPointer:
1492 assert(!path_empty() && "Cast kind should have a base path!");
1493 break;
1494
1495 case CK_CPointerToObjCPointerCast:
1496 assert(getType()->isObjCObjectPointerType());
1497 assert(getSubExpr()->getType()->isPointerType());
1498 goto CheckNoBasePath;
1499
1500 case CK_BlockPointerToObjCPointerCast:
1501 assert(getType()->isObjCObjectPointerType());
1502 assert(getSubExpr()->getType()->isBlockPointerType());
1503 goto CheckNoBasePath;
1504
1505 case CK_ReinterpretMemberPointer:
1506 assert(getType()->isMemberPointerType());
1507 assert(getSubExpr()->getType()->isMemberPointerType());
1508 goto CheckNoBasePath;
1509
1510 case CK_BitCast:
1511 // Arbitrary casts to C pointer types count as bitcasts.
1512 // Otherwise, we should only have block and ObjC pointer casts
1513 // here if they stay within the type kind.
1514 if (!getType()->isPointerType()) {
1515 assert(getType()->isObjCObjectPointerType() ==
1516 getSubExpr()->getType()->isObjCObjectPointerType());
1517 assert(getType()->isBlockPointerType() ==
1518 getSubExpr()->getType()->isBlockPointerType());
1519 }
1520 goto CheckNoBasePath;
1521
1522 case CK_AnyPointerToBlockPointerCast:
1523 assert(getType()->isBlockPointerType());
1524 assert(getSubExpr()->getType()->isAnyPointerType() &&
1525 !getSubExpr()->getType()->isBlockPointerType());
1526 goto CheckNoBasePath;
1527
1528 case CK_CopyAndAutoreleaseBlockObject:
1529 assert(getType()->isBlockPointerType());
1530 assert(getSubExpr()->getType()->isBlockPointerType());
1531 goto CheckNoBasePath;
1532
1533 case CK_FunctionToPointerDecay:
1534 assert(getType()->isPointerType());
1535 assert(getSubExpr()->getType()->isFunctionType());
1536 goto CheckNoBasePath;
1537
1538 case CK_AddressSpaceConversion:
1539 assert(getType()->isPointerType());
1540 assert(getSubExpr()->getType()->isPointerType());
1541 assert(getType()->getPointeeType().getAddressSpace() !=
1542 getSubExpr()->getType()->getPointeeType().getAddressSpace());
1543 // These should not have an inheritance path.
1544 case CK_Dynamic:
1545 case CK_ToUnion:
1546 case CK_ArrayToPointerDecay:
1547 case CK_NullToMemberPointer:
1548 case CK_NullToPointer:
1549 case CK_ConstructorConversion:
1550 case CK_IntegralToPointer:
1551 case CK_PointerToIntegral:
1552 case CK_ToVoid:
1553 case CK_VectorSplat:
1554 case CK_IntegralCast:
1555 case CK_BooleanToSignedIntegral:
1556 case CK_IntegralToFloating:
1557 case CK_FloatingToIntegral:
1558 case CK_FloatingCast:
1559 case CK_ObjCObjectLValueCast:
1560 case CK_FloatingRealToComplex:
1561 case CK_FloatingComplexToReal:
1562 case CK_FloatingComplexCast:
1563 case CK_FloatingComplexToIntegralComplex:
1564 case CK_IntegralRealToComplex:
1565 case CK_IntegralComplexToReal:
1566 case CK_IntegralComplexCast:
1567 case CK_IntegralComplexToFloatingComplex:
1568 case CK_ARCProduceObject:
1569 case CK_ARCConsumeObject:
1570 case CK_ARCReclaimReturnedObject:
1571 case CK_ARCExtendBlockObject:
1572 case CK_ZeroToOCLEvent:
1573 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1574 goto CheckNoBasePath;
1575
1576 case CK_Dependent:
1577 case CK_LValueToRValue:
1578 case CK_NoOp:
1579 case CK_AtomicToNonAtomic:
1580 case CK_NonAtomicToAtomic:
1581 case CK_PointerToBoolean:
1582 case CK_IntegralToBoolean:
1583 case CK_FloatingToBoolean:
1584 case CK_MemberPointerToBoolean:
1585 case CK_FloatingComplexToBoolean:
1586 case CK_IntegralComplexToBoolean:
1587 case CK_LValueBitCast: // -> bool&
1588 case CK_UserDefinedConversion: // operator bool()
1589 case CK_BuiltinFnToFnPtr:
1590 CheckNoBasePath:
1591 assert(path_empty() && "Cast kind should not have a base path!");
1592 break;
1593 }
1594 return true;
1595 }
1596
getCastKindName() const1597 const char *CastExpr::getCastKindName() const {
1598 switch (getCastKind()) {
1599 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1600 #include "clang/AST/OperationKinds.def"
1601 }
1602 llvm_unreachable("Unhandled cast kind!");
1603 }
1604
getSubExprAsWritten()1605 Expr *CastExpr::getSubExprAsWritten() {
1606 Expr *SubExpr = nullptr;
1607 CastExpr *E = this;
1608 do {
1609 SubExpr = E->getSubExpr();
1610
1611 // Skip through reference binding to temporary.
1612 if (MaterializeTemporaryExpr *Materialize
1613 = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1614 SubExpr = Materialize->GetTemporaryExpr();
1615
1616 // Skip any temporary bindings; they're implicit.
1617 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1618 SubExpr = Binder->getSubExpr();
1619
1620 // Conversions by constructor and conversion functions have a
1621 // subexpression describing the call; strip it off.
1622 if (E->getCastKind() == CK_ConstructorConversion)
1623 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1624 else if (E->getCastKind() == CK_UserDefinedConversion) {
1625 assert((isa<CXXMemberCallExpr>(SubExpr) ||
1626 isa<BlockExpr>(SubExpr)) &&
1627 "Unexpected SubExpr for CK_UserDefinedConversion.");
1628 if (isa<CXXMemberCallExpr>(SubExpr))
1629 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1630 }
1631
1632 // If the subexpression we're left with is an implicit cast, look
1633 // through that, too.
1634 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1635
1636 return SubExpr;
1637 }
1638
path_buffer()1639 CXXBaseSpecifier **CastExpr::path_buffer() {
1640 switch (getStmtClass()) {
1641 #define ABSTRACT_STMT(x)
1642 #define CASTEXPR(Type, Base) \
1643 case Stmt::Type##Class: \
1644 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1645 #define STMT(Type, Base)
1646 #include "clang/AST/StmtNodes.inc"
1647 default:
1648 llvm_unreachable("non-cast expressions not possible here");
1649 }
1650 }
1651
Create(const ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1652 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1653 CastKind Kind, Expr *Operand,
1654 const CXXCastPath *BasePath,
1655 ExprValueKind VK) {
1656 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1657 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1658 ImplicitCastExpr *E =
1659 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1660 if (PathSize)
1661 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1662 E->getTrailingObjects<CXXBaseSpecifier *>());
1663 return E;
1664 }
1665
CreateEmpty(const ASTContext & C,unsigned PathSize)1666 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1667 unsigned PathSize) {
1668 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1669 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1670 }
1671
1672
Create(const ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1673 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1674 ExprValueKind VK, CastKind K, Expr *Op,
1675 const CXXCastPath *BasePath,
1676 TypeSourceInfo *WrittenTy,
1677 SourceLocation L, SourceLocation R) {
1678 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1679 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1680 CStyleCastExpr *E =
1681 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1682 if (PathSize)
1683 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1684 E->getTrailingObjects<CXXBaseSpecifier *>());
1685 return E;
1686 }
1687
CreateEmpty(const ASTContext & C,unsigned PathSize)1688 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1689 unsigned PathSize) {
1690 void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1691 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1692 }
1693
1694 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1695 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1696 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1697 switch (Op) {
1698 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
1699 #include "clang/AST/OperationKinds.def"
1700 }
1701 llvm_unreachable("Invalid OpCode!");
1702 }
1703
1704 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1705 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1706 switch (OO) {
1707 default: llvm_unreachable("Not an overloadable binary operator");
1708 case OO_Plus: return BO_Add;
1709 case OO_Minus: return BO_Sub;
1710 case OO_Star: return BO_Mul;
1711 case OO_Slash: return BO_Div;
1712 case OO_Percent: return BO_Rem;
1713 case OO_Caret: return BO_Xor;
1714 case OO_Amp: return BO_And;
1715 case OO_Pipe: return BO_Or;
1716 case OO_Equal: return BO_Assign;
1717 case OO_Less: return BO_LT;
1718 case OO_Greater: return BO_GT;
1719 case OO_PlusEqual: return BO_AddAssign;
1720 case OO_MinusEqual: return BO_SubAssign;
1721 case OO_StarEqual: return BO_MulAssign;
1722 case OO_SlashEqual: return BO_DivAssign;
1723 case OO_PercentEqual: return BO_RemAssign;
1724 case OO_CaretEqual: return BO_XorAssign;
1725 case OO_AmpEqual: return BO_AndAssign;
1726 case OO_PipeEqual: return BO_OrAssign;
1727 case OO_LessLess: return BO_Shl;
1728 case OO_GreaterGreater: return BO_Shr;
1729 case OO_LessLessEqual: return BO_ShlAssign;
1730 case OO_GreaterGreaterEqual: return BO_ShrAssign;
1731 case OO_EqualEqual: return BO_EQ;
1732 case OO_ExclaimEqual: return BO_NE;
1733 case OO_LessEqual: return BO_LE;
1734 case OO_GreaterEqual: return BO_GE;
1735 case OO_AmpAmp: return BO_LAnd;
1736 case OO_PipePipe: return BO_LOr;
1737 case OO_Comma: return BO_Comma;
1738 case OO_ArrowStar: return BO_PtrMemI;
1739 }
1740 }
1741
getOverloadedOperator(Opcode Opc)1742 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1743 static const OverloadedOperatorKind OverOps[] = {
1744 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1745 OO_Star, OO_Slash, OO_Percent,
1746 OO_Plus, OO_Minus,
1747 OO_LessLess, OO_GreaterGreater,
1748 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1749 OO_EqualEqual, OO_ExclaimEqual,
1750 OO_Amp,
1751 OO_Caret,
1752 OO_Pipe,
1753 OO_AmpAmp,
1754 OO_PipePipe,
1755 OO_Equal, OO_StarEqual,
1756 OO_SlashEqual, OO_PercentEqual,
1757 OO_PlusEqual, OO_MinusEqual,
1758 OO_LessLessEqual, OO_GreaterGreaterEqual,
1759 OO_AmpEqual, OO_CaretEqual,
1760 OO_PipeEqual,
1761 OO_Comma
1762 };
1763 return OverOps[Opc];
1764 }
1765
InitListExpr(const ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)1766 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1767 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1768 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1769 false, false),
1770 InitExprs(C, initExprs.size()),
1771 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1772 {
1773 sawArrayRangeDesignator(false);
1774 for (unsigned I = 0; I != initExprs.size(); ++I) {
1775 if (initExprs[I]->isTypeDependent())
1776 ExprBits.TypeDependent = true;
1777 if (initExprs[I]->isValueDependent())
1778 ExprBits.ValueDependent = true;
1779 if (initExprs[I]->isInstantiationDependent())
1780 ExprBits.InstantiationDependent = true;
1781 if (initExprs[I]->containsUnexpandedParameterPack())
1782 ExprBits.ContainsUnexpandedParameterPack = true;
1783 }
1784
1785 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1786 }
1787
reserveInits(const ASTContext & C,unsigned NumInits)1788 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1789 if (NumInits > InitExprs.size())
1790 InitExprs.reserve(C, NumInits);
1791 }
1792
resizeInits(const ASTContext & C,unsigned NumInits)1793 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1794 InitExprs.resize(C, NumInits, nullptr);
1795 }
1796
updateInit(const ASTContext & C,unsigned Init,Expr * expr)1797 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1798 if (Init >= InitExprs.size()) {
1799 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1800 setInit(Init, expr);
1801 return nullptr;
1802 }
1803
1804 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1805 setInit(Init, expr);
1806 return Result;
1807 }
1808
setArrayFiller(Expr * filler)1809 void InitListExpr::setArrayFiller(Expr *filler) {
1810 assert(!hasArrayFiller() && "Filler already set!");
1811 ArrayFillerOrUnionFieldInit = filler;
1812 // Fill out any "holes" in the array due to designated initializers.
