1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86InstrInfo.h"
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86InstrFoldTables.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Sequence.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCExpr.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetOptions.h"
43
44 using namespace llvm;
45
46 #define DEBUG_TYPE "x86-instr-info"
47
48 #define GET_INSTRINFO_CTOR_DTOR
49 #include "X86GenInstrInfo.inc"
50
51 static cl::opt<bool>
52 NoFusing("disable-spill-fusing",
53 cl::desc("Disable fusing of spill code into instructions"),
54 cl::Hidden);
55 static cl::opt<bool>
56 PrintFailedFusing("print-failed-fuse-candidates",
57 cl::desc("Print instructions that the allocator wants to"
58 " fuse, but the X86 backend currently can't"),
59 cl::Hidden);
60 static cl::opt<bool>
61 ReMatPICStubLoad("remat-pic-stub-load",
62 cl::desc("Re-materialize load from stub in PIC mode"),
63 cl::init(false), cl::Hidden);
64 static cl::opt<unsigned>
65 PartialRegUpdateClearance("partial-reg-update-clearance",
66 cl::desc("Clearance between two register writes "
67 "for inserting XOR to avoid partial "
68 "register update"),
69 cl::init(64), cl::Hidden);
70 static cl::opt<unsigned>
71 UndefRegClearance("undef-reg-clearance",
72 cl::desc("How many idle instructions we would like before "
73 "certain undef register reads"),
74 cl::init(128), cl::Hidden);
75
76
77 // Pin the vtable to this file.
anchor()78 void X86InstrInfo::anchor() {}
79
X86InstrInfo(X86Subtarget & STI)80 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
81 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
82 : X86::ADJCALLSTACKDOWN32),
83 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
84 : X86::ADJCALLSTACKUP32),
85 X86::CATCHRET,
86 (STI.is64Bit() ? X86::RETQ : X86::RETL)),
87 Subtarget(STI), RI(STI.getTargetTriple()) {
88 }
89
90 bool
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx) const91 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
92 unsigned &SrcReg, unsigned &DstReg,
93 unsigned &SubIdx) const {
94 switch (MI.getOpcode()) {
95 default: break;
96 case X86::MOVSX16rr8:
97 case X86::MOVZX16rr8:
98 case X86::MOVSX32rr8:
99 case X86::MOVZX32rr8:
100 case X86::MOVSX64rr8:
101 if (!Subtarget.is64Bit())
102 // It's not always legal to reference the low 8-bit of the larger
103 // register in 32-bit mode.
104 return false;
105 LLVM_FALLTHROUGH;
106 case X86::MOVSX32rr16:
107 case X86::MOVZX32rr16:
108 case X86::MOVSX64rr16:
109 case X86::MOVSX64rr32: {
110 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
111 // Be conservative.
112 return false;
113 SrcReg = MI.getOperand(1).getReg();
114 DstReg = MI.getOperand(0).getReg();
115 switch (MI.getOpcode()) {
116 default: llvm_unreachable("Unreachable!");
117 case X86::MOVSX16rr8:
118 case X86::MOVZX16rr8:
119 case X86::MOVSX32rr8:
120 case X86::MOVZX32rr8:
121 case X86::MOVSX64rr8:
122 SubIdx = X86::sub_8bit;
123 break;
124 case X86::MOVSX32rr16:
125 case X86::MOVZX32rr16:
126 case X86::MOVSX64rr16:
127 SubIdx = X86::sub_16bit;
128 break;
129 case X86::MOVSX64rr32:
130 SubIdx = X86::sub_32bit;
131 break;
132 }
133 return true;
134 }
135 }
136 return false;
137 }
138
getSPAdjust(const MachineInstr & MI) const139 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
140 const MachineFunction *MF = MI.getParent()->getParent();
141 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
142
143 if (isFrameInstr(MI)) {
144 unsigned StackAlign = TFI->getStackAlignment();
145 int SPAdj = alignTo(getFrameSize(MI), StackAlign);
146 SPAdj -= getFrameAdjustment(MI);
147 if (!isFrameSetup(MI))
148 SPAdj = -SPAdj;
149 return SPAdj;
150 }
151
152 // To know whether a call adjusts the stack, we need information
153 // that is bound to the following ADJCALLSTACKUP pseudo.
154 // Look for the next ADJCALLSTACKUP that follows the call.
155 if (MI.isCall()) {
156 const MachineBasicBlock *MBB = MI.getParent();
157 auto I = ++MachineBasicBlock::const_iterator(MI);
158 for (auto E = MBB->end(); I != E; ++I) {
159 if (I->getOpcode() == getCallFrameDestroyOpcode() ||
160 I->isCall())
161 break;
162 }
163
164 // If we could not find a frame destroy opcode, then it has already
165 // been simplified, so we don't care.
166 if (I->getOpcode() != getCallFrameDestroyOpcode())
167 return 0;
168
169 return -(I->getOperand(1).getImm());
170 }
171
172 // Currently handle only PUSHes we can reasonably expect to see
173 // in call sequences
174 switch (MI.getOpcode()) {
175 default:
176 return 0;
177 case X86::PUSH32i8:
178 case X86::PUSH32r:
179 case X86::PUSH32rmm:
180 case X86::PUSH32rmr:
181 case X86::PUSHi32:
182 return 4;
183 case X86::PUSH64i8:
184 case X86::PUSH64r:
185 case X86::PUSH64rmm:
186 case X86::PUSH64rmr:
187 case X86::PUSH64i32:
188 return 8;
189 }
190 }
191
192 /// Return true and the FrameIndex if the specified
193 /// operand and follow operands form a reference to the stack frame.
isFrameOperand(const MachineInstr & MI,unsigned int Op,int & FrameIndex) const194 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
195 int &FrameIndex) const {
196 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
197 MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
198 MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
199 MI.getOperand(Op + X86::AddrDisp).isImm() &&
200 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
201 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
202 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
203 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
204 return true;
205 }
206 return false;
207 }
208
isFrameLoadOpcode(int Opcode,unsigned & MemBytes)209 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
210 switch (Opcode) {
211 default:
212 return false;
213 case X86::MOV8rm:
214 case X86::KMOVBkm:
215 MemBytes = 1;
216 return true;
217 case X86::MOV16rm:
218 case X86::KMOVWkm:
219 MemBytes = 2;
220 return true;
221 case X86::MOV32rm:
222 case X86::MOVSSrm:
223 case X86::VMOVSSZrm:
224 case X86::VMOVSSrm:
225 case X86::KMOVDkm:
226 MemBytes = 4;
227 return true;
228 case X86::MOV64rm:
229 case X86::LD_Fp64m:
230 case X86::MOVSDrm:
231 case X86::VMOVSDrm:
232 case X86::VMOVSDZrm:
233 case X86::MMX_MOVD64rm:
234 case X86::MMX_MOVQ64rm:
235 case X86::KMOVQkm:
236 MemBytes = 8;
237 return true;
238 case X86::MOVAPSrm:
239 case X86::MOVUPSrm:
240 case X86::MOVAPDrm:
241 case X86::MOVUPDrm:
242 case X86::MOVDQArm:
243 case X86::MOVDQUrm:
244 case X86::VMOVAPSrm:
245 case X86::VMOVUPSrm:
246 case X86::VMOVAPDrm:
247 case X86::VMOVUPDrm:
248 case X86::VMOVDQArm:
249 case X86::VMOVDQUrm:
250 case X86::VMOVAPSZ128rm:
251 case X86::VMOVUPSZ128rm:
252 case X86::VMOVAPSZ128rm_NOVLX:
253 case X86::VMOVUPSZ128rm_NOVLX:
254 case X86::VMOVAPDZ128rm:
255 case X86::VMOVUPDZ128rm:
256 case X86::VMOVDQU8Z128rm:
257 case X86::VMOVDQU16Z128rm:
258 case X86::VMOVDQA32Z128rm:
259 case X86::VMOVDQU32Z128rm:
260 case X86::VMOVDQA64Z128rm:
261 case X86::VMOVDQU64Z128rm:
262 MemBytes = 16;
263 return true;
264 case X86::VMOVAPSYrm:
265 case X86::VMOVUPSYrm:
266 case X86::VMOVAPDYrm:
267 case X86::VMOVUPDYrm:
268 case X86::VMOVDQAYrm:
269 case X86::VMOVDQUYrm:
270 case X86::VMOVAPSZ256rm:
271 case X86::VMOVUPSZ256rm:
272 case X86::VMOVAPSZ256rm_NOVLX:
273 case X86::VMOVUPSZ256rm_NOVLX:
274 case X86::VMOVAPDZ256rm:
275 case X86::VMOVUPDZ256rm:
276 case X86::VMOVDQU8Z256rm:
277 case X86::VMOVDQU16Z256rm:
278 case X86::VMOVDQA32Z256rm:
279 case X86::VMOVDQU32Z256rm:
280 case X86::VMOVDQA64Z256rm:
281 case X86::VMOVDQU64Z256rm:
282 MemBytes = 32;
283 return true;
284 case X86::VMOVAPSZrm:
285 case X86::VMOVUPSZrm:
286 case X86::VMOVAPDZrm:
287 case X86::VMOVUPDZrm:
288 case X86::VMOVDQU8Zrm:
289 case X86::VMOVDQU16Zrm:
290 case X86::VMOVDQA32Zrm:
291 case X86::VMOVDQU32Zrm:
292 case X86::VMOVDQA64Zrm:
293 case X86::VMOVDQU64Zrm:
294 MemBytes = 64;
295 return true;
296 }
297 }
298
isFrameStoreOpcode(int Opcode,unsigned & MemBytes)299 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
300 switch (Opcode) {
301 default:
302 return false;
303 case X86::MOV8mr:
304 case X86::KMOVBmk:
305 MemBytes = 1;
306 return true;
307 case X86::MOV16mr:
308 case X86::KMOVWmk:
309 MemBytes = 2;
310 return true;
311 case X86::MOV32mr:
312 case X86::MOVSSmr:
313 case X86::VMOVSSmr:
314 case X86::VMOVSSZmr:
315 case X86::KMOVDmk:
316 MemBytes = 4;
317 return true;
318 case X86::MOV64mr:
319 case X86::ST_FpP64m:
320 case X86::MOVSDmr:
321 case X86::VMOVSDmr:
322 case X86::VMOVSDZmr:
323 case X86::MMX_MOVD64mr:
324 case X86::MMX_MOVQ64mr:
325 case X86::MMX_MOVNTQmr:
326 case X86::KMOVQmk:
327 MemBytes = 8;
328 return true;
329 case X86::MOVAPSmr:
330 case X86::MOVUPSmr:
331 case X86::MOVAPDmr:
332 case X86::MOVUPDmr:
333 case X86::MOVDQAmr:
334 case X86::MOVDQUmr:
335 case X86::VMOVAPSmr:
336 case X86::VMOVUPSmr:
337 case X86::VMOVAPDmr:
338 case X86::VMOVUPDmr:
339 case X86::VMOVDQAmr:
340 case X86::VMOVDQUmr:
341 case X86::VMOVUPSZ128mr:
342 case X86::VMOVAPSZ128mr:
343 case X86::VMOVUPSZ128mr_NOVLX:
344 case X86::VMOVAPSZ128mr_NOVLX:
345 case X86::VMOVUPDZ128mr:
346 case X86::VMOVAPDZ128mr:
347 case X86::VMOVDQA32Z128mr:
348 case X86::VMOVDQU32Z128mr:
349 case X86::VMOVDQA64Z128mr:
350 case X86::VMOVDQU64Z128mr:
351 case X86::VMOVDQU8Z128mr:
352 case X86::VMOVDQU16Z128mr:
353 MemBytes = 16;
354 return true;
355 case X86::VMOVUPSYmr:
356 case X86::VMOVAPSYmr:
357 case X86::VMOVUPDYmr:
358 case X86::VMOVAPDYmr:
359 case X86::VMOVDQUYmr:
360 case X86::VMOVDQAYmr:
361 case X86::VMOVUPSZ256mr:
362 case X86::VMOVAPSZ256mr:
363 case X86::VMOVUPSZ256mr_NOVLX:
364 case X86::VMOVAPSZ256mr_NOVLX:
365 case X86::VMOVUPDZ256mr:
366 case X86::VMOVAPDZ256mr:
367 case X86::VMOVDQU8Z256mr:
368 case X86::VMOVDQU16Z256mr:
369 case X86::VMOVDQA32Z256mr:
370 case X86::VMOVDQU32Z256mr:
371 case X86::VMOVDQA64Z256mr:
372 case X86::VMOVDQU64Z256mr:
373 MemBytes = 32;
374 return true;
375 case X86::VMOVUPSZmr:
376 case X86::VMOVAPSZmr:
377 case X86::VMOVUPDZmr:
378 case X86::VMOVAPDZmr:
379 case X86::VMOVDQU8Zmr:
380 case X86::VMOVDQU16Zmr:
381 case X86::VMOVDQA32Zmr:
382 case X86::VMOVDQU32Zmr:
383 case X86::VMOVDQA64Zmr:
384 case X86::VMOVDQU64Zmr:
385 MemBytes = 64;
386 return true;
387 }
388 return false;
389 }
390
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const391 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
392 int &FrameIndex) const {
393 unsigned Dummy;
394 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
395 }
396
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const397 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
398 int &FrameIndex,
399 unsigned &MemBytes) const {
400 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
401 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
402 return MI.getOperand(0).getReg();
403 return 0;
404 }
405
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const406 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
407 int &FrameIndex) const {
408 unsigned Dummy;
409 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
410 unsigned Reg;
411 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
412 return Reg;
413 // Check for post-frame index elimination operations
414 const MachineMemOperand *Dummy;
415 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
416 }
417 return 0;
418 }
419
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const420 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
421 int &FrameIndex) const {
422 unsigned Dummy;
423 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
424 }
425
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const426 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
427 int &FrameIndex,
428 unsigned &MemBytes) const {
429 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
430 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
431 isFrameOperand(MI, 0, FrameIndex))
432 return MI.getOperand(X86::AddrNumOperands).getReg();
433 return 0;
434 }
435
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const436 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
437 int &FrameIndex) const {
438 unsigned Dummy;
439 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
440 unsigned Reg;
441 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
442 return Reg;
443 // Check for post-frame index elimination operations
444 const MachineMemOperand *Dummy;
445 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
446 }
447 return 0;
448 }
449
450 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
regIsPICBase(unsigned BaseReg,const MachineRegisterInfo & MRI)451 static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
452 // Don't waste compile time scanning use-def chains of physregs.
453 if (!TargetRegisterInfo::isVirtualRegister(BaseReg))
454 return false;
455 bool isPICBase = false;
456 for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
457 E = MRI.def_instr_end(); I != E; ++I) {
458 MachineInstr *DefMI = &*I;
459 if (DefMI->getOpcode() != X86::MOVPC32r)
460 return false;
461 assert(!isPICBase && "More than one PIC base?");
462 isPICBase = true;
463 }
464 return isPICBase;
465 }
466
isReallyTriviallyReMaterializable(const MachineInstr & MI,AliasAnalysis * AA) const467 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
468 AliasAnalysis *AA) const {
469 switch (MI.getOpcode()) {
470 default: break;
471 case X86::MOV8rm:
472 case X86::MOV8rm_NOREX:
473 case X86::MOV16rm:
474 case X86::MOV32rm:
475 case X86::MOV64rm:
476 case X86::LD_Fp64m:
477 case X86::MOVSSrm:
478 case X86::MOVSDrm:
479 case X86::MOVAPSrm:
480 case X86::MOVUPSrm:
481 case X86::MOVAPDrm:
482 case X86::MOVUPDrm:
483 case X86::MOVDQArm:
484 case X86::MOVDQUrm:
485 case X86::VMOVSSrm:
486 case X86::VMOVSDrm:
487 case X86::VMOVAPSrm:
488 case X86::VMOVUPSrm:
489 case X86::VMOVAPDrm:
490 case X86::VMOVUPDrm:
491 case X86::VMOVDQArm:
492 case X86::VMOVDQUrm:
493 case X86::VMOVAPSYrm:
494 case X86::VMOVUPSYrm:
495 case X86::VMOVAPDYrm:
496 case X86::VMOVUPDYrm:
497 case X86::VMOVDQAYrm:
498 case X86::VMOVDQUYrm:
499 case X86::MMX_MOVD64rm:
500 case X86::MMX_MOVQ64rm:
501 // AVX-512
502 case X86::VMOVSSZrm:
503 case X86::VMOVSDZrm:
504 case X86::VMOVAPDZ128rm:
505 case X86::VMOVAPDZ256rm:
506 case X86::VMOVAPDZrm:
507 case X86::VMOVAPSZ128rm:
508 case X86::VMOVAPSZ256rm:
509 case X86::VMOVAPSZ128rm_NOVLX:
510 case X86::VMOVAPSZ256rm_NOVLX:
511 case X86::VMOVAPSZrm:
512 case X86::VMOVDQA32Z128rm:
513 case X86::VMOVDQA32Z256rm:
514 case X86::VMOVDQA32Zrm:
515 case X86::VMOVDQA64Z128rm:
516 case X86::VMOVDQA64Z256rm:
517 case X86::VMOVDQA64Zrm:
518 case X86::VMOVDQU16Z128rm:
519 case X86::VMOVDQU16Z256rm:
520 case X86::VMOVDQU16Zrm:
521 case X86::VMOVDQU32Z128rm:
522 case X86::VMOVDQU32Z256rm:
523 case X86::VMOVDQU32Zrm:
524 case X86::VMOVDQU64Z128rm:
525 case X86::VMOVDQU64Z256rm:
526 case X86::VMOVDQU64Zrm:
527 case X86::VMOVDQU8Z128rm:
528 case X86::VMOVDQU8Z256rm:
529 case X86::VMOVDQU8Zrm:
530 case X86::VMOVUPDZ128rm:
531 case X86::VMOVUPDZ256rm:
532 case X86::VMOVUPDZrm:
533 case X86::VMOVUPSZ128rm:
534 case X86::VMOVUPSZ256rm:
535 case X86::VMOVUPSZ128rm_NOVLX:
536 case X86::VMOVUPSZ256rm_NOVLX:
537 case X86::VMOVUPSZrm: {
538 // Loads from constant pools are trivially rematerializable.
539 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
540 MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
541 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
542 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
543 MI.isDereferenceableInvariantLoad(AA)) {
544 unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
545 if (BaseReg == 0 || BaseReg == X86::RIP)
546 return true;
547 // Allow re-materialization of PIC load.
548 if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
549 return false;
550 const MachineFunction &MF = *MI.getParent()->getParent();
551 const MachineRegisterInfo &MRI = MF.getRegInfo();
552 return regIsPICBase(BaseReg, MRI);
553 }
554 return false;
555 }
556
557 case X86::LEA32r:
558 case X86::LEA64r: {
559 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
560 MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
561 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
562 !MI.getOperand(1 + X86::AddrDisp).isReg()) {
563 // lea fi#, lea GV, etc. are all rematerializable.
564 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
565 return true;
566 unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
567 if (BaseReg == 0)
568 return true;
569 // Allow re-materialization of lea PICBase + x.
570 const MachineFunction &MF = *MI.getParent()->getParent();
571 const MachineRegisterInfo &MRI = MF.getRegInfo();
572 return regIsPICBase(BaseReg, MRI);
573 }
574 return false;
575 }
576 }
577
578 // All other instructions marked M_REMATERIALIZABLE are always trivially
579 // rematerializable.
580 return true;
581 }
582
isSafeToClobberEFLAGS(MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const583 bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
584 MachineBasicBlock::iterator I) const {
585 MachineBasicBlock::iterator E = MBB.end();
586
587 // For compile time consideration, if we are not able to determine the
588 // safety after visiting 4 instructions in each direction, we will assume
589 // it's not safe.
590 MachineBasicBlock::iterator Iter = I;
591 for (unsigned i = 0; Iter != E && i < 4; ++i) {
592 bool SeenDef = false;
593 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
594 MachineOperand &MO = Iter->getOperand(j);
595 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
596 SeenDef = true;
597 if (!MO.isReg())
598 continue;
599 if (MO.getReg() == X86::EFLAGS) {
600 if (MO.isUse())
601 return false;
602 SeenDef = true;
603 }
604 }
605
606 if (SeenDef)
607 // This instruction defines EFLAGS, no need to look any further.
608 return true;
609 ++Iter;
610 // Skip over debug instructions.
611 while (Iter != E && Iter->isDebugInstr())
612 ++Iter;
613 }
614
615 // It is safe to clobber EFLAGS at the end of a block of no successor has it
616 // live in.
617 if (Iter == E) {
618 for (MachineBasicBlock *S : MBB.successors())
619 if (S->isLiveIn(X86::EFLAGS))
620 return false;
621 return true;
622 }
623
624 MachineBasicBlock::iterator B = MBB.begin();
625 Iter = I;
626 for (unsigned i = 0; i < 4; ++i) {
627 // If we make it to the beginning of the block, it's safe to clobber
628 // EFLAGS iff EFLAGS is not live-in.
629 if (Iter == B)
630 return !MBB.isLiveIn(X86::EFLAGS);
631
632 --Iter;
633 // Skip over debug instructions.
634 while (Iter != B && Iter->isDebugInstr())
635 --Iter;
636
637 bool SawKill = false;
638 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
639 MachineOperand &MO = Iter->getOperand(j);
640 // A register mask may clobber EFLAGS, but we should still look for a
641 // live EFLAGS def.
642 if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
643 SawKill = true;
644 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
645 if (MO.isDef()) return MO.isDead();
646 if (MO.isKill()) SawKill = true;
647 }
648 }
649
650 if (SawKill)
651 // This instruction kills EFLAGS and doesn't redefine it, so
652 // there's no need to look further.
653 return true;
654 }
655
656 // Conservative answer.
657 return false;
658 }
659
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const660 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
661 MachineBasicBlock::iterator I,
662 unsigned DestReg, unsigned SubIdx,
663 const MachineInstr &Orig,
664 const TargetRegisterInfo &TRI) const {
665 bool ClobbersEFLAGS = false;
666 for (const MachineOperand &MO : Orig.operands()) {
667 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
668 ClobbersEFLAGS = true;
669 break;
670 }
671 }
672
673 if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) {
674 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
675 // effects.
676 int Value;
677 switch (Orig.getOpcode()) {
678 case X86::MOV32r0: Value = 0; break;
679 case X86::MOV32r1: Value = 1; break;
680 case X86::MOV32r_1: Value = -1; break;
681 default:
682 llvm_unreachable("Unexpected instruction!");
683 }
684
685 const DebugLoc &DL = Orig.getDebugLoc();
686 BuildMI(MBB, I, DL, get(X86::MOV32ri))
687 .add(Orig.getOperand(0))
688 .addImm(Value);
689 } else {
690 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
691 MBB.insert(I, MI);
692 }
693
694 MachineInstr &NewMI = *std::prev(I);
695 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
696 }
697
698 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
hasLiveCondCodeDef(MachineInstr & MI) const699 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
700 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
701 MachineOperand &MO = MI.getOperand(i);
702 if (MO.isReg() && MO.isDef() &&
703 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
704 return true;
705 }
706 }
707 return false;
708 }
709
710 /// Check whether the shift count for a machine operand is non-zero.
getTruncatedShiftCount(MachineInstr & MI,unsigned ShiftAmtOperandIdx)711 inline static unsigned getTruncatedShiftCount(MachineInstr &MI,
712 unsigned ShiftAmtOperandIdx) {
713 // The shift count is six bits with the REX.W prefix and five bits without.
714 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
715 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
716 return Imm & ShiftCountMask;
717 }
718
719 /// Check whether the given shift count is appropriate
720 /// can be represented by a LEA instruction.
isTruncatedShiftCountForLEA(unsigned ShAmt)721 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
722 // Left shift instructions can be transformed into load-effective-address
723 // instructions if we can encode them appropriately.
724 // A LEA instruction utilizes a SIB byte to encode its scale factor.
725 // The SIB.scale field is two bits wide which means that we can encode any
726 // shift amount less than 4.
727 return ShAmt < 4 && ShAmt > 0;
728 }
729
classifyLEAReg(MachineInstr & MI,const MachineOperand & Src,unsigned Opc,bool AllowSP,unsigned & NewSrc,bool & isKill,bool & isUndef,MachineOperand & ImplicitOp,LiveVariables * LV) const730 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
731 unsigned Opc, bool AllowSP, unsigned &NewSrc,
732 bool &isKill, bool &isUndef,
733 MachineOperand &ImplicitOp,
734 LiveVariables *LV) const {
735 MachineFunction &MF = *MI.getParent()->getParent();
736 const TargetRegisterClass *RC;
737 if (AllowSP) {
738 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
739 } else {
740 RC = Opc != X86::LEA32r ?
741 &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
742 }
743 unsigned SrcReg = Src.getReg();
744
745 // For both LEA64 and LEA32 the register already has essentially the right
746 // type (32-bit or 64-bit) we may just need to forbid SP.
747 if (Opc != X86::LEA64_32r) {
748 NewSrc = SrcReg;
749 isKill = Src.isKill();
750 isUndef = Src.isUndef();
751
752 if (TargetRegisterInfo::isVirtualRegister(NewSrc) &&
753 !MF.getRegInfo().constrainRegClass(NewSrc, RC))
754 return false;
755
756 return true;
757 }
758
759 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
760 // another we need to add 64-bit registers to the final MI.
761 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
762 ImplicitOp = Src;
763 ImplicitOp.setImplicit();
764
765 NewSrc = getX86SubSuperRegister(Src.getReg(), 64);
766 isKill = Src.isKill();
767 isUndef = Src.isUndef();
768 } else {
769 // Virtual register of the wrong class, we have to create a temporary 64-bit
770 // vreg to feed into the LEA.
771 NewSrc = MF.getRegInfo().createVirtualRegister(RC);
772 MachineInstr *Copy =
773 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
774 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
775 .add(Src);
776
777 // Which is obviously going to be dead after we're done with it.
778 isKill = true;
779 isUndef = false;
780
781 if (LV)
782 LV->replaceKillInstruction(SrcReg, MI, *Copy);
783 }
784
785 // We've set all the parameters without issue.
786 return true;
787 }
788
789 /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit
790 /// LEA to form 3-address code by promoting to a 32-bit superregister and then
791 /// truncating back down to a 16-bit subregister.
convertToThreeAddressWithLEA(unsigned MIOpc,MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const792 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(
793 unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI,
794 LiveVariables *LV) const {
795 MachineBasicBlock::iterator MBBI = MI.getIterator();
796 unsigned Dest = MI.getOperand(0).getReg();
797 unsigned Src = MI.getOperand(1).getReg();
798 bool isDead = MI.getOperand(0).isDead();
799 bool isKill = MI.getOperand(1).isKill();
800
801 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
802 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
803 unsigned Opc, leaInReg;
804 if (Subtarget.is64Bit()) {
805 Opc = X86::LEA64_32r;
806 leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
807 } else {
808 Opc = X86::LEA32r;
809 leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
810 }
811
812 // Build and insert into an implicit UNDEF value. This is OK because
813 // well be shifting and then extracting the lower 16-bits.
814 // This has the potential to cause partial register stall. e.g.
815 // movw (%rbp,%rcx,2), %dx
816 // leal -65(%rdx), %esi
817 // But testing has shown this *does* help performance in 64-bit mode (at
818 // least on modern x86 machines).
