1 #include "strings/numbers.h"
2
3 #include <float.h> // for FLT_DIG
4 #include <cassert>
5 #include <memory>
6
7 #include "strings/ascii_ctype.h"
8
9 namespace dynamic_depth {
10 namespace strings {
11 namespace {
12
13 // Represents integer values of digits.
14 // Uses 36 to indicate an invalid character since we support
15 // bases up to 36.
16 static const int8 kAsciiToInt[256] = {
17 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s.
18 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
19 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5,
20 6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
21 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
22 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
23 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
24 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
25 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
26 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
27 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
28 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
29 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
30 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
31
32 // Parse the sign and optional hex or oct prefix in text.
safe_parse_sign_and_base(string * text,int * base_ptr,bool * negative_ptr)33 inline bool safe_parse_sign_and_base(string* text /*inout*/,
34 int* base_ptr /*inout*/,
35 bool* negative_ptr /*output*/) {
36 if (text->data() == NULL) {
37 return false;
38 }
39
40 const char* start = text->data();
41 const char* end = start + text->size();
42 int base = *base_ptr;
43
44 // Consume whitespace.
45 while (start < end && ascii_isspace(start[0])) {
46 ++start;
47 }
48 while (start < end && ascii_isspace(end[-1])) {
49 --end;
50 }
51 if (start >= end) {
52 return false;
53 }
54
55 // Consume sign.
56 *negative_ptr = (start[0] == '-');
57 if (*negative_ptr || start[0] == '+') {
58 ++start;
59 if (start >= end) {
60 return false;
61 }
62 }
63
64 // Consume base-dependent prefix.
65 // base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
66 // base 16: "0x" -> base 16
67 // Also validate the base.
68 if (base == 0) {
69 if (end - start >= 2 && start[0] == '0' &&
70 (start[1] == 'x' || start[1] == 'X')) {
71 base = 16;
72 start += 2;
73 if (start >= end) {
74 // "0x" with no digits after is invalid.
75 return false;
76 }
77 } else if (end - start >= 1 && start[0] == '0') {
78 base = 8;
79 start += 1;
80 } else {
81 base = 10;
82 }
83 } else if (base == 16) {
84 if (end - start >= 2 && start[0] == '0' &&
85 (start[1] == 'x' || start[1] == 'X')) {
86 start += 2;
87 if (start >= end) {
88 // "0x" with no digits after is invalid.
89 return false;
90 }
91 }
92 } else if (base >= 2 && base <= 36) {
93 // okay
94 } else {
95 return false;
96 }
97 text->assign(start, end - start);
98 *base_ptr = base;
99 return true;
100 }
101
102 // Consume digits.
103 //
104 // The classic loop:
105 //
106 // for each digit
107 // value = value * base + digit
108 // value *= sign
109 //
110 // The classic loop needs overflow checking. It also fails on the most
111 // negative integer, -2147483648 in 32-bit two's complement representation.
112 //
113 // My improved loop:
114 //
115 // if (!negative)
116 // for each digit
117 // value = value * base
118 // value = value + digit
119 // else
120 // for each digit
121 // value = value * base
122 // value = value - digit
123 //
124 // Overflow checking becomes simple.
125
126 // Lookup tables per IntType:
127 // vmax/base and vmin/base are precomputed because division costs at least 8ns.
128 // TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
129 // struct of arrays) would probably be better in terms of d-cache for the most
130 // commonly used bases.
131 template <typename IntType>
132 struct LookupTables {
133 static const IntType kVmaxOverBase[];
134 static const IntType kVminOverBase[];
135 };
136
137 // An array initializer macro for X/base where base in [0, 36].
138 // However, note that lookups for base in [0, 1] should never happen because
139 // base has been validated to be in [2, 36] by safe_parse_sign_and_base().