1813 Expr **inits = getInits();
1814 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1815 if (inits[i] == nullptr)
1816 inits[i] = filler;
1817 }
1818
isStringLiteralInit() const1819 bool InitListExpr::isStringLiteralInit() const {
1820 if (getNumInits() != 1)
1821 return false;
1822 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1823 if (!AT || !AT->getElementType()->isIntegerType())
1824 return false;
1825 // It is possible for getInit() to return null.
1826 const Expr *Init = getInit(0);
1827 if (!Init)
1828 return false;
1829 Init = Init->IgnoreParens();
1830 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1831 }
1832
getLocStart() const1833 SourceLocation InitListExpr::getLocStart() const {
1834 if (InitListExpr *SyntacticForm = getSyntacticForm())
1835 return SyntacticForm->getLocStart();
1836 SourceLocation Beg = LBraceLoc;
1837 if (Beg.isInvalid()) {
1838 // Find the first non-null initializer.
1839 for (InitExprsTy::const_iterator I = InitExprs.begin(),
1840 E = InitExprs.end();
1841 I != E; ++I) {
1842 if (Stmt *S = *I) {
1843 Beg = S->getLocStart();
1844 break;
1845 }
1846 }
1847 }
1848 return Beg;
1849 }
1850
getLocEnd() const1851 SourceLocation InitListExpr::getLocEnd() const {
1852 if (InitListExpr *SyntacticForm = getSyntacticForm())
1853 return SyntacticForm->getLocEnd();
1854 SourceLocation End = RBraceLoc;
1855 if (End.isInvalid()) {
1856 // Find the first non-null initializer from the end.
1857 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1858 E = InitExprs.rend();
1859 I != E; ++I) {
1860 if (Stmt *S = *I) {
1861 End = S->getLocEnd();
1862 break;
1863 }
1864 }
1865 }
1866 return End;
1867 }
1868
1869 /// getFunctionType - Return the underlying function type for this block.
1870 ///
getFunctionType() const1871 const FunctionProtoType *BlockExpr::getFunctionType() const {
1872 // The block pointer is never sugared, but the function type might be.
1873 return cast<BlockPointerType>(getType())
1874 ->getPointeeType()->castAs<FunctionProtoType>();
1875 }
1876
getCaretLocation() const1877 SourceLocation BlockExpr::getCaretLocation() const {
1878 return TheBlock->getCaretLocation();
1879 }
getBody() const1880 const Stmt *BlockExpr::getBody() const {
1881 return TheBlock->getBody();
1882 }
getBody()1883 Stmt *BlockExpr::getBody() {
1884 return TheBlock->getBody();
1885 }
1886
1887
1888 //===----------------------------------------------------------------------===//
1889 // Generic Expression Routines
1890 //===----------------------------------------------------------------------===//
1891
1892 /// isUnusedResultAWarning - Return true if this immediate expression should
1893 /// be warned about if the result is unused. If so, fill in Loc and Ranges
1894 /// with location to warn on and the source range[s] to report with the
1895 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const1896 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1897 SourceRange &R1, SourceRange &R2,
1898 ASTContext &Ctx) const {
1899 // Don't warn if the expr is type dependent. The type could end up
1900 // instantiating to void.
1901 if (isTypeDependent())
1902 return false;
1903
1904 switch (getStmtClass()) {
1905 default:
1906 if (getType()->isVoidType())
1907 return false;
1908 WarnE = this;
1909 Loc = getExprLoc();
1910 R1 = getSourceRange();
1911 return true;
1912 case ParenExprClass:
1913 return cast<ParenExpr>(this)->getSubExpr()->
1914 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1915 case GenericSelectionExprClass:
1916 return cast<GenericSelectionExpr>(this)->getResultExpr()->
1917 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1918 case ChooseExprClass:
1919 return cast<ChooseExpr>(this)->getChosenSubExpr()->
1920 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1921 case UnaryOperatorClass: {
1922 const UnaryOperator *UO = cast<UnaryOperator>(this);
1923
1924 switch (UO->getOpcode()) {
1925 case UO_Plus:
1926 case UO_Minus:
1927 case UO_AddrOf:
1928 case UO_Not:
1929 case UO_LNot:
1930 case UO_Deref:
1931 break;
1932 case UO_Coawait:
1933 // This is just the 'operator co_await' call inside the guts of a
1934 // dependent co_await call.
1935 case UO_PostInc:
1936 case UO_PostDec:
1937 case UO_PreInc:
1938 case UO_PreDec: // ++/--
1939 return false; // Not a warning.
1940 case UO_Real:
1941 case UO_Imag:
1942 // accessing a piece of a volatile complex is a side-effect.
1943 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1944 .isVolatileQualified())
1945 return false;
1946 break;
1947 case UO_Extension:
1948 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1949 }
1950 WarnE = this;
1951 Loc = UO->getOperatorLoc();
1952 R1 = UO->getSubExpr()->getSourceRange();
1953 return true;
1954 }
1955 case BinaryOperatorClass: {
1956 const BinaryOperator *BO = cast<BinaryOperator>(this);
1957 switch (BO->getOpcode()) {
1958 default:
1959 break;
1960 // Consider the RHS of comma for side effects. LHS was checked by
1961 // Sema::CheckCommaOperands.
1962 case BO_Comma:
1963 // ((foo = <blah>), 0) is an idiom for hiding the result (and
1964 // lvalue-ness) of an assignment written in a macro.
1965 if (IntegerLiteral *IE =
1966 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1967 if (IE->getValue() == 0)
1968 return false;
1969 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1970 // Consider '||', '&&' to have side effects if the LHS or RHS does.
1971 case BO_LAnd:
1972 case BO_LOr:
1973 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1974 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1975 return false;
1976 break;
1977 }
1978 if (BO->isAssignmentOp())
1979 return false;
1980 WarnE = this;
1981 Loc = BO->getOperatorLoc();
1982 R1 = BO->getLHS()->getSourceRange();
1983 R2 = BO->getRHS()->getSourceRange();
1984 return true;
1985 }
1986 case CompoundAssignOperatorClass:
1987 case VAArgExprClass:
1988 case AtomicExprClass:
1989 return false;
1990
1991 case ConditionalOperatorClass: {
1992 // If only one of the LHS or RHS is a warning, the operator might
1993 // be being used for control flow. Only warn if both the LHS and
1994 // RHS are warnings.
1995 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1996 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1997 return false;
1998 if (!Exp->getLHS())
1999 return true;
2000 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2001 }
2002
2003 case MemberExprClass:
2004 WarnE = this;
2005 Loc = cast<MemberExpr>(this)->getMemberLoc();
2006 R1 = SourceRange(Loc, Loc);
2007 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2008 return true;
2009
2010 case ArraySubscriptExprClass:
2011 WarnE = this;
2012 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2013 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2014 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2015 return true;
2016
2017 case CXXOperatorCallExprClass: {
2018 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2019 // overloads as there is no reasonable way to define these such that they
2020 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2021 // warning: operators == and != are commonly typo'ed, and so warning on them
2022 // provides additional value as well. If this list is updated,
2023 // DiagnoseUnusedComparison should be as well.
2024 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2025 switch (Op->getOperator()) {
2026 default:
2027 break;
2028 case OO_EqualEqual:
2029 case OO_ExclaimEqual:
2030 case OO_Less:
2031 case OO_Greater:
2032 case OO_GreaterEqual:
2033 case OO_LessEqual:
2034 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2035 Op->getCallReturnType(Ctx)->isVoidType())
2036 break;
2037 WarnE = this;
2038 Loc = Op->getOperatorLoc();
2039 R1 = Op->getSourceRange();
2040 return true;
2041 }
2042
2043 // Fallthrough for generic call handling.
2044 }
2045 case CallExprClass:
2046 case CXXMemberCallExprClass:
2047 case UserDefinedLiteralClass: {
2048 // If this is a direct call, get the callee.