819 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
820 MachineInstr *InsMI =
821 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
822 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
823 .addReg(Src, getKillRegState(isKill));
824
825 MachineInstrBuilder MIB =
826 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg);
827 switch (MIOpc) {
828 default: llvm_unreachable("Unreachable!");
829 case X86::SHL16ri: {
830 unsigned ShAmt = MI.getOperand(2).getImm();
831 MIB.addReg(0).addImm(1ULL << ShAmt)
832 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
833 break;
834 }
835 case X86::INC16r:
836 addRegOffset(MIB, leaInReg, true, 1);
837 break;
838 case X86::DEC16r:
839 addRegOffset(MIB, leaInReg, true, -1);
840 break;
841 case X86::ADD16ri:
842 case X86::ADD16ri8:
843 case X86::ADD16ri_DB:
844 case X86::ADD16ri8_DB:
845 addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm());
846 break;
847 case X86::ADD16rr:
848 case X86::ADD16rr_DB: {
849 unsigned Src2 = MI.getOperand(2).getReg();
850 bool isKill2 = MI.getOperand(2).isKill();
851 unsigned leaInReg2 = 0;
852 MachineInstr *InsMI2 = nullptr;
853 if (Src == Src2) {
854 // ADD16rr killed %reg1028, %reg1028
855 // just a single insert_subreg.
856 addRegReg(MIB, leaInReg, true, leaInReg, false);
857 } else {
858 if (Subtarget.is64Bit())
859 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
860 else
861 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
862 // Build and insert into an implicit UNDEF value. This is OK because
863 // well be shifting and then extracting the lower 16-bits.
864 BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
865 InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
866 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
867 .addReg(Src2, getKillRegState(isKill2));
868 addRegReg(MIB, leaInReg, true, leaInReg2, true);
869 }
870 if (LV && isKill2 && InsMI2)
871 LV->replaceKillInstruction(Src2, MI, *InsMI2);
872 break;
873 }
874 }
875
876 MachineInstr *NewMI = MIB;
877 MachineInstr *ExtMI =
878 BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
879 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
880 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
881
882 if (LV) {
883 // Update live variables
884 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
885 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
886 if (isKill)
887 LV->replaceKillInstruction(Src, MI, *InsMI);
888 if (isDead)
889 LV->replaceKillInstruction(Dest, MI, *ExtMI);
890 }
891
892 return ExtMI;
893 }
894
895 /// This method must be implemented by targets that
896 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
897 /// may be able to convert a two-address instruction into a true
898 /// three-address instruction on demand. This allows the X86 target (for
899 /// example) to convert ADD and SHL instructions into LEA instructions if they
900 /// would require register copies due to two-addressness.
901 ///
902 /// This method returns a null pointer if the transformation cannot be
903 /// performed, otherwise it returns the new instruction.
904 ///
905 MachineInstr *
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const906 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
907 MachineInstr &MI, LiveVariables *LV) const {
908 // The following opcodes also sets the condition code register(s). Only
909 // convert them to equivalent lea if the condition code register def's
910 // are dead!
911 if (hasLiveCondCodeDef(MI))
912 return nullptr;
913
914 MachineFunction &MF = *MI.getParent()->getParent();
915 // All instructions input are two-addr instructions. Get the known operands.
916 const MachineOperand &Dest = MI.getOperand(0);
917 const MachineOperand &Src = MI.getOperand(1);
918
919 MachineInstr *NewMI = nullptr;
920 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
921 // we have better subtarget support, enable the 16-bit LEA generation here.
922 // 16-bit LEA is also slow on Core2.
923 bool DisableLEA16 = true;
924 bool is64Bit = Subtarget.is64Bit();
925
926 unsigned MIOpc = MI.getOpcode();
927 switch (MIOpc) {
928 default: return nullptr;
929 case X86::SHL64ri: {
930 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
931 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
932 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
933
934 // LEA can't handle RSP.
935 if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) &&
936 !MF.getRegInfo().constrainRegClass(Src.getReg(),
937 &X86::GR64_NOSPRegClass))
938 return nullptr;
939
940 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
941 .add(Dest)
942 .addReg(0)
943 .addImm(1ULL << ShAmt)
944 .add(Src)
945 .addImm(0)
946 .addReg(0);
947 break;
948 }
949 case X86::SHL32ri: {
950 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
951 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
952 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
953
954 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
955
956 // LEA can't handle ESP.
957 bool isKill, isUndef;
958 unsigned SrcReg;
959 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
960 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
961 SrcReg, isKill, isUndef, ImplicitOp, LV))
962 return nullptr;
963
964 MachineInstrBuilder MIB =
965 BuildMI(MF, MI.getDebugLoc(), get(Opc))
966 .add(Dest)
967 .addReg(0)
968 .addImm(1ULL << ShAmt)
969 .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef))
970 .addImm(0)
971 .addReg(0);
972 if (ImplicitOp.getReg() != 0)
973 MIB.add(ImplicitOp);
974 NewMI = MIB;
975
976 break;
977 }
978 case X86::SHL16ri: {
979 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
980 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
981 if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
982
983 if (DisableLEA16)
984 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
985 : nullptr;
986 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r))
987 .add(Dest)
988 .addReg(0)
989 .addImm(1ULL << ShAmt)
990 .add(Src)
991 .addImm(0)
992 .addReg(0);
993 break;
994 }
995 case X86::INC64r:
996 case X86::INC32r: {
997 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
998 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
999 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1000 bool isKill, isUndef;
1001 unsigned SrcReg;
1002 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1003 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
1004 SrcReg, isKill, isUndef, ImplicitOp, LV))
1005 return nullptr;
1006
1007 MachineInstrBuilder MIB =
1008 BuildMI(MF, MI.getDebugLoc(), get(Opc))
1009 .add(Dest)
1010 .addReg(SrcReg,
1011 getKillRegState(isKill) | getUndefRegState(isUndef));
1012 if (ImplicitOp.getReg() != 0)
1013 MIB.add(ImplicitOp);
1014
1015 NewMI = addOffset(MIB, 1);
1016 break;
1017 }
1018 case X86::INC16r:
1019 if (DisableLEA16)
1020 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
1021 : nullptr;
1022 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1023 NewMI = addOffset(
1024 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), 1);
1025 break;
1026 case X86::DEC64r:
1027 case X86::DEC32r: {
1028 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1029 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1030 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1031
1032 bool isKill, isUndef;
1033 unsigned SrcReg;
1034 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1035 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
1036 SrcReg, isKill, isUndef, ImplicitOp, LV))
1037 return nullptr;
1038
1039 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1040 .add(Dest)
1041 .addReg(SrcReg, getUndefRegState(isUndef) |
1042 getKillRegState(isKill));
1043 if (ImplicitOp.getReg() != 0)
1044 MIB.add(ImplicitOp);
1045
1046 NewMI = addOffset(MIB, -1);
1047
1048 break;
1049 }
1050 case X86::DEC16r:
1051 if (DisableLEA16)
1052 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
1053 : nullptr;
1054 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1055 NewMI = addOffset(
1056 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), -1);
1057 break;
1058 case X86::ADD64rr:
1059 case X86::ADD64rr_DB:
1060 case X86::ADD32rr:
1061 case X86::ADD32rr_DB: {
1062 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1063 unsigned Opc;
1064 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1065 Opc = X86::LEA64r;
1066 else
1067 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1068
1069 bool isKill, isUndef;
1070 unsigned SrcReg;
1071 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1072 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1073 SrcReg, isKill, isUndef, ImplicitOp, LV))
1074 return nullptr;
1075
1076 const MachineOperand &Src2 = MI.getOperand(2);
1077 bool isKill2, isUndef2;
1078 unsigned SrcReg2;
1079 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1080 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1081 SrcReg2, isKill2, isUndef2, ImplicitOp2, LV))
1082 return nullptr;
1083
1084 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1085 if (ImplicitOp.getReg() != 0)
1086 MIB.add(ImplicitOp);
1087 if (ImplicitOp2.getReg() != 0)
1088 MIB.add(ImplicitOp2);
1089
1090 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1091
1092 // Preserve undefness of the operands.
1093 NewMI->getOperand(1).setIsUndef(isUndef);
1094 NewMI->getOperand(3).setIsUndef(isUndef2);
1095
1096 if (LV && Src2.isKill())
1097 LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1098 break;
1099 }
1100 case X86::ADD16rr:
1101 case X86::ADD16rr_DB: {
1102 if (DisableLEA16)
1103 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
1104 : nullptr;
1105 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1106 unsigned Src2 = MI.getOperand(2).getReg();
1107 bool isKill2 = MI.getOperand(2).isKill();
1108 NewMI = addRegReg(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest),
1109 Src.getReg(), Src.isKill(), Src2, isKill2);
1110
1111 // Preserve undefness of the operands.
1112 bool isUndef = MI.getOperand(1).isUndef();
1113 bool isUndef2 = MI.getOperand(2).isUndef();
1114 NewMI->getOperand(1).setIsUndef(isUndef);
1115 NewMI->getOperand(3).setIsUndef(isUndef2);
1116
1117 if (LV && isKill2)
1118 LV->replaceKillInstruction(Src2, MI, *NewMI);
1119 break;
1120 }
1121 case X86::ADD64ri32:
1122 case X86::ADD64ri8:
1123 case X86::ADD64ri32_DB:
1124 case X86::ADD64ri8_DB:
1125 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1126 NewMI = addOffset(
1127 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1128 MI.getOperand(2));
1129 break;
1130 case X86::ADD32ri:
1131 case X86::ADD32ri8:
1132 case X86::ADD32ri_DB:
1133 case X86::ADD32ri8_DB: {
1134 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1135 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1136
1137 bool isKill, isUndef;
1138 unsigned SrcReg;
1139 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1140 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1141 SrcReg, isKill, isUndef, ImplicitOp, LV))
1142 return nullptr;
1143
1144 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1145 .add(Dest)
1146 .addReg(SrcReg, getUndefRegState(isUndef) |
1147 getKillRegState(isKill));
1148 if (ImplicitOp.getReg() != 0)
1149 MIB.add(ImplicitOp);
1150
1151 NewMI = addOffset(MIB, MI.getOperand(2));
1152 break;
1153 }
1154 case X86::ADD16ri:
1155 case X86::ADD16ri8:
1156 case X86::ADD16ri_DB:
1157 case X86::ADD16ri8_DB:
1158 if (DisableLEA16)
1159 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV)
1160 : nullptr;
1161 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1162 NewMI = addOffset(
1163 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src),
1164 MI.getOperand(2));
1165 break;
1166
1167 case X86::VMOVDQU8Z128rmk:
1168 case X86::VMOVDQU8Z256rmk:
1169 case X86::VMOVDQU8Zrmk:
1170 case X86::VMOVDQU16Z128rmk:
1171 case X86::VMOVDQU16Z256rmk:
1172 case X86::VMOVDQU16Zrmk:
1173 case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1174 case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1175 case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk:
1176 case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1177 case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1178 case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk:
1179 case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk:
1180 case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk:
1181 case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk:
1182 case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk:
1183 case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk:
1184 case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: {
1185 unsigned Opc;
1186 switch (MIOpc) {
1187 default: llvm_unreachable("Unreachable!");
1188 case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break;
1189 case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break;
1190 case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break;
1191 case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break;
1192 case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break;
1193 case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break;
1194 case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1195 case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1196 case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1197 case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1198 case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1199 case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1200 case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1201 case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1202 case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1203 case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1204 case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1205 case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1206 case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break;
1207 case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break;
1208 case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break;
1209 case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break;
1210 case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break;
1211 case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break;
1212 case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break;
1213 case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break;
1214 case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break;
1215 case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break;
1216 case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break;
1217 case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break;
1218 }
1219
1220 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1221 .add(Dest)
1222 .add(MI.getOperand(2))
1223 .add(Src)
1224 .add(MI.getOperand(3))
1225 .add(MI.getOperand(4))
1226 .add(MI.getOperand(5))
1227 .add(MI.getOperand(6))
1228 .add(MI.getOperand(7));
1229 break;
1230 }
1231 case X86::VMOVDQU8Z128rrk:
1232 case X86::VMOVDQU8Z256rrk:
1233 case X86::VMOVDQU8Zrrk:
1234 case X86::VMOVDQU16Z128rrk:
1235 case X86::VMOVDQU16Z256rrk:
1236 case X86::VMOVDQU16Zrrk:
1237 case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1238 case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1239 case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk:
1240 case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1241 case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1242 case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk:
1243 case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk:
1244 case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk:
1245 case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk:
1246 case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk:
1247 case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk:
1248 case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: {
1249 unsigned Opc;
1250 switch (MIOpc) {
1251 default: llvm_unreachable("Unreachable!");
1252 case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break;
1253 case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break;
1254 case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break;
1255 case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1256 case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1257 case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break;
1258 case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1259 case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1260 case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1261 case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1262 case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1263 case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1264 case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1265 case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1266 case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1267 case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1268 case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1269 case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1270 case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1271 case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1272 case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break;
1273 case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1274 case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1275 case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break;
1276 case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break;
1277 case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break;
1278 case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break;
1279 case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break;
1280 case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break;
1281 case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break;
1282 }
1283
1284 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1285 .add(Dest)
1286 .add(MI.getOperand(2))
1287 .add(Src)
1288 .add(MI.getOperand(3));
1289 break;
1290 }
1291 }
1292
1293 if (!NewMI) return nullptr;
1294
1295 if (LV) { // Update live variables
1296 if (Src.isKill())
1297 LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1298 if (Dest.isDead())
1299 LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1300 }
1301
1302 MFI->insert(MI.getIterator(), NewMI); // Insert the new inst
1303 return NewMI;
1304 }
1305
1306 /// This determines which of three possible cases of a three source commute
1307 /// the source indexes correspond to taking into account any mask operands.
1308 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1309 /// possible.
1310 /// Case 0 - Possible to commute the first and second operands.
1311 /// Case 1 - Possible to commute the first and third operands.
1312 /// Case 2 - Possible to commute the second and third operands.
getThreeSrcCommuteCase(uint64_t TSFlags,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1313 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1314 unsigned SrcOpIdx2) {
1315 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1316 if (SrcOpIdx1 > SrcOpIdx2)
1317 std::swap(SrcOpIdx1, SrcOpIdx2);
1318
1319 unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1320 if (X86II::isKMasked(TSFlags)) {
1321 Op2++;
1322 Op3++;
1323 }
1324
1325 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1326 return 0;
1327 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1328 return 1;
1329 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1330 return 2;
1331 llvm_unreachable("Unknown three src commute case.");
1332 }
1333
getFMA3OpcodeToCommuteOperands(const MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2,const X86InstrFMA3Group & FMA3Group) const1334 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1335 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1336 const X86InstrFMA3Group &FMA3Group) const {
1337
1338 unsigned Opc = MI.getOpcode();
1339
1340 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1341 // analysis. The commute optimization is legal only if all users of FMA*_Int
1342 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1343 // not implemented yet. So, just return 0 in that case.
1344 // When such analysis are available this place will be the right place for
1345 // calling it.
1346 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1347 "Intrinsic instructions can't commute operand 1");
1348
1349 // Determine which case this commute is or if it can't be done.
1350 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1351 SrcOpIdx2);
1352 assert(Case < 3 && "Unexpected case number!");
1353
1354 // Define the FMA forms mapping array that helps to map input FMA form
1355 // to output FMA form to preserve the operation semantics after
1356 // commuting the operands.
1357 const unsigned Form132Index = 0;
1358 const unsigned Form213Index = 1;
1359 const unsigned Form231Index = 2;
1360 static const unsigned FormMapping[][3] = {
1361 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1362 // FMA132 A, C, b; ==> FMA231 C, A, b;
1363 // FMA213 B, A, c; ==> FMA213 A, B, c;
1364 // FMA231 C, A, b; ==> FMA132 A, C, b;
1365 { Form231Index, Form213Index, Form132Index },
1366 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1367 // FMA132 A, c, B; ==> FMA132 B, c, A;
1368 // FMA213 B, a, C; ==> FMA231 C, a, B;
1369 // FMA231 C, a, B; ==> FMA213 B, a, C;
1370 { Form132Index, Form231Index, Form213Index },
1371 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1372 // FMA132 a, C, B; ==> FMA213 a, B, C;
1373 // FMA213 b, A, C; ==> FMA132 b, C, A;
1374 // FMA231 c, A, B; ==> FMA231 c, B, A;
1375 { Form213Index, Form132Index, Form231Index }
1376 };
1377
1378 unsigned FMAForms[3];
1379 FMAForms[0] = FMA3Group.get132Opcode();
1380 FMAForms[1] = FMA3Group.get213Opcode();
1381 FMAForms[2] = FMA3Group.get231Opcode();
1382 unsigned FormIndex;
1383 for (FormIndex = 0; FormIndex < 3; FormIndex++)
1384 if (Opc == FMAForms[FormIndex])
1385 break;
1386
1387 // Everything is ready, just adjust the FMA opcode and return it.
1388 FormIndex = FormMapping[Case][FormIndex];
1389 return FMAForms[FormIndex];
1390 }
1391
commuteVPTERNLOG(MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1392 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1393 unsigned SrcOpIdx2) {
1394 // Determine which case this commute is or if it can't be done.
1395 unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1396 SrcOpIdx2);
1397 assert(Case < 3 && "Unexpected case value!");
1398
1399 // For each case we need to swap two pairs of bits in the final immediate.
1400 static const uint8_t SwapMasks[3][4] = {
1401 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1402 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1403 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1404 };
1405
1406 uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1407 // Clear out the bits we are swapping.
1408 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1409 SwapMasks[Case][2] | SwapMasks[Case][3]);
1410 // If the immediate had a bit of the pair set, then set the opposite bit.
1411 if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1412 if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1413 if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1414 if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1415 MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1416 }
1417
1418 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1419 // commuted.
isCommutableVPERMV3Instruction(unsigned Opcode)1420 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1421 #define VPERM_CASES(Suffix) \
1422 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1423 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1424 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1425 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1426 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1427 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1428 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1429 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1430 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1431 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1432 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1433 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1434
1435 #define VPERM_CASES_BROADCAST(Suffix) \
1436 VPERM_CASES(Suffix) \
1437 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1438 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1439 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1440 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1441 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1442 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1443
1444 switch (Opcode) {
1445 default: return false;
1446 VPERM_CASES(B)
1447 VPERM_CASES_BROADCAST(D)
1448 VPERM_CASES_BROADCAST(PD)
1449 VPERM_CASES_BROADCAST(PS)
1450 VPERM_CASES_BROADCAST(Q)
1451 VPERM_CASES(W)
1452 return true;
1453 }
1454 #undef VPERM_CASES_BROADCAST
1455 #undef VPERM_CASES
1456 }
1457
1458 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1459 // from the I opcode to the T opcode and vice versa.
getCommutedVPERMV3Opcode(unsigned Opcode)1460 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1461 #define VPERM_CASES(Orig, New) \
1462 case X86::Orig##128rr: return X86::New##128rr; \
1463 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1464 case X86::Orig##128rm: return X86::New##128rm; \
1465 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1466 case X86::Orig##256rr: return X86::New##256rr; \
1467 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1468 case X86::Orig##256rm: return X86::New##256rm; \
1469 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1470 case X86::Orig##rr: return X86::New##rr; \
1471 case X86::Orig##rrkz: return X86::New##rrkz; \
1472 case X86::Orig##rm: return X86::New##rm; \
1473 case X86::Orig##rmkz: return X86::New##rmkz;
1474
1475 #define VPERM_CASES_BROADCAST(Orig, New) \
1476 VPERM_CASES(Orig, New) \
1477 case X86::Orig##128rmb: return X86::New##128rmb; \
1478 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1479 case X86::Orig##256rmb: return X86::New##256rmb; \
1480 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1481 case X86::Orig##rmb: return X86::New##rmb; \
1482 case X86::Orig##rmbkz: return X86::New##rmbkz;
1483
1484 switch (Opcode) {
1485 VPERM_CASES(VPERMI2B, VPERMT2B)
1486 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D)
1487 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
1488 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
1489 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q)
1490 VPERM_CASES(VPERMI2W, VPERMT2W)
1491 VPERM_CASES(VPERMT2B, VPERMI2B)
1492 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D)
1493 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
1494 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
1495 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q)
1496 VPERM_CASES(VPERMT2W, VPERMI2W)
1497 }
1498
1499 llvm_unreachable("Unreachable!");
1500 #undef VPERM_CASES_BROADCAST
1501 #undef VPERM_CASES
1502 }
1503
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const1504 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1505 unsigned OpIdx1,
1506 unsigned OpIdx2) const {
1507 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
1508 if (NewMI)
1509 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
1510 return MI;
1511 };
1512
1513 switch (MI.getOpcode()) {
1514 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1515 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1516 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1517 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1518 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1519 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1520 unsigned Opc;
1521 unsigned Size;
1522 switch (MI.getOpcode()) {
1523 default: llvm_unreachable("Unreachable!");
1524 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1525 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1526 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1527 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1528 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1529 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1530 }
1531 unsigned Amt = MI.getOperand(3).getImm();
1532 auto &WorkingMI = cloneIfNew(MI);
1533 WorkingMI.setDesc(get(Opc));
1534 WorkingMI.getOperand(3).setImm(Size - Amt);
1535 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1536 OpIdx1, OpIdx2);
1537 }
1538 case X86::PFSUBrr:
1539 case X86::PFSUBRrr: {
1540 // PFSUB x, y: x = x - y
1541 // PFSUBR x, y: x = y - x
1542 unsigned Opc =
1543 (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
1544 auto &WorkingMI = cloneIfNew(MI);
1545 WorkingMI.setDesc(get(Opc));
1546 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1547 OpIdx1, OpIdx2);
1548 }
1549 case X86::BLENDPDrri:
1550 case X86::BLENDPSrri:
1551 case X86::VBLENDPDrri:
1552 case X86::VBLENDPSrri:
1553 // If we're optimizing for size, try to use MOVSD/MOVSS.
1554 if (MI.getParent()->getParent()->getFunction().optForSize()) {
1555 unsigned Mask, Opc;
1556 switch (MI.getOpcode()) {
1557 default: llvm_unreachable("Unreachable!");
1558 case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break;
1559 case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break;
1560 case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
1561 case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
1562 }
1563 if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
1564 auto &WorkingMI = cloneIfNew(MI);
1565 WorkingMI.setDesc(get(Opc));
1566 WorkingMI.RemoveOperand(3);
1567 return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
1568 /*NewMI=*/false,
1569 OpIdx1, OpIdx2);
1570 }
1571 }
1572 LLVM_FALLTHROUGH;
1573 case X86::PBLENDWrri:
1574 case X86::VBLENDPDYrri:
1575 case X86::VBLENDPSYrri:
1576 case X86::VPBLENDDrri:
1577 case X86::VPBLENDWrri:
1578 case X86::VPBLENDDYrri:
1579 case X86::VPBLENDWYrri:{
1580 unsigned Mask;
1581 switch (MI.getOpcode()) {
1582 default: llvm_unreachable("Unreachable!");
1583 case X86::BLENDPDrri: Mask = 0x03; break;
1584 case X86::BLENDPSrri: Mask = 0x0F; break;
1585 case X86::PBLENDWrri: Mask = 0xFF; break;
1586 case X86::VBLENDPDrri: Mask = 0x03; break;
1587 case X86::VBLENDPSrri: Mask = 0x0F; break;
1588 case X86::VBLENDPDYrri: Mask = 0x0F; break;
1589 case X86::VBLENDPSYrri: Mask = 0xFF; break;
1590 case X86::VPBLENDDrri: Mask = 0x0F; break;
1591 case X86::VPBLENDWrri: Mask = 0xFF; break;
1592 case X86::VPBLENDDYrri: Mask = 0xFF; break;
1593 case X86::VPBLENDWYrri: Mask = 0xFF; break;
1594 }
1595 // Only the least significant bits of Imm are used.
1596 unsigned Imm = MI.getOperand(3).getImm() & Mask;
1597 auto &WorkingMI = cloneIfNew(MI);
1598 WorkingMI.getOperand(3).setImm(Mask ^ Imm);
1599 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1600 OpIdx1, OpIdx2);
1601 }
1602 case X86::MOVSDrr:
1603 case X86::MOVSSrr:
1604 case X86::VMOVSDrr:
1605 case X86::VMOVSSrr:{
1606 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1607 assert(Subtarget.hasSSE41() && "Commuting MOVSD/MOVSS requires SSE41!");
1608
1609 unsigned Mask, Opc;
1610 switch (MI.getOpcode()) {
1611 default: llvm_unreachable("Unreachable!");
1612 case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break;
1613 case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break;
1614 case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
1615 case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
1616 }
1617
1618 auto &WorkingMI = cloneIfNew(MI);
1619 WorkingMI.setDesc(get(Opc));
1620 WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
1621 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1622 OpIdx1, OpIdx2);
1623 }
1624 case X86::PCLMULQDQrr:
1625 case X86::VPCLMULQDQrr:
1626 case X86::VPCLMULQDQYrr:
1627 case X86::VPCLMULQDQZrr:
1628 case X86::VPCLMULQDQZ128rr:
1629 case X86::VPCLMULQDQZ256rr: {
1630 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1631 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1632 unsigned Imm = MI.getOperand(3).getImm();
1633 unsigned Src1Hi = Imm & 0x01;
1634 unsigned Src2Hi = Imm & 0x10;
1635 auto &WorkingMI = cloneIfNew(MI);
1636 WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
1637 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1638 OpIdx1, OpIdx2);
1639 }
1640 case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri:
1641 case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri:
1642 case X86::VPCMPBZrri: case X86::VPCMPUBZrri:
1643 case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri:
1644 case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri:
1645 case X86::VPCMPDZrri: case X86::VPCMPUDZrri:
1646 case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri:
1647 case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri:
1648 case X86::VPCMPQZrri: case X86::VPCMPUQZrri:
1649 case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri:
1650 case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri:
1651 case X86::VPCMPWZrri: case X86::VPCMPUWZrri:
1652 case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
1653 case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
1654 case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik:
1655 case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
1656 case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
1657 case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik:
1658 case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
1659 case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
1660 case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik:
1661 case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
1662 case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
1663 case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: {
1664 // Flip comparison mode immediate (if necessary).
1665 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
1666 Imm = X86::getSwappedVPCMPImm(Imm);
1667 auto &WorkingMI = cloneIfNew(MI);
1668 WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
1669 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1670 OpIdx1, OpIdx2);
1671 }
1672 case X86::VPCOMBri: case X86::VPCOMUBri:
1673 case X86::VPCOMDri: case X86::VPCOMUDri:
1674 case X86::VPCOMQri: case X86::VPCOMUQri:
1675 case X86::VPCOMWri: case X86::VPCOMUWri: {
1676 // Flip comparison mode immediate (if necessary).
1677 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1678 Imm = X86::getSwappedVPCOMImm(Imm);
1679 auto &WorkingMI = cloneIfNew(MI);
1680 WorkingMI.getOperand(3).setImm(Imm);
1681 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1682 OpIdx1, OpIdx2);
1683 }
1684 case X86::VPERM2F128rr:
1685 case X86::VPERM2I128rr: {
1686 // Flip permute source immediate.