140 #define X_OVER_BASE_INITIALIZER(X) \
141 { \
142 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, \
143 X / 8, X / 9, X / 10, X / 11, X / 12, X / 13, X / 14, X / 15, \
144 X / 16, X / 17, X / 18, X / 19, X / 20, X / 21, X / 22, X / 23, \
145 X / 24, X / 25, X / 26, X / 27, X / 28, X / 29, X / 30, X / 31, \
146 X / 32, X / 33, X / 34, X / 35, X / 36, \
147 };
148
149 template <typename IntType>
150 const IntType LookupTables<IntType>::kVmaxOverBase[] =
151 X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
152
153 template <typename IntType>
154 const IntType LookupTables<IntType>::kVminOverBase[] =
155 X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());
156
157 #undef X_OVER_BASE_INITIALIZER
158
159 template <typename IntType>
safe_parse_positive_int(const string & text,int base,IntType * value_p)160 inline bool safe_parse_positive_int(const string& text, int base,
161 IntType* value_p) {
162 IntType value = 0;
163 const IntType vmax = std::numeric_limits<IntType>::max();
164 assert(vmax > 0);
165 assert(vmax >= base);
166 const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
167 const char* start = text.data();
168 const char* end = start + text.size();
169 // loop over digits
170 for (; start < end; ++start) {
171 unsigned char c = static_cast<unsigned char>(start[0]);
172 int digit = kAsciiToInt[c];
173 if (digit >= base) {
174 *value_p = value;
175 return false;
176 }
177 if (value > vmax_over_base) {
178 *value_p = vmax;
179 return false;
180 }
181 value *= base;
182 if (value > vmax - digit) {
183 *value_p = vmax;
184 return false;
185 }
186 value += digit;
187 }
188 *value_p = value;
189 return true;
190 }
191
192 template <typename IntType>
safe_parse_negative_int(const string & text,int base,IntType * value_p)193 inline bool safe_parse_negative_int(const string& text, int base,
194 IntType* value_p) {
195 IntType value = 0;
196 const IntType vmin = std::numeric_limits<IntType>::min();
197 assert(vmin < 0);
198 assert(vmin <= 0 - base);
199 IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
200 // 2003 c++ standard [expr.mul]
201 // "... the sign of the remainder is implementation-defined."
202 // Although (vmin/base)*base + vmin%base is always vmin.
203 // 2011 c++ standard tightens the spec but we cannot rely on it.
204 // TODO(junyer): Handle this in the lookup table generation.
205 if (vmin % base > 0) {
206 vmin_over_base += 1;
207 }
208 const char* start = text.data();
209 const char* end = start + text.size();
210 // loop over digits
211 for (; start < end; ++start) {
212 unsigned char c = static_cast<unsigned char>(start[0]);
213 int digit = kAsciiToInt[c];
214 if (digit >= base) {
215 *value_p = value;
216 return false;
217 }
218 if (value < vmin_over_base) {
219 *value_p = vmin;
220 return false;
221 }
222 value *= base;
223 if (value < vmin + digit) {
224 *value_p = vmin;
225 return false;
226 }
227 value -= digit;
228 }
229 *value_p = value;
230 return true;
231 }
232
233 // Input format based on POSIX.1-2008 strtol
234 // http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
235 template <typename IntType>
safe_int_internal(const string & text,IntType * value_p,int base)236 inline bool safe_int_internal(const string& text, IntType* value_p, int base) {
237 *value_p = 0;
238 bool negative;
239 string text_copy(text);
240 if (!safe_parse_sign_and_base(&text_copy, &base, &negative)) {
241 return false;
242 }
243 if (!negative) {
244 return safe_parse_positive_int(text_copy, base, value_p);
245 } else {
246 return safe_parse_negative_int(text_copy, base, value_p);
247 }
248 }
249
250 template <typename IntType>
safe_uint_internal(const string & text,IntType * value_p,int base)251 inline bool safe_uint_internal(const string& text, IntType* value_p, int base) {
252 *value_p = 0;
253 bool negative;
254 string text_copy(text);
255 if (!safe_parse_sign_and_base(&text_copy, &base, &negative) || negative) {
256 return false;
257 }
258 return safe_parse_positive_int(text_copy, base, value_p);
259 }
260
261 // Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
262 // range 0 <= i < 100, and buf must have space for two characters. Example:
263 // char buf[2];
264 // PutTwoDigits(42, buf);
265 // // buf[0] == '4'
266 // // buf[1] == '2'
PutTwoDigits(size_t i,char * buf)267 inline void PutTwoDigits(size_t i, char* buf) {
268 static const char two_ASCII_digits[100][2] = {
269 {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
270 {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
271 {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
272 {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
273 {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
274 {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
275 {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
276 {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
277 {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
278 {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
279 {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
280 {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
281 {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
282 {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
283 {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
284 {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
285 {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
286 assert(i < 100);
287 memcpy(buf, two_ASCII_digits[i], 2);
288 }
289
290 } // anonymous namespace
291
292 // ----------------------------------------------------------------------
293 // FastInt32ToBufferLeft()
294 // FastUInt32ToBufferLeft()
295 // FastInt64ToBufferLeft()
296 // FastUInt64ToBufferLeft()
297 //
298 // Like the Fast*ToBuffer() functions above, these are intended for speed.
299 // Unlike the Fast*ToBuffer() functions, however, these functions write
300 // their output to the beginning of the buffer (hence the name, as the
301 // output is left-aligned). The caller is responsible for ensuring that
302 // the buffer has enough space to hold the output.