2049 const CallExpr *CE = cast<CallExpr>(this);
2050 if (const Decl *FD = CE->getCalleeDecl()) {
2051 const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
2052 bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
2053 : FD->hasAttr<WarnUnusedResultAttr>();
2054
2055 // If the callee has attribute pure, const, or warn_unused_result, warn
2056 // about it. void foo() { strlen("bar"); } should warn.
2057 //
2058 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2059 // updated to match for QoI.
2060 if (HasWarnUnusedResultAttr ||
2061 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2062 WarnE = this;
2063 Loc = CE->getCallee()->getLocStart();
2064 R1 = CE->getCallee()->getSourceRange();
2065
2066 if (unsigned NumArgs = CE->getNumArgs())
2067 R2 = SourceRange(CE->getArg(0)->getLocStart(),
2068 CE->getArg(NumArgs-1)->getLocEnd());
2069 return true;
2070 }
2071 }
2072 return false;
2073 }
2074
2075 // If we don't know precisely what we're looking at, let's not warn.
2076 case UnresolvedLookupExprClass:
2077 case CXXUnresolvedConstructExprClass:
2078 return false;
2079
2080 case CXXTemporaryObjectExprClass:
2081 case CXXConstructExprClass: {
2082 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2083 if (Type->hasAttr<WarnUnusedAttr>()) {
2084 WarnE = this;
2085 Loc = getLocStart();
2086 R1 = getSourceRange();
2087 return true;
2088 }
2089 }
2090 return false;
2091 }
2092
2093 case ObjCMessageExprClass: {
2094 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2095 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2096 ME->isInstanceMessage() &&
2097 !ME->getType()->isVoidType() &&
2098 ME->getMethodFamily() == OMF_init) {
2099 WarnE = this;
2100 Loc = getExprLoc();
2101 R1 = ME->getSourceRange();
2102 return true;
2103 }
2104
2105 if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2106 if (MD->hasAttr<WarnUnusedResultAttr>()) {
2107 WarnE = this;
2108 Loc = getExprLoc();
2109 return true;
2110 }
2111
2112 return false;
2113 }
2114
2115 case ObjCPropertyRefExprClass:
2116 WarnE = this;
2117 Loc = getExprLoc();
2118 R1 = getSourceRange();
2119 return true;
2120
2121 case PseudoObjectExprClass: {
2122 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2123
2124 // Only complain about things that have the form of a getter.
2125 if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2126 isa<BinaryOperator>(PO->getSyntacticForm()))
2127 return false;
2128
2129 WarnE = this;
2130 Loc = getExprLoc();
2131 R1 = getSourceRange();
2132 return true;
2133 }
2134
2135 case StmtExprClass: {
2136 // Statement exprs don't logically have side effects themselves, but are
2137 // sometimes used in macros in ways that give them a type that is unused.
2138 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2139 // however, if the result of the stmt expr is dead, we don't want to emit a
2140 // warning.
2141 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2142 if (!CS->body_empty()) {
2143 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2144 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2145 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2146 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2147 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2148 }
2149
2150 if (getType()->isVoidType())
2151 return false;
2152 WarnE = this;
2153 Loc = cast<StmtExpr>(this)->getLParenLoc();
2154 R1 = getSourceRange();
2155 return true;
2156 }
2157 case CXXFunctionalCastExprClass:
2158 case CStyleCastExprClass: {
2159 // Ignore an explicit cast to void unless the operand is a non-trivial
2160 // volatile lvalue.
2161 const CastExpr *CE = cast<CastExpr>(this);
2162 if (CE->getCastKind() == CK_ToVoid) {
2163 if (CE->getSubExpr()->isGLValue() &&
2164 CE->getSubExpr()->getType().isVolatileQualified()) {
2165 const DeclRefExpr *DRE =
2166 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2167 if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2168 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2169 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2170 R1, R2, Ctx);
2171 }
2172 }
2173 return false;
2174 }
2175
2176 // If this is a cast to a constructor conversion, check the operand.
2177 // Otherwise, the result of the cast is unused.
2178 if (CE->getCastKind() == CK_ConstructorConversion)
2179 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2180
2181 WarnE = this;
2182 if (const CXXFunctionalCastExpr *CXXCE =
2183 dyn_cast<CXXFunctionalCastExpr>(this)) {
2184 Loc = CXXCE->getLocStart();
2185 R1 = CXXCE->getSubExpr()->getSourceRange();
2186 } else {
2187 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2188 Loc = CStyleCE->getLParenLoc();
2189 R1 = CStyleCE->getSubExpr()->getSourceRange();
2190 }
2191 return true;
2192 }
2193 case ImplicitCastExprClass: {
2194 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2195
2196 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2197 if (ICE->getCastKind() == CK_LValueToRValue &&
2198 ICE->getSubExpr()->getType().isVolatileQualified())
2199 return false;
2200
2201 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2202 }
2203 case CXXDefaultArgExprClass:
2204 return (cast<CXXDefaultArgExpr>(this)
2205 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2206 case CXXDefaultInitExprClass:
2207 return (cast<CXXDefaultInitExpr>(this)
2208 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2209
2210 case CXXNewExprClass:
2211 // FIXME: In theory, there might be new expressions that don't have side
2212 // effects (e.g. a placement new with an uninitialized POD).
2213 case CXXDeleteExprClass:
2214 return false;
2215 case CXXBindTemporaryExprClass:
2216 return (cast<CXXBindTemporaryExpr>(this)
2217 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2218 case ExprWithCleanupsClass:
2219 return (cast<ExprWithCleanups>(this)
2220 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2221 }
2222 }
2223
2224 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2225 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2226 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2227 const Expr *E = IgnoreParens();
2228 switch (E->getStmtClass()) {
2229 default:
2230 return false;
2231 case ObjCIvarRefExprClass:
2232 return true;
2233 case Expr::UnaryOperatorClass:
2234 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2235 case ImplicitCastExprClass:
2236 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2237 case MaterializeTemporaryExprClass:
2238 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2239 ->isOBJCGCCandidate(Ctx);
2240 case CStyleCastExprClass:
2241 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2242 case DeclRefExprClass: {
2243 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2244
2245 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2246 if (VD->hasGlobalStorage())
2247 return true;
2248 QualType T = VD->getType();
2249 // dereferencing to a pointer is always a gc'able candidate,
2250 // unless it is __weak.
2251 return T->isPointerType() &&
2252 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2253 }
2254 return false;
2255 }
2256 case MemberExprClass: {
2257 const MemberExpr *M = cast<MemberExpr>(E);
2258 return M->getBase()->isOBJCGCCandidate(Ctx);
2259 }
2260 case ArraySubscriptExprClass:
2261 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2262 }
2263 }
2264
isBoundMemberFunction(ASTContext & Ctx) const2265 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2266 if (isTypeDependent())
2267 return false;
2268 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2269 }
2270
findBoundMemberType(const Expr * expr)2271 QualType Expr::findBoundMemberType(const Expr *expr) {
2272 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2273
2274 // Bound member expressions are always one of these possibilities:
2275 // x->m x.m x->*y x.*y
2276 // (possibly parenthesized)
2277
2278 expr = expr->IgnoreParens();
2279 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2280 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2281 return mem->getMemberDecl()->getType();
2282 }
2283
2284 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2285 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2286 ->getPointeeType();
2287 assert(type->isFunctionType());
2288 return type;
2289 }
2290
2291 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2292 return QualType();
2293 }
2294
IgnoreParens()2295 Expr* Expr::IgnoreParens() {
2296 Expr* E = this;
2297 while (true) {
2298 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2299 E = P->getSubExpr();
2300 continue;
2301 }
2302 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2303 if (P->getOpcode() == UO_Extension) {
2304 E = P->getSubExpr();
2305 continue;
2306 }
2307 }
2308 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2309 if (!P->isResultDependent()) {
2310 E = P->getResultExpr();
2311 continue;
2312 }
2313 }
2314 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2315 if (!P->isConditionDependent()) {
2316 E = P->getChosenSubExpr();
2317 continue;
2318 }
2319 }
2320 return E;
2321 }
2322 }
2323
2324 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2325 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2326 Expr *Expr::IgnoreParenCasts() {
2327 Expr *E = this;
2328 while (true) {
2329 E = E->IgnoreParens();
2330 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2331 E = P->getSubExpr();
2332 continue;
2333 }
2334 if (MaterializeTemporaryExpr *Materialize
2335 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2336 E = Materialize->GetTemporaryExpr();
2337 continue;
2338 }
2339 if (SubstNonTypeTemplateParmExpr *NTTP
2340 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2341 E = NTTP->getReplacement();
2342 continue;
2343 }
2344 return E;
2345 }
2346 }
2347
IgnoreCasts()2348 Expr *Expr::IgnoreCasts() {
2349 Expr *E = this;
2350 while (true) {
2351 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2352 E = P->getSubExpr();
2353 continue;
2354 }
2355 if (MaterializeTemporaryExpr *Materialize
2356 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2357 E = Materialize->GetTemporaryExpr();
2358 continue;
2359 }
2360 if (SubstNonTypeTemplateParmExpr *NTTP
2361 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2362 E = NTTP->getReplacement();
2363 continue;
2364 }
2365 return E;
2366 }
2367 }
2368
2369 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2370 /// casts. This is intended purely as a temporary workaround for code
2371 /// that hasn't yet been rewritten to do the right thing about those
2372 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2373 Expr *Expr::IgnoreParenLValueCasts() {
2374 Expr *E = this;
2375 while (true) {
2376 E = E->IgnoreParens();
2377 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2378 if (P->getCastKind() == CK_LValueToRValue) {
2379 E = P->getSubExpr();
2380 continue;
2381 }
2382 } else if (MaterializeTemporaryExpr *Materialize
2383 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2384 E = Materialize->GetTemporaryExpr();
2385 continue;
2386 } else if (SubstNonTypeTemplateParmExpr *NTTP
2387 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2388 E = NTTP->getReplacement();
2389 continue;
2390 }
2391 break;
2392 }
2393 return E;
2394 }
2395
ignoreParenBaseCasts()2396 Expr *Expr::ignoreParenBaseCasts() {
2397 Expr *E = this;
2398 while (true) {
2399 E = E->IgnoreParens();
2400 if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2401 if (CE->getCastKind() == CK_DerivedToBase ||
2402 CE->getCastKind() == CK_UncheckedDerivedToBase ||
2403 CE->getCastKind() == CK_NoOp) {
2404 E = CE->getSubExpr();
2405 continue;
2406 }
2407 }
2408
2409 return E;
2410 }
2411 }
2412
IgnoreParenImpCasts()2413 Expr *Expr::IgnoreParenImpCasts() {
2414 Expr *E = this;
2415 while (true) {
2416 E = E->IgnoreParens();
2417 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2418 E = P->getSubExpr();
2419 continue;
2420 }
2421 if (MaterializeTemporaryExpr *Materialize
2422 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2423 E = Materialize->GetTemporaryExpr();
2424 continue;
2425 }
2426 if (SubstNonTypeTemplateParmExpr *NTTP
2427 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2428 E = NTTP->getReplacement();
2429 continue;
2430 }
2431 return E;
2432 }
2433 }
2434
IgnoreConversionOperator()2435 Expr *Expr::IgnoreConversionOperator() {
2436 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2437 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2438 return MCE->getImplicitObjectArgument();
2439 }
2440 return this;
2441 }
2442
2443 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2444 /// value (including ptr->int casts of the same size). Strip off any
2445 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2446 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2447 Expr *E = this;
2448 while (true) {
2449 E = E->IgnoreParens();
2450
2451 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2452 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2453 // ptr<->int casts of the same width. We also ignore all identity casts.