1687 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1688 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1689 unsigned Imm = MI.getOperand(3).getImm() & 0xFF;
1690 auto &WorkingMI = cloneIfNew(MI);
1691 WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
1692 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1693 OpIdx1, OpIdx2);
1694 }
1695 case X86::MOVHLPSrr:
1696 case X86::UNPCKHPDrr:
1697 case X86::VMOVHLPSrr:
1698 case X86::VUNPCKHPDrr:
1699 case X86::VMOVHLPSZrr:
1700 case X86::VUNPCKHPDZ128rr: {
1701 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1702
1703 unsigned Opc = MI.getOpcode();
1704 switch (Opc) {
1705 default: llvm_unreachable("Unreachable!");
1706 case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break;
1707 case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break;
1708 case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break;
1709 case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break;
1710 case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break;
1711 case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break;
1712 }
1713 auto &WorkingMI = cloneIfNew(MI);
1714 WorkingMI.setDesc(get(Opc));
1715 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1716 OpIdx1, OpIdx2);
1717 }
1718 case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr:
1719 case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr:
1720 case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr:
1721 case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr:
1722 case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr:
1723 case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr:
1724 case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr:
1725 case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr:
1726 case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr:
1727 case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr:
1728 case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr:
1729 case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr:
1730 case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr:
1731 case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr:
1732 case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr:
1733 case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: {
1734 unsigned Opc;
1735 switch (MI.getOpcode()) {
1736 default: llvm_unreachable("Unreachable!");
1737 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1738 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1739 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1740 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1741 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1742 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1743 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1744 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1745 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1746 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1747 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1748 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1749 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1750 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1751 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1752 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1753 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1754 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1755 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1756 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1757 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1758 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1759 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1760 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1761 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1762 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1763 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1764 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1765 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1766 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1767 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1768 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1769 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
1770 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1771 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1772 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1773 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1774 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1775 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
1776 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1777 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1778 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1779 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1780 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1781 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
1782 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1783 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1784 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1785 }
1786 auto &WorkingMI = cloneIfNew(MI);
1787 WorkingMI.setDesc(get(Opc));
1788 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1789 OpIdx1, OpIdx2);
1790 }
1791 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
1792 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
1793 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
1794 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
1795 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
1796 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
1797 case X86::VPTERNLOGDZrrik:
1798 case X86::VPTERNLOGDZ128rrik:
1799 case X86::VPTERNLOGDZ256rrik:
1800 case X86::VPTERNLOGQZrrik:
1801 case X86::VPTERNLOGQZ128rrik:
1802 case X86::VPTERNLOGQZ256rrik:
1803 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
1804 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
1805 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
1806 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
1807 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
1808 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
1809 case X86::VPTERNLOGDZ128rmbi:
1810 case X86::VPTERNLOGDZ256rmbi:
1811 case X86::VPTERNLOGDZrmbi:
1812 case X86::VPTERNLOGQZ128rmbi:
1813 case X86::VPTERNLOGQZ256rmbi:
1814 case X86::VPTERNLOGQZrmbi:
1815 case X86::VPTERNLOGDZ128rmbikz:
1816 case X86::VPTERNLOGDZ256rmbikz:
1817 case X86::VPTERNLOGDZrmbikz:
1818 case X86::VPTERNLOGQZ128rmbikz:
1819 case X86::VPTERNLOGQZ256rmbikz:
1820 case X86::VPTERNLOGQZrmbikz: {
1821 auto &WorkingMI = cloneIfNew(MI);
1822 commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
1823 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1824 OpIdx1, OpIdx2);
1825 }
1826 default: {
1827 if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
1828 unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
1829 auto &WorkingMI = cloneIfNew(MI);
1830 WorkingMI.setDesc(get(Opc));
1831 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1832 OpIdx1, OpIdx2);
1833 }
1834
1835 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
1836 MI.getDesc().TSFlags);
1837 if (FMA3Group) {
1838 unsigned Opc =
1839 getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
1840 auto &WorkingMI = cloneIfNew(MI);
1841 WorkingMI.setDesc(get(Opc));
1842 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
1843 OpIdx1, OpIdx2);
1844 }
1845
1846 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1847 }
1848 }
1849 }
1850
1851 bool
findThreeSrcCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2,bool IsIntrinsic) const1852 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
1853 unsigned &SrcOpIdx1,
1854 unsigned &SrcOpIdx2,
1855 bool IsIntrinsic) const {
1856 uint64_t TSFlags = MI.getDesc().TSFlags;
1857
1858 unsigned FirstCommutableVecOp = 1;
1859 unsigned LastCommutableVecOp = 3;
1860 unsigned KMaskOp = -1U;
1861 if (X86II::isKMasked(TSFlags)) {
1862 // For k-zero-masked operations it is Ok to commute the first vector
1863 // operand.
1864 // For regular k-masked operations a conservative choice is done as the
1865 // elements of the first vector operand, for which the corresponding bit
1866 // in the k-mask operand is set to 0, are copied to the result of the
1867 // instruction.
1868 // TODO/FIXME: The commute still may be legal if it is known that the
1869 // k-mask operand is set to either all ones or all zeroes.
1870 // It is also Ok to commute the 1st operand if all users of MI use only
1871 // the elements enabled by the k-mask operand. For example,
1872 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1873 // : v1[i];
1874 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1875 // // Ok, to commute v1 in FMADD213PSZrk.
1876
1877 // The k-mask operand has index = 2 for masked and zero-masked operations.
1878 KMaskOp = 2;
1879
1880 // The operand with index = 1 is used as a source for those elements for
1881 // which the corresponding bit in the k-mask is set to 0.
1882 if (X86II::isKMergeMasked(TSFlags))
1883 FirstCommutableVecOp = 3;
1884
1885 LastCommutableVecOp++;
1886 } else if (IsIntrinsic) {
1887 // Commuting the first operand of an intrinsic instruction isn't possible
1888 // unless we can prove that only the lowest element of the result is used.
1889 FirstCommutableVecOp = 2;
1890 }
1891
1892 if (isMem(MI, LastCommutableVecOp))
1893 LastCommutableVecOp--;
1894
1895 // Only the first RegOpsNum operands are commutable.
1896 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1897 // that the operand is not specified/fixed.
1898 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
1899 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
1900 SrcOpIdx1 == KMaskOp))
1901 return false;
1902 if (SrcOpIdx2 != CommuteAnyOperandIndex &&
1903 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
1904 SrcOpIdx2 == KMaskOp))
1905 return false;
1906
1907 // Look for two different register operands assumed to be commutable
1908 // regardless of the FMA opcode. The FMA opcode is adjusted later.
1909 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
1910 SrcOpIdx2 == CommuteAnyOperandIndex) {
1911 unsigned CommutableOpIdx1 = SrcOpIdx1;
1912 unsigned CommutableOpIdx2 = SrcOpIdx2;
1913
1914 // At least one of operands to be commuted is not specified and
1915 // this method is free to choose appropriate commutable operands.
1916 if (SrcOpIdx1 == SrcOpIdx2)
1917 // Both of operands are not fixed. By default set one of commutable
1918 // operands to the last register operand of the instruction.
1919 CommutableOpIdx2 = LastCommutableVecOp;
1920 else if (SrcOpIdx2 == CommuteAnyOperandIndex)
1921 // Only one of operands is not fixed.
1922 CommutableOpIdx2 = SrcOpIdx1;
1923
1924 // CommutableOpIdx2 is well defined now. Let's choose another commutable
1925 // operand and assign its index to CommutableOpIdx1.
1926 unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
1927 for (CommutableOpIdx1 = LastCommutableVecOp;
1928 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
1929 // Just ignore and skip the k-mask operand.
1930 if (CommutableOpIdx1 == KMaskOp)
1931 continue;
1932
1933 // The commuted operands must have different registers.
1934 // Otherwise, the commute transformation does not change anything and
1935 // is useless then.
1936 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
1937 break;
1938 }
1939
1940 // No appropriate commutable operands were found.
1941 if (CommutableOpIdx1 < FirstCommutableVecOp)
1942 return false;
1943
1944 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1945 // to return those values.
1946 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
1947 CommutableOpIdx1, CommutableOpIdx2))
1948 return false;
1949 }
1950
1951 return true;
1952 }
1953
findCommutedOpIndices(MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const1954 bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
1955 unsigned &SrcOpIdx2) const {
1956 const MCInstrDesc &Desc = MI.getDesc();
1957 if (!Desc.isCommutable())
1958 return false;
1959
1960 switch (MI.getOpcode()) {
1961 case X86::CMPSDrr:
1962 case X86::CMPSSrr:
1963 case X86::CMPPDrri:
1964 case X86::CMPPSrri:
1965 case X86::VCMPSDrr:
1966 case X86::VCMPSSrr:
1967 case X86::VCMPPDrri:
1968 case X86::VCMPPSrri:
1969 case X86::VCMPPDYrri:
1970 case X86::VCMPPSYrri:
1971 case X86::VCMPSDZrr:
1972 case X86::VCMPSSZrr:
1973 case X86::VCMPPDZrri:
1974 case X86::VCMPPSZrri:
1975 case X86::VCMPPDZ128rri:
1976 case X86::VCMPPSZ128rri:
1977 case X86::VCMPPDZ256rri:
1978 case X86::VCMPPSZ256rri: {
1979 // Float comparison can be safely commuted for
1980 // Ordered/Unordered/Equal/NotEqual tests
1981 unsigned Imm = MI.getOperand(3).getImm() & 0x7;
1982 switch (Imm) {
1983 case 0x00: // EQUAL
1984 case 0x03: // UNORDERED
1985 case 0x04: // NOT EQUAL
1986 case 0x07: // ORDERED
1987 // The indices of the commutable operands are 1 and 2.
1988 // Assign them to the returned operand indices here.
1989 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
1990 }
1991 return false;
1992 }
1993 case X86::MOVSDrr:
1994 case X86::MOVSSrr:
1995 case X86::VMOVSDrr:
1996 case X86::VMOVSSrr:
1997 if (Subtarget.hasSSE41())
1998 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1999 return false;
2000 case X86::MOVHLPSrr:
2001 case X86::UNPCKHPDrr:
2002 case X86::VMOVHLPSrr:
2003 case X86::VUNPCKHPDrr:
2004 case X86::VMOVHLPSZrr:
2005 case X86::VUNPCKHPDZ128rr:
2006 if (Subtarget.hasSSE2())
2007 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2008 return false;
2009 case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi:
2010 case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi:
2011 case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi:
2012 case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi:
2013 case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi:
2014 case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi:
2015 case X86::VPTERNLOGDZrrik:
2016 case X86::VPTERNLOGDZ128rrik:
2017 case X86::VPTERNLOGDZ256rrik:
2018 case X86::VPTERNLOGQZrrik:
2019 case X86::VPTERNLOGQZ128rrik:
2020 case X86::VPTERNLOGQZ256rrik:
2021 case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz:
2022 case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2023 case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2024 case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz:
2025 case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2026 case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2027 case X86::VPTERNLOGDZ128rmbi:
2028 case X86::VPTERNLOGDZ256rmbi:
2029 case X86::VPTERNLOGDZrmbi:
2030 case X86::VPTERNLOGQZ128rmbi:
2031 case X86::VPTERNLOGQZ256rmbi:
2032 case X86::VPTERNLOGQZrmbi:
2033 case X86::VPTERNLOGDZ128rmbikz:
2034 case X86::VPTERNLOGDZ256rmbikz:
2035 case X86::VPTERNLOGDZrmbikz:
2036 case X86::VPTERNLOGQZ128rmbikz:
2037 case X86::VPTERNLOGQZ256rmbikz:
2038 case X86::VPTERNLOGQZrmbikz:
2039 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2040 case X86::VPMADD52HUQZ128r:
2041 case X86::VPMADD52HUQZ128rk:
2042 case X86::VPMADD52HUQZ128rkz:
2043 case X86::VPMADD52HUQZ256r:
2044 case X86::VPMADD52HUQZ256rk:
2045 case X86::VPMADD52HUQZ256rkz:
2046 case X86::VPMADD52HUQZr:
2047 case X86::VPMADD52HUQZrk:
2048 case X86::VPMADD52HUQZrkz:
2049 case X86::VPMADD52LUQZ128r:
2050 case X86::VPMADD52LUQZ128rk:
2051 case X86::VPMADD52LUQZ128rkz:
2052 case X86::VPMADD52LUQZ256r:
2053 case X86::VPMADD52LUQZ256rk:
2054 case X86::VPMADD52LUQZ256rkz:
2055 case X86::VPMADD52LUQZr:
2056 case X86::VPMADD52LUQZrk:
2057 case X86::VPMADD52LUQZrkz: {
2058 unsigned CommutableOpIdx1 = 2;
2059 unsigned CommutableOpIdx2 = 3;
2060 if (X86II::isKMasked(Desc.TSFlags)) {
2061 // Skip the mask register.
2062 ++CommutableOpIdx1;
2063 ++CommutableOpIdx2;
2064 }
2065 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2066 CommutableOpIdx1, CommutableOpIdx2))
2067 return false;
2068 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2069 !MI.getOperand(SrcOpIdx2).isReg())
2070 // No idea.
2071 return false;
2072 return true;
2073 }
2074
2075 default:
2076 const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2077 MI.getDesc().TSFlags);
2078 if (FMA3Group)
2079 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2080 FMA3Group->isIntrinsic());
2081
2082 // Handled masked instructions since we need to skip over the mask input
2083 // and the preserved input.
2084 if (X86II::isKMasked(Desc.TSFlags)) {
2085 // First assume that the first input is the mask operand and skip past it.
2086 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2087 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2088 // Check if the first input is tied. If there isn't one then we only
2089 // need to skip the mask operand which we did above.
2090 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2091 MCOI::TIED_TO) != -1)) {
2092 // If this is zero masking instruction with a tied operand, we need to
2093 // move the first index back to the first input since this must
2094 // be a 3 input instruction and we want the first two non-mask inputs.
2095 // Otherwise this is a 2 input instruction with a preserved input and
2096 // mask, so we need to move the indices to skip one more input.
2097 if (X86II::isKMergeMasked(Desc.TSFlags)) {
2098 ++CommutableOpIdx1;
2099 ++CommutableOpIdx2;
2100 } else {
2101 --CommutableOpIdx1;
2102 }
2103 }
2104
2105 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2106 CommutableOpIdx1, CommutableOpIdx2))
2107 return false;
2108
2109 if (!MI.getOperand(SrcOpIdx1).isReg() ||
2110 !MI.getOperand(SrcOpIdx2).isReg())
2111 // No idea.
2112 return false;
2113 return true;
2114 }
2115
2116 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2117 }
2118 return false;
2119 }
2120
getCondFromBranchOpc(unsigned BrOpc)2121 X86::CondCode X86::getCondFromBranchOpc(unsigned BrOpc) {
2122 switch (BrOpc) {
2123 default: return X86::COND_INVALID;
2124 case X86::JE_1: return X86::COND_E;
2125 case X86::JNE_1: return X86::COND_NE;
2126 case X86::JL_1: return X86::COND_L;
2127 case X86::JLE_1: return X86::COND_LE;
2128 case X86::JG_1: return X86::COND_G;
2129 case X86::JGE_1: return X86::COND_GE;
2130 case X86::JB_1: return X86::COND_B;
2131 case X86::JBE_1: return X86::COND_BE;
2132 case X86::JA_1: return X86::COND_A;
2133 case X86::JAE_1: return X86::COND_AE;
2134 case X86::JS_1: return X86::COND_S;
2135 case X86::JNS_1: return X86::COND_NS;
2136 case X86::JP_1: return X86::COND_P;
2137 case X86::JNP_1: return X86::COND_NP;
2138 case X86::JO_1: return X86::COND_O;
2139 case X86::JNO_1: return X86::COND_NO;
2140 }
2141 }
2142
2143 /// Return condition code of a SET opcode.
getCondFromSETOpc(unsigned Opc)2144 X86::CondCode X86::getCondFromSETOpc(unsigned Opc) {
2145 switch (Opc) {
2146 default: return X86::COND_INVALID;
2147 case X86::SETAr: case X86::SETAm: return X86::COND_A;
2148 case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
2149 case X86::SETBr: case X86::SETBm: return X86::COND_B;
2150 case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
2151 case X86::SETEr: case X86::SETEm: return X86::COND_E;
2152 case X86::SETGr: case X86::SETGm: return X86::COND_G;
2153 case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
2154 case X86::SETLr: case X86::SETLm: return X86::COND_L;
2155 case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
2156 case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
2157 case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
2158 case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
2159 case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
2160 case X86::SETOr: case X86::SETOm: return X86::COND_O;
2161 case X86::SETPr: case X86::SETPm: return X86::COND_P;
2162 case X86::SETSr: case X86::SETSm: return X86::COND_S;
2163 }
2164 }
2165
2166 /// Return condition code of a CMov opcode.
getCondFromCMovOpc(unsigned Opc)2167 X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) {
2168 switch (Opc) {
2169 default: return X86::COND_INVALID;
2170 case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm:
2171 case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr:
2172 return X86::COND_A;
2173 case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
2174 case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
2175 return X86::COND_AE;
2176 case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm:
2177 case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr:
2178 return X86::COND_B;
2179 case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
2180 case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
2181 return X86::COND_BE;
2182 case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm:
2183 case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr:
2184 return X86::COND_E;
2185 case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm:
2186 case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr:
2187 return X86::COND_G;
2188 case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
2189 case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
2190 return X86::COND_GE;
2191 case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm:
2192 case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr:
2193 return X86::COND_L;
2194 case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
2195 case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
2196 return X86::COND_LE;
2197 case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
2198 case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
2199 return X86::COND_NE;
2200 case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
2201 case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
2202 return X86::COND_NO;
2203 case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
2204 case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
2205 return X86::COND_NP;
2206 case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
2207 case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
2208 return X86::COND_NS;
2209 case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm:
2210 case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr:
2211 return X86::COND_O;
2212 case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm:
2213 case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr:
2214 return X86::COND_P;
2215 case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm:
2216 case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr:
2217 return X86::COND_S;
2218 }
2219 }
2220
GetCondBranchFromCond(X86::CondCode CC)2221 unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
2222 switch (CC) {
2223 default: llvm_unreachable("Illegal condition code!");
2224 case X86::COND_E: return X86::JE_1;
2225 case X86::COND_NE: return X86::JNE_1;
2226 case X86::COND_L: return X86::JL_1;
2227 case X86::COND_LE: return X86::JLE_1;
2228 case X86::COND_G: return X86::JG_1;
2229 case X86::COND_GE: return X86::JGE_1;
2230 case X86::COND_B: return X86::JB_1;
2231 case X86::COND_BE: return X86::JBE_1;
2232 case X86::COND_A: return X86::JA_1;
2233 case X86::COND_AE: return X86::JAE_1;
2234 case X86::COND_S: return X86::JS_1;
2235 case X86::COND_NS: return X86::JNS_1;
2236 case X86::COND_P: return X86::JP_1;
2237 case X86::COND_NP: return X86::JNP_1;
2238 case X86::COND_O: return X86::JO_1;
2239 case X86::COND_NO: return X86::JNO_1;
2240 }
2241 }
2242
2243 /// Return the inverse of the specified condition,
2244 /// e.g. turning COND_E to COND_NE.
GetOppositeBranchCondition(X86::CondCode CC)2245 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2246 switch (CC) {
2247 default: llvm_unreachable("Illegal condition code!");
2248 case X86::COND_E: return X86::COND_NE;
2249 case X86::COND_NE: return X86::COND_E;
2250 case X86::COND_L: return X86::COND_GE;
2251 case X86::COND_LE: return X86::COND_G;
2252 case X86::COND_G: return X86::COND_LE;
2253 case X86::COND_GE: return X86::COND_L;
2254 case X86::COND_B: return X86::COND_AE;
2255 case X86::COND_BE: return X86::COND_A;
2256 case X86::COND_A: return X86::COND_BE;
2257 case X86::COND_AE: return X86::COND_B;
2258 case X86::COND_S: return X86::COND_NS;
2259 case X86::COND_NS: return X86::COND_S;
2260 case X86::COND_P: return X86::COND_NP;
2261 case X86::COND_NP: return X86::COND_P;
2262 case X86::COND_O: return X86::COND_NO;
2263 case X86::COND_NO: return X86::COND_O;
2264 case X86::COND_NE_OR_P: return X86::COND_E_AND_NP;
2265 case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2266 }
2267 }
2268
2269 /// Assuming the flags are set by MI(a,b), return the condition code if we
2270 /// modify the instructions such that flags are set by MI(b,a).
getSwappedCondition(X86::CondCode CC)2271 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2272 switch (CC) {
2273 default: return X86::COND_INVALID;
2274 case X86::COND_E: return X86::COND_E;
2275 case X86::COND_NE: return X86::COND_NE;
2276 case X86::COND_L: return X86::COND_G;
2277 case X86::COND_LE: return X86::COND_GE;
2278 case X86::COND_G: return X86::COND_L;
2279 case X86::COND_GE: return X86::COND_LE;
2280 case X86::COND_B: return X86::COND_A;
2281 case X86::COND_BE: return X86::COND_AE;
2282 case X86::COND_A: return X86::COND_B;
2283 case X86::COND_AE: return X86::COND_BE;
2284 }
2285 }
2286
2287 std::pair<X86::CondCode, bool>
getX86ConditionCode(CmpInst::Predicate Predicate)2288 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2289 X86::CondCode CC = X86::COND_INVALID;
2290 bool NeedSwap = false;
2291 switch (Predicate) {
2292 default: break;
2293 // Floating-point Predicates
2294 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
2295 case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH;
2296 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
2297 case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH;
2298 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
2299 case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH;
2300 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
2301 case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH;
2302 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
2303 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
2304 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
2305 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
2306 case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH;
2307 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2308
2309 // Integer Predicates
2310 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
2311 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
2312 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
2313 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
2314 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
2315 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
2316 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
2317 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
2318 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
2319 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
2320 }
2321
2322 return std::make_pair(CC, NeedSwap);
2323 }
2324
2325 /// Return a set opcode for the given condition and
2326 /// whether it has memory operand.
getSETFromCond(CondCode CC,bool HasMemoryOperand)2327 unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) {
2328 static const uint16_t Opc[16][2] = {
2329 { X86::SETAr, X86::SETAm },
2330 { X86::SETAEr, X86::SETAEm },
2331 { X86::SETBr, X86::SETBm },
2332 { X86::SETBEr, X86::SETBEm },
2333 { X86::SETEr, X86::SETEm },
2334 { X86::SETGr, X86::SETGm },
2335 { X86::SETGEr, X86::SETGEm },
2336 { X86::SETLr, X86::SETLm },
2337 { X86::SETLEr, X86::SETLEm },
2338 { X86::SETNEr, X86::SETNEm },
2339 { X86::SETNOr, X86::SETNOm },
2340 { X86::SETNPr, X86::SETNPm },
2341 { X86::SETNSr, X86::SETNSm },
2342 { X86::SETOr, X86::SETOm },
2343 { X86::SETPr, X86::SETPm },
2344 { X86::SETSr, X86::SETSm }
2345 };
2346
2347 assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes");
2348 return Opc[CC][HasMemoryOperand ? 1 : 0];
2349 }
2350
2351 /// Return a cmov opcode for the given condition,
2352 /// register size in bytes, and operand type.
getCMovFromCond(CondCode CC,unsigned RegBytes,bool HasMemoryOperand)2353 unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes,
2354 bool HasMemoryOperand) {
2355 static const uint16_t Opc[32][3] = {
2356 { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr },
2357 { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
2358 { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr },
2359 { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
2360 { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr },
2361 { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr },
2362 { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
2363 { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr },
2364 { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
2365 { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
2366 { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
2367 { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
2368 { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
2369 { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr },
2370 { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr },
2371 { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr },
2372 { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm },
2373 { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
2374 { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm },
2375 { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
2376 { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm },
2377 { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm },
2378 { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
2379 { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm },
2380 { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
2381 { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
2382 { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
2383 { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
2384 { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
2385 { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm },
2386 { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm },
2387 { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm }
2388 };
2389
2390 assert(CC < 16 && "Can only handle standard cond codes");
2391 unsigned Idx = HasMemoryOperand ? 16+CC : CC;
2392 switch(RegBytes) {
2393 default: llvm_unreachable("Illegal register size!");
2394 case 2: return Opc[Idx][0];
2395 case 4: return Opc[Idx][1];
2396 case 8: return Opc[Idx][2];
2397 }
2398 }
2399
2400 /// Get the VPCMP immediate for the given condition.
getVPCMPImmForCond(ISD::CondCode CC)2401 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2402 switch (CC) {
2403 default: llvm_unreachable("Unexpected SETCC condition");
2404 case ISD::SETNE: return 4;
2405 case ISD::SETEQ: return 0;
2406 case ISD::SETULT:
2407 case ISD::SETLT: return 1;
2408 case ISD::SETUGT:
2409 case ISD::SETGT: return 6;
2410 case ISD::SETUGE:
2411 case ISD::SETGE: return 5;
2412 case ISD::SETULE:
2413 case ISD::SETLE: return 2;
2414 }
2415 }
2416
2417 /// Get the VPCMP immediate if the opcodes are swapped.
getSwappedVPCMPImm(unsigned Imm)2418 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2419 switch (Imm) {
2420 default: llvm_unreachable("Unreachable!");
2421 case 0x01: Imm = 0x06; break; // LT -> NLE
2422 case 0x02: Imm = 0x05; break; // LE -> NLT
2423 case 0x05: Imm = 0x02; break; // NLT -> LE
2424 case 0x06: Imm = 0x01; break; // NLE -> LT
2425 case 0x00: // EQ
2426 case 0x03: // FALSE
2427 case 0x04: // NE
2428 case 0x07: // TRUE
2429 break;
2430 }
2431
2432 return Imm;
2433 }
2434
2435 /// Get the VPCOM immediate if the opcodes are swapped.
getSwappedVPCOMImm(unsigned Imm)2436 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2437 switch (Imm) {
2438 default: llvm_unreachable("Unreachable!");
2439 case 0x00: Imm = 0x02; break; // LT -> GT
2440 case 0x01: Imm = 0x03; break; // LE -> GE
2441 case 0x02: Imm = 0x00; break; // GT -> LT
2442 case 0x03: Imm = 0x01; break; // GE -> LE
2443 case 0x04: // EQ
2444 case 0x05: // NE
2445 case 0x06: // FALSE
2446 case 0x07: // TRUE
2447 break;
2448 }
2449
2450 return Imm;
2451 }
2452
isUnpredicatedTerminator(const MachineInstr & MI) const2453 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
2454 if (!MI.isTerminator()) return false;
2455
2456 // Conditional branch is a special case.
2457 if (MI.isBranch() && !MI.isBarrier())
2458 return true;
2459 if (!MI.isPredicable())
2460 return true;
2461 return !isPredicated(MI);
2462 }
2463
isUnconditionalTailCall(const MachineInstr & MI) const2464 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2465 switch (MI.getOpcode()) {
2466 case X86::TCRETURNdi:
2467 case X86::TCRETURNri:
2468 case X86::TCRETURNmi:
2469 case X86::TCRETURNdi64:
2470 case X86::TCRETURNri64:
2471 case X86::TCRETURNmi64:
2472 return true;
2473 default:
2474 return false;
2475 }
2476 }
2477
canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const2478 bool X86InstrInfo::canMakeTailCallConditional(
2479 SmallVectorImpl<MachineOperand> &BranchCond,
2480 const MachineInstr &TailCall) const {
2481 if (TailCall.getOpcode() != X86::TCRETURNdi &&
2482 TailCall.getOpcode() != X86::TCRETURNdi64) {
2483 // Only direct calls can be done with a conditional branch.
2484 return false;
2485 }
2486
2487 const MachineFunction *MF = TailCall.getParent()->getParent();
2488 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2489 // Conditional tail calls confuse the Win64 unwinder.
2490 return false;
2491 }
2492
2493 assert(BranchCond.size() == 1);
2494 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2495 // Can't make a conditional tail call with this condition.
2496 return false;
2497 }
2498
2499 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2500 if (X86FI->getTCReturnAddrDelta() != 0 ||
2501 TailCall.getOperand(1).getImm() != 0) {
2502 // A conditional tail call cannot do any stack adjustment.