303 //
304 // Returns a pointer to the end of the string (i.e. the null character
305 // terminating the string).
306 // ----------------------------------------------------------------------
307
308 // Used to optimize printing a decimal number's final digit.
309 const char one_ASCII_final_digits[10][2]{
310 {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
311 {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
312 };
313
FastUInt32ToBufferLeft(uint32 u,char * buffer)314 char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
315 uint32 digits;
316 // The idea of this implementation is to trim the number of divides to as few
317 // as possible, and also reducing memory stores and branches, by going in
318 // steps of two digits at a time rather than one whenever possible.
319 // The huge-number case is first, in the hopes that the compiler will output
320 // that case in one branch-free block of code, and only output conditional
321 // branches into it from below.
322 if (u >= 1000000000) { // >= 1,000,000,000
323 digits = u / 100000000; // 100,000,000
324 u -= digits * 100000000;
325 PutTwoDigits(digits, buffer);
326 buffer += 2;
327 lt100_000_000:
328 digits = u / 1000000; // 1,000,000
329 u -= digits * 1000000;
330 PutTwoDigits(digits, buffer);
331 buffer += 2;
332 lt1_000_000:
333 digits = u / 10000; // 10,000
334 u -= digits * 10000;
335 PutTwoDigits(digits, buffer);
336 buffer += 2;
337 lt10_000:
338 digits = u / 100;
339 u -= digits * 100;
340 PutTwoDigits(digits, buffer);
341 buffer += 2;
342 lt100:
343 digits = u;
344 PutTwoDigits(digits, buffer);
345 buffer += 2;
346 *buffer = 0;
347 return buffer;
348 }
349
350 if (u < 100) {
351 digits = u;
352 if (u >= 10) goto lt100;
353 memcpy(buffer, one_ASCII_final_digits[u], 2);
354 return buffer + 1;
355 }
356 if (u < 10000) { // 10,000
357 if (u >= 1000) goto lt10_000;
358 digits = u / 100;
359 u -= digits * 100;
360 *buffer++ = '0' + digits;
361 goto lt100;
362 }
363 if (u < 1000000) { // 1,000,000
364 if (u >= 100000) goto lt1_000_000;
365 digits = u / 10000; // 10,000
366 u -= digits * 10000;
367 *buffer++ = '0' + digits;
368 goto lt10_000;
369 }
370 if (u < 100000000) { // 100,000,000
371 if (u >= 10000000) goto lt100_000_000;
372 digits = u / 1000000; // 1,000,000
373 u -= digits * 1000000;
374 *buffer++ = '0' + digits;
375 goto lt1_000_000;
376 }
377 // we already know that u < 1,000,000,000
378 digits = u / 100000000; // 100,000,000
379 u -= digits * 100000000;
380 *buffer++ = '0' + digits;
381 goto lt100_000_000;
382 }
383
FastInt32ToBufferLeft(int32 i,char * buffer)384 char* FastInt32ToBufferLeft(int32 i, char* buffer) {
385 uint32 u = i;
386 if (i < 0) {
387 *buffer++ = '-';
388 // We need to do the negation in modular (i.e., "unsigned")
389 // arithmetic; MSVC++ apprently warns for plain "-u", so
390 // we write the equivalent expression "0 - u" instead.
391 u = 0 - u;
392 }
393 return FastUInt32ToBufferLeft(u, buffer);
394 }
395
FastUInt64ToBufferLeft(uint64 u64,char * buffer)396 char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
397 uint32 u32 = static_cast<uint32>(u64);
398 if (u32 == u64) return FastUInt32ToBufferLeft(u32, buffer);
399
400 // Here we know u64 has at least 10 decimal digits.
401 uint64 top_1to11 = u64 / 1000000000;
402 u32 = static_cast<uint32>(u64 - top_1to11 * 1000000000);
403 uint32 top_1to11_32 = static_cast<uint32>(top_1to11);
404
405 if (top_1to11_32 == top_1to11) {
406 buffer = FastUInt32ToBufferLeft(top_1to11_32, buffer);
407 } else {
408 // top_1to11 has more than 32 bits too; print it in two steps.
409 uint32 top_8to9 = static_cast<uint32>(top_1to11 / 100);
410 uint32 mid_2 = static_cast<uint32>(top_1to11 - top_8to9 * 100);
411 buffer = FastUInt32ToBufferLeft(top_8to9, buffer);
412 PutTwoDigits(mid_2, buffer);
413 buffer += 2;
414 }
415
416 // We have only 9 digits now, again the maximum uint32 can handle fully.