2454 Expr *SE = P->getSubExpr();
2455
2456 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2457 E = SE;
2458 continue;
2459 }
2460
2461 if ((E->getType()->isPointerType() ||
2462 E->getType()->isIntegralType(Ctx)) &&
2463 (SE->getType()->isPointerType() ||
2464 SE->getType()->isIntegralType(Ctx)) &&
2465 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2466 E = SE;
2467 continue;
2468 }
2469 }
2470
2471 if (SubstNonTypeTemplateParmExpr *NTTP
2472 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2473 E = NTTP->getReplacement();
2474 continue;
2475 }
2476
2477 return E;
2478 }
2479 }
2480
isDefaultArgument() const2481 bool Expr::isDefaultArgument() const {
2482 const Expr *E = this;
2483 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2484 E = M->GetTemporaryExpr();
2485
2486 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2487 E = ICE->getSubExprAsWritten();
2488
2489 return isa<CXXDefaultArgExpr>(E);
2490 }
2491
2492 /// \brief Skip over any no-op casts and any temporary-binding
2493 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2494 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2495 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2496 E = M->GetTemporaryExpr();
2497
2498 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2499 if (ICE->getCastKind() == CK_NoOp)
2500 E = ICE->getSubExpr();
2501 else
2502 break;
2503 }
2504
2505 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2506 E = BE->getSubExpr();
2507
2508 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2509 if (ICE->getCastKind() == CK_NoOp)
2510 E = ICE->getSubExpr();
2511 else
2512 break;
2513 }
2514
2515 return E->IgnoreParens();
2516 }
2517
2518 /// isTemporaryObject - Determines if this expression produces a
2519 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2520 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2521 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2522 return false;
2523
2524 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2525
2526 // Temporaries are by definition pr-values of class type.
2527 if (!E->Classify(C).isPRValue()) {
2528 // In this context, property reference is a message call and is pr-value.
2529 if (!isa<ObjCPropertyRefExpr>(E))
2530 return false;
2531 }
2532
2533 // Black-list a few cases which yield pr-values of class type that don't
2534 // refer to temporaries of that type:
2535
2536 // - implicit derived-to-base conversions
2537 if (isa<ImplicitCastExpr>(E)) {
2538 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2539 case CK_DerivedToBase:
2540 case CK_UncheckedDerivedToBase:
2541 return false;
2542 default:
2543 break;
2544 }
2545 }
2546
2547 // - member expressions (all)
2548 if (isa<MemberExpr>(E))
2549 return false;
2550
2551 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2552 if (BO->isPtrMemOp())
2553 return false;
2554
2555 // - opaque values (all)
2556 if (isa<OpaqueValueExpr>(E))
2557 return false;
2558
2559 return true;
2560 }
2561
isImplicitCXXThis() const2562 bool Expr::isImplicitCXXThis() const {
2563 const Expr *E = this;
2564
2565 // Strip away parentheses and casts we don't care about.
2566 while (true) {
2567 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2568 E = Paren->getSubExpr();
2569 continue;
2570 }
2571
2572 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2573 if (ICE->getCastKind() == CK_NoOp ||
2574 ICE->getCastKind() == CK_LValueToRValue ||
2575 ICE->getCastKind() == CK_DerivedToBase ||
2576 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2577 E = ICE->getSubExpr();
2578 continue;
2579 }
2580 }
2581
2582 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2583 if (UnOp->getOpcode() == UO_Extension) {
2584 E = UnOp->getSubExpr();
2585 continue;
2586 }
2587 }
2588
2589 if (const MaterializeTemporaryExpr *M
2590 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2591 E = M->GetTemporaryExpr();
2592 continue;
2593 }
2594
2595 break;
2596 }
2597
2598 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2599 return This->isImplicit();
2600
2601 return false;
2602 }
2603
2604 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2605 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(ArrayRef<Expr * > Exprs)2606 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2607 for (unsigned I = 0; I < Exprs.size(); ++I)
2608 if (Exprs[I]->isTypeDependent())
2609 return true;
2610
2611 return false;
2612 }
2613
isConstantInitializer(ASTContext & Ctx,bool IsForRef,const Expr ** Culprit) const2614 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2615 const Expr **Culprit) const {
2616 // This function is attempting whether an expression is an initializer
2617 // which can be evaluated at compile-time. It very closely parallels
2618 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2619 // will lead to unexpected results. Like ConstExprEmitter, it falls back
2620 // to isEvaluatable most of the time.
2621 //
2622 // If we ever capture reference-binding directly in the AST, we can
2623 // kill the second parameter.
2624
2625 if (IsForRef) {
2626 EvalResult Result;
2627 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2628 return true;
2629 if (Culprit)
2630 *Culprit = this;
2631 return false;
2632 }
2633
2634 switch (getStmtClass()) {
2635 default: break;
2636 case StringLiteralClass:
2637 case ObjCEncodeExprClass:
2638 return true;
2639 case CXXTemporaryObjectExprClass:
2640 case CXXConstructExprClass: {
2641 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2642
2643 if (CE->getConstructor()->isTrivial() &&
2644 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2645 // Trivial default constructor
2646 if (!CE->getNumArgs()) return true;
2647
2648 // Trivial copy constructor
2649 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2650 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2651 }
2652
2653 break;
2654 }
2655 case CompoundLiteralExprClass: {
2656 // This handles gcc's extension that allows global initializers like
2657 // "struct x {int x;} x = (struct x) {};".
2658 // FIXME: This accepts other cases it shouldn't!
2659 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2660 return Exp->isConstantInitializer(Ctx, false, Culprit);
2661 }
2662 case DesignatedInitUpdateExprClass: {
2663 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
2664 return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
2665 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
2666 }
2667 case InitListExprClass: {
2668 const InitListExpr *ILE = cast<InitListExpr>(this);
2669 if (ILE->getType()->isArrayType()) {
2670 unsigned numInits = ILE->getNumInits();
2671 for (unsigned i = 0; i < numInits; i++) {
2672 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2673 return false;
2674 }
2675 return true;
2676 }
2677
2678 if (ILE->getType()->isRecordType()) {
2679 unsigned ElementNo = 0;
2680 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2681 for (const auto *Field : RD->fields()) {
2682 // If this is a union, skip all the fields that aren't being initialized.
2683 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2684 continue;
2685
2686 // Don't emit anonymous bitfields, they just affect layout.
2687 if (Field->isUnnamedBitfield())
2688 continue;
2689
2690 if (ElementNo < ILE->getNumInits()) {
2691 const Expr *Elt = ILE->getInit(ElementNo++);
2692 if (Field->isBitField()) {
2693 // Bitfields have to evaluate to an integer.
2694 llvm::APSInt ResultTmp;
2695 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2696 if (Culprit)
2697 *Culprit = Elt;
2698 return false;
2699 }
2700 } else {
2701 bool RefType = Field->getType()->isReferenceType();
2702 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2703 return false;
2704 }
2705 }
2706 }
2707 return true;
2708 }
2709
2710 break;
2711 }
2712 case ImplicitValueInitExprClass:
2713 case NoInitExprClass:
2714 return true;
2715 case ParenExprClass:
2716 return cast<ParenExpr>(this)->getSubExpr()
2717 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2718 case GenericSelectionExprClass:
2719 return cast<GenericSelectionExpr>(this)->getResultExpr()
2720 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2721 case ChooseExprClass:
2722 if (cast<ChooseExpr>(this)->isConditionDependent()) {
2723 if (Culprit)
2724 *Culprit = this;
2725 return false;
2726 }
2727 return cast<ChooseExpr>(this)->getChosenSubExpr()
2728 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2729 case UnaryOperatorClass: {
2730 const UnaryOperator* Exp = cast<UnaryOperator>(this);
2731 if (Exp->getOpcode() == UO_Extension)
2732 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2733 break;
2734 }
2735 case CXXFunctionalCastExprClass:
2736 case CXXStaticCastExprClass:
2737 case ImplicitCastExprClass:
2738 case CStyleCastExprClass:
2739 case ObjCBridgedCastExprClass:
2740 case CXXDynamicCastExprClass:
2741 case CXXReinterpretCastExprClass:
2742 case CXXConstCastExprClass: {
2743 const CastExpr *CE = cast<CastExpr>(this);
2744
2745 // Handle misc casts we want to ignore.