2503 return false;
2504 }
2505
2506 return true;
2507 }
2508
replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const2509 void X86InstrInfo::replaceBranchWithTailCall(
2510 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
2511 const MachineInstr &TailCall) const {
2512 assert(canMakeTailCallConditional(BranchCond, TailCall));
2513
2514 MachineBasicBlock::iterator I = MBB.end();
2515 while (I != MBB.begin()) {
2516 --I;
2517 if (I->isDebugInstr())
2518 continue;
2519 if (!I->isBranch())
2520 assert(0 && "Can't find the branch to replace!");
2521
2522 X86::CondCode CC = X86::getCondFromBranchOpc(I->getOpcode());
2523 assert(BranchCond.size() == 1);
2524 if (CC != BranchCond[0].getImm())
2525 continue;
2526
2527 break;
2528 }
2529
2530 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
2531 : X86::TCRETURNdi64cc;
2532
2533 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
2534 MIB->addOperand(TailCall.getOperand(0)); // Destination.
2535 MIB.addImm(0); // Stack offset (not used).
2536 MIB->addOperand(BranchCond[0]); // Condition.
2537 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
2538
2539 // Add implicit uses and defs of all live regs potentially clobbered by the
2540 // call. This way they still appear live across the call.
2541 LivePhysRegs LiveRegs(getRegisterInfo());
2542 LiveRegs.addLiveOuts(MBB);
2543 SmallVector<std::pair<unsigned, const MachineOperand *>, 8> Clobbers;
2544 LiveRegs.stepForward(*MIB, Clobbers);
2545 for (const auto &C : Clobbers) {
2546 MIB.addReg(C.first, RegState::Implicit);
2547 MIB.addReg(C.first, RegState::Implicit | RegState::Define);
2548 }
2549
2550 I->eraseFromParent();
2551 }
2552
2553 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2554 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2555 // fallthrough MBB cannot be identified.
getFallThroughMBB(MachineBasicBlock * MBB,MachineBasicBlock * TBB)2556 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
2557 MachineBasicBlock *TBB) {
2558 // Look for non-EHPad successors other than TBB. If we find exactly one, it
2559 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2560 // and fallthrough MBB. If we find more than one, we cannot identify the
2561 // fallthrough MBB and should return nullptr.
2562 MachineBasicBlock *FallthroughBB = nullptr;
2563 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2564 if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
2565 continue;
2566 // Return a nullptr if we found more than one fallthrough successor.
2567 if (FallthroughBB && FallthroughBB != TBB)
2568 return nullptr;
2569 FallthroughBB = *SI;
2570 }
2571 return FallthroughBB;
2572 }
2573
AnalyzeBranchImpl(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & CondBranches,bool AllowModify) const2574 bool X86InstrInfo::AnalyzeBranchImpl(
2575 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
2576 SmallVectorImpl<MachineOperand> &Cond,
2577 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
2578
2579 // Start from the bottom of the block and work up, examining the
2580 // terminator instructions.
2581 MachineBasicBlock::iterator I = MBB.end();
2582 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
2583 while (I != MBB.begin()) {
2584 --I;
2585 if (I->isDebugInstr())
2586 continue;
2587
2588 // Working from the bottom, when we see a non-terminator instruction, we're
2589 // done.
2590 if (!isUnpredicatedTerminator(*I))
2591 break;
2592
2593 // A terminator that isn't a branch can't easily be handled by this
2594 // analysis.
2595 if (!I->isBranch())
2596 return true;
2597
2598 // Handle unconditional branches.
2599 if (I->getOpcode() == X86::JMP_1) {
2600 UnCondBrIter = I;
2601
2602 if (!AllowModify) {
2603 TBB = I->getOperand(0).getMBB();
2604 continue;
2605 }
2606
2607 // If the block has any instructions after a JMP, delete them.
2608 while (std::next(I) != MBB.end())
2609 std::next(I)->eraseFromParent();
2610
2611 Cond.clear();
2612 FBB = nullptr;
2613
2614 // Delete the JMP if it's equivalent to a fall-through.
2615 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
2616 TBB = nullptr;
2617 I->eraseFromParent();
2618 I = MBB.end();
2619 UnCondBrIter = MBB.end();
2620 continue;
2621 }
2622
2623 // TBB is used to indicate the unconditional destination.
2624 TBB = I->getOperand(0).getMBB();
2625 continue;
2626 }
2627
2628 // Handle conditional branches.
2629 X86::CondCode BranchCode = X86::getCondFromBranchOpc(I->getOpcode());
2630 if (BranchCode == X86::COND_INVALID)
2631 return true; // Can't handle indirect branch.
2632
2633 // Working from the bottom, handle the first conditional branch.
2634 if (Cond.empty()) {
2635 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
2636 if (AllowModify && UnCondBrIter != MBB.end() &&
2637 MBB.isLayoutSuccessor(TargetBB)) {
2638 // If we can modify the code and it ends in something like:
2639 //
2640 // jCC L1
2641 // jmp L2
2642 // L1:
2643 // ...
2644 // L2:
2645 //
2646 // Then we can change this to:
2647 //
2648 // jnCC L2
2649 // L1:
2650 // ...
2651 // L2:
2652 //
2653 // Which is a bit more efficient.
2654 // We conditionally jump to the fall-through block.
2655 BranchCode = GetOppositeBranchCondition(BranchCode);
2656 unsigned JNCC = GetCondBranchFromCond(BranchCode);
2657 MachineBasicBlock::iterator OldInst = I;
2658
2659 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
2660 .addMBB(UnCondBrIter->getOperand(0).getMBB());
2661 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
2662 .addMBB(TargetBB);
2663
2664 OldInst->eraseFromParent();
2665 UnCondBrIter->eraseFromParent();
2666
2667 // Restart the analysis.
2668 UnCondBrIter = MBB.end();
2669 I = MBB.end();
2670 continue;
2671 }
2672
2673 FBB = TBB;
2674 TBB = I->getOperand(0).getMBB();
2675 Cond.push_back(MachineOperand::CreateImm(BranchCode));
2676 CondBranches.push_back(&*I);
2677 continue;
2678 }
2679
2680 // Handle subsequent conditional branches. Only handle the case where all
2681 // conditional branches branch to the same destination and their condition
2682 // opcodes fit one of the special multi-branch idioms.
2683 assert(Cond.size() == 1);
2684 assert(TBB);
2685
2686 // If the conditions are the same, we can leave them alone.
2687 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
2688 auto NewTBB = I->getOperand(0).getMBB();
2689 if (OldBranchCode == BranchCode && TBB == NewTBB)
2690 continue;
2691
2692 // If they differ, see if they fit one of the known patterns. Theoretically,
2693 // we could handle more patterns here, but we shouldn't expect to see them
2694 // if instruction selection has done a reasonable job.
2695 if (TBB == NewTBB &&
2696 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
2697 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
2698 BranchCode = X86::COND_NE_OR_P;
2699 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
2700 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
2701 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
2702 return true;
2703
2704 // X86::COND_E_AND_NP usually has two different branch destinations.
2705 //
2706 // JP B1
2707 // JE B2
2708 // JMP B1
2709 // B1:
2710 // B2:
2711 //
2712 // Here this condition branches to B2 only if NP && E. It has another
2713 // equivalent form:
2714 //
2715 // JNE B1
2716 // JNP B2
2717 // JMP B1
2718 // B1:
2719 // B2:
2720 //
2721 // Similarly it branches to B2 only if E && NP. That is why this condition
2722 // is named with COND_E_AND_NP.
2723 BranchCode = X86::COND_E_AND_NP;
2724 } else
2725 return true;
2726
2727 // Update the MachineOperand.
2728 Cond[0].setImm(BranchCode);
2729 CondBranches.push_back(&*I);
2730 }
2731
2732 return false;
2733 }
2734
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const2735 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
2736 MachineBasicBlock *&TBB,
2737 MachineBasicBlock *&FBB,
2738 SmallVectorImpl<MachineOperand> &Cond,
2739 bool AllowModify) const {
2740 SmallVector<MachineInstr *, 4> CondBranches;
2741 return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
2742 }
2743
analyzeBranchPredicate(MachineBasicBlock & MBB,MachineBranchPredicate & MBP,bool AllowModify) const2744 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
2745 MachineBranchPredicate &MBP,
2746 bool AllowModify) const {
2747 using namespace std::placeholders;
2748
2749 SmallVector<MachineOperand, 4> Cond;
2750 SmallVector<MachineInstr *, 4> CondBranches;
2751 if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
2752 AllowModify))
2753 return true;
2754
2755 if (Cond.size() != 1)
2756 return true;
2757
2758 assert(MBP.TrueDest && "expected!");
2759
2760 if (!MBP.FalseDest)
2761 MBP.FalseDest = MBB.getNextNode();
2762
2763 const TargetRegisterInfo *TRI = &getRegisterInfo();
2764
2765 MachineInstr *ConditionDef = nullptr;
2766 bool SingleUseCondition = true;
2767
2768 for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
2769 if (I->modifiesRegister(X86::EFLAGS, TRI)) {
2770 ConditionDef = &*I;
2771 break;
2772 }
2773
2774 if (I->readsRegister(X86::EFLAGS, TRI))
2775 SingleUseCondition = false;
2776 }
2777
2778 if (!ConditionDef)
2779 return true;
2780
2781 if (SingleUseCondition) {
2782 for (auto *Succ : MBB.successors())
2783 if (Succ->isLiveIn(X86::EFLAGS))
2784 SingleUseCondition = false;
2785 }
2786
2787 MBP.ConditionDef = ConditionDef;
2788 MBP.SingleUseCondition = SingleUseCondition;
2789
2790 // Currently we only recognize the simple pattern:
2791 //
2792 // test %reg, %reg
2793 // je %label
2794 //
2795 const unsigned TestOpcode =
2796 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
2797
2798 if (ConditionDef->getOpcode() == TestOpcode &&
2799 ConditionDef->getNumOperands() == 3 &&
2800 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
2801 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
2802 MBP.LHS = ConditionDef->getOperand(0);
2803 MBP.RHS = MachineOperand::CreateImm(0);
2804 MBP.Predicate = Cond[0].getImm() == X86::COND_NE
2805 ? MachineBranchPredicate::PRED_NE
2806 : MachineBranchPredicate::PRED_EQ;
2807 return false;
2808 }
2809
2810 return true;
2811 }
2812
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const2813 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
2814 int *BytesRemoved) const {
2815 assert(!BytesRemoved && "code size not handled");
2816
2817 MachineBasicBlock::iterator I = MBB.end();
2818 unsigned Count = 0;
2819
2820 while (I != MBB.begin()) {
2821 --I;
2822 if (I->isDebugInstr())
2823 continue;
2824 if (I->getOpcode() != X86::JMP_1 &&
2825 X86::getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
2826 break;
2827 // Remove the branch.
2828 I->eraseFromParent();
2829 I = MBB.end();
2830 ++Count;
2831 }
2832
2833 return Count;
2834 }
2835
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const2836 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
2837 MachineBasicBlock *TBB,
2838 MachineBasicBlock *FBB,
2839 ArrayRef<MachineOperand> Cond,
2840 const DebugLoc &DL,
2841 int *BytesAdded) const {
2842 // Shouldn't be a fall through.
2843 assert(TBB && "insertBranch must not be told to insert a fallthrough");
2844 assert((Cond.size() == 1 || Cond.size() == 0) &&
2845 "X86 branch conditions have one component!");
2846 assert(!BytesAdded && "code size not handled");
2847
2848 if (Cond.empty()) {
2849 // Unconditional branch?
2850 assert(!FBB && "Unconditional branch with multiple successors!");
2851 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
2852 return 1;
2853 }
2854
2855 // If FBB is null, it is implied to be a fall-through block.
2856 bool FallThru = FBB == nullptr;
2857
2858 // Conditional branch.
2859 unsigned Count = 0;
2860 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
2861 switch (CC) {
2862 case X86::COND_NE_OR_P:
2863 // Synthesize NE_OR_P with two branches.
2864 BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB);
2865 ++Count;
2866 BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB);
2867 ++Count;
2868 break;
2869 case X86::COND_E_AND_NP:
2870 // Use the next block of MBB as FBB if it is null.
2871 if (FBB == nullptr) {
2872 FBB = getFallThroughMBB(&MBB, TBB);
2873 assert(FBB && "MBB cannot be the last block in function when the false "
2874 "body is a fall-through.");
2875 }
2876 // Synthesize COND_E_AND_NP with two branches.
2877 BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB);
2878 ++Count;
2879 BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB);
2880 ++Count;
2881 break;
2882 default: {
2883 unsigned Opc = GetCondBranchFromCond(CC);
2884 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
2885 ++Count;
2886 }
2887 }
2888 if (!FallThru) {
2889 // Two-way Conditional branch. Insert the second branch.
2890 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
2891 ++Count;
2892 }
2893 return Count;
2894 }
2895
2896 bool X86InstrInfo::
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const2897 canInsertSelect(const MachineBasicBlock &MBB,
2898 ArrayRef<MachineOperand> Cond,
2899 unsigned TrueReg, unsigned FalseReg,
2900 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
2901 // Not all subtargets have cmov instructions.
2902 if (!Subtarget.hasCMov())
2903 return false;
2904 if (Cond.size() != 1)
2905 return false;
2906 // We cannot do the composite conditions, at least not in SSA form.
2907 if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
2908 return false;
2909
2910 // Check register classes.
2911 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2912 const TargetRegisterClass *RC =
2913 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
2914 if (!RC)
2915 return false;
2916
2917 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2918 if (X86::GR16RegClass.hasSubClassEq(RC) ||
2919 X86::GR32RegClass.hasSubClassEq(RC) ||
2920 X86::GR64RegClass.hasSubClassEq(RC)) {
2921 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2922 // Bridge. Probably Ivy Bridge as well.
2923 CondCycles = 2;
2924 TrueCycles = 2;
2925 FalseCycles = 2;
2926 return true;
2927 }
2928
2929 // Can't do vectors.
2930 return false;
2931 }
2932
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DstReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg) const2933 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
2934 MachineBasicBlock::iterator I,
2935 const DebugLoc &DL, unsigned DstReg,
2936 ArrayRef<MachineOperand> Cond, unsigned TrueReg,
2937 unsigned FalseReg) const {
2938 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2939 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
2940 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
2941 assert(Cond.size() == 1 && "Invalid Cond array");
2942 unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
2943 TRI.getRegSizeInBits(RC) / 8,
2944 false /*HasMemoryOperand*/);
2945 BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
2946 }
2947
2948 /// Test if the given register is a physical h register.
isHReg(unsigned Reg)2949 static bool isHReg(unsigned Reg) {
2950 return X86::GR8_ABCD_HRegClass.contains(Reg);
2951 }
2952
2953 // Try and copy between VR128/VR64 and GR64 registers.
CopyToFromAsymmetricReg(unsigned DestReg,unsigned SrcReg,const X86Subtarget & Subtarget)2954 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
2955 const X86Subtarget &Subtarget) {
2956 bool HasAVX = Subtarget.hasAVX();
2957 bool HasAVX512 = Subtarget.hasAVX512();
2958
2959 // SrcReg(MaskReg) -> DestReg(GR64)
2960 // SrcReg(MaskReg) -> DestReg(GR32)
2961
2962 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2963 if (X86::VK16RegClass.contains(SrcReg)) {
2964 if (X86::GR64RegClass.contains(DestReg)) {
2965 assert(Subtarget.hasBWI());
2966 return X86::KMOVQrk;
2967 }
2968 if (X86::GR32RegClass.contains(DestReg))
2969 return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
2970 }
2971
2972 // SrcReg(GR64) -> DestReg(MaskReg)
2973 // SrcReg(GR32) -> DestReg(MaskReg)
2974
2975 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2976 if (X86::VK16RegClass.contains(DestReg)) {
2977 if (X86::GR64RegClass.contains(SrcReg)) {
2978 assert(Subtarget.hasBWI());
2979 return X86::KMOVQkr;
2980 }
2981 if (X86::GR32RegClass.contains(SrcReg))
2982 return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
2983 }
2984
2985
2986 // SrcReg(VR128) -> DestReg(GR64)
2987 // SrcReg(VR64) -> DestReg(GR64)
2988 // SrcReg(GR64) -> DestReg(VR128)
2989 // SrcReg(GR64) -> DestReg(VR64)
2990
2991 if (X86::GR64RegClass.contains(DestReg)) {
2992 if (X86::VR128XRegClass.contains(SrcReg))
2993 // Copy from a VR128 register to a GR64 register.
2994 return HasAVX512 ? X86::VMOVPQIto64Zrr :
2995 HasAVX ? X86::VMOVPQIto64rr :
2996 X86::MOVPQIto64rr;
2997 if (X86::VR64RegClass.contains(SrcReg))
2998 // Copy from a VR64 register to a GR64 register.
2999 return X86::MMX_MOVD64from64rr;
3000 } else if (X86::GR64RegClass.contains(SrcReg)) {
3001 // Copy from a GR64 register to a VR128 register.
3002 if (X86::VR128XRegClass.contains(DestReg))
3003 return HasAVX512 ? X86::VMOV64toPQIZrr :
3004 HasAVX ? X86::VMOV64toPQIrr :
3005 X86::MOV64toPQIrr;
3006 // Copy from a GR64 register to a VR64 register.
3007 if (X86::VR64RegClass.contains(DestReg))
3008 return X86::MMX_MOVD64to64rr;
3009 }
3010
3011 // SrcReg(FR32) -> DestReg(GR32)
3012 // SrcReg(GR32) -> DestReg(FR32)
3013
3014 if (X86::GR32RegClass.contains(DestReg) &&
3015 X86::FR32XRegClass.contains(SrcReg))
3016 // Copy from a FR32 register to a GR32 register.
3017 return HasAVX512 ? X86::VMOVSS2DIZrr :
3018 HasAVX ? X86::VMOVSS2DIrr :
3019 X86::MOVSS2DIrr;
3020
3021 if (X86::FR32XRegClass.contains(DestReg) &&
3022 X86::GR32RegClass.contains(SrcReg))
3023 // Copy from a GR32 register to a FR32 register.
3024 return HasAVX512 ? X86::VMOVDI2SSZrr :
3025 HasAVX ? X86::VMOVDI2SSrr :
3026 X86::MOVDI2SSrr;
3027 return 0;
3028 }
3029
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const3030 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3031 MachineBasicBlock::iterator MI,
3032 const DebugLoc &DL, unsigned DestReg,
3033 unsigned SrcReg, bool KillSrc) const {
3034 // First deal with the normal symmetric copies.
3035 bool HasAVX = Subtarget.hasAVX();
3036 bool HasVLX = Subtarget.hasVLX();
3037 unsigned Opc = 0;
3038 if (X86::GR64RegClass.contains(DestReg, SrcReg))
3039 Opc = X86::MOV64rr;
3040 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3041 Opc = X86::MOV32rr;
3042 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3043 Opc = X86::MOV16rr;
3044 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3045 // Copying to or from a physical H register on x86-64 requires a NOREX
3046 // move. Otherwise use a normal move.
3047 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3048 Subtarget.is64Bit()) {
3049 Opc = X86::MOV8rr_NOREX;
3050 // Both operands must be encodable without an REX prefix.
3051 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3052 "8-bit H register can not be copied outside GR8_NOREX");
3053 } else
3054 Opc = X86::MOV8rr;
3055 }
3056 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3057 Opc = X86::MMX_MOVQ64rr;
3058 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3059 if (HasVLX)
3060 Opc = X86::VMOVAPSZ128rr;
3061 else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3062 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3063 else {
3064 // If this an extended register and we don't have VLX we need to use a
3065 // 512-bit move.
3066 Opc = X86::VMOVAPSZrr;
3067 const TargetRegisterInfo *TRI = &getRegisterInfo();
3068 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3069 &X86::VR512RegClass);
3070 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3071 &X86::VR512RegClass);
3072 }
3073 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3074 if (HasVLX)
3075 Opc = X86::VMOVAPSZ256rr;
3076 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3077 Opc = X86::VMOVAPSYrr;
3078 else {
3079 // If this an extended register and we don't have VLX we need to use a
3080 // 512-bit move.
3081 Opc = X86::VMOVAPSZrr;
3082 const TargetRegisterInfo *TRI = &getRegisterInfo();
3083 DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3084 &X86::VR512RegClass);
3085 SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3086 &X86::VR512RegClass);
3087 }
3088 } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3089 Opc = X86::VMOVAPSZrr;
3090 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3091 else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3092 Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3093 if (!Opc)
3094 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3095
3096 if (Opc) {
3097 BuildMI(MBB, MI, DL, get(Opc), DestReg)
3098 .addReg(SrcReg, getKillRegState(KillSrc));
3099 return;
3100 }
3101
3102 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3103 // FIXME: We use a fatal error here because historically LLVM has tried
3104 // lower some of these physreg copies and we want to ensure we get
3105 // reasonable bug reports if someone encounters a case no other testing
3106 // found. This path should be removed after the LLVM 7 release.
3107 report_fatal_error("Unable to copy EFLAGS physical register!");
3108 }
3109
3110 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3111 << RI.getName(DestReg) << '\n');
3112 report_fatal_error("Cannot emit physreg copy instruction");
3113 }
3114
isCopyInstr(const MachineInstr & MI,const MachineOperand * & Src,const MachineOperand * & Dest) const3115 bool X86InstrInfo::isCopyInstr(const MachineInstr &MI,
3116 const MachineOperand *&Src,
3117 const MachineOperand *&Dest) const {
3118 if (MI.isMoveReg()) {
3119 Dest = &MI.getOperand(0);
3120 Src = &MI.getOperand(1);
3121 return true;
3122 }
3123 return false;
3124 }
3125
getLoadStoreRegOpcode(unsigned Reg,const TargetRegisterClass * RC,bool isStackAligned,const X86Subtarget & STI,bool load)3126 static unsigned getLoadStoreRegOpcode(unsigned Reg,
3127 const TargetRegisterClass *RC,
3128 bool isStackAligned,
3129 const X86Subtarget &STI,
3130 bool load) {
3131 bool HasAVX = STI.hasAVX();
3132 bool HasAVX512 = STI.hasAVX512();
3133 bool HasVLX = STI.hasVLX();
3134
3135 switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3136 default:
3137 llvm_unreachable("Unknown spill size");
3138 case 1:
3139 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3140 if (STI.is64Bit())
3141 // Copying to or from a physical H register on x86-64 requires a NOREX
3142 // move. Otherwise use a normal move.
3143 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3144 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3145 return load ? X86::MOV8rm : X86::MOV8mr;
3146 case 2:
3147 if (X86::VK16RegClass.hasSubClassEq(RC))
3148 return load ? X86::KMOVWkm : X86::KMOVWmk;
3149 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3150 return load ? X86::MOV16rm : X86::MOV16mr;
3151 case 4:
3152 if (X86::GR32RegClass.hasSubClassEq(RC))
3153 return load ? X86::MOV32rm : X86::MOV32mr;
3154 if (X86::FR32XRegClass.hasSubClassEq(RC))
3155 return load ?
3156 (HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
3157 (HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
3158 if (X86::RFP32RegClass.hasSubClassEq(RC))
3159 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3160 if (X86::VK32RegClass.hasSubClassEq(RC)) {
3161 assert(STI.hasBWI() && "KMOVD requires BWI");
3162 return load ? X86::KMOVDkm : X86::KMOVDmk;
3163 }
3164 llvm_unreachable("Unknown 4-byte regclass");
3165 case 8:
3166 if (X86::GR64RegClass.hasSubClassEq(RC))
3167 return load ? X86::MOV64rm : X86::MOV64mr;
3168 if (X86::FR64XRegClass.hasSubClassEq(RC))
3169 return load ?
3170 (HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
3171 (HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
3172 if (X86::VR64RegClass.hasSubClassEq(RC))
3173 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3174 if (X86::RFP64RegClass.hasSubClassEq(RC))
3175 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3176 if (X86::VK64RegClass.hasSubClassEq(RC)) {
3177 assert(STI.hasBWI() && "KMOVQ requires BWI");
3178 return load ? X86::KMOVQkm : X86::KMOVQmk;
3179 }
3180 llvm_unreachable("Unknown 8-byte regclass");
3181 case 10:
3182 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3183 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3184 case 16: {
3185 if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3186 // If stack is realigned we can use aligned stores.
3187 if (isStackAligned)
3188 return load ?
3189 (HasVLX ? X86::VMOVAPSZ128rm :
3190 HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3191 HasAVX ? X86::VMOVAPSrm :
3192 X86::MOVAPSrm):
3193 (HasVLX ? X86::VMOVAPSZ128mr :
3194 HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3195 HasAVX ? X86::VMOVAPSmr :
3196 X86::MOVAPSmr);
3197 else
3198 return load ?
3199 (HasVLX ? X86::VMOVUPSZ128rm :
3200 HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3201 HasAVX ? X86::VMOVUPSrm :
3202 X86::MOVUPSrm):
3203 (HasVLX ? X86::VMOVUPSZ128mr :
3204 HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3205 HasAVX ? X86::VMOVUPSmr :
3206 X86::MOVUPSmr);
3207 }
3208 if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3209 if (STI.is64Bit())
3210 return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3211 else
3212 return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3213 }
3214 llvm_unreachable("Unknown 16-byte regclass");
3215 }
3216 case 32:
3217 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3218 // If stack is realigned we can use aligned stores.
3219 if (isStackAligned)
3220 return load ?
3221 (HasVLX ? X86::VMOVAPSZ256rm :
3222 HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3223 X86::VMOVAPSYrm) :
3224 (HasVLX ? X86::VMOVAPSZ256mr :
3225 HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3226 X86::VMOVAPSYmr);
3227 else
3228 return load ?