417 uint32 digits = u32 / 10000000; // 10,000,000
418 u32 -= digits * 10000000;
419 PutTwoDigits(digits, buffer);
420 buffer += 2;
421 digits = u32 / 100000; // 100,000
422 u32 -= digits * 100000;
423 PutTwoDigits(digits, buffer);
424 buffer += 2;
425 digits = u32 / 1000; // 1,000
426 u32 -= digits * 1000;
427 PutTwoDigits(digits, buffer);
428 buffer += 2;
429 digits = u32 / 10;
430 u32 -= digits * 10;
431 PutTwoDigits(digits, buffer);
432 buffer += 2;
433 memcpy(buffer, one_ASCII_final_digits[u32], 2);
434 return buffer + 1;
435 }
436
FastInt64ToBufferLeft(int64 i,char * buffer)437 char* FastInt64ToBufferLeft(int64 i, char* buffer) {
438 uint64 u = i;
439 if (i < 0) {
440 *buffer++ = '-';
441 u = 0 - u;
442 }
443 return FastUInt64ToBufferLeft(u, buffer);
444 }
445
safe_strto32_base(const string & text,int32 * value,int base)446 bool safe_strto32_base(const string& text, int32* value, int base) {
447 return safe_int_internal<int32>(text, value, base);
448 }
449
safe_strto64_base(const string & text,int64 * value,int base)450 bool safe_strto64_base(const string& text, int64* value, int base) {
451 return safe_int_internal<int64>(text, value, base);
452 }
453
safe_strtou32_base(const string & text,uint32 * value,int base)454 bool safe_strtou32_base(const string& text, uint32* value, int base) {
455 return safe_uint_internal<uint32>(text, value, base);
456 }
457
safe_strtou64_base(const string & text,uint64 * value,int base)458 bool safe_strtou64_base(const string& text, uint64* value, int base) {
459 return safe_uint_internal<uint64>(text, value, base);
460 }
461
safe_strtof(const string & piece,float * value)462 bool safe_strtof(const string& piece, float* value) {
463 *value = 0.0;
464 if (piece.empty()) return false;
465 char buf[32];
466 std::unique_ptr<char[]> bigbuf;
467 char* str = buf;
468 if (piece.size() > sizeof(buf) - 1) {
469 bigbuf.reset(new char[piece.size() + 1]);
470 str = bigbuf.get();
471 }
472 memcpy(str, piece.data(), piece.size());
473 str[piece.size()] = '\0';
474
475 char* endptr;
476 #ifdef COMPILER_MSVC // has no strtof()
477 *value = strtod(str, &endptr);
478 #else
479 *value = strtof(str, &endptr);
480 #endif
481 if (endptr != str) {
482 while (ascii_isspace(*endptr)) ++endptr;
483 }
484 // Ignore range errors from strtod/strtof.
485 // The values it returns on underflow and
486 // overflow are the right fallback in a
487 // robust setting.
488 return *str != '\0' && *endptr == '\0';
489 }
490
safe_strtod(const string & piece,double * value)491 bool safe_strtod(const string& piece, double* value) {
492 *value = 0.0;
493 if (piece.empty()) return false;
494 char buf[32];
495 std::unique_ptr<char[]> bigbuf;
496 char* str = buf;
497 if (piece.size() > sizeof(buf) - 1) {
498 bigbuf.reset(new char[piece.size() + 1]);
499 str = bigbuf.get();
500 }
501 memcpy(str, piece.data(), piece.size());
502 str[piece.size()] = '\0';
503
504 char* endptr;
505 *value = strtod(str, &endptr);
506 if (endptr != str) {
507 while (ascii_isspace(*endptr)) ++endptr;
508 }
509 // Ignore range errors from strtod. The values it
510 // returns on underflow and overflow are the right
511 // fallback in a robust setting.
512 return *str != '\0' && *endptr == '\0';
513 }
514
SimpleFtoa(float value)515 string SimpleFtoa(float value) {
516 char buffer[kFastToBufferSize];
517 return FloatToBuffer(value, buffer);
518 }
519
FloatToBuffer(float value,char * buffer)520 char* FloatToBuffer(float value, char* buffer) {
521 // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
522 // platforms these days. Just in case some system exists where FLT_DIG
523 // is significantly larger -- and risks overflowing our buffer -- we have
524 // this assert.
525 assert(FLT_DIG < 10);
526
527 int snprintf_result =
528 snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG, value);
529
530 // The snprintf should never overflow because the buffer is significantly
531 // larger than the precision we asked for.
532 assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize);
533
534 float parsed_value;
535 if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
536 snprintf_result =
537 snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG + 2, value);
538
539 // Should never overflow; see above.
540 assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize);
541 }
542 return buffer;
543 }
544
545 } // namespace strings
546 } // namespace dynamic_depth
547