2746 if (CE->getCastKind() == CK_NoOp ||
2747 CE->getCastKind() == CK_LValueToRValue ||
2748 CE->getCastKind() == CK_ToUnion ||
2749 CE->getCastKind() == CK_ConstructorConversion ||
2750 CE->getCastKind() == CK_NonAtomicToAtomic ||
2751 CE->getCastKind() == CK_AtomicToNonAtomic)
2752 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2753
2754 break;
2755 }
2756 case MaterializeTemporaryExprClass:
2757 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2758 ->isConstantInitializer(Ctx, false, Culprit);
2759
2760 case SubstNonTypeTemplateParmExprClass:
2761 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2762 ->isConstantInitializer(Ctx, false, Culprit);
2763 case CXXDefaultArgExprClass:
2764 return cast<CXXDefaultArgExpr>(this)->getExpr()
2765 ->isConstantInitializer(Ctx, false, Culprit);
2766 case CXXDefaultInitExprClass:
2767 return cast<CXXDefaultInitExpr>(this)->getExpr()
2768 ->isConstantInitializer(Ctx, false, Culprit);
2769 }
2770 // Allow certain forms of UB in constant initializers: signed integer
2771 // overflow and floating-point division by zero. We'll give a warning on
2772 // these, but they're common enough that we have to accept them.
2773 if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
2774 return true;
2775 if (Culprit)
2776 *Culprit = this;
2777 return false;
2778 }
2779
2780 namespace {
2781 /// \brief Look for any side effects within a Stmt.
2782 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
2783 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
2784 const bool IncludePossibleEffects;
2785 bool HasSideEffects;
2786
2787 public:
SideEffectFinder(const ASTContext & Context,bool IncludePossible)2788 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
2789 : Inherited(Context),
2790 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
2791
hasSideEffects() const2792 bool hasSideEffects() const { return HasSideEffects; }
2793
VisitExpr(const Expr * E)2794 void VisitExpr(const Expr *E) {
2795 if (!HasSideEffects &&
2796 E->HasSideEffects(Context, IncludePossibleEffects))
2797 HasSideEffects = true;
2798 }
2799 };
2800 }
2801
HasSideEffects(const ASTContext & Ctx,bool IncludePossibleEffects) const2802 bool Expr::HasSideEffects(const ASTContext &Ctx,
2803 bool IncludePossibleEffects) const {
2804 // In circumstances where we care about definite side effects instead of
2805 // potential side effects, we want to ignore expressions that are part of a
2806 // macro expansion as a potential side effect.
2807 if (!IncludePossibleEffects && getExprLoc().isMacroID())
2808 return false;
2809
2810 if (isInstantiationDependent())
2811 return IncludePossibleEffects;
2812
2813 switch (getStmtClass()) {
2814 case NoStmtClass:
2815 #define ABSTRACT_STMT(Type)
2816 #define STMT(Type, Base) case Type##Class:
2817 #define EXPR(Type, Base)
2818 #include "clang/AST/StmtNodes.inc"
2819 llvm_unreachable("unexpected Expr kind");
2820
2821 case DependentScopeDeclRefExprClass:
2822 case CXXUnresolvedConstructExprClass:
2823 case CXXDependentScopeMemberExprClass:
2824 case UnresolvedLookupExprClass:
2825 case UnresolvedMemberExprClass:
2826 case PackExpansionExprClass:
2827 case SubstNonTypeTemplateParmPackExprClass:
2828 case FunctionParmPackExprClass:
2829 case TypoExprClass:
2830 case CXXFoldExprClass:
2831 llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2832
2833 case DeclRefExprClass:
2834 case ObjCIvarRefExprClass:
2835 case PredefinedExprClass:
2836 case IntegerLiteralClass:
2837 case FloatingLiteralClass:
2838 case ImaginaryLiteralClass:
2839 case StringLiteralClass:
2840 case CharacterLiteralClass:
2841 case OffsetOfExprClass:
2842 case ImplicitValueInitExprClass:
2843 case UnaryExprOrTypeTraitExprClass:
2844 case AddrLabelExprClass:
2845 case GNUNullExprClass:
2846 case NoInitExprClass:
2847 case CXXBoolLiteralExprClass:
2848 case CXXNullPtrLiteralExprClass:
2849 case CXXThisExprClass:
2850 case CXXScalarValueInitExprClass:
2851 case TypeTraitExprClass:
2852 case ArrayTypeTraitExprClass:
2853 case ExpressionTraitExprClass:
2854 case CXXNoexceptExprClass:
2855 case SizeOfPackExprClass:
2856 case ObjCStringLiteralClass:
2857 case ObjCEncodeExprClass:
2858 case ObjCBoolLiteralExprClass:
2859 case CXXUuidofExprClass:
2860 case OpaqueValueExprClass:
2861 // These never have a side-effect.
2862 return false;
2863
2864 case CallExprClass:
2865 case CXXOperatorCallExprClass:
2866 case CXXMemberCallExprClass:
2867 case CUDAKernelCallExprClass:
2868 case UserDefinedLiteralClass: {
2869 // We don't know a call definitely has side effects, except for calls
2870 // to pure/const functions that definitely don't.
2871 // If the call itself is considered side-effect free, check the operands.
2872 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
2873 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
2874 if (IsPure || !IncludePossibleEffects)
2875 break;
2876 return true;
2877 }
2878
2879 case BlockExprClass:
2880 case CXXBindTemporaryExprClass:
2881 if (!IncludePossibleEffects)
2882 break;
2883 return true;
2884
2885 case MSPropertyRefExprClass:
2886 case MSPropertySubscriptExprClass:
2887 case CompoundAssignOperatorClass:
2888 case VAArgExprClass:
2889 case AtomicExprClass:
2890 case CXXThrowExprClass:
2891 case CXXNewExprClass:
2892 case CXXDeleteExprClass:
2893 case CoawaitExprClass:
2894 case CoyieldExprClass:
2895 // These always have a side-effect.
2896 return true;
2897
2898 case StmtExprClass: {
2899 // StmtExprs have a side-effect if any substatement does.
2900 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
2901 Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
2902 return Finder.hasSideEffects();
2903 }
2904
2905 case ExprWithCleanupsClass:
2906 if (IncludePossibleEffects)
2907 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
2908 return true;
2909 break;
2910
2911 case ParenExprClass:
2912 case ArraySubscriptExprClass:
2913 case OMPArraySectionExprClass:
2914 case MemberExprClass:
2915 case ConditionalOperatorClass:
2916 case BinaryConditionalOperatorClass:
2917 case CompoundLiteralExprClass:
2918 case ExtVectorElementExprClass:
2919 case DesignatedInitExprClass:
2920 case DesignatedInitUpdateExprClass:
2921 case ParenListExprClass:
2922 case CXXPseudoDestructorExprClass:
2923 case CXXStdInitializerListExprClass:
2924 case SubstNonTypeTemplateParmExprClass:
2925 case MaterializeTemporaryExprClass:
2926 case ShuffleVectorExprClass:
2927 case ConvertVectorExprClass:
2928 case AsTypeExprClass:
2929 // These have a side-effect if any subexpression does.
2930 break;
2931
2932 case UnaryOperatorClass:
2933 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2934 return true;
2935 break;
2936
2937 case BinaryOperatorClass:
2938 if (cast<BinaryOperator>(this)->isAssignmentOp())
2939 return true;
2940 break;
2941
2942 case InitListExprClass:
2943 // FIXME: The children for an InitListExpr doesn't include the array filler.
2944 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2945 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
2946 return true;
2947 break;
2948
2949 case GenericSelectionExprClass:
2950 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2951 HasSideEffects(Ctx, IncludePossibleEffects);
2952
2953 case ChooseExprClass:
2954 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
2955 Ctx, IncludePossibleEffects);
2956
2957 case CXXDefaultArgExprClass:
2958 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
2959 Ctx, IncludePossibleEffects);
2960
2961 case CXXDefaultInitExprClass: {
2962 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
2963 if (const Expr *E = FD->getInClassInitializer())
2964 return E->HasSideEffects(Ctx, IncludePossibleEffects);
2965 // If we've not yet parsed the initializer, assume it has side-effects.
2966 return true;
2967 }
2968
2969 case CXXDynamicCastExprClass: {
2970 // A dynamic_cast expression has side-effects if it can throw.
2971 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2972 if (DCE->getTypeAsWritten()->isReferenceType() &&
2973 DCE->getCastKind() == CK_Dynamic)
2974 return true;
2975 } // Fall through.
2976 case ImplicitCastExprClass:
2977 case CStyleCastExprClass:
2978 case CXXStaticCastExprClass:
2979 case CXXReinterpretCastExprClass:
2980 case CXXConstCastExprClass:
2981 case CXXFunctionalCastExprClass: {
2982 // While volatile reads are side-effecting in both C and C++, we treat them
2983 // as having possible (not definite) side-effects. This allows idiomatic
2984 // code to behave without warning, such as sizeof(*v) for a volatile-
2985 // qualified pointer.
2986 if (!IncludePossibleEffects)
2987 break;
2988
2989 const CastExpr *CE = cast<CastExpr>(this);
2990 if (CE->getCastKind() == CK_LValueToRValue &&
2991 CE->getSubExpr()->getType().isVolatileQualified())
2992 return true;
2993 break;
2994 }
2995
2996 case CXXTypeidExprClass:
2997 // typeid might throw if its subexpression is potentially-evaluated, so has
2998 // side-effects in that case whether or not its subexpression does.
2999 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3000
3001 case CXXConstructExprClass:
3002 case CXXTemporaryObjectExprClass: {
3003 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3004 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3005 return true;
3006 // A trivial constructor does not add any side-effects of its own. Just look
3007 // at its arguments.
3008 break;
3009 }
3010
3011 case CXXInheritedCtorInitExprClass: {
3012 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3013 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3014 return true;
3015 break;
3016 }
3017
3018 case LambdaExprClass: {
3019 const LambdaExpr *LE = cast<LambdaExpr>(this);
3020 for (LambdaExpr::capture_iterator I = LE->capture_begin(),
3021 E = LE->capture_end(); I != E; ++I)
3022 if (I->getCaptureKind() == LCK_ByCopy)
3023 // FIXME: Only has a side-effect if the variable is volatile or if
3024 // the copy would invoke a non-trivial copy constructor.
3025 return true;
3026 return false;
3027 }
3028
3029 case PseudoObjectExprClass: {
3030 // Only look for side-effects in the semantic form, and look past
3031 // OpaqueValueExpr bindings in that form.