3229 (HasVLX ? X86::VMOVUPSZ256rm :
3230 HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3231 X86::VMOVUPSYrm) :
3232 (HasVLX ? X86::VMOVUPSZ256mr :
3233 HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3234 X86::VMOVUPSYmr);
3235 case 64:
3236 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3237 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3238 if (isStackAligned)
3239 return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3240 else
3241 return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3242 }
3243 }
3244
getMemOpBaseRegImmOfs(MachineInstr & MemOp,unsigned & BaseReg,int64_t & Offset,const TargetRegisterInfo * TRI) const3245 bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
3246 int64_t &Offset,
3247 const TargetRegisterInfo *TRI) const {
3248 const MCInstrDesc &Desc = MemOp.getDesc();
3249 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3250 if (MemRefBegin < 0)
3251 return false;
3252
3253 MemRefBegin += X86II::getOperandBias(Desc);
3254
3255 MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3256 if (!BaseMO.isReg()) // Can be an MO_FrameIndex
3257 return false;
3258
3259 BaseReg = BaseMO.getReg();
3260 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3261 return false;
3262
3263 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3264 X86::NoRegister)
3265 return false;
3266
3267 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3268
3269 // Displacement can be symbolic
3270 if (!DispMO.isImm())
3271 return false;
3272
3273 Offset = DispMO.getImm();
3274
3275 return true;
3276 }
3277
getStoreRegOpcode(unsigned SrcReg,const TargetRegisterClass * RC,bool isStackAligned,const X86Subtarget & STI)3278 static unsigned getStoreRegOpcode(unsigned SrcReg,
3279 const TargetRegisterClass *RC,
3280 bool isStackAligned,
3281 const X86Subtarget &STI) {
3282 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false);
3283 }
3284
3285
getLoadRegOpcode(unsigned DestReg,const TargetRegisterClass * RC,bool isStackAligned,const X86Subtarget & STI)3286 static unsigned getLoadRegOpcode(unsigned DestReg,
3287 const TargetRegisterClass *RC,
3288 bool isStackAligned,
3289 const X86Subtarget &STI) {
3290 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true);
3291 }
3292
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3293 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3294 MachineBasicBlock::iterator MI,
3295 unsigned SrcReg, bool isKill, int FrameIdx,
3296 const TargetRegisterClass *RC,
3297 const TargetRegisterInfo *TRI) const {
3298 const MachineFunction &MF = *MBB.getParent();
3299 assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3300 "Stack slot too small for store");
3301 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3302 bool isAligned =
3303 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3304 RI.canRealignStack(MF);
3305 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3306 DebugLoc DL = MBB.findDebugLoc(MI);
3307 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
3308 .addReg(SrcReg, getKillRegState(isKill));
3309 }
3310
storeRegToAddr(MachineFunction & MF,unsigned SrcReg,bool isKill,SmallVectorImpl<MachineOperand> & Addr,const TargetRegisterClass * RC,MachineInstr::mmo_iterator MMOBegin,MachineInstr::mmo_iterator MMOEnd,SmallVectorImpl<MachineInstr * > & NewMIs) const3311 void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
3312 bool isKill,
3313 SmallVectorImpl<MachineOperand> &Addr,
3314 const TargetRegisterClass *RC,
3315 MachineInstr::mmo_iterator MMOBegin,
3316 MachineInstr::mmo_iterator MMOEnd,
3317 SmallVectorImpl<MachineInstr*> &NewMIs) const {
3318 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3319 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3320 bool isAligned = MMOBegin != MMOEnd &&
3321 (*MMOBegin)->getAlignment() >= Alignment;
3322 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3323 DebugLoc DL;
3324 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
3325 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3326 MIB.add(Addr[i]);
3327 MIB.addReg(SrcReg, getKillRegState(isKill));
3328 (*MIB).setMemRefs(MMOBegin, MMOEnd);
3329 NewMIs.push_back(MIB);
3330 }
3331
3332
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3333 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3334 MachineBasicBlock::iterator MI,
3335 unsigned DestReg, int FrameIdx,
3336 const TargetRegisterClass *RC,
3337 const TargetRegisterInfo *TRI) const {
3338 const MachineFunction &MF = *MBB.getParent();
3339 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3340 bool isAligned =
3341 (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) ||
3342 RI.canRealignStack(MF);
3343 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3344 DebugLoc DL = MBB.findDebugLoc(MI);
3345 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
3346 }
3347
loadRegFromAddr(MachineFunction & MF,unsigned DestReg,SmallVectorImpl<MachineOperand> & Addr,const TargetRegisterClass * RC,MachineInstr::mmo_iterator MMOBegin,MachineInstr::mmo_iterator MMOEnd,SmallVectorImpl<MachineInstr * > & NewMIs) const3348 void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
3349 SmallVectorImpl<MachineOperand> &Addr,
3350 const TargetRegisterClass *RC,
3351 MachineInstr::mmo_iterator MMOBegin,
3352 MachineInstr::mmo_iterator MMOEnd,
3353 SmallVectorImpl<MachineInstr*> &NewMIs) const {
3354 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
3355 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
3356 bool isAligned = MMOBegin != MMOEnd &&
3357 (*MMOBegin)->getAlignment() >= Alignment;
3358 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3359 DebugLoc DL;
3360 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
3361 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
3362 MIB.add(Addr[i]);
3363 (*MIB).setMemRefs(MMOBegin, MMOEnd);
3364 NewMIs.push_back(MIB);
3365 }
3366
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const3367 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
3368 unsigned &SrcReg2, int &CmpMask,
3369 int &CmpValue) const {
3370 switch (MI.getOpcode()) {
3371 default: break;
3372 case X86::CMP64ri32:
3373 case X86::CMP64ri8:
3374 case X86::CMP32ri:
3375 case X86::CMP32ri8:
3376 case X86::CMP16ri:
3377 case X86::CMP16ri8:
3378 case X86::CMP8ri:
3379 SrcReg = MI.getOperand(0).getReg();
3380 SrcReg2 = 0;
3381 if (MI.getOperand(1).isImm()) {
3382 CmpMask = ~0;
3383 CmpValue = MI.getOperand(1).getImm();
3384 } else {
3385 CmpMask = CmpValue = 0;
3386 }
3387 return true;
3388 // A SUB can be used to perform comparison.
3389 case X86::SUB64rm:
3390 case X86::SUB32rm:
3391 case X86::SUB16rm:
3392 case X86::SUB8rm:
3393 SrcReg = MI.getOperand(1).getReg();
3394 SrcReg2 = 0;
3395 CmpMask = 0;
3396 CmpValue = 0;
3397 return true;
3398 case X86::SUB64rr:
3399 case X86::SUB32rr:
3400 case X86::SUB16rr:
3401 case X86::SUB8rr:
3402 SrcReg = MI.getOperand(1).getReg();
3403 SrcReg2 = MI.getOperand(2).getReg();
3404 CmpMask = 0;
3405 CmpValue = 0;
3406 return true;
3407 case X86::SUB64ri32:
3408 case X86::SUB64ri8:
3409 case X86::SUB32ri:
3410 case X86::SUB32ri8:
3411 case X86::SUB16ri:
3412 case X86::SUB16ri8:
3413 case X86::SUB8ri:
3414 SrcReg = MI.getOperand(1).getReg();
3415 SrcReg2 = 0;
3416 if (MI.getOperand(2).isImm()) {
3417 CmpMask = ~0;
3418 CmpValue = MI.getOperand(2).getImm();
3419 } else {
3420 CmpMask = CmpValue = 0;
3421 }
3422 return true;
3423 case X86::CMP64rr:
3424 case X86::CMP32rr:
3425 case X86::CMP16rr:
3426 case X86::CMP8rr:
3427 SrcReg = MI.getOperand(0).getReg();
3428 SrcReg2 = MI.getOperand(1).getReg();
3429 CmpMask = 0;
3430 CmpValue = 0;
3431 return true;
3432 case X86::TEST8rr:
3433 case X86::TEST16rr:
3434 case X86::TEST32rr:
3435 case X86::TEST64rr:
3436 SrcReg = MI.getOperand(0).getReg();
3437 if (MI.getOperand(1).getReg() != SrcReg)
3438 return false;
3439 // Compare against zero.
3440 SrcReg2 = 0;
3441 CmpMask = ~0;
3442 CmpValue = 0;
3443 return true;
3444 }
3445 return false;
3446 }
3447
3448 /// Check whether the first instruction, whose only
3449 /// purpose is to update flags, can be made redundant.
3450 /// CMPrr can be made redundant by SUBrr if the operands are the same.
3451 /// This function can be extended later on.
3452 /// SrcReg, SrcRegs: register operands for FlagI.
3453 /// ImmValue: immediate for FlagI if it takes an immediate.
isRedundantFlagInstr(MachineInstr & FlagI,unsigned SrcReg,unsigned SrcReg2,int ImmMask,int ImmValue,MachineInstr & OI)3454 inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg,
3455 unsigned SrcReg2, int ImmMask,
3456 int ImmValue, MachineInstr &OI) {
3457 if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
3458 (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
3459 (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
3460 (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
3461 ((OI.getOperand(1).getReg() == SrcReg &&
3462 OI.getOperand(2).getReg() == SrcReg2) ||
3463 (OI.getOperand(1).getReg() == SrcReg2 &&
3464 OI.getOperand(2).getReg() == SrcReg)))
3465 return true;
3466
3467 if (ImmMask != 0 &&
3468 ((FlagI.getOpcode() == X86::CMP64ri32 &&
3469 OI.getOpcode() == X86::SUB64ri32) ||
3470 (FlagI.getOpcode() == X86::CMP64ri8 &&
3471 OI.getOpcode() == X86::SUB64ri8) ||
3472 (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
3473 (FlagI.getOpcode() == X86::CMP32ri8 &&
3474 OI.getOpcode() == X86::SUB32ri8) ||
3475 (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
3476 (FlagI.getOpcode() == X86::CMP16ri8 &&
3477 OI.getOpcode() == X86::SUB16ri8) ||
3478 (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
3479 OI.getOperand(1).getReg() == SrcReg &&
3480 OI.getOperand(2).getImm() == ImmValue)
3481 return true;
3482 return false;
3483 }
3484
3485 /// Check whether the definition can be converted
3486 /// to remove a comparison against zero.
isDefConvertible(MachineInstr & MI)3487 inline static bool isDefConvertible(MachineInstr &MI) {
3488 switch (MI.getOpcode()) {
3489 default: return false;
3490
3491 // The shift instructions only modify ZF if their shift count is non-zero.
3492 // N.B.: The processor truncates the shift count depending on the encoding.
3493 case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri:
3494 case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri:
3495 return getTruncatedShiftCount(MI, 2) != 0;
3496
3497 // Some left shift instructions can be turned into LEA instructions but only
3498 // if their flags aren't used. Avoid transforming such instructions.
3499 case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{
3500 unsigned ShAmt = getTruncatedShiftCount(MI, 2);
3501 if (isTruncatedShiftCountForLEA(ShAmt)) return false;
3502 return ShAmt != 0;
3503 }
3504
3505 case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
3506 case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
3507 return getTruncatedShiftCount(MI, 3) != 0;
3508
3509 case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
3510 case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8:
3511 case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr:
3512 case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm:
3513 case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm:
3514 case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r:
3515 case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
3516 case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8:
3517 case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr:
3518 case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm:
3519 case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm:
3520 case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r:
3521 case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
3522 case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8:
3523 case X86::AND8ri: case X86::AND64rr: case X86::AND32rr:
3524 case X86::AND16rr: case X86::AND8rr: case X86::AND64rm:
3525 case X86::AND32rm: case X86::AND16rm: case X86::AND8rm:
3526 case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
3527 case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8:
3528 case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr:
3529 case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm:
3530 case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm:
3531 case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri:
3532 case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8:
3533 case X86::OR8ri: case X86::OR64rr: case X86::OR32rr:
3534 case X86::OR16rr: case X86::OR8rr: case X86::OR64rm:
3535 case X86::OR32rm: case X86::OR16rm: case X86::OR8rm:
3536 case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
3537 case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8:
3538 case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr:
3539 case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm:
3540 case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm:
3541 case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
3542 case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8:
3543 case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr:
3544 case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm:
3545 case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm:
3546 case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
3547 case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1:
3548 case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1:
3549 case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1:
3550 case X86::ANDN32rr: case X86::ANDN32rm:
3551 case X86::ANDN64rr: case X86::ANDN64rm:
3552 case X86::BEXTR32rr: case X86::BEXTR64rr:
3553 case X86::BEXTR32rm: case X86::BEXTR64rm:
3554 case X86::BLSI32rr: case X86::BLSI32rm:
3555 case X86::BLSI64rr: case X86::BLSI64rm:
3556 case X86::BLSMSK32rr:case X86::BLSMSK32rm:
3557 case X86::BLSMSK64rr:case X86::BLSMSK64rm:
3558 case X86::BLSR32rr: case X86::BLSR32rm:
3559 case X86::BLSR64rr: case X86::BLSR64rm:
3560 case X86::BZHI32rr: case X86::BZHI32rm:
3561 case X86::BZHI64rr: case X86::BZHI64rm:
3562 case X86::LZCNT16rr: case X86::LZCNT16rm:
3563 case X86::LZCNT32rr: case X86::LZCNT32rm:
3564 case X86::LZCNT64rr: case X86::LZCNT64rm:
3565 case X86::POPCNT16rr:case X86::POPCNT16rm:
3566 case X86::POPCNT32rr:case X86::POPCNT32rm:
3567 case X86::POPCNT64rr:case X86::POPCNT64rm:
3568 case X86::TZCNT16rr: case X86::TZCNT16rm:
3569 case X86::TZCNT32rr: case X86::TZCNT32rm:
3570 case X86::TZCNT64rr: case X86::TZCNT64rm:
3571 case X86::BEXTRI32ri: case X86::BEXTRI32mi:
3572 case X86::BEXTRI64ri: case X86::BEXTRI64mi:
3573 case X86::BLCFILL32rr: case X86::BLCFILL32rm:
3574 case X86::BLCFILL64rr: case X86::BLCFILL64rm:
3575 case X86::BLCI32rr: case X86::BLCI32rm:
3576 case X86::BLCI64rr: case X86::BLCI64rm:
3577 case X86::BLCIC32rr: case X86::BLCIC32rm:
3578 case X86::BLCIC64rr: case X86::BLCIC64rm:
3579 case X86::BLCMSK32rr: case X86::BLCMSK32rm:
3580 case X86::BLCMSK64rr: case X86::BLCMSK64rm:
3581 case X86::BLCS32rr: case X86::BLCS32rm:
3582 case X86::BLCS64rr: case X86::BLCS64rm:
3583 case X86::BLSFILL32rr: case X86::BLSFILL32rm:
3584 case X86::BLSFILL64rr: case X86::BLSFILL64rm:
3585 case X86::BLSIC32rr: case X86::BLSIC32rm:
3586 case X86::BLSIC64rr: case X86::BLSIC64rm:
3587 return true;
3588 }
3589 }
3590
3591 /// Check whether the use can be converted to remove a comparison against zero.
isUseDefConvertible(MachineInstr & MI)3592 static X86::CondCode isUseDefConvertible(MachineInstr &MI) {
3593 switch (MI.getOpcode()) {
3594 default: return X86::COND_INVALID;
3595 case X86::LZCNT16rr: case X86::LZCNT16rm:
3596 case X86::LZCNT32rr: case X86::LZCNT32rm:
3597 case X86::LZCNT64rr: case X86::LZCNT64rm:
3598 return X86::COND_B;
3599 case X86::POPCNT16rr:case X86::POPCNT16rm:
3600 case X86::POPCNT32rr:case X86::POPCNT32rm:
3601 case X86::POPCNT64rr:case X86::POPCNT64rm:
3602 return X86::COND_E;
3603 case X86::TZCNT16rr: case X86::TZCNT16rm:
3604 case X86::TZCNT32rr: case X86::TZCNT32rm:
3605 case X86::TZCNT64rr: case X86::TZCNT64rm:
3606 return X86::COND_B;
3607 case X86::BSF16rr:
3608 case X86::BSF16rm:
3609 case X86::BSF32rr:
3610 case X86::BSF32rm:
3611 case X86::BSF64rr:
3612 case X86::BSF64rm:
3613 return X86::COND_E;
3614 }
3615 }
3616
3617 /// Check if there exists an earlier instruction that
3618 /// operates on the same source operands and sets flags in the same way as
3619 /// Compare; remove Compare if possible.
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const3620 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
3621 unsigned SrcReg2, int CmpMask,
3622 int CmpValue,
3623 const MachineRegisterInfo *MRI) const {
3624 // Check whether we can replace SUB with CMP.
3625 unsigned NewOpcode = 0;
3626 switch (CmpInstr.getOpcode()) {
3627 default: break;
3628 case X86::SUB64ri32:
3629 case X86::SUB64ri8:
3630 case X86::SUB32ri:
3631 case X86::SUB32ri8:
3632 case X86::SUB16ri:
3633 case X86::SUB16ri8:
3634 case X86::SUB8ri:
3635 case X86::SUB64rm:
3636 case X86::SUB32rm:
3637 case X86::SUB16rm:
3638 case X86::SUB8rm:
3639 case X86::SUB64rr:
3640 case X86::SUB32rr:
3641 case X86::SUB16rr:
3642 case X86::SUB8rr: {
3643 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
3644 return false;
3645 // There is no use of the destination register, we can replace SUB with CMP.
3646 switch (CmpInstr.getOpcode()) {
3647 default: llvm_unreachable("Unreachable!");
3648 case X86::SUB64rm: NewOpcode = X86::CMP64rm; break;
3649 case X86::SUB32rm: NewOpcode = X86::CMP32rm; break;
3650 case X86::SUB16rm: NewOpcode = X86::CMP16rm; break;
3651 case X86::SUB8rm: NewOpcode = X86::CMP8rm; break;
3652 case X86::SUB64rr: NewOpcode = X86::CMP64rr; break;
3653 case X86::SUB32rr: NewOpcode = X86::CMP32rr; break;
3654 case X86::SUB16rr: NewOpcode = X86::CMP16rr; break;
3655 case X86::SUB8rr: NewOpcode = X86::CMP8rr; break;
3656 case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
3657 case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break;
3658 case X86::SUB32ri: NewOpcode = X86::CMP32ri; break;
3659 case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break;
3660 case X86::SUB16ri: NewOpcode = X86::CMP16ri; break;
3661 case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break;
3662 case X86::SUB8ri: NewOpcode = X86::CMP8ri; break;
3663 }
3664 CmpInstr.setDesc(get(NewOpcode));
3665 CmpInstr.RemoveOperand(0);
3666 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3667 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
3668 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
3669 return false;
3670 }
3671 }
3672
3673 // Get the unique definition of SrcReg.
3674 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3675 if (!MI) return false;
3676
3677 // CmpInstr is the first instruction of the BB.
3678 MachineBasicBlock::iterator I = CmpInstr, Def = MI;
3679
3680 // If we are comparing against zero, check whether we can use MI to update
3681 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3682 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
3683 if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
3684 return false;
3685
3686 // If we have a use of the source register between the def and our compare
3687 // instruction we can eliminate the compare iff the use sets EFLAGS in the
3688 // right way.
3689 bool ShouldUpdateCC = false;
3690 X86::CondCode NewCC = X86::COND_INVALID;
3691 if (IsCmpZero && !isDefConvertible(*MI)) {
3692 // Scan forward from the use until we hit the use we're looking for or the
3693 // compare instruction.
3694 for (MachineBasicBlock::iterator J = MI;; ++J) {
3695 // Do we have a convertible instruction?
3696 NewCC = isUseDefConvertible(*J);
3697 if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
3698 J->getOperand(1).getReg() == SrcReg) {
3699 assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
3700 ShouldUpdateCC = true; // Update CC later on.
3701 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3702 // with the new def.
3703 Def = J;
3704 MI = &*Def;
3705 break;
3706 }
3707
3708 if (J == I)
3709 return false;
3710 }
3711 }
3712
3713 // We are searching for an earlier instruction that can make CmpInstr
3714 // redundant and that instruction will be saved in Sub.
3715 MachineInstr *Sub = nullptr;
3716 const TargetRegisterInfo *TRI = &getRegisterInfo();
3717
3718 // We iterate backward, starting from the instruction before CmpInstr and
3719 // stop when reaching the definition of a source register or done with the BB.
3720 // RI points to the instruction before CmpInstr.
3721 // If the definition is in this basic block, RE points to the definition;
3722 // otherwise, RE is the rend of the basic block.
3723 MachineBasicBlock::reverse_iterator
3724 RI = ++I.getReverse(),
3725 RE = CmpInstr.getParent() == MI->getParent()
3726 ? Def.getReverse() /* points to MI */
3727 : CmpInstr.getParent()->rend();
3728 MachineInstr *Movr0Inst = nullptr;
3729 for (; RI != RE; ++RI) {
3730 MachineInstr &Instr = *RI;
3731 // Check whether CmpInstr can be made redundant by the current instruction.
3732 if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
3733 CmpValue, Instr)) {
3734 Sub = &Instr;
3735 break;
3736 }
3737
3738 if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
3739 Instr.readsRegister(X86::EFLAGS, TRI)) {
3740 // This instruction modifies or uses EFLAGS.
3741
3742 // MOV32r0 etc. are implemented with xor which clobbers condition code.
3743 // They are safe to move up, if the definition to EFLAGS is dead and
3744 // earlier instructions do not read or write EFLAGS.
3745 if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
3746 Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
3747 Movr0Inst = &Instr;
3748 continue;
3749 }
3750
3751 // We can't remove CmpInstr.
3752 return false;
3753 }
3754 }
3755
3756 // Return false if no candidates exist.
3757 if (!IsCmpZero && !Sub)
3758 return false;
3759
3760 bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
3761 Sub->getOperand(2).getReg() == SrcReg);
3762
3763 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3764 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3765 // If we are done with the basic block, we need to check whether EFLAGS is
3766 // live-out.
3767 bool IsSafe = false;
3768 SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
3769 MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
3770 for (++I; I != E; ++I) {
3771 const MachineInstr &Instr = *I;
3772 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
3773 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
3774 // We should check the usage if this instruction uses and updates EFLAGS.
3775 if (!UseEFLAGS && ModifyEFLAGS) {
3776 // It is safe to remove CmpInstr if EFLAGS is updated again.
3777 IsSafe = true;
3778 break;
3779 }
3780 if (!UseEFLAGS && !ModifyEFLAGS)
3781 continue;
3782
3783 // EFLAGS is used by this instruction.
3784 X86::CondCode OldCC = X86::COND_INVALID;
3785 bool OpcIsSET = false;
3786 if (IsCmpZero || IsSwapped) {
3787 // We decode the condition code from opcode.
3788 if (Instr.isBranch())
3789 OldCC = X86::getCondFromBranchOpc(Instr.getOpcode());
3790 else {
3791 OldCC = X86::getCondFromSETOpc(Instr.getOpcode());
3792 if (OldCC != X86::COND_INVALID)
3793 OpcIsSET = true;
3794 else
3795 OldCC = X86::getCondFromCMovOpc(Instr.getOpcode());
3796 }
3797 if (OldCC == X86::COND_INVALID) return false;
3798 }
3799 X86::CondCode ReplacementCC = X86::COND_INVALID;
3800 if (IsCmpZero) {
3801 switch (OldCC) {
3802 default: break;
3803 case X86::COND_A: case X86::COND_AE:
3804 case X86::COND_B: case X86::COND_BE:
3805 case X86::COND_G: case X86::COND_GE:
3806 case X86::COND_L: case X86::COND_LE:
3807 case X86::COND_O: case X86::COND_NO:
3808 // CF and OF are used, we can't perform this optimization.
3809 return false;
3810 }
3811
3812 // If we're updating the condition code check if we have to reverse the
3813 // condition.
3814 if (ShouldUpdateCC)
3815 switch (OldCC) {
3816 default:
3817 return false;
3818 case X86::COND_E:
3819 ReplacementCC = NewCC;
3820 break;
3821 case X86::COND_NE:
3822 ReplacementCC = GetOppositeBranchCondition(NewCC);
3823 break;
3824 }
3825 } else if (IsSwapped) {
3826 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3827 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3828 // We swap the condition code and synthesize the new opcode.
3829 ReplacementCC = getSwappedCondition(OldCC);
3830 if (ReplacementCC == X86::COND_INVALID) return false;
3831 }
3832
3833 if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
3834 // Synthesize the new opcode.
3835 bool HasMemoryOperand = Instr.hasOneMemOperand();
3836 unsigned NewOpc;
3837 if (Instr.isBranch())
3838 NewOpc = GetCondBranchFromCond(ReplacementCC);
3839 else if(OpcIsSET)
3840 NewOpc = getSETFromCond(ReplacementCC, HasMemoryOperand);
3841 else {
3842 unsigned DstReg = Instr.getOperand(0).getReg();
3843 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
3844 NewOpc = getCMovFromCond(ReplacementCC, TRI->getRegSizeInBits(*DstRC)/8,
3845 HasMemoryOperand);
3846 }
3847
3848 // Push the MachineInstr to OpsToUpdate.
3849 // If it is safe to remove CmpInstr, the condition code of these
3850 // instructions will be modified.
3851 OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
3852 }
3853 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
3854 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3855 IsSafe = true;
3856 break;
3857 }
3858 }
3859
3860 // If EFLAGS is not killed nor re-defined, we should check whether it is
3861 // live-out. If it is live-out, do not optimize.
3862 if ((IsCmpZero || IsSwapped) && !IsSafe) {
3863 MachineBasicBlock *MBB = CmpInstr.getParent();
3864 for (MachineBasicBlock *Successor : MBB->successors())
3865 if (Successor->isLiveIn(X86::EFLAGS))
3866 return false;
3867 }
3868
3869 // The instruction to be updated is either Sub or MI.
3870 Sub = IsCmpZero ? MI : Sub;
3871 // Move Movr0Inst to the appropriate place before Sub.
3872 if (Movr0Inst) {
3873 // Look backwards until we find a def that doesn't use the current EFLAGS.
3874 Def = Sub;
3875 MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
3876 InsertE = Sub->getParent()->rend();
3877 for (; InsertI != InsertE; ++InsertI) {
3878 MachineInstr *Instr = &*InsertI;
3879 if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
3880 Instr->modifiesRegister(X86::EFLAGS, TRI)) {
3881 Sub->getParent()->remove(Movr0Inst);
3882 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
3883 Movr0Inst);
3884 break;
3885 }
3886 }
3887 if (InsertI == InsertE)
3888 return false;
3889 }
3890
3891 // Make sure Sub instruction defines EFLAGS and mark the def live.
3892 unsigned i = 0, e = Sub->getNumOperands();
3893 for (; i != e; ++i) {
3894 MachineOperand &MO = Sub->getOperand(i);
3895 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) {
3896 MO.setIsDead(false);
3897 break;
3898 }
3899 }
3900 assert(i != e && "Unable to locate a def EFLAGS operand");
3901
3902 CmpInstr.eraseFromParent();
3903
3904 // Modify the condition code of instructions in OpsToUpdate.
3905 for (auto &Op : OpsToUpdate)
3906 Op.first->setDesc(get(Op.second));
3907 return true;
3908 }
3909
3910 /// Try to remove the load by folding it to a register
3911 /// operand at the use. We fold the load instructions if load defines a virtual
3912 /// register, the virtual register is used once in the same BB, and the
3913 /// instructions in-between do not load or store, and have no side effects.
optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI) const3914 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
3915 const MachineRegisterInfo *MRI,
3916 unsigned &FoldAsLoadDefReg,
3917 MachineInstr *&DefMI) const {
3918 // Check whether we can move DefMI here.
3919 DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
3920 assert(DefMI);
3921 bool SawStore = false;
3922 if (!DefMI->isSafeToMove(nullptr, SawStore))
3923 return nullptr;
3924
3925 // Collect information about virtual register operands of MI.
3926 SmallVector<unsigned, 1> SrcOperandIds;
3927 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
3928 MachineOperand &MO = MI.getOperand(i);
3929 if (!MO.isReg())
3930 continue;
3931 unsigned Reg = MO.getReg();
3932 if (Reg != FoldAsLoadDefReg)
3933 continue;
3934 // Do not fold if we have a subreg use or a def.
3935 if (MO.getSubReg() || MO.isDef())
3936 return nullptr;
3937 SrcOperandIds.push_back(i);
3938 }
3939 if (SrcOperandIds.empty())
3940 return nullptr;
3941
3942 // Check whether we can fold the def into SrcOperandId.
3943 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
3944 FoldAsLoadDefReg = 0;
3945 return FoldMI;
3946 }
3947
3948 return nullptr;
3949 }
3950
3951 /// Expand a single-def pseudo instruction to a two-addr
3952 /// instruction with two undef reads of the register being defined.
3953 /// This is used for mapping:
3954 /// %xmm4 = V_SET0
3955 /// to:
3956 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
3957 ///
Expand2AddrUndef(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)3958 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
3959 const MCInstrDesc &Desc) {
3960 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3961 unsigned Reg = MIB->getOperand(0).getReg();
3962 MIB->setDesc(Desc);
3963
3964 // MachineInstr::addOperand() will insert explicit operands before any
3965 // implicit operands.
3966 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3967 // But we don't trust that.
3968 assert(MIB->getOperand(1).getReg() == Reg &&
3969 MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
3970 return true;
3971 }
3972
3973 /// Expand a single-def pseudo instruction to a two-addr
3974 /// instruction with two %k0 reads.