3032 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3033 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3034 E = PO->semantics_end();
3035 I != E; ++I) {
3036 const Expr *Subexpr = *I;
3037 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3038 Subexpr = OVE->getSourceExpr();
3039 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3040 return true;
3041 }
3042 return false;
3043 }
3044
3045 case ObjCBoxedExprClass:
3046 case ObjCArrayLiteralClass:
3047 case ObjCDictionaryLiteralClass:
3048 case ObjCSelectorExprClass:
3049 case ObjCProtocolExprClass:
3050 case ObjCIsaExprClass:
3051 case ObjCIndirectCopyRestoreExprClass:
3052 case ObjCSubscriptRefExprClass:
3053 case ObjCBridgedCastExprClass:
3054 case ObjCMessageExprClass:
3055 case ObjCPropertyRefExprClass:
3056 // FIXME: Classify these cases better.
3057 if (IncludePossibleEffects)
3058 return true;
3059 break;
3060 }
3061
3062 // Recurse to children.
3063 for (const Stmt *SubStmt : children())
3064 if (SubStmt &&
3065 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3066 return true;
3067
3068 return false;
3069 }
3070
3071 namespace {
3072 /// \brief Look for a call to a non-trivial function within an expression.
3073 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3074 {
3075 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3076
3077 bool NonTrivial;
3078
3079 public:
NonTrivialCallFinder(const ASTContext & Context)3080 explicit NonTrivialCallFinder(const ASTContext &Context)
3081 : Inherited(Context), NonTrivial(false) { }
3082
hasNonTrivialCall() const3083 bool hasNonTrivialCall() const { return NonTrivial; }
3084
VisitCallExpr(const CallExpr * E)3085 void VisitCallExpr(const CallExpr *E) {
3086 if (const CXXMethodDecl *Method
3087 = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3088 if (Method->isTrivial()) {
3089 // Recurse to children of the call.
3090 Inherited::VisitStmt(E);
3091 return;
3092 }
3093 }
3094
3095 NonTrivial = true;
3096 }
3097
VisitCXXConstructExpr(const CXXConstructExpr * E)3098 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3099 if (E->getConstructor()->isTrivial()) {
3100 // Recurse to children of the call.
3101 Inherited::VisitStmt(E);
3102 return;
3103 }
3104
3105 NonTrivial = true;
3106 }
3107
VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr * E)3108 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3109 if (E->getTemporary()->getDestructor()->isTrivial()) {
3110 Inherited::VisitStmt(E);
3111 return;
3112 }
3113
3114 NonTrivial = true;
3115 }
3116 };
3117 }
3118
hasNonTrivialCall(const ASTContext & Ctx) const3119 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3120 NonTrivialCallFinder Finder(Ctx);
3121 Finder.Visit(this);
3122 return Finder.hasNonTrivialCall();
3123 }
3124
3125 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3126 /// pointer constant or not, as well as the specific kind of constant detected.
3127 /// Null pointer constants can be integer constant expressions with the
3128 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3129 /// (a GNU extension).
3130 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const3131 Expr::isNullPointerConstant(ASTContext &Ctx,
3132 NullPointerConstantValueDependence NPC) const {
3133 if (isValueDependent() &&
3134 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3135 switch (NPC) {
3136 case NPC_NeverValueDependent:
3137 llvm_unreachable("Unexpected value dependent expression!");
3138 case NPC_ValueDependentIsNull:
3139 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3140 return NPCK_ZeroExpression;
3141 else
3142 return NPCK_NotNull;
3143
3144 case NPC_ValueDependentIsNotNull:
3145 return NPCK_NotNull;
3146 }
3147 }
3148
3149 // Strip off a cast to void*, if it exists. Except in C++.
3150 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3151 if (!Ctx.getLangOpts().CPlusPlus) {
3152 // Check that it is a cast to void*.
3153 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3154 QualType Pointee = PT->getPointeeType();
3155 Qualifiers Q = Pointee.getQualifiers();
3156 // In OpenCL v2.0 generic address space acts as a placeholder
3157 // and should be ignored.
3158 bool IsASValid = true;
3159 if (Ctx.getLangOpts().OpenCLVersion >= 200) {
3160 if (Pointee.getAddressSpace() == LangAS::opencl_generic)
3161 Q.removeAddressSpace();
3162 else
3163 IsASValid = false;
3164 }
3165
3166 if (IsASValid && !Q.hasQualifiers() &&
3167 Pointee->isVoidType() && // to void*
3168 CE->getSubExpr()->getType()->isIntegerType()) // from int.
3169 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3170 }
3171 }
3172 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3173 // Ignore the ImplicitCastExpr type entirely.
3174 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3175 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3176 // Accept ((void*)0) as a null pointer constant, as many other
3177 // implementations do.
3178 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3179 } else if (const GenericSelectionExpr *GE =
3180 dyn_cast<GenericSelectionExpr>(this)) {
3181 if (GE->isResultDependent())
3182 return NPCK_NotNull;
3183 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3184 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3185 if (CE->isConditionDependent())
3186 return NPCK_NotNull;
3187 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3188 } else if (const CXXDefaultArgExpr *DefaultArg
3189 = dyn_cast<CXXDefaultArgExpr>(this)) {
3190 // See through default argument expressions.
3191 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3192 } else if (const CXXDefaultInitExpr *DefaultInit
3193 = dyn_cast<CXXDefaultInitExpr>(this)) {
3194 // See through default initializer expressions.
3195 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3196 } else if (isa<GNUNullExpr>(this)) {
3197 // The GNU __null extension is always a null pointer constant.
3198 return NPCK_GNUNull;
3199 } else if (const MaterializeTemporaryExpr *M
3200 = dyn_cast<MaterializeTemporaryExpr>(this)) {
3201 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3202 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3203 if (const Expr *Source = OVE->getSourceExpr())
3204 return Source->isNullPointerConstant(Ctx, NPC);
3205 }
3206
3207 // C++11 nullptr_t is always a null pointer constant.
3208 if (getType()->isNullPtrType())
3209 return NPCK_CXX11_nullptr;
3210
3211 if (const RecordType *UT = getType()->getAsUnionType())
3212 if (!Ctx.getLangOpts().CPlusPlus11 &&
3213 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3214 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3215 const Expr *InitExpr = CLE->getInitializer();
3216 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3217 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3218 }
3219 // This expression must be an integer type.
3220 if (!getType()->isIntegerType() ||
3221 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3222 return NPCK_NotNull;
3223
3224 if (Ctx.getLangOpts().CPlusPlus11) {
3225 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3226 // value zero or a prvalue of type std::nullptr_t.
3227 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3228 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3229 if (Lit && !Lit->getValue())
3230 return NPCK_ZeroLiteral;
3231 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3232 return NPCK_NotNull;
3233 } else {
3234 // If we have an integer constant expression, we need to *evaluate* it and
3235 // test for the value 0.
3236 if (!isIntegerConstantExpr(Ctx))
3237 return NPCK_NotNull;
3238 }
3239
3240 if (EvaluateKnownConstInt(Ctx) != 0)
3241 return NPCK_NotNull;
3242
3243 if (isa<IntegerLiteral>(this))
3244 return NPCK_ZeroLiteral;
3245 return NPCK_ZeroExpression;
3246 }
3247
3248 /// \brief If this expression is an l-value for an Objective C
3249 /// property, find the underlying property reference expression.
getObjCProperty() const3250 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3251 const Expr *E = this;
3252 while (true) {
3253 assert((E->getValueKind() == VK_LValue &&
3254 E->getObjectKind() == OK_ObjCProperty) &&
3255 "expression is not a property reference");
3256 E = E->IgnoreParenCasts();
3257 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3258 if (BO->getOpcode() == BO_Comma) {
3259 E = BO->getRHS();
3260 continue;
3261 }
3262 }
3263
3264 break;
3265 }
3266
3267 return cast<ObjCPropertyRefExpr>(E);
3268 }
3269
isObjCSelfExpr() const3270 bool Expr::isObjCSelfExpr() const {
3271 const Expr *E = IgnoreParenImpCasts();
3272
3273 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3274 if (!DRE)
3275 return false;
3276
3277 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3278 if (!Param)
3279 return false;
3280
3281 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3282 if (!M)
3283 return false;
3284
3285 return M->getSelfDecl() == Param;
3286 }
3287
getSourceBitField()3288 FieldDecl *Expr::getSourceBitField() {
3289 Expr *E = this->IgnoreParens();
3290
3291 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3292 if (ICE->getCastKind() == CK_LValueToRValue ||
3293 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3294 E = ICE->getSubExpr()->IgnoreParens();
3295 else
3296 break;
3297 }
3298
3299 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3300 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3301 if (Field->isBitField())
3302 return Field;
3303
3304 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3305 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3306 if (Ivar->isBitField())
3307 return Ivar;
3308
3309 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3310 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3311 if (Field->isBitField())
3312 return Field;
3313
3314 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3315 if (BinOp->isAssignmentOp() && BinOp->getLHS())
3316 return BinOp->getLHS()->getSourceBitField();
3317
3318 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3319 return BinOp->getRHS()->getSourceBitField();
3320 }
3321
3322 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3323 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3324 return UnOp->getSubExpr()->getSourceBitField();
3325
3326 return nullptr;
3327 }
3328
refersToVectorElement() const3329 bool Expr::refersToVectorElement() const {
3330 const Expr *E = this->IgnoreParens();
3331
3332 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3333 if (ICE->getValueKind() != VK_RValue &&
3334 ICE->getCastKind() == CK_NoOp)
3335 E = ICE->getSubExpr()->IgnoreParens();
3336 else
3337 break;
3338 }
3339
3340 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3341 return ASE->getBase()->getType()->isVectorType();
3342
3343 if (isa<ExtVectorElementExpr>(E))
3344 return true;
3345
3346 return false;
3347 }
3348
refersToGlobalRegisterVar() const3349 bool Expr::refersToGlobalRegisterVar() const {
3350 const Expr *E = this->IgnoreParenImpCasts();
3351
3352 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3353 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3354 if (VD->getStorageClass() == SC_Register &&
3355 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3356 return true;
3357
3358 return false;
3359 }
3360
3361 /// isArrow - Return true if the base expression is a pointer to vector,
3362 /// return false if the base expression is a vector.
isArrow() const3363 bool ExtVectorElementExpr::isArrow() const {
3364 return getBase()->getType()->isPointerType();
3365 }
3366
getNumElements() const3367 unsigned ExtVectorElementExpr::getNumElements() const {
3368 if (const VectorType *VT = getType()->getAs<VectorType>())
3369 return VT->getNumElements();
3370 return 1;
3371 }
3372
3373 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const3374 bool ExtVectorElementExpr::containsDuplicateElements() const {
3375 // FIXME: Refactor this code to an accessor on the AST node which returns the
3376 // "type" of component access, and share with code below and in Sema.