3975 /// This is used for mapping:
3976 /// %k4 = K_SET1
3977 /// to:
3978 /// %k4 = KXNORrr %k0, %k0
Expand2AddrKreg(MachineInstrBuilder & MIB,const MCInstrDesc & Desc,unsigned Reg)3979 static bool Expand2AddrKreg(MachineInstrBuilder &MIB,
3980 const MCInstrDesc &Desc, unsigned Reg) {
3981 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
3982 MIB->setDesc(Desc);
3983 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
3984 return true;
3985 }
3986
expandMOV32r1(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,bool MinusOne)3987 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
3988 bool MinusOne) {
3989 MachineBasicBlock &MBB = *MIB->getParent();
3990 DebugLoc DL = MIB->getDebugLoc();
3991 unsigned Reg = MIB->getOperand(0).getReg();
3992
3993 // Insert the XOR.
3994 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
3995 .addReg(Reg, RegState::Undef)
3996 .addReg(Reg, RegState::Undef);
3997
3998 // Turn the pseudo into an INC or DEC.
3999 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4000 MIB.addReg(Reg);
4001
4002 return true;
4003 }
4004
ExpandMOVImmSExti8(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,const X86Subtarget & Subtarget)4005 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4006 const TargetInstrInfo &TII,
4007 const X86Subtarget &Subtarget) {
4008 MachineBasicBlock &MBB = *MIB->getParent();
4009 DebugLoc DL = MIB->getDebugLoc();
4010 int64_t Imm = MIB->getOperand(1).getImm();
4011 assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
4012 MachineBasicBlock::iterator I = MIB.getInstr();
4013
4014 int StackAdjustment;
4015
4016 if (Subtarget.is64Bit()) {
4017 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
4018 MIB->getOpcode() == X86::MOV32ImmSExti8);
4019
4020 // Can't use push/pop lowering if the function might write to the red zone.
4021 X86MachineFunctionInfo *X86FI =
4022 MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4023 if (X86FI->getUsesRedZone()) {
4024 MIB->setDesc(TII.get(MIB->getOpcode() ==
4025 X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4026 return true;
4027 }
4028
4029 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4030 // widen the register if necessary.
4031 StackAdjustment = 8;
4032 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4033 MIB->setDesc(TII.get(X86::POP64r));
4034 MIB->getOperand(0)
4035 .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64));
4036 } else {
4037 assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
4038 StackAdjustment = 4;
4039 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4040 MIB->setDesc(TII.get(X86::POP32r));
4041 }
4042
4043 // Build CFI if necessary.
4044 MachineFunction &MF = *MBB.getParent();
4045 const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4046 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4047 bool NeedsDwarfCFI =
4048 !IsWin64Prologue &&
4049 (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
4050 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4051 if (EmitCFI) {
4052 TFL->BuildCFI(MBB, I, DL,
4053 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4054 TFL->BuildCFI(MBB, std::next(I), DL,
4055 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4056 }
4057
4058 return true;
4059 }
4060
4061 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4062 // code sequence is needed for other targets.
expandLoadStackGuard(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4063 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4064 const TargetInstrInfo &TII) {
4065 MachineBasicBlock &MBB = *MIB->getParent();
4066 DebugLoc DL = MIB->getDebugLoc();
4067 unsigned Reg = MIB->getOperand(0).getReg();
4068 const GlobalValue *GV =
4069 cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4070 auto Flags = MachineMemOperand::MOLoad |
4071 MachineMemOperand::MODereferenceable |
4072 MachineMemOperand::MOInvariant;
4073 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4074 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8);
4075 MachineBasicBlock::iterator I = MIB.getInstr();
4076
4077 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4078 .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4079 .addMemOperand(MMO);
4080 MIB->setDebugLoc(DL);
4081 MIB->setDesc(TII.get(X86::MOV64rm));
4082 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4083 }
4084
expandXorFP(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4085 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4086 MachineBasicBlock &MBB = *MIB->getParent();
4087 MachineFunction &MF = *MBB.getParent();
4088 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4089 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4090 unsigned XorOp =
4091 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4092 MIB->setDesc(TII.get(XorOp));
4093 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4094 return true;
4095 }
4096
4097 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4098 // but not VLX. If it uses an extended register we need to use an instruction
4099 // that loads the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXLoad(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & LoadDesc,const MCInstrDesc & BroadcastDesc,unsigned SubIdx)4100 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4101 const TargetRegisterInfo *TRI,
4102 const MCInstrDesc &LoadDesc,
4103 const MCInstrDesc &BroadcastDesc,
4104 unsigned SubIdx) {
4105 unsigned DestReg = MIB->getOperand(0).getReg();
4106 // Check if DestReg is XMM16-31 or YMM16-31.
4107 if (TRI->getEncodingValue(DestReg) < 16) {
4108 // We can use a normal VEX encoded load.
4109 MIB->setDesc(LoadDesc);
4110 } else {
4111 // Use a 128/256-bit VBROADCAST instruction.
4112 MIB->setDesc(BroadcastDesc);
4113 // Change the destination to a 512-bit register.
4114 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4115 MIB->getOperand(0).setReg(DestReg);
4116 }
4117 return true;
4118 }
4119
4120 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4121 // but not VLX. If it uses an extended register we need to use an instruction
4122 // that stores the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXStore(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & StoreDesc,const MCInstrDesc & ExtractDesc,unsigned SubIdx)4123 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4124 const TargetRegisterInfo *TRI,
4125 const MCInstrDesc &StoreDesc,
4126 const MCInstrDesc &ExtractDesc,
4127 unsigned SubIdx) {
4128 unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg();
4129 // Check if DestReg is XMM16-31 or YMM16-31.
4130 if (TRI->getEncodingValue(SrcReg) < 16) {
4131 // We can use a normal VEX encoded store.
4132 MIB->setDesc(StoreDesc);
4133 } else {
4134 // Use a VEXTRACTF instruction.
4135 MIB->setDesc(ExtractDesc);
4136 // Change the destination to a 512-bit register.
4137 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4138 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4139 MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4140 }
4141
4142 return true;
4143 }
expandPostRAPseudo(MachineInstr & MI) const4144 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4145 bool HasAVX = Subtarget.hasAVX();
4146 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4147 switch (MI.getOpcode()) {
4148 case X86::MOV32r0:
4149 return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4150 case X86::MOV32r1:
4151 return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4152 case X86::MOV32r_1:
4153 return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4154 case X86::MOV32ImmSExti8:
4155 case X86::MOV64ImmSExti8:
4156 return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4157 case X86::SETB_C8r:
4158 return Expand2AddrUndef(MIB, get(X86::SBB8rr));
4159 case X86::SETB_C16r:
4160 return Expand2AddrUndef(MIB, get(X86::SBB16rr));
4161 case X86::SETB_C32r:
4162 return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4163 case X86::SETB_C64r:
4164 return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4165 case X86::MMX_SET0:
4166 return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4167 case X86::V_SET0:
4168 case X86::FsFLD0SS:
4169 case X86::FsFLD0SD:
4170 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4171 case X86::AVX_SET0: {
4172 assert(HasAVX && "AVX not supported");
4173 const TargetRegisterInfo *TRI = &getRegisterInfo();
4174 unsigned SrcReg = MIB->getOperand(0).getReg();
4175 unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4176 MIB->getOperand(0).setReg(XReg);
4177 Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4178 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4179 return true;
4180 }
4181 case X86::AVX512_128_SET0:
4182 case X86::AVX512_FsFLD0SS:
4183 case X86::AVX512_FsFLD0SD: {
4184 bool HasVLX = Subtarget.hasVLX();
4185 unsigned SrcReg = MIB->getOperand(0).getReg();
4186 const TargetRegisterInfo *TRI = &getRegisterInfo();
4187 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4188 return Expand2AddrUndef(MIB,
4189 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4190 // Extended register without VLX. Use a larger XOR.
4191 SrcReg =
4192 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4193 MIB->getOperand(0).setReg(SrcReg);
4194 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4195 }
4196 case X86::AVX512_256_SET0:
4197 case X86::AVX512_512_SET0: {
4198 bool HasVLX = Subtarget.hasVLX();
4199 unsigned SrcReg = MIB->getOperand(0).getReg();
4200 const TargetRegisterInfo *TRI = &getRegisterInfo();
4201 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4202 unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4203 MIB->getOperand(0).setReg(XReg);
4204 Expand2AddrUndef(MIB,
4205 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4206 MIB.addReg(SrcReg, RegState::ImplicitDefine);
4207 return true;
4208 }
4209 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4210 }
4211 case X86::V_SETALLONES:
4212 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4213 case X86::AVX2_SETALLONES:
4214 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4215 case X86::AVX1_SETALLONES: {
4216 unsigned Reg = MIB->getOperand(0).getReg();
4217 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4218 MIB->setDesc(get(X86::VCMPPSYrri));
4219 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4220 return true;
4221 }
4222 case X86::AVX512_512_SETALLONES: {
4223 unsigned Reg = MIB->getOperand(0).getReg();
4224 MIB->setDesc(get(X86::VPTERNLOGDZrri));
4225 // VPTERNLOGD needs 3 register inputs and an immediate.
4226 // 0xff will return 1s for any input.
4227 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4228 .addReg(Reg, RegState::Undef).addImm(0xff);
4229 return true;
4230 }
4231 case X86::AVX512_512_SEXT_MASK_32:
4232 case X86::AVX512_512_SEXT_MASK_64: {
4233 unsigned Reg = MIB->getOperand(0).getReg();
4234 unsigned MaskReg = MIB->getOperand(1).getReg();
4235 unsigned MaskState = getRegState(MIB->getOperand(1));
4236 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4237 X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4238 MI.RemoveOperand(1);
4239 MIB->setDesc(get(Opc));
4240 // VPTERNLOG needs 3 register inputs and an immediate.
4241 // 0xff will return 1s for any input.
4242 MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4243 .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4244 return true;
4245 }
4246 case X86::VMOVAPSZ128rm_NOVLX:
4247 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4248 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4249 case X86::VMOVUPSZ128rm_NOVLX:
4250 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4251 get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4252 case X86::VMOVAPSZ256rm_NOVLX:
4253 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4254 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4255 case X86::VMOVUPSZ256rm_NOVLX:
4256 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4257 get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4258 case X86::VMOVAPSZ128mr_NOVLX:
4259 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4260 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4261 case X86::VMOVUPSZ128mr_NOVLX:
4262 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4263 get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4264 case X86::VMOVAPSZ256mr_NOVLX:
4265 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4266 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4267 case X86::VMOVUPSZ256mr_NOVLX:
4268 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4269 get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4270 case X86::MOV32ri64:
4271 MI.setDesc(get(X86::MOV32ri));
4272 return true;
4273
4274 // KNL does not recognize dependency-breaking idioms for mask registers,
4275 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4276 // Using %k0 as the undef input register is a performance heuristic based
4277 // on the assumption that %k0 is used less frequently than the other mask
4278 // registers, since it is not usable as a write mask.
4279 // FIXME: A more advanced approach would be to choose the best input mask
4280 // register based on context.
4281 case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4282 case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4283 case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4284 case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4285 case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4286 case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4287 case TargetOpcode::LOAD_STACK_GUARD:
4288 expandLoadStackGuard(MIB, *this);
4289 return true;
4290 case X86::XOR64_FP:
4291 case X86::XOR32_FP:
4292 return expandXorFP(MIB, *this);
4293 }
4294 return false;
4295 }
4296
4297 /// Return true for all instructions that only update
4298 /// the first 32 or 64-bits of the destination register and leave the rest
4299 /// unmodified. This can be used to avoid folding loads if the instructions
4300 /// only update part of the destination register, and the non-updated part is
4301 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4302 /// instructions breaks the partial register dependency and it can improve
4303 /// performance. e.g.:
4304 ///
4305 /// movss (%rdi), %xmm0
4306 /// cvtss2sd %xmm0, %xmm0
4307 ///
4308 /// Instead of
4309 /// cvtss2sd (%rdi), %xmm0
4310 ///
4311 /// FIXME: This should be turned into a TSFlags.
4312 ///
hasPartialRegUpdate(unsigned Opcode,const X86Subtarget & Subtarget)4313 static bool hasPartialRegUpdate(unsigned Opcode,
4314 const X86Subtarget &Subtarget) {
4315 switch (Opcode) {
4316 case X86::CVTSI2SSrr:
4317 case X86::CVTSI2SSrm:
4318 case X86::CVTSI642SSrr:
4319 case X86::CVTSI642SSrm:
4320 case X86::CVTSI2SDrr:
4321 case X86::CVTSI2SDrm:
4322 case X86::CVTSI642SDrr:
4323 case X86::CVTSI642SDrm:
4324 case X86::CVTSD2SSrr:
4325 case X86::CVTSD2SSrm:
4326 case X86::CVTSS2SDrr:
4327 case X86::CVTSS2SDrm:
4328 case X86::MOVHPDrm:
4329 case X86::MOVHPSrm:
4330 case X86::MOVLPDrm:
4331 case X86::MOVLPSrm:
4332 case X86::RCPSSr:
4333 case X86::RCPSSm:
4334 case X86::RCPSSr_Int:
4335 case X86::RCPSSm_Int:
4336 case X86::ROUNDSDr:
4337 case X86::ROUNDSDm:
4338 case X86::ROUNDSSr:
4339 case X86::ROUNDSSm:
4340 case X86::RSQRTSSr:
4341 case X86::RSQRTSSm:
4342 case X86::RSQRTSSr_Int:
4343 case X86::RSQRTSSm_Int:
4344 case X86::SQRTSSr:
4345 case X86::SQRTSSm:
4346 case X86::SQRTSSr_Int:
4347 case X86::SQRTSSm_Int:
4348 case X86::SQRTSDr:
4349 case X86::SQRTSDm:
4350 case X86::SQRTSDr_Int:
4351 case X86::SQRTSDm_Int:
4352 return true;
4353 // GPR
4354 case X86::POPCNT32rm:
4355 case X86::POPCNT32rr:
4356 case X86::POPCNT64rm:
4357 case X86::POPCNT64rr:
4358 return Subtarget.hasPOPCNTFalseDeps();
4359 case X86::LZCNT32rm:
4360 case X86::LZCNT32rr:
4361 case X86::LZCNT64rm:
4362 case X86::LZCNT64rr:
4363 case X86::TZCNT32rm:
4364 case X86::TZCNT32rr:
4365 case X86::TZCNT64rm:
4366 case X86::TZCNT64rr:
4367 return Subtarget.hasLZCNTFalseDeps();
4368 }
4369
4370 return false;
4371 }
4372
4373 /// Inform the BreakFalseDeps pass how many idle
4374 /// instructions we would like before a partial register update.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4375 unsigned X86InstrInfo::getPartialRegUpdateClearance(
4376 const MachineInstr &MI, unsigned OpNum,
4377 const TargetRegisterInfo *TRI) const {
4378 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
4379 return 0;
4380
4381 // If MI is marked as reading Reg, the partial register update is wanted.
4382 const MachineOperand &MO = MI.getOperand(0);
4383 unsigned Reg = MO.getReg();
4384 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4385 if (MO.readsReg() || MI.readsVirtualRegister(Reg))
4386 return 0;
4387 } else {
4388 if (MI.readsRegister(Reg, TRI))
4389 return 0;
4390 }
4391
4392 // If any instructions in the clearance range are reading Reg, insert a
4393 // dependency breaking instruction, which is inexpensive and is likely to
4394 // be hidden in other instruction's cycles.
4395 return PartialRegUpdateClearance;
4396 }
4397
4398 // Return true for any instruction the copies the high bits of the first source
4399 // operand into the unused high bits of the destination operand.
hasUndefRegUpdate(unsigned Opcode)4400 static bool hasUndefRegUpdate(unsigned Opcode) {
4401 switch (Opcode) {
4402 case X86::VCVTSI2SSrr:
4403 case X86::VCVTSI2SSrm:
4404 case X86::VCVTSI2SSrr_Int:
4405 case X86::VCVTSI2SSrm_Int:
4406 case X86::VCVTSI642SSrr:
4407 case X86::VCVTSI642SSrm:
4408 case X86::VCVTSI642SSrr_Int:
4409 case X86::VCVTSI642SSrm_Int:
4410 case X86::VCVTSI2SDrr:
4411 case X86::VCVTSI2SDrm:
4412 case X86::VCVTSI2SDrr_Int:
4413 case X86::VCVTSI2SDrm_Int:
4414 case X86::VCVTSI642SDrr:
4415 case X86::VCVTSI642SDrm:
4416 case X86::VCVTSI642SDrr_Int:
4417 case X86::VCVTSI642SDrm_Int:
4418 case X86::VCVTSD2SSrr:
4419 case X86::VCVTSD2SSrm:
4420 case X86::VCVTSD2SSrr_Int:
4421 case X86::VCVTSD2SSrm_Int:
4422 case X86::VCVTSS2SDrr:
4423 case X86::VCVTSS2SDrm:
4424 case X86::VCVTSS2SDrr_Int:
4425 case X86::VCVTSS2SDrm_Int:
4426 case X86::VRCPSSr:
4427 case X86::VRCPSSr_Int:
4428 case X86::VRCPSSm:
4429 case X86::VRCPSSm_Int:
4430 case X86::VROUNDSDr:
4431 case X86::VROUNDSDm:
4432 case X86::VROUNDSDr_Int:
4433 case X86::VROUNDSDm_Int:
4434 case X86::VROUNDSSr:
4435 case X86::VROUNDSSm:
4436 case X86::VROUNDSSr_Int:
4437 case X86::VROUNDSSm_Int:
4438 case X86::VRSQRTSSr:
4439 case X86::VRSQRTSSr_Int:
4440 case X86::VRSQRTSSm:
4441 case X86::VRSQRTSSm_Int:
4442 case X86::VSQRTSSr:
4443 case X86::VSQRTSSr_Int:
4444 case X86::VSQRTSSm:
4445 case X86::VSQRTSSm_Int:
4446 case X86::VSQRTSDr:
4447 case X86::VSQRTSDr_Int:
4448 case X86::VSQRTSDm:
4449 case X86::VSQRTSDm_Int:
4450 // AVX-512
4451 case X86::VCVTSI2SSZrr:
4452 case X86::VCVTSI2SSZrm:
4453 case X86::VCVTSI2SSZrr_Int:
4454 case X86::VCVTSI2SSZrrb_Int:
4455 case X86::VCVTSI2SSZrm_Int:
4456 case X86::VCVTSI642SSZrr:
4457 case X86::VCVTSI642SSZrm:
4458 case X86::VCVTSI642SSZrr_Int:
4459 case X86::VCVTSI642SSZrrb_Int:
4460 case X86::VCVTSI642SSZrm_Int:
4461 case X86::VCVTSI2SDZrr:
4462 case X86::VCVTSI2SDZrm:
4463 case X86::VCVTSI2SDZrr_Int:
4464 case X86::VCVTSI2SDZrrb_Int:
4465 case X86::VCVTSI2SDZrm_Int:
4466 case X86::VCVTSI642SDZrr:
4467 case X86::VCVTSI642SDZrm:
4468 case X86::VCVTSI642SDZrr_Int:
4469 case X86::VCVTSI642SDZrrb_Int:
4470 case X86::VCVTSI642SDZrm_Int:
4471 case X86::VCVTUSI2SSZrr:
4472 case X86::VCVTUSI2SSZrm:
4473 case X86::VCVTUSI2SSZrr_Int:
4474 case X86::VCVTUSI2SSZrrb_Int:
4475 case X86::VCVTUSI2SSZrm_Int:
4476 case X86::VCVTUSI642SSZrr:
4477 case X86::VCVTUSI642SSZrm:
4478 case X86::VCVTUSI642SSZrr_Int:
4479 case X86::VCVTUSI642SSZrrb_Int:
4480 case X86::VCVTUSI642SSZrm_Int:
4481 case X86::VCVTUSI2SDZrr:
4482 case X86::VCVTUSI2SDZrm:
4483 case X86::VCVTUSI2SDZrr_Int:
4484 case X86::VCVTUSI2SDZrm_Int:
4485 case X86::VCVTUSI642SDZrr:
4486 case X86::VCVTUSI642SDZrm:
4487 case X86::VCVTUSI642SDZrr_Int:
4488 case X86::VCVTUSI642SDZrrb_Int:
4489 case X86::VCVTUSI642SDZrm_Int:
4490 case X86::VCVTSD2SSZrr:
4491 case X86::VCVTSD2SSZrr_Int:
4492 case X86::VCVTSD2SSZrrb_Int:
4493 case X86::VCVTSD2SSZrm:
4494 case X86::VCVTSD2SSZrm_Int:
4495 case X86::VCVTSS2SDZrr:
4496 case X86::VCVTSS2SDZrr_Int:
4497 case X86::VCVTSS2SDZrrb_Int:
4498 case X86::VCVTSS2SDZrm:
4499 case X86::VCVTSS2SDZrm_Int:
4500 case X86::VGETEXPSDZr:
4501 case X86::VGETEXPSDZrb:
4502 case X86::VGETEXPSDZm:
4503 case X86::VGETEXPSSZr:
4504 case X86::VGETEXPSSZrb:
4505 case X86::VGETEXPSSZm:
4506 case X86::VGETMANTSDZrri:
4507 case X86::VGETMANTSDZrrib:
4508 case X86::VGETMANTSDZrmi:
4509 case X86::VGETMANTSSZrri:
4510 case X86::VGETMANTSSZrrib:
4511 case X86::VGETMANTSSZrmi:
4512 case X86::VRNDSCALESDZr:
4513 case X86::VRNDSCALESDZr_Int:
4514 case X86::VRNDSCALESDZrb_Int:
4515 case X86::VRNDSCALESDZm:
4516 case X86::VRNDSCALESDZm_Int:
4517 case X86::VRNDSCALESSZr:
4518 case X86::VRNDSCALESSZr_Int:
4519 case X86::VRNDSCALESSZrb_Int:
4520 case X86::VRNDSCALESSZm:
4521 case X86::VRNDSCALESSZm_Int:
4522 case X86::VRCP14SDZrr:
4523 case X86::VRCP14SDZrm:
4524 case X86::VRCP14SSZrr:
4525 case X86::VRCP14SSZrm:
4526 case X86::VRCP28SDZr:
4527 case X86::VRCP28SDZrb:
4528 case X86::VRCP28SDZm:
4529 case X86::VRCP28SSZr:
4530 case X86::VRCP28SSZrb:
4531 case X86::VRCP28SSZm:
4532 case X86::VREDUCESSZrmi:
4533 case X86::VREDUCESSZrri:
4534 case X86::VREDUCESSZrrib:
4535 case X86::VRSQRT14SDZrr:
4536 case X86::VRSQRT14SDZrm:
4537 case X86::VRSQRT14SSZrr:
4538 case X86::VRSQRT14SSZrm:
4539 case X86::VRSQRT28SDZr:
4540 case X86::VRSQRT28SDZrb:
4541 case X86::VRSQRT28SDZm:
4542 case X86::VRSQRT28SSZr:
4543 case X86::VRSQRT28SSZrb:
4544 case X86::VRSQRT28SSZm:
4545 case X86::VSQRTSSZr:
4546 case X86::VSQRTSSZr_Int:
4547 case X86::VSQRTSSZrb_Int:
4548 case X86::VSQRTSSZm:
4549 case X86::VSQRTSSZm_Int:
4550 case X86::VSQRTSDZr:
4551 case X86::VSQRTSDZr_Int:
4552 case X86::VSQRTSDZrb_Int:
4553 case X86::VSQRTSDZm:
4554 case X86::VSQRTSDZm_Int:
4555 return true;
4556 }
4557
4558 return false;
4559 }
4560
4561 /// Inform the BreakFalseDeps pass how many idle instructions we would like
4562 /// before certain undef register reads.
4563 ///
4564 /// This catches the VCVTSI2SD family of instructions:
4565 ///
4566 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4567 ///
4568 /// We should to be careful *not* to catch VXOR idioms which are presumably
4569 /// handled specially in the pipeline:
4570 ///
4571 /// vxorps undef %xmm1, undef %xmm1, %xmm1
4572 ///
4573 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4574 /// high bits that are passed-through are not live.
4575 unsigned
getUndefRegClearance(const MachineInstr & MI,unsigned & OpNum,const TargetRegisterInfo * TRI) const4576 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
4577 const TargetRegisterInfo *TRI) const {
4578 if (!hasUndefRegUpdate(MI.getOpcode()))
4579 return 0;
4580
4581 // Set the OpNum parameter to the first source operand.
4582 OpNum = 1;
4583
4584 const MachineOperand &MO = MI.getOperand(OpNum);
4585 if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
4586 return UndefRegClearance;
4587 }
4588 return 0;
4589 }
4590
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4591 void X86InstrInfo::breakPartialRegDependency(
4592 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4593 unsigned Reg = MI.getOperand(OpNum).getReg();
4594 // If MI kills this register, the false dependence is already broken.
4595 if (MI.killsRegister(Reg, TRI))
4596 return;
4597
4598 if (X86::VR128RegClass.contains(Reg)) {
4599 // These instructions are all floating point domain, so xorps is the best
4600 // choice.
4601 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
4602 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
4603 .addReg(Reg, RegState::Undef)
4604 .addReg(Reg, RegState::Undef);
4605 MI.addRegisterKilled(Reg, TRI, true);
4606 } else if (X86::VR256RegClass.contains(Reg)) {
4607 // Use vxorps to clear the full ymm register.
4608 // It wants to read and write the xmm sub-register.
4609 unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
4610 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
4611 .addReg(XReg, RegState::Undef)
4612 .addReg(XReg, RegState::Undef)
4613 .addReg(Reg, RegState::ImplicitDefine);
4614 MI.addRegisterKilled(Reg, TRI, true);
4615 } else if (X86::GR64RegClass.contains(Reg)) {
4616 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4617 // as well.
4618 unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit);
4619 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
4620 .addReg(XReg, RegState::Undef)
4621 .addReg(XReg, RegState::Undef)
4622 .addReg(Reg, RegState::ImplicitDefine);
4623 MI.addRegisterKilled(Reg, TRI, true);
4624 } else if (X86::GR32RegClass.contains(Reg)) {
4625 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
4626 .addReg(Reg, RegState::Undef)
4627 .addReg(Reg, RegState::Undef);
4628 MI.addRegisterKilled(Reg, TRI, true);
4629 }
4630 }
4631
addOperands(MachineInstrBuilder & MIB,ArrayRef<MachineOperand> MOs,int PtrOffset=0)4632 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
4633 int PtrOffset = 0) {
4634 unsigned NumAddrOps = MOs.size();
4635
4636 if (NumAddrOps < 4) {
4637 // FrameIndex only - add an immediate offset (whether its zero or not).
4638 for (unsigned i = 0; i != NumAddrOps; ++i)
4639 MIB.add(MOs[i]);
4640 addOffset(MIB, PtrOffset);
4641 } else {
4642 // General Memory Addressing - we need to add any offset to an existing
4643 // offset.
4644 assert(MOs.size() == 5 && "Unexpected memory operand list length");
4645 for (unsigned i = 0; i != NumAddrOps; ++i) {
4646 const MachineOperand &MO = MOs[i];
4647 if (i == 3 && PtrOffset != 0) {
4648 MIB.addDisp(MO, PtrOffset);
4649 } else {
4650 MIB.add(MO);
4651 }
4652 }
4653 }
4654 }
4655
updateOperandRegConstraints(MachineFunction & MF,MachineInstr & NewMI,const TargetInstrInfo & TII)4656 static void updateOperandRegConstraints(MachineFunction &MF,
4657 MachineInstr &NewMI,
4658 const TargetInstrInfo &TII) {
4659 MachineRegisterInfo &MRI = MF.getRegInfo();
4660 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
4661
4662 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
4663 MachineOperand &MO = NewMI.getOperand(Idx);
4664 // We only need to update constraints on virtual register operands.
4665 if (!MO.isReg())
4666 continue;
4667 unsigned Reg = MO.getReg();
4668 if (!TRI.isVirtualRegister(Reg))
4669 continue;
4670
4671 auto *NewRC = MRI.constrainRegClass(
4672 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
4673 if (!NewRC) {
4674 LLVM_DEBUG(
4675 dbgs() << "WARNING: Unable to update register constraint for operand "
4676 << Idx << " of instruction:\n";
4677 NewMI.dump(); dbgs() << "\n");
4678 }
4679 }
4680 }
4681
FuseTwoAddrInst(MachineFunction & MF,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII)4682 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
4683 ArrayRef<MachineOperand> MOs,
4684 MachineBasicBlock::iterator InsertPt,
4685 MachineInstr &MI,
4686 const TargetInstrInfo &TII) {
4687 // Create the base instruction with the memory operand as the first part.
4688 // Omit the implicit operands, something BuildMI can't do.
4689 MachineInstr *NewMI =
4690 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4691 MachineInstrBuilder MIB(MF, NewMI);
4692 addOperands(MIB, MOs);
4693
4694 // Loop over the rest of the ri operands, converting them over.
4695 unsigned NumOps = MI.getDesc().getNumOperands() - 2;
4696 for (unsigned i = 0; i != NumOps; ++i) {
4697 MachineOperand &MO = MI.getOperand(i + 2);
4698 MIB.add(MO);
4699 }
4700 for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
4701 MachineOperand &MO = MI.getOperand(i);
4702 MIB.add(MO);
4703 }
4704
4705 updateOperandRegConstraints(MF, *NewMI, TII);
4706
4707 MachineBasicBlock *MBB = InsertPt->getParent();
4708 MBB->insert(InsertPt, NewMI);
4709
4710 return MIB;
4711 }
4712
FuseInst(MachineFunction & MF,unsigned Opcode,unsigned OpNo,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII,int PtrOffset=0)4713 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
4714 unsigned OpNo, ArrayRef<MachineOperand> MOs,
4715 MachineBasicBlock::iterator InsertPt,
4716 MachineInstr &MI, const TargetInstrInfo &TII,
4717 int PtrOffset = 0) {
4718 // Omit the implicit operands, something BuildMI can't do.
4719 MachineInstr *NewMI =
4720 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
4721 MachineInstrBuilder MIB(MF, NewMI);
4722
4723 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4724 MachineOperand &MO = MI.getOperand(i);
4725 if (i == OpNo) {
4726 assert(MO.isReg() && "Expected to fold into reg operand!");
4727 addOperands(MIB, MOs, PtrOffset);
4728 } else {
4729 MIB.add(MO);
4730 }
4731 }
4732
4733 updateOperandRegConstraints(MF, *NewMI, TII);
4734
4735 MachineBasicBlock *MBB = InsertPt->getParent();
4736 MBB->insert(InsertPt, NewMI);
4737
4738 return MIB;
4739 }
4740
MakeM0Inst(const TargetInstrInfo & TII,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI)4741 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
4742 ArrayRef<MachineOperand> MOs,
4743 MachineBasicBlock::iterator InsertPt,
4744 MachineInstr &MI) {
4745 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
4746 MI.getDebugLoc(), TII.get(Opcode));
4747 addOperands(MIB, MOs);
4748 return MIB.addImm(0);
4749 }
4750
foldMemoryOperandCustom(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,unsigned Align) const4751 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
4752 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4753 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4754 unsigned Size, unsigned Align) const {
4755 switch (MI.getOpcode()) {
4756 case X86::INSERTPSrr:
4757 case X86::VINSERTPSrr:
4758 case X86::VINSERTPSZrr:
4759 // Attempt to convert the load of inserted vector into a fold load
4760 // of a single float.
4761 if (OpNum == 2) {
4762 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
4763 unsigned ZMask = Imm & 15;
4764 unsigned DstIdx = (Imm >> 4) & 3;
4765 unsigned SrcIdx = (Imm >> 6) & 3;
4766
4767 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4768 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4769 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4770 if (Size <= RCSize && 4 <= Align) {
4771 int PtrOffset = SrcIdx * 4;
4772 unsigned NewImm = (DstIdx << 4) | ZMask;
4773 unsigned NewOpCode =
4774 (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
4775 (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm :
4776 X86::INSERTPSrm;
4777 MachineInstr *NewMI =
4778 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
4779 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
4780 return NewMI;
4781 }
4782 }
4783 break;
4784 case X86::MOVHLPSrr:
4785 case X86::VMOVHLPSrr:
4786 case X86::VMOVHLPSZrr:
4787 // Move the upper 64-bits of the second operand to the lower 64-bits.
4788 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4789 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4790 if (OpNum == 2) {
4791 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4792 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
4793 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4794 if (Size <= RCSize && 8 <= Align) {
4795 unsigned NewOpCode =
4796 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
4797 (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm :
4798 X86::MOVLPSrm;
4799 MachineInstr *NewMI =
4800 FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
4801 return NewMI;
4802 }
4803 }
4804 break;
4805 };
4806
4807 return nullptr;
4808 }
4809
shouldPreventUndefRegUpdateMemFold(MachineFunction & MF,MachineInstr & MI)4810 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, MachineInstr &MI) {
4811 if (MF.getFunction().optForSize() || !hasUndefRegUpdate(MI.getOpcode()) ||
4812 !MI.getOperand(1).isReg())
4813 return false;
4814
4815 // The are two cases we need to handle depending on where in the pipeline
4816 // the folding attempt is being made.
4817 // -Register has the undef flag set.
4818 // -Register is produced by the IMPLICIT_DEF instruction.
4819
4820 if (MI.getOperand(1).isUndef())
4821 return true;
4822
4823 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4824 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
4825 return VRegDef && VRegDef->isImplicitDef();
4826 }
4827
4828
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,unsigned Align,bool AllowCommute) const4829 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
4830 MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
4831 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
4832 unsigned Size, unsigned Align, bool AllowCommute) const {
4833 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
4834 bool isTwoAddrFold = false;
4835
4836 // For CPUs that favor the register form of a call or push,
4837 // do not fold loads into calls or pushes, unless optimizing for size
4838 // aggressively.
4839 if (isSlowTwoMemOps && !MF.getFunction().optForMinSize() &&
4840 (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
4841 MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
4842 MI.getOpcode() == X86::PUSH64r))
4843 return nullptr;
4844
4845 // Avoid partial and undef register update stalls unless optimizing for size.
4846 if (!MF.getFunction().optForSize() &&
4847 (hasPartialRegUpdate(MI.getOpcode(), Subtarget) ||
4848 shouldPreventUndefRegUpdateMemFold(MF, MI)))
4849 return nullptr;
4850
4851 unsigned NumOps = MI.getDesc().getNumOperands();
4852 bool isTwoAddr =
4853 NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
4854
4855 // FIXME: AsmPrinter doesn't know how to handle
4856 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4857 if (MI.getOpcode() == X86::ADD32ri &&
4858 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
4859 return nullptr;
4860
4861 // GOTTPOFF relocation loads can only be folded into add instructions.
4862 // FIXME: Need to exclude other relocations that only support specific
4863 // instructions.
4864 if (MOs.size() == X86::AddrNumOperands &&
4865 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
4866 MI.getOpcode() != X86::ADD64rr)
4867 return nullptr;
4868
4869 MachineInstr *NewMI = nullptr;
4870
4871 // Attempt to fold any custom cases we have.
4872 if (MachineInstr *CustomMI =
4873 foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align))
4874 return CustomMI;
4875
4876 const X86MemoryFoldTableEntry *I = nullptr;
4877
4878 // Folding a memory location into the two-address part of a two-address
4879 // instruction is different than folding it other places. It requires
4880 // replacing the *two* registers with the memory location.
4881 if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
4882 MI.getOperand(1).isReg() &&
4883 MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
4884 I = lookupTwoAddrFoldTable(MI.getOpcode());
4885 isTwoAddrFold = true;
4886 } else {
4887 if (OpNum == 0) {
4888 if (MI.getOpcode() == X86::MOV32r0) {
4889 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
4890 if (NewMI)
4891 return NewMI;
4892 }
4893 }
4894
4895 I = lookupFoldTable(MI.getOpcode(), OpNum);
4896 }
4897
4898 if (I != nullptr) {
4899 unsigned Opcode = I->DstOp;
4900 unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
4901 if (Align < MinAlign)
4902 return nullptr;
4903 bool NarrowToMOV32rm = false;
4904 if (Size) {
4905 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
4906 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
4907 &RI, MF);
4908 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
4909 if (Size < RCSize) {
4910 // Check if it's safe to fold the load. If the size of the object is
4911 // narrower than the load width, then it's not.
4912 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
4913 return nullptr;
4914 // If this is a 64-bit load, but the spill slot is 32, then we can do
4915 // a 32-bit load which is implicitly zero-extended. This likely is
4916 // due to live interval analysis remat'ing a load from stack slot.
4917 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
4918 return nullptr;
4919 Opcode = X86::MOV32rm;
4920 NarrowToMOV32rm = true;
4921 }
4922 }
4923
4924 if (isTwoAddrFold)
4925 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
4926 else
4927 NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
4928
4929 if (NarrowToMOV32rm) {
4930 // If this is the special case where we use a MOV32rm to load a 32-bit
4931 // value and zero-extend the top bits. Change the destination register
4932 // to a 32-bit one.
4933 unsigned DstReg = NewMI->getOperand(0).getReg();
4934 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
4935 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
4936 else
4937 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
4938 }
4939 return NewMI;
4940 }
4941
4942 // If the instruction and target operand are commutable, commute the
4943 // instruction and try again.
4944 if (AllowCommute) {
4945 unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
4946 if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
4947 bool HasDef = MI.getDesc().getNumDefs();
4948 unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0;
4949 unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
4950 unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
4951 bool Tied1 =
4952 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
4953 bool Tied2 =
4954 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
4955
4956 // If either of the commutable operands are tied to the destination
4957 // then we can not commute + fold.
4958 if ((HasDef && Reg0 == Reg1 && Tied1) ||
4959 (HasDef && Reg0 == Reg2 && Tied2))
4960 return nullptr;
4961
4962 MachineInstr *CommutedMI =
4963 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4964 if (!CommutedMI) {
4965 // Unable to commute.
4966 return nullptr;
4967 }
4968 if (CommutedMI != &MI) {
4969 // New instruction. We can't fold from this.
4970 CommutedMI->eraseFromParent();
4971 return nullptr;
4972 }
4973
4974 // Attempt to fold with the commuted version of the instruction.
4975 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt,
4976 Size, Align, /*AllowCommute=*/false);
4977 if (NewMI)
4978 return NewMI;
4979
4980 // Folding failed again - undo the commute before returning.
4981 MachineInstr *UncommutedMI =
4982 commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
4983 if (!UncommutedMI) {
4984 // Unable to commute.
4985 return nullptr;
4986 }
4987 if (UncommutedMI != &MI) {
4988 // New instruction. It doesn't need to be kept.
4989 UncommutedMI->eraseFromParent();
4990 return nullptr;
4991 }
4992
4993 // Return here to prevent duplicate fuse failure report.
4994 return nullptr;
4995 }
4996 }
4997
4998 // No fusion
4999 if (PrintFailedFusing && !MI.isCopy())
5000 dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
5001 return nullptr;
5002 }
5003
5004 MachineInstr *
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS) const5005 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5006 ArrayRef<unsigned> Ops,
5007 MachineBasicBlock::iterator InsertPt,
5008 int FrameIndex, LiveIntervals *LIS) const {
5009 // Check switch flag
5010 if (NoFusing)
5011 return nullptr;
5012
5013 // Avoid partial and undef register update stalls unless optimizing for size.
5014 if (!MF.getFunction().optForSize() &&
5015 (hasPartialRegUpdate(MI.getOpcode(), Subtarget) ||
5016 shouldPreventUndefRegUpdateMemFold(MF, MI)))
5017 return nullptr;
5018
5019 // Don't fold subreg spills, or reloads that use a high subreg.
5020 for (auto Op : Ops) {
5021 MachineOperand &MO = MI.getOperand(Op);
5022 auto SubReg = MO.getSubReg();
5023 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5024 return nullptr;
5025 }
5026
5027 const MachineFrameInfo &MFI = MF.getFrameInfo();
5028 unsigned Size = MFI.getObjectSize(FrameIndex);
5029 unsigned Alignment = MFI.getObjectAlignment(FrameIndex);
5030 // If the function stack isn't realigned we don't want to fold instructions
5031 // that need increased alignment.
5032 if (!RI.needsStackRealignment(MF))
5033 Alignment =
5034 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment());
5035 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5036 unsigned NewOpc = 0;
5037 unsigned RCSize = 0;
5038 switch (MI.getOpcode()) {
5039 default: return nullptr;
5040 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
5041 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5042 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5043 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5044 }
5045 // Check if it's safe to fold the load. If the size of the object is
5046 // narrower than the load width, then it's not.
5047 if (Size < RCSize)
5048 return nullptr;
5049 // Change to CMPXXri r, 0 first.
5050 MI.setDesc(get(NewOpc));
5051 MI.getOperand(1).ChangeToImmediate(0);
5052 } else if (Ops.size() != 1)
5053 return nullptr;
5054
5055 return foldMemoryOperandImpl(MF, MI, Ops[0],
5056 MachineOperand::CreateFI(FrameIndex), InsertPt,
5057 Size, Alignment, /*AllowCommute=*/true);
5058 }
5059
5060 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5061 /// because the latter uses contents that wouldn't be defined in the folded
5062 /// version. For instance, this transformation isn't legal:
5063 /// movss (%rdi), %xmm0
5064 /// addps %xmm0, %xmm0
5065 /// ->
5066 /// addps (%rdi), %xmm0
5067 ///
5068 /// But this one is:
5069 /// movss (%rdi), %xmm0
5070 /// addss %xmm0, %xmm0
5071 /// ->
5072 /// addss (%rdi), %xmm0
5073 ///
isNonFoldablePartialRegisterLoad(const MachineInstr & LoadMI,const MachineInstr & UserMI,const MachineFunction & MF)5074 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5075 const MachineInstr &UserMI,
5076 const MachineFunction &MF) {
5077 unsigned Opc = LoadMI.getOpcode();
5078 unsigned UserOpc = UserMI.getOpcode();
5079 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5080 const TargetRegisterClass *RC =
5081 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5082 unsigned RegSize = TRI.getRegSizeInBits(*RC);
5083
5084 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm) &&
5085 RegSize > 32) {
5086 // These instructions only load 32 bits, we can't fold them if the
5087 // destination register is wider than 32 bits (4 bytes), and its user
5088 // instruction isn't scalar (SS).
5089 switch (UserOpc) {
5090 case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5091 case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5092 case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5093 case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5094 case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5095 case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5096 case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5097 case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5098 case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5099 case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5100 case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5101 case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5102 case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5103 case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int:
5104 case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int:
5105 case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int:
5106 case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int:
5107 case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int:
5108 case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int:
5109 case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int:
5110 case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int:
5111 case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5112 case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5113 case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5114 case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5115 case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5116 case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5117 case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5118 case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5119 case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5120 case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5121 case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5122 case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5123 case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5124 case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5125 case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5126 case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5127 case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5128 case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5129 return false;
5130 default:
5131 return true;
5132 }
5133 }
5134
5135 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm) &&
5136 RegSize > 64) {
5137 // These instructions only load 64 bits, we can't fold them if the
5138 // destination register is wider than 64 bits (8 bytes), and its user
5139 // instruction isn't scalar (SD).
5140 switch (UserOpc) {
5141 case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
5142 case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
5143 case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
5144 case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
5145 case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
5146 case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
5147 case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
5148 case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
5149 case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
5150 case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
5151 case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
5152 case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
5153 case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
5154 case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int:
5155 case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int:
5156 case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int:
5157 case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int:
5158 case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int:
5159 case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int:
5160 case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int:
5161 case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int:
5162 case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
5163 case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
5164 case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
5165 case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
5166 case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
5167 case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
5168 case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
5169 case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
5170 case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
5171 case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
5172 case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
5173 case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
5174 case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
5175 case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
5176 case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
5177 case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
5178 case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
5179 case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
5180 return false;
5181 default:
5182 return true;
5183 }
5184 }
5185
5186 return false;
5187 }
5188
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr & LoadMI,LiveIntervals * LIS) const5189 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5190 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
5191 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
5192 LiveIntervals *LIS) const {
5193
5194 // TODO: Support the case where LoadMI loads a wide register, but MI
5195 // only uses a subreg.
5196 for (auto Op : Ops) {
5197 if (MI.getOperand(Op).getSubReg())
5198 return nullptr;
5199 }
5200
5201 // If loading from a FrameIndex, fold directly from the FrameIndex.
5202 unsigned NumOps = LoadMI.getDesc().getNumOperands();
5203 int FrameIndex;
5204 if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
5205 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5206 return nullptr;
5207 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
5208 }
5209
5210 // Check switch flag
5211 if (NoFusing) return nullptr;
5212
5213 // Avoid partial and undef register update stalls unless optimizing for size.
5214 if (!MF.getFunction().optForSize() &&
5215 (hasPartialRegUpdate(MI.getOpcode(), Subtarget) ||
5216 shouldPreventUndefRegUpdateMemFold(MF, MI)))
5217 return nullptr;
5218
5219 // Determine the alignment of the load.
5220 unsigned Alignment = 0;
5221 if (LoadMI.hasOneMemOperand())
5222 Alignment = (*LoadMI.memoperands_begin())->getAlignment();
5223 else
5224 switch (LoadMI.getOpcode()) {
5225 case X86::AVX512_512_SET0:
5226 case X86::AVX512_512_SETALLONES:
5227 Alignment = 64;
5228 break;
5229 case X86::AVX2_SETALLONES:
5230 case X86::AVX1_SETALLONES:
5231 case X86::AVX_SET0:
5232 case X86::AVX512_256_SET0:
5233 Alignment = 32;
5234 break;
5235 case X86::V_SET0:
5236 case X86::V_SETALLONES:
5237 case X86::AVX512_128_SET0:
5238 Alignment = 16;
5239 break;
5240 case X86::MMX_SET0:
5241 case X86::FsFLD0SD:
5242 case X86::AVX512_FsFLD0SD:
5243 Alignment = 8;
5244 break;
5245 case X86::FsFLD0SS:
5246 case X86::AVX512_FsFLD0SS:
5247 Alignment = 4;
5248 break;
5249 default:
5250 return nullptr;
5251 }
5252 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5253 unsigned NewOpc = 0;
5254 switch (MI.getOpcode()) {
5255 default: return nullptr;
5256 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
5257 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
5258 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
5259 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
5260 }
5261 // Change to CMPXXri r, 0 first.
5262 MI.setDesc(get(NewOpc));
5263 MI.getOperand(1).ChangeToImmediate(0);
5264 } else if (Ops.size() != 1)
5265 return nullptr;
5266
5267 // Make sure the subregisters match.
5268 // Otherwise we risk changing the size of the load.
5269 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
5270 return nullptr;
5271
5272 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
5273 switch (LoadMI.getOpcode()) {
5274 case X86::MMX_SET0:
5275 case X86::V_SET0:
5276 case X86::V_SETALLONES:
5277 case X86::AVX2_SETALLONES:
5278 case X86::AVX1_SETALLONES:
5279 case X86::AVX_SET0:
5280 case X86::AVX512_128_SET0:
5281 case X86::AVX512_256_SET0:
5282 case X86::AVX512_512_SET0:
5283 case X86::AVX512_512_SETALLONES:
5284 case X86::FsFLD0SD:
5285 case X86::AVX512_FsFLD0SD:
5286 case X86::FsFLD0SS:
5287 case X86::AVX512_FsFLD0SS: {
5288 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5289 // Create a constant-pool entry and operands to load from it.
5290
5291 // Medium and large mode can't fold loads this way.
5292 if (MF.getTarget().getCodeModel() != CodeModel::Small &&
5293 MF.getTarget().getCodeModel() != CodeModel::Kernel)
5294 return nullptr;
5295
5296 // x86-32 PIC requires a PIC base register for constant pools.
5297 unsigned PICBase = 0;
5298 if (MF.getTarget().isPositionIndependent()) {
5299 if (Subtarget.is64Bit())
5300 PICBase = X86::RIP;
5301 else
5302 // FIXME: PICBase = getGlobalBaseReg(&MF);
5303 // This doesn't work for several reasons.
5304 // 1. GlobalBaseReg may have been spilled.
5305 // 2. It may not be live at MI.
5306 return nullptr;
5307 }
5308
5309 // Create a constant-pool entry.
5310 MachineConstantPool &MCP = *MF.getConstantPool();
5311 Type *Ty;
5312 unsigned Opc = LoadMI.getOpcode();
5313 if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
5314 Ty = Type::getFloatTy(MF.getFunction().getContext());
5315 else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
5316 Ty = Type::getDoubleTy(MF.getFunction().getContext());
5317 else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
5318 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16);
5319 else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
5320 Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
5321 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8);
5322 else if (Opc == X86::MMX_SET0)
5323 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2);
5324 else
5325 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4);
5326
5327 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
5328 Opc == X86::AVX512_512_SETALLONES ||
5329 Opc == X86::AVX1_SETALLONES);
5330 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
5331 Constant::getNullValue(Ty);
5332 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
5333
5334 // Create operands to load from the constant pool entry.
5335 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
5336 MOs.push_back(MachineOperand::CreateImm(1));
5337 MOs.push_back(MachineOperand::CreateReg(0, false));
5338 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
5339 MOs.push_back(MachineOperand::CreateReg(0, false));
5340 break;
5341 }
5342 default: {
5343 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
5344 return nullptr;
5345
5346 // Folding a normal load. Just copy the load's address operands.
5347 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
5348 LoadMI.operands_begin() + NumOps);
5349 break;
5350 }
5351 }
5352 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
5353 /*Size=*/0, Alignment, /*AllowCommute=*/true);
5354 }
5355
unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs) const5356 bool X86InstrInfo::unfoldMemoryOperand(
5357 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
5358 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
5359 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
5360 if (I == nullptr)
5361 return false;
5362 unsigned Opc = I->DstOp;
5363 unsigned Index = I->Flags & TB_INDEX_MASK;
5364 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5365 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5366 if (UnfoldLoad && !FoldedLoad)
5367 return false;
5368 UnfoldLoad &= FoldedLoad;
5369 if (UnfoldStore && !FoldedStore)
5370 return false;
5371 UnfoldStore &= FoldedStore;
5372
5373 const MCInstrDesc &MCID = get(Opc);
5374 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5375 // TODO: Check if 32-byte or greater accesses are slow too?
5376 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
5377 Subtarget.isUnalignedMem16Slow())
5378 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5379 // conservatively assume the address is unaligned. That's bad for
5380 // performance.
5381 return false;
5382 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
5383 SmallVector<MachineOperand,2> BeforeOps;
5384 SmallVector<MachineOperand,2> AfterOps;
5385 SmallVector<MachineOperand,4> ImpOps;
5386 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5387 MachineOperand &Op = MI.getOperand(i);
5388 if (i >= Index && i < Index + X86::AddrNumOperands)
5389 AddrOps.push_back(Op);
5390 else if (Op.isReg() && Op.isImplicit())
5391 ImpOps.push_back(Op);
5392 else if (i < Index)
5393 BeforeOps.push_back(Op);
5394 else if (i > Index)
5395 AfterOps.push_back(Op);
5396 }
5397
5398 // Emit the load instruction.
5399 if (UnfoldLoad) {
5400 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
5401 MF.extractLoadMemRefs(MI.memoperands_begin(), MI.memoperands_end());
5402 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
5403 if (UnfoldStore) {
5404 // Address operands cannot be marked isKill.
5405 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
5406 MachineOperand &MO = NewMIs[0]->getOperand(i);
5407 if (MO.isReg())
5408 MO.setIsKill(false);
5409 }
5410 }
5411 }
5412
5413 // Emit the data processing instruction.
5414 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
5415 MachineInstrBuilder MIB(MF, DataMI);
5416
5417 if (FoldedStore)
5418 MIB.addReg(Reg, RegState::Define);
5419 for (MachineOperand &BeforeOp : BeforeOps)
5420 MIB.add(BeforeOp);
5421 if (FoldedLoad)
5422 MIB.addReg(Reg);
5423 for (MachineOperand &AfterOp : AfterOps)
5424 MIB.add(AfterOp);
5425 for (MachineOperand &ImpOp : ImpOps) {
5426 MIB.addReg(ImpOp.getReg(),
5427 getDefRegState(ImpOp.isDef()) |
5428 RegState::Implicit |
5429 getKillRegState(ImpOp.isKill()) |
5430 getDeadRegState(ImpOp.isDead()) |
5431 getUndefRegState(ImpOp.isUndef()));
5432 }
5433 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5434 switch (DataMI->getOpcode()) {
5435 default: break;
5436 case X86::CMP64ri32:
5437 case X86::CMP64ri8:
5438 case X86::CMP32ri:
5439 case X86::CMP32ri8:
5440 case X86::CMP16ri:
5441 case X86::CMP16ri8:
5442 case X86::CMP8ri: {
5443 MachineOperand &MO0 = DataMI->getOperand(0);
5444 MachineOperand &MO1 = DataMI->getOperand(1);
5445 if (MO1.getImm() == 0) {
5446 unsigned NewOpc;
5447 switch (DataMI->getOpcode()) {
5448 default: llvm_unreachable("Unreachable!");
5449 case X86::CMP64ri8:
5450 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
5451 case X86::CMP32ri8:
5452 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
5453 case X86::CMP16ri8:
5454 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
5455 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
5456 }
5457 DataMI->setDesc(get(NewOpc));
5458 MO1.ChangeToRegister(MO0.getReg(), false);
5459 }
5460 }
5461 }
5462 NewMIs.push_back(DataMI);
5463
5464 // Emit the store instruction.
5465 if (UnfoldStore) {
5466 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
5467 std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs =
5468 MF.extractStoreMemRefs(MI.memoperands_begin(), MI.memoperands_end());
5469 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
5470 }
5471
5472 return true;
5473 }
5474
5475 bool
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes) const5476 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
5477 SmallVectorImpl<SDNode*> &NewNodes) const {
5478 if (!N->isMachineOpcode())
5479 return false;
5480
5481 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
5482 if (I == nullptr)
5483 return false;
5484 unsigned Opc = I->DstOp;
5485 unsigned Index = I->Flags & TB_INDEX_MASK;
5486 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5487 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5488 const MCInstrDesc &MCID = get(Opc);
5489 MachineFunction &MF = DAG.getMachineFunction();
5490 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5491 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
5492 unsigned NumDefs = MCID.NumDefs;
5493 std::vector<SDValue> AddrOps;
5494 std::vector<SDValue> BeforeOps;
5495 std::vector<SDValue> AfterOps;
5496 SDLoc dl(N);
5497 unsigned NumOps = N->getNumOperands();
5498 for (unsigned i = 0; i != NumOps-1; ++i) {
5499 SDValue Op = N->getOperand(i);
5500 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
5501 AddrOps.push_back(Op);
5502 else if (i < Index-NumDefs)
5503 BeforeOps.push_back(Op);
5504 else if (i > Index-NumDefs)
5505 AfterOps.push_back(Op);
5506 }
5507 SDValue Chain = N->getOperand(NumOps-1);
5508 AddrOps.push_back(Chain);
5509
5510 // Emit the load instruction.