3377 StringRef Comp = Accessor->getName();
3378
3379 // Halving swizzles do not contain duplicate elements.
3380 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3381 return false;
3382
3383 // Advance past s-char prefix on hex swizzles.
3384 if (Comp[0] == 's' || Comp[0] == 'S')
3385 Comp = Comp.substr(1);
3386
3387 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3388 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3389 return true;
3390
3391 return false;
3392 }
3393
3394 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<uint32_t> & Elts) const3395 void ExtVectorElementExpr::getEncodedElementAccess(
3396 SmallVectorImpl<uint32_t> &Elts) const {
3397 StringRef Comp = Accessor->getName();
3398 bool isNumericAccessor = false;
3399 if (Comp[0] == 's' || Comp[0] == 'S') {
3400 Comp = Comp.substr(1);
3401 isNumericAccessor = true;
3402 }
3403
3404 bool isHi = Comp == "hi";
3405 bool isLo = Comp == "lo";
3406 bool isEven = Comp == "even";
3407 bool isOdd = Comp == "odd";
3408
3409 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3410 uint64_t Index;
3411
3412 if (isHi)
3413 Index = e + i;
3414 else if (isLo)
3415 Index = i;
3416 else if (isEven)
3417 Index = 2 * i;
3418 else if (isOdd)
3419 Index = 2 * i + 1;
3420 else
3421 Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
3422
3423 Elts.push_back(Index);
3424 }
3425 }
3426
ShuffleVectorExpr(const ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)3427 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3428 QualType Type, SourceLocation BLoc,
3429 SourceLocation RP)
3430 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3431 Type->isDependentType(), Type->isDependentType(),
3432 Type->isInstantiationDependentType(),
3433 Type->containsUnexpandedParameterPack()),
3434 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3435 {
3436 SubExprs = new (C) Stmt*[args.size()];
3437 for (unsigned i = 0; i != args.size(); i++) {
3438 if (args[i]->isTypeDependent())
3439 ExprBits.TypeDependent = true;
3440 if (args[i]->isValueDependent())
3441 ExprBits.ValueDependent = true;
3442 if (args[i]->isInstantiationDependent())
3443 ExprBits.InstantiationDependent = true;
3444 if (args[i]->containsUnexpandedParameterPack())
3445 ExprBits.ContainsUnexpandedParameterPack = true;
3446
3447 SubExprs[i] = args[i];
3448 }
3449 }
3450
setExprs(const ASTContext & C,ArrayRef<Expr * > Exprs)3451 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3452 if (SubExprs) C.Deallocate(SubExprs);
3453
3454 this->NumExprs = Exprs.size();
3455 SubExprs = new (C) Stmt*[NumExprs];
3456 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3457 }
3458
GenericSelectionExpr(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3459 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3460 SourceLocation GenericLoc, Expr *ControllingExpr,
3461 ArrayRef<TypeSourceInfo*> AssocTypes,
3462 ArrayRef<Expr*> AssocExprs,
3463 SourceLocation DefaultLoc,
3464 SourceLocation RParenLoc,
3465 bool ContainsUnexpandedParameterPack,
3466 unsigned ResultIndex)
3467 : Expr(GenericSelectionExprClass,
3468 AssocExprs[ResultIndex]->getType(),
3469 AssocExprs[ResultIndex]->getValueKind(),
3470 AssocExprs[ResultIndex]->getObjectKind(),
3471 AssocExprs[ResultIndex]->isTypeDependent(),
3472 AssocExprs[ResultIndex]->isValueDependent(),
3473 AssocExprs[ResultIndex]->isInstantiationDependent(),
3474 ContainsUnexpandedParameterPack),
3475 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3476 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3477 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3478 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3479 SubExprs[CONTROLLING] = ControllingExpr;
3480 assert(AssocTypes.size() == AssocExprs.size());
3481 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3482 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3483 }
3484
GenericSelectionExpr(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3485 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3486 SourceLocation GenericLoc, Expr *ControllingExpr,
3487 ArrayRef<TypeSourceInfo*> AssocTypes,
3488 ArrayRef<Expr*> AssocExprs,
3489 SourceLocation DefaultLoc,
3490 SourceLocation RParenLoc,
3491 bool ContainsUnexpandedParameterPack)
3492 : Expr(GenericSelectionExprClass,
3493 Context.DependentTy,
3494 VK_RValue,
3495 OK_Ordinary,
3496 /*isTypeDependent=*/true,
3497 /*isValueDependent=*/true,
3498 /*isInstantiationDependent=*/true,
3499 ContainsUnexpandedParameterPack),
3500 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3501 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3502 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3503 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3504 SubExprs[CONTROLLING] = ControllingExpr;
3505 assert(AssocTypes.size() == AssocExprs.size());
3506 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3507 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3508 }
3509
3510 //===----------------------------------------------------------------------===//
3511 // DesignatedInitExpr
3512 //===----------------------------------------------------------------------===//
3513
getFieldName() const3514 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3515 assert(Kind == FieldDesignator && "Only valid on a field designator");
3516 if (Field.NameOrField & 0x01)
3517 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3518 else
3519 return getField()->getIdentifier();
3520 }
3521
DesignatedInitExpr(const ASTContext & C,QualType Ty,llvm::ArrayRef<Designator> Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)3522 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3523 llvm::ArrayRef<Designator> Designators,
3524 SourceLocation EqualOrColonLoc,
3525 bool GNUSyntax,
3526 ArrayRef<Expr*> IndexExprs,
3527 Expr *Init)
3528 : Expr(DesignatedInitExprClass, Ty,
3529 Init->getValueKind(), Init->getObjectKind(),
3530 Init->isTypeDependent(), Init->isValueDependent(),
3531 Init->isInstantiationDependent(),
3532 Init->containsUnexpandedParameterPack()),
3533 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3534 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
3535 this->Designators = new (C) Designator[NumDesignators];
3536
3537 // Record the initializer itself.
3538 child_iterator Child = child_begin();
3539 *Child++ = Init;
3540
3541 // Copy the designators and their subexpressions, computing
3542 // value-dependence along the way.
3543 unsigned IndexIdx = 0;
3544 for (unsigned I = 0; I != NumDesignators; ++I) {
3545 this->Designators[I] = Designators[I];
3546
3547 if (this->Designators[I].isArrayDesignator()) {
3548 // Compute type- and value-dependence.
3549 Expr *Index = IndexExprs[IndexIdx];
3550 if (Index->isTypeDependent() || Index->isValueDependent())
3551 ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3552 if (Index->isInstantiationDependent())
3553 ExprBits.InstantiationDependent = true;
3554 // Propagate unexpanded parameter packs.
3555 if (Index->containsUnexpandedParameterPack())
3556 ExprBits.ContainsUnexpandedParameterPack = true;
3557
3558 // Copy the index expressions into permanent storage.
3559 *Child++ = IndexExprs[IndexIdx++];
3560 } else if (this->Designators[I].isArrayRangeDesignator()) {
3561 // Compute type- and value-dependence.
3562 Expr *Start = IndexExprs[IndexIdx];
3563 Expr *End = IndexExprs[IndexIdx + 1];
3564 if (Start->isTypeDependent() || Start->isValueDependent() ||
3565 End->isTypeDependent() || End->isValueDependent()) {
3566 ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3567 ExprBits.InstantiationDependent = true;
3568 } else if (Start->isInstantiationDependent() ||
3569 End->isInstantiationDependent()) {
3570 ExprBits.InstantiationDependent = true;
3571 }
3572
3573 // Propagate unexpanded parameter packs.
3574 if (Start->containsUnexpandedParameterPack() ||
3575 End->containsUnexpandedParameterPack())
3576 ExprBits.ContainsUnexpandedParameterPack = true;
3577
3578 // Copy the start/end expressions into permanent storage.
3579 *Child++ = IndexExprs[IndexIdx++];
3580 *Child++ = IndexExprs[IndexIdx++];
3581 }
3582 }
3583
3584 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3585 }
3586
3587 DesignatedInitExpr *
Create(const ASTContext & C,llvm::ArrayRef<Designator> Designators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3588 DesignatedInitExpr::Create(const ASTContext &C,
3589 llvm::ArrayRef<Designator> Designators,
3590 ArrayRef<Expr*> IndexExprs,
3591 SourceLocation ColonOrEqualLoc,
3592 bool UsesColonSyntax, Expr *Init) {
3593 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
3594 llvm::alignOf<DesignatedInitExpr>());
3595 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
3596 ColonOrEqualLoc, UsesColonSyntax,
3597 IndexExprs, Init);
3598 }
3599
CreateEmpty(const ASTContext & C,unsigned NumIndexExprs)3600 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3601 unsigned NumIndexExprs) {
3602 void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
3603 llvm::alignOf<DesignatedInitExpr>());
3604 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3605 }
3606
setDesignators(const ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3607 void DesignatedInitExpr::setDesignators(const ASTContext &C,
3608 const Designator *Desigs,
3609 unsigned NumDesigs) {
3610 Designators = new (C) Designator[NumDesigs];
3611 NumDesignators = NumDesigs;
3612 for (unsigned I = 0; I != NumDesigs; ++I)
3613 Designators[I] = Desigs[I];
3614 }
3615
getDesignatorsSourceRange() const3616 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3617 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3618 if (size() == 1)
3619 return DIE->getDesignator(0)->getSourceRange();
3620 return SourceRange(DIE->getDesignator(0)->getLocStart(),
3621 DIE->getDesignator(size()-1)->getLocEnd());
3622 }
3623
getLocStart() const3624 SourceLocation DesignatedInitExpr::getLocStart() const {
3625 SourceLocation StartLoc;
3626 auto *DIE = const_cast<DesignatedInitExpr *>(this);
3627 Designator &First = *DIE->getDesignator(0);
3628 if (First.isFieldDesignator()) {
3629 if (GNUSyntax)
3630 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3631 else
3632 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3633 } else
3634 StartLoc =
3635 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3636 return StartLoc;
3637 }
3638
getLocEnd() const3639 SourceLocation DesignatedInitExpr::getLocEnd() const {
3640 return getInit()->getLocEnd();
3641 }
3642
getArrayIndex(const Designator & D) const3643 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3644 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3645 return getSubExpr(D.ArrayOrRange.Index + 1);
3646 }
3647
getArrayRangeStart(const Designator & D) const3648 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3649 assert(D.Kind == Designator::ArrayRangeDesignator &&
3650 "Requires array range designator");
3651 return getSubExpr(D.ArrayOrRange.Index + 1);
3652 }
3653
getArrayRangeEnd(const Designator & D) const3654 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3655 assert(D.Kind == Designator::ArrayRangeDesignator &&
3656 "Requires array range designator");
3657 return getSubExpr(D.ArrayOrRange.Index + 2);
3658 }
3659
3660 /// \brief Replaces the designator at index @p Idx with the series
3661 /// of designators in [First, Last).
ExpandDesignator(const ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3662 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3663 const Designator *First,
3664 const Designator *Last) {
3665 unsigned NumNewDesignators = Last - First;
3666 if (NumNewDesignators == 0) {
3667 std::copy_backward(Designators + Idx + 1,
3668 Designators + NumDesignators,
3669 Designators + Idx);
3670 --NumNewDesignators;
3671 return;
3672 } else if (NumNewDesignators == 1) {
3673 Designators[Idx] = *First;
3674 return;
3675 }
3676
3677 Designator *NewDesignators
3678 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3679 std::copy(Designators, Designators + Idx, NewDesignators);
3680 std::copy(First, Last, NewDesignators + Idx);
3681 std::copy(Designators + Idx + 1, Designators + NumDesignators,
3682 NewDesignators + Idx + NumNewDesignators);
3683 Designators = NewDesignators;
3684 NumDesignators = NumDesignators - 1 + NumNewDesignators;
3685 }
3686
DesignatedInitUpdateExpr(const ASTContext & C,SourceLocation lBraceLoc,Expr * baseExpr,SourceLocation rBraceLoc)3687 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
3688 SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
3689 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
3690 OK_Ordinary, false, false, false, false) {
3691 BaseAndUpdaterExprs[0] = baseExpr;
3692
3693 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
3694 ILE->setType(baseExpr->getType());
3695 BaseAndUpdaterExprs[1] = ILE;
3696 }
3697
getLocStart() const3698 SourceLocation DesignatedInitUpdateExpr::getLocStart() const {
3699 return getBase()->getLocStart();
3700 }
3701
getLocEnd() const3702 SourceLocation DesignatedInitUpdateExpr::getLocEnd() const {
3703 return getBase()->getLocEnd();
3704 }
3705
ParenListExpr(const ASTContext & C,SourceLocation lparenloc,ArrayRef<Expr * > exprs,SourceLocation rparenloc)3706 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3707 ArrayRef<Expr*> exprs,
3708 SourceLocation rparenloc)
3709 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3710 false, false, false, false),
3711 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3712 Exprs = new (C) Stmt*[exprs.size()];
3713 for (unsigned i = 0; i != exprs.size(); ++i) {
3714 if (exprs[i]->isTypeDependent())
3715 ExprBits.TypeDependent = true;
3716 if (exprs[i]->isValueDependent())
3717 ExprBits.ValueDependent = true;
3718 if (exprs[i]->isInstantiationDependent())
3719 ExprBits.InstantiationDependent = true;
3720 if (exprs[i]->containsUnexpandedParameterPack())
3721 ExprBits.ContainsUnexpandedParameterPack = true;
3722
3723 Exprs[i] = exprs[i];
3724 }
3725 }
3726
findInCopyConstruct(const Expr * e)3727 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3728 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3729 e = ewc->getSubExpr();
3730 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3731 e = m->GetTemporaryExpr();
3732 e = cast<CXXConstructExpr>(e)->getArg(0);
3733 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3734 e = ice->getSubExpr();
3735 return cast<OpaqueValueExpr>(e);
3736 }
3737
Create(const ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3738 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
3739 EmptyShell sh,
3740 unsigned numSemanticExprs) {
3741 void *buffer =
3742 Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
3743 llvm::alignOf<PseudoObjectExpr>());
3744 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3745 }
3746
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3747 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3748 : Expr(PseudoObjectExprClass, shell) {
3749 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3750 }
3751
Create(const ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3752 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
3753 ArrayRef<Expr*> semantics,
3754 unsigned resultIndex) {
3755 assert(syntax && "no syntactic expression!");
3756 assert(semantics.size() && "no semantic expressions!");
3757
3758 QualType type;
3759 ExprValueKind VK;
3760 if (resultIndex == NoResult) {
3761 type = C.VoidTy;
3762 VK = VK_RValue;
3763 } else {
3764 assert(resultIndex < semantics.size());
3765 type = semantics[resultIndex]->getType();
3766 VK = semantics[resultIndex]->getValueKind();
3767 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3768 }
3769
3770 void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
3771 llvm::alignOf<PseudoObjectExpr>());
3772 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3773 resultIndex);
3774 }
3775
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3776 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3777 Expr *syntax, ArrayRef<Expr*> semantics,
3778 unsigned resultIndex)
3779 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3780 /*filled in at end of ctor*/ false, false, false, false) {
3781 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3782 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3783
3784 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3785 Expr *E = (i == 0 ? syntax : semantics[i-1]);
3786 getSubExprsBuffer()[i] = E;
3787
3788 if (E->isTypeDependent())
3789 ExprBits.TypeDependent = true;
3790 if (E->isValueDependent())
3791 ExprBits.ValueDependent = true;
3792 if (E->isInstantiationDependent())
3793 ExprBits.InstantiationDependent = true;
3794 if (E->containsUnexpandedParameterPack())
3795 ExprBits.ContainsUnexpandedParameterPack = true;
3796
3797 if (isa<OpaqueValueExpr>(E))
3798 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
3799 "opaque-value semantic expressions for pseudo-object "
3800 "operations must have sources");
3801 }
3802 }
3803
3804 //===----------------------------------------------------------------------===//
3805 // Child Iterators for iterating over subexpressions/substatements
3806 //===----------------------------------------------------------------------===//
3807
3808 // UnaryExprOrTypeTraitExpr
children()3809 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3810 // If this is of a type and the type is a VLA type (and not a typedef), the
3811 // size expression of the VLA needs to be treated as an executable expression.
3812 // Why isn't this weirdness documented better in StmtIterator?
3813 if (isArgumentType()) {
3814 if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3815 getArgumentType().getTypePtr()))
3816 return child_range(child_iterator(T), child_iterator());
3817 return child_range(child_iterator(), child_iterator());
3818 }
3819 return child_range(&Argument.Ex, &Argument.Ex + 1);
3820 }
3821
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)3822 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
3823 QualType t, AtomicOp op, SourceLocation RP)
3824 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3825 false, false, false, false),
3826 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3827 {
3828 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
3829 for (unsigned i = 0; i != args.size(); i++) {
3830 if (args[i]->isTypeDependent())
3831 ExprBits.TypeDependent = true;
3832 if (args[i]->isValueDependent())
3833 ExprBits.ValueDependent = true;
3834 if (args[i]->isInstantiationDependent())
3835 ExprBits.InstantiationDependent = true;
3836 if (args[i]->containsUnexpandedParameterPack())
3837 ExprBits.ContainsUnexpandedParameterPack = true;
3838
3839 SubExprs[i] = args[i];
3840 }
3841 }
3842
getNumSubExprs(AtomicOp Op)3843 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3844 switch (Op) {
3845 case AO__c11_atomic_init:
3846 case AO__c11_atomic_load:
3847 case AO__atomic_load_n:
3848 return 2;
3849
3850 case AO__c11_atomic_store:
3851 case AO__c11_atomic_exchange:
3852 case AO__atomic_load:
3853 case AO__atomic_store:
3854 case AO__atomic_store_n:
3855 case AO__atomic_exchange_n:
3856 case AO__c11_atomic_fetch_add:
3857 case AO__c11_atomic_fetch_sub:
3858 case AO__c11_atomic_fetch_and:
3859 case AO__c11_atomic_fetch_or:
3860 case AO__c11_atomic_fetch_xor:
3861 case AO__atomic_fetch_add:
3862 case AO__atomic_fetch_sub:
3863 case AO__atomic_fetch_and:
3864 case AO__atomic_fetch_or:
3865 case AO__atomic_fetch_xor:
3866 case AO__atomic_fetch_nand:
3867 case AO__atomic_add_fetch:
3868 case AO__atomic_sub_fetch:
3869 case AO__atomic_and_fetch:
3870 case AO__atomic_or_fetch:
3871 case AO__atomic_xor_fetch:
3872 case AO__atomic_nand_fetch:
3873 return 3;
3874
3875 case AO__atomic_exchange:
3876 return 4;
3877
3878 case AO__c11_atomic_compare_exchange_strong:
3879 case AO__c11_atomic_compare_exchange_weak:
3880 return 5;
3881
3882 case AO__atomic_compare_exchange:
3883 case AO__atomic_compare_exchange_n:
3884 return 6;
3885 }
3886 llvm_unreachable("unknown atomic op");
3887 }
3888
getBaseOriginalType(const Expr * Base)3889 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
3890 unsigned ArraySectionCount = 0;
3891 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
3892 Base = OASE->getBase();
3893 ++ArraySectionCount;
3894 }
3895 while (auto *ASE =
3896 dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
3897 Base = ASE->getBase();
3898 ++ArraySectionCount;
3899 }
3900 Base = Base->IgnoreParenImpCasts();
3901 auto OriginalTy = Base->getType();
3902 if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
3903 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
3904 OriginalTy = PVD->getOriginalType().getNonReferenceType();
3905
3906 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
3907 if (OriginalTy->isAnyPointerType())
3908 OriginalTy = OriginalTy->getPointeeType();
3909 else {
3910 assert (OriginalTy->isArrayType());
3911 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
3912 }
3913 }
3914 return OriginalTy;
3915 }
3916