5511 SDNode *Load = nullptr;
5512 if (FoldedLoad) {
5513 EVT VT = *TRI.legalclasstypes_begin(*RC);
5514 std::pair<MachineInstr::mmo_iterator,
5515 MachineInstr::mmo_iterator> MMOs =
5516 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5517 cast<MachineSDNode>(N)->memoperands_end());
5518 if (!(*MMOs.first) &&
5519 RC == &X86::VR128RegClass &&
5520 Subtarget.isUnalignedMem16Slow())
5521 // Do not introduce a slow unaligned load.
5522 return false;
5523 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5524 // memory access is slow above.
5525 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5526 bool isAligned = (*MMOs.first) &&
5527 (*MMOs.first)->getAlignment() >= Alignment;
5528 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl,
5529 VT, MVT::Other, AddrOps);
5530 NewNodes.push_back(Load);
5531
5532 // Preserve memory reference information.
5533 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
5534 }
5535
5536 // Emit the data processing instruction.
5537 std::vector<EVT> VTs;
5538 const TargetRegisterClass *DstRC = nullptr;
5539 if (MCID.getNumDefs() > 0) {
5540 DstRC = getRegClass(MCID, 0, &RI, MF);
5541 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
5542 }
5543 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
5544 EVT VT = N->getValueType(i);
5545 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
5546 VTs.push_back(VT);
5547 }
5548 if (Load)
5549 BeforeOps.push_back(SDValue(Load, 0));
5550 BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end());
5551 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5552 switch (Opc) {
5553 default: break;
5554 case X86::CMP64ri32:
5555 case X86::CMP64ri8:
5556 case X86::CMP32ri:
5557 case X86::CMP32ri8:
5558 case X86::CMP16ri:
5559 case X86::CMP16ri8:
5560 case X86::CMP8ri:
5561 if (isNullConstant(BeforeOps[1])) {
5562 switch (Opc) {
5563 default: llvm_unreachable("Unreachable!");
5564 case X86::CMP64ri8:
5565 case X86::CMP64ri32: Opc = X86::TEST64rr; break;
5566 case X86::CMP32ri8:
5567 case X86::CMP32ri: Opc = X86::TEST32rr; break;
5568 case X86::CMP16ri8:
5569 case X86::CMP16ri: Opc = X86::TEST16rr; break;
5570 case X86::CMP8ri: Opc = X86::TEST8rr; break;
5571 }
5572 BeforeOps[1] = BeforeOps[0];
5573 }
5574 }
5575 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
5576 NewNodes.push_back(NewNode);
5577
5578 // Emit the store instruction.
5579 if (FoldedStore) {
5580 AddrOps.pop_back();
5581 AddrOps.push_back(SDValue(NewNode, 0));
5582 AddrOps.push_back(Chain);
5583 std::pair<MachineInstr::mmo_iterator,
5584 MachineInstr::mmo_iterator> MMOs =
5585 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
5586 cast<MachineSDNode>(N)->memoperands_end());
5587 if (!(*MMOs.first) &&
5588 RC == &X86::VR128RegClass &&
5589 Subtarget.isUnalignedMem16Slow())
5590 // Do not introduce a slow unaligned store.
5591 return false;
5592 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5593 // memory access is slow above.
5594 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
5595 bool isAligned = (*MMOs.first) &&
5596 (*MMOs.first)->getAlignment() >= Alignment;
5597 SDNode *Store =
5598 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
5599 dl, MVT::Other, AddrOps);
5600 NewNodes.push_back(Store);
5601
5602 // Preserve memory reference information.
5603 cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second);
5604 }
5605
5606 return true;
5607 }
5608
getOpcodeAfterMemoryUnfold(unsigned Opc,bool UnfoldLoad,bool UnfoldStore,unsigned * LoadRegIndex) const5609 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
5610 bool UnfoldLoad, bool UnfoldStore,
5611 unsigned *LoadRegIndex) const {
5612 const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
5613 if (I == nullptr)
5614 return 0;
5615 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
5616 bool FoldedStore = I->Flags & TB_FOLDED_STORE;
5617 if (UnfoldLoad && !FoldedLoad)
5618 return 0;
5619 if (UnfoldStore && !FoldedStore)
5620 return 0;
5621 if (LoadRegIndex)
5622 *LoadRegIndex = I->Flags & TB_INDEX_MASK;
5623 return I->DstOp;
5624 }
5625
5626 bool
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const5627 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
5628 int64_t &Offset1, int64_t &Offset2) const {
5629 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
5630 return false;
5631 unsigned Opc1 = Load1->getMachineOpcode();
5632 unsigned Opc2 = Load2->getMachineOpcode();
5633 switch (Opc1) {
5634 default: return false;
5635 case X86::MOV8rm:
5636 case X86::MOV16rm:
5637 case X86::MOV32rm:
5638 case X86::MOV64rm:
5639 case X86::LD_Fp32m:
5640 case X86::LD_Fp64m:
5641 case X86::LD_Fp80m:
5642 case X86::MOVSSrm:
5643 case X86::MOVSDrm:
5644 case X86::MMX_MOVD64rm:
5645 case X86::MMX_MOVQ64rm:
5646 case X86::MOVAPSrm:
5647 case X86::MOVUPSrm:
5648 case X86::MOVAPDrm:
5649 case X86::MOVUPDrm:
5650 case X86::MOVDQArm:
5651 case X86::MOVDQUrm:
5652 // AVX load instructions
5653 case X86::VMOVSSrm:
5654 case X86::VMOVSDrm:
5655 case X86::VMOVAPSrm:
5656 case X86::VMOVUPSrm:
5657 case X86::VMOVAPDrm:
5658 case X86::VMOVUPDrm:
5659 case X86::VMOVDQArm:
5660 case X86::VMOVDQUrm:
5661 case X86::VMOVAPSYrm:
5662 case X86::VMOVUPSYrm:
5663 case X86::VMOVAPDYrm:
5664 case X86::VMOVUPDYrm:
5665 case X86::VMOVDQAYrm:
5666 case X86::VMOVDQUYrm:
5667 // AVX512 load instructions
5668 case X86::VMOVSSZrm:
5669 case X86::VMOVSDZrm:
5670 case X86::VMOVAPSZ128rm:
5671 case X86::VMOVUPSZ128rm:
5672 case X86::VMOVAPSZ128rm_NOVLX:
5673 case X86::VMOVUPSZ128rm_NOVLX:
5674 case X86::VMOVAPDZ128rm:
5675 case X86::VMOVUPDZ128rm:
5676 case X86::VMOVDQU8Z128rm:
5677 case X86::VMOVDQU16Z128rm:
5678 case X86::VMOVDQA32Z128rm:
5679 case X86::VMOVDQU32Z128rm:
5680 case X86::VMOVDQA64Z128rm:
5681 case X86::VMOVDQU64Z128rm:
5682 case X86::VMOVAPSZ256rm:
5683 case X86::VMOVUPSZ256rm:
5684 case X86::VMOVAPSZ256rm_NOVLX:
5685 case X86::VMOVUPSZ256rm_NOVLX:
5686 case X86::VMOVAPDZ256rm:
5687 case X86::VMOVUPDZ256rm:
5688 case X86::VMOVDQU8Z256rm:
5689 case X86::VMOVDQU16Z256rm:
5690 case X86::VMOVDQA32Z256rm:
5691 case X86::VMOVDQU32Z256rm:
5692 case X86::VMOVDQA64Z256rm:
5693 case X86::VMOVDQU64Z256rm:
5694 case X86::VMOVAPSZrm:
5695 case X86::VMOVUPSZrm:
5696 case X86::VMOVAPDZrm:
5697 case X86::VMOVUPDZrm:
5698 case X86::VMOVDQU8Zrm:
5699 case X86::VMOVDQU16Zrm:
5700 case X86::VMOVDQA32Zrm:
5701 case X86::VMOVDQU32Zrm:
5702 case X86::VMOVDQA64Zrm:
5703 case X86::VMOVDQU64Zrm:
5704 case X86::KMOVBkm:
5705 case X86::KMOVWkm:
5706 case X86::KMOVDkm:
5707 case X86::KMOVQkm:
5708 break;
5709 }
5710 switch (Opc2) {
5711 default: return false;
5712 case X86::MOV8rm:
5713 case X86::MOV16rm:
5714 case X86::MOV32rm:
5715 case X86::MOV64rm:
5716 case X86::LD_Fp32m:
5717 case X86::LD_Fp64m:
5718 case X86::LD_Fp80m:
5719 case X86::MOVSSrm:
5720 case X86::MOVSDrm:
5721 case X86::MMX_MOVD64rm:
5722 case X86::MMX_MOVQ64rm:
5723 case X86::MOVAPSrm:
5724 case X86::MOVUPSrm:
5725 case X86::MOVAPDrm:
5726 case X86::MOVUPDrm:
5727 case X86::MOVDQArm:
5728 case X86::MOVDQUrm:
5729 // AVX load instructions
5730 case X86::VMOVSSrm:
5731 case X86::VMOVSDrm:
5732 case X86::VMOVAPSrm:
5733 case X86::VMOVUPSrm:
5734 case X86::VMOVAPDrm:
5735 case X86::VMOVUPDrm:
5736 case X86::VMOVDQArm:
5737 case X86::VMOVDQUrm:
5738 case X86::VMOVAPSYrm:
5739 case X86::VMOVUPSYrm:
5740 case X86::VMOVAPDYrm:
5741 case X86::VMOVUPDYrm:
5742 case X86::VMOVDQAYrm:
5743 case X86::VMOVDQUYrm:
5744 // AVX512 load instructions
5745 case X86::VMOVSSZrm:
5746 case X86::VMOVSDZrm:
5747 case X86::VMOVAPSZ128rm:
5748 case X86::VMOVUPSZ128rm:
5749 case X86::VMOVAPSZ128rm_NOVLX:
5750 case X86::VMOVUPSZ128rm_NOVLX:
5751 case X86::VMOVAPDZ128rm:
5752 case X86::VMOVUPDZ128rm:
5753 case X86::VMOVDQU8Z128rm:
5754 case X86::VMOVDQU16Z128rm:
5755 case X86::VMOVDQA32Z128rm:
5756 case X86::VMOVDQU32Z128rm:
5757 case X86::VMOVDQA64Z128rm:
5758 case X86::VMOVDQU64Z128rm:
5759 case X86::VMOVAPSZ256rm:
5760 case X86::VMOVUPSZ256rm:
5761 case X86::VMOVAPSZ256rm_NOVLX:
5762 case X86::VMOVUPSZ256rm_NOVLX:
5763 case X86::VMOVAPDZ256rm:
5764 case X86::VMOVUPDZ256rm:
5765 case X86::VMOVDQU8Z256rm:
5766 case X86::VMOVDQU16Z256rm:
5767 case X86::VMOVDQA32Z256rm:
5768 case X86::VMOVDQU32Z256rm:
5769 case X86::VMOVDQA64Z256rm:
5770 case X86::VMOVDQU64Z256rm:
5771 case X86::VMOVAPSZrm:
5772 case X86::VMOVUPSZrm:
5773 case X86::VMOVAPDZrm:
5774 case X86::VMOVUPDZrm:
5775 case X86::VMOVDQU8Zrm:
5776 case X86::VMOVDQU16Zrm:
5777 case X86::VMOVDQA32Zrm:
5778 case X86::VMOVDQU32Zrm:
5779 case X86::VMOVDQA64Zrm:
5780 case X86::VMOVDQU64Zrm:
5781 case X86::KMOVBkm:
5782 case X86::KMOVWkm:
5783 case X86::KMOVDkm:
5784 case X86::KMOVQkm:
5785 break;
5786 }
5787
5788 // Lambda to check if both the loads have the same value for an operand index.
5789 auto HasSameOp = [&](int I) {
5790 return Load1->getOperand(I) == Load2->getOperand(I);
5791 };
5792
5793 // All operands except the displacement should match.
5794 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
5795 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
5796 return false;
5797
5798 // Chain Operand must be the same.
5799 if (!HasSameOp(5))
5800 return false;
5801
5802 // Now let's examine if the displacements are constants.
5803 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
5804 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
5805 if (!Disp1 || !Disp2)
5806 return false;
5807
5808 Offset1 = Disp1->getSExtValue();
5809 Offset2 = Disp2->getSExtValue();
5810 return true;
5811 }
5812
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const5813 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
5814 int64_t Offset1, int64_t Offset2,
5815 unsigned NumLoads) const {
5816 assert(Offset2 > Offset1);
5817 if ((Offset2 - Offset1) / 8 > 64)
5818 return false;
5819
5820 unsigned Opc1 = Load1->getMachineOpcode();
5821 unsigned Opc2 = Load2->getMachineOpcode();
5822 if (Opc1 != Opc2)
5823 return false; // FIXME: overly conservative?
5824
5825 switch (Opc1) {
5826 default: break;
5827 case X86::LD_Fp32m:
5828 case X86::LD_Fp64m:
5829 case X86::LD_Fp80m:
5830 case X86::MMX_MOVD64rm:
5831 case X86::MMX_MOVQ64rm:
5832 return false;
5833 }
5834
5835 EVT VT = Load1->getValueType(0);
5836 switch (VT.getSimpleVT().SimpleTy) {
5837 default:
5838 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5839 // have 16 of them to play with.
5840 if (Subtarget.is64Bit()) {
5841 if (NumLoads >= 3)
5842 return false;
5843 } else if (NumLoads) {
5844 return false;
5845 }
5846 break;
5847 case MVT::i8:
5848 case MVT::i16:
5849 case MVT::i32:
5850 case MVT::i64:
5851 case MVT::f32:
5852 case MVT::f64:
5853 if (NumLoads)
5854 return false;
5855 break;
5856 }
5857
5858 return true;
5859 }
5860
5861 bool X86InstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const5862 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
5863 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
5864 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
5865 Cond[0].setImm(GetOppositeBranchCondition(CC));
5866 return false;
5867 }
5868
5869 bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC) const5870 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
5871 // FIXME: Return false for x87 stack register classes for now. We can't
5872 // allow any loads of these registers before FpGet_ST0_80.
5873 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
5874 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
5875 RC == &X86::RFP80RegClass);
5876 }
5877
5878 /// Return a virtual register initialized with the
5879 /// the global base register value. Output instructions required to
5880 /// initialize the register in the function entry block, if necessary.
5881 ///
5882 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5883 ///
getGlobalBaseReg(MachineFunction * MF) const5884 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
5885 assert((!Subtarget.is64Bit() ||
5886 MF->getTarget().getCodeModel() == CodeModel::Medium ||
5887 MF->getTarget().getCodeModel() == CodeModel::Large) &&
5888 "X86-64 PIC uses RIP relative addressing");
5889
5890 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
5891 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
5892 if (GlobalBaseReg != 0)
5893 return GlobalBaseReg;
5894
5895 // Create the register. The code to initialize it is inserted
5896 // later, by the CGBR pass (below).
5897 MachineRegisterInfo &RegInfo = MF->getRegInfo();
5898 GlobalBaseReg = RegInfo.createVirtualRegister(
5899 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
5900 X86FI->setGlobalBaseReg(GlobalBaseReg);
5901 return GlobalBaseReg;
5902 }
5903
5904 // These are the replaceable SSE instructions. Some of these have Int variants
5905 // that we don't include here. We don't want to replace instructions selected
5906 // by intrinsics.
5907 static const uint16_t ReplaceableInstrs[][3] = {
5908 //PackedSingle PackedDouble PackedInt
5909 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
5910 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
5911 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
5912 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
5913 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
5914 { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr },
5915 { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr },
5916 { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr },
5917 { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm },
5918 { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm },
5919 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
5920 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
5921 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
5922 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
5923 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
5924 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
5925 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
5926 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
5927 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
5928 { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
5929 { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
5930 { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
5931 { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
5932 { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
5933 { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
5934 { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
5935 { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
5936 { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
5937 { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
5938 // AVX 128-bit support
5939 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
5940 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
5941 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
5942 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
5943 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
5944 { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr },
5945 { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr },
5946 { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr },
5947 { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm },
5948 { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm },
5949 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
5950 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
5951 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
5952 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
5953 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
5954 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
5955 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
5956 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
5957 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
5958 { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
5959 { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
5960 { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
5961 { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
5962 { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
5963 { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
5964 { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
5965 { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
5966 { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
5967 { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
5968 // AVX 256-bit support
5969 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
5970 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
5971 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
5972 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
5973 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
5974 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
5975 { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm },
5976 { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr },
5977 { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi },
5978 { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri },
5979 // AVX512 support
5980 { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr },
5981 { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
5982 { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
5983 { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr },
5984 { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr },
5985 { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr },
5986 { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm },
5987 { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm },
5988 { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r },
5989 { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m },
5990 { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r },
5991 { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m },
5992 { X86::VBROADCASTSSZr, X86::VBROADCASTSSZr, X86::VPBROADCASTDZr },
5993 { X86::VBROADCASTSSZm, X86::VBROADCASTSSZm, X86::VPBROADCASTDZm },
5994 { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r },
5995 { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m },
5996 { X86::VBROADCASTSDZr, X86::VBROADCASTSDZr, X86::VPBROADCASTQZr },
5997 { X86::VBROADCASTSDZm, X86::VBROADCASTSDZm, X86::VPBROADCASTQZm },
5998 { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr },
5999 { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm },
6000 { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr },
6001 { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm },
6002 { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr },
6003 { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm },
6004 { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr },
6005 { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm },
6006 { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
6007 { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
6008 { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
6009 { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
6010 { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr },
6011 { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr },
6012 { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr },
6013 { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr },
6014 { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr },
6015 { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr },
6016 { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr },
6017 { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr },
6018 { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
6019 { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
6020 { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
6021 { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
6022 { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi },
6023 { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri },
6024 { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi },
6025 { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri },
6026 { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi },
6027 { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri },
6028 { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi },
6029 { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri },
6030 { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm },
6031 { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr },
6032 { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi },
6033 { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri },
6034 { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm },
6035 { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr },
6036 { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm },
6037 { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr },
6038 { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi },
6039 { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri },
6040 { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm },
6041 { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr },
6042 { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm },
6043 { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr },
6044 { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm },
6045 { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr },
6046 { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm },
6047 { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr },
6048 { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm },
6049 { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr },
6050 { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm },
6051 { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr },
6052 { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm },
6053 { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr },
6054 { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm },
6055 { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr },
6056 { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm },
6057 { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr },
6058 { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm },
6059 { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr },
6060 { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm },
6061 { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr },
6062 { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm },
6063 { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr },
6064 { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm },
6065 { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr },
6066 { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr },
6067 { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr },
6068 };
6069
6070 static const uint16_t ReplaceableInstrsAVX2[][3] = {
6071 //PackedSingle PackedDouble PackedInt
6072 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
6073 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
6074 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
6075 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
6076 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
6077 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
6078 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
6079 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
6080 { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
6081 { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr },
6082 { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
6083 { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
6084 { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
6085 { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
6086 { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
6087 { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
6088 { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 },
6089 { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri },
6090 { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi },
6091 { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi },
6092 { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri },
6093 { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm },
6094 { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr },
6095 { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm },
6096 { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr },
6097 { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm },
6098 { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr },
6099 { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm },
6100 { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr },
6101 };
6102
6103 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
6104 //PackedSingle PackedDouble PackedInt
6105 { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
6106 { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
6107 { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
6108 { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
6109 };
6110
6111 static const uint16_t ReplaceableInstrsAVX512[][4] = {
6112 // Two integer columns for 64-bit and 32-bit elements.
6113 //PackedSingle PackedDouble PackedInt PackedInt
6114 { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr },
6115 { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm },
6116 { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr },
6117 { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr },
6118 { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm },
6119 { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr },
6120 { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm },
6121 { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr },
6122 { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr },
6123 { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm },
6124 { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr },
6125 { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm },
6126 { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr },
6127 { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr },
6128 { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm },
6129 };
6130
6131 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
6132 // Two integer columns for 64-bit and 32-bit elements.
6133 //PackedSingle PackedDouble PackedInt PackedInt
6134 { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6135 { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6136 { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
6137 { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
6138 { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm },
6139 { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr },
6140 { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
6141 { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
6142 { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6143 { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6144 { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
6145 { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
6146 { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm },
6147 { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr },
6148 { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
6149 { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
6150 { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm },
6151 { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr },
6152 { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm },
6153 { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr },
6154 { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm },
6155 { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr },
6156 { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm },
6157 { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr },
6158 };
6159
6160 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
6161 // Two integer columns for 64-bit and 32-bit elements.
6162 //PackedSingle PackedDouble
6163 //PackedInt PackedInt
6164 { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk,
6165 X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk },
6166 { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
6167 X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
6168 { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk,
6169 X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk },
6170 { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
6171 X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
6172 { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk,
6173 X86::VPANDQZ128rmk, X86::VPANDDZ128rmk },
6174 { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz,
6175 X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz },
6176 { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk,
6177 X86::VPANDQZ128rrk, X86::VPANDDZ128rrk },
6178 { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz,
6179 X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz },
6180 { X86::VORPSZ128rmk, X86::VORPDZ128rmk,
6181 X86::VPORQZ128rmk, X86::VPORDZ128rmk },
6182 { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz,
6183 X86::VPORQZ128rmkz, X86::VPORDZ128rmkz },
6184 { X86::VORPSZ128rrk, X86::VORPDZ128rrk,
6185 X86::VPORQZ128rrk, X86::VPORDZ128rrk },
6186 { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz,
6187 X86::VPORQZ128rrkz, X86::VPORDZ128rrkz },
6188 { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk,
6189 X86::VPXORQZ128rmk, X86::VPXORDZ128rmk },
6190 { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz,
6191 X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz },
6192 { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk,
6193 X86::VPXORQZ128rrk, X86::VPXORDZ128rrk },
6194 { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz,
6195 X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz },
6196 { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk,
6197 X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk },
6198 { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
6199 X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
6200 { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk,
6201 X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk },
6202 { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
6203 X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
6204 { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk,
6205 X86::VPANDQZ256rmk, X86::VPANDDZ256rmk },
6206 { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz,
6207 X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz },
6208 { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk,
6209 X86::VPANDQZ256rrk, X86::VPANDDZ256rrk },
6210 { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz,
6211 X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz },
6212 { X86::VORPSZ256rmk, X86::VORPDZ256rmk,
6213 X86::VPORQZ256rmk, X86::VPORDZ256rmk },
6214 { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz,
6215 X86::VPORQZ256rmkz, X86::VPORDZ256rmkz },
6216 { X86::VORPSZ256rrk, X86::VORPDZ256rrk,
6217 X86::VPORQZ256rrk, X86::VPORDZ256rrk },
6218 { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz,
6219 X86::VPORQZ256rrkz, X86::VPORDZ256rrkz },
6220 { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk,
6221 X86::VPXORQZ256rmk, X86::VPXORDZ256rmk },
6222 { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz,
6223 X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz },
6224 { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk,
6225 X86::VPXORQZ256rrk, X86::VPXORDZ256rrk },
6226 { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz,
6227 X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz },
6228 { X86::VANDNPSZrmk, X86::VANDNPDZrmk,
6229 X86::VPANDNQZrmk, X86::VPANDNDZrmk },
6230 { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz,
6231 X86::VPANDNQZrmkz, X86::VPANDNDZrmkz },
6232 { X86::VANDNPSZrrk, X86::VANDNPDZrrk,
6233 X86::VPANDNQZrrk, X86::VPANDNDZrrk },
6234 { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz,
6235 X86::VPANDNQZrrkz, X86::VPANDNDZrrkz },
6236 { X86::VANDPSZrmk, X86::VANDPDZrmk,
6237 X86::VPANDQZrmk, X86::VPANDDZrmk },
6238 { X86::VANDPSZrmkz, X86::VANDPDZrmkz,
6239 X86::VPANDQZrmkz, X86::VPANDDZrmkz },
6240 { X86::VANDPSZrrk, X86::VANDPDZrrk,
6241 X86::VPANDQZrrk, X86::VPANDDZrrk },
6242 { X86::VANDPSZrrkz, X86::VANDPDZrrkz,
6243 X86::VPANDQZrrkz, X86::VPANDDZrrkz },
6244 { X86::VORPSZrmk, X86::VORPDZrmk,
6245 X86::VPORQZrmk, X86::VPORDZrmk },
6246 { X86::VORPSZrmkz, X86::VORPDZrmkz,
6247 X86::VPORQZrmkz, X86::VPORDZrmkz },
6248 { X86::VORPSZrrk, X86::VORPDZrrk,
6249 X86::VPORQZrrk, X86::VPORDZrrk },
6250 { X86::VORPSZrrkz, X86::VORPDZrrkz,
6251 X86::VPORQZrrkz, X86::VPORDZrrkz },
6252 { X86::VXORPSZrmk, X86::VXORPDZrmk,
6253 X86::VPXORQZrmk, X86::VPXORDZrmk },
6254 { X86::VXORPSZrmkz, X86::VXORPDZrmkz,
6255 X86::VPXORQZrmkz, X86::VPXORDZrmkz },
6256 { X86::VXORPSZrrk, X86::VXORPDZrrk,
6257 X86::VPXORQZrrk, X86::VPXORDZrrk },
6258 { X86::VXORPSZrrkz, X86::VXORPDZrrkz,
6259 X86::VPXORQZrrkz, X86::VPXORDZrrkz },
6260 // Broadcast loads can be handled the same as masked operations to avoid
6261 // changing element size.
6262 { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb,
6263 X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb },
6264 { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb,
6265 X86::VPANDQZ128rmb, X86::VPANDDZ128rmb },
6266 { X86::VORPSZ128rmb, X86::VORPDZ128rmb,
6267 X86::VPORQZ128rmb, X86::VPORDZ128rmb },
6268 { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb,
6269 X86::VPXORQZ128rmb, X86::VPXORDZ128rmb },
6270 { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb,
6271 X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb },
6272 { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb,
6273 X86::VPANDQZ256rmb, X86::VPANDDZ256rmb },
6274 { X86::VORPSZ256rmb, X86::VORPDZ256rmb,
6275 X86::VPORQZ256rmb, X86::VPORDZ256rmb },
6276 { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb,
6277 X86::VPXORQZ256rmb, X86::VPXORDZ256rmb },
6278 { X86::VANDNPSZrmb, X86::VANDNPDZrmb,
6279 X86::VPANDNQZrmb, X86::VPANDNDZrmb },
6280 { X86::VANDPSZrmb, X86::VANDPDZrmb,
6281 X86::VPANDQZrmb, X86::VPANDDZrmb },
6282 { X86::VANDPSZrmb, X86::VANDPDZrmb,
6283 X86::VPANDQZrmb, X86::VPANDDZrmb },
6284 { X86::VORPSZrmb, X86::VORPDZrmb,
6285 X86::VPORQZrmb, X86::VPORDZrmb },
6286 { X86::VXORPSZrmb, X86::VXORPDZrmb,
6287 X86::VPXORQZrmb, X86::VPXORDZrmb },
6288 { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
6289 X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
6290 { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk,
6291 X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk },
6292 { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk,
6293 X86::VPORQZ128rmbk, X86::VPORDZ128rmbk },
6294 { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk,
6295 X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk },
6296 { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
6297 X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
6298 { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk,
6299 X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk },
6300 { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk,
6301 X86::VPORQZ256rmbk, X86::VPORDZ256rmbk },
6302 { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk,
6303 X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk },
6304 { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk,
6305 X86::VPANDNQZrmbk, X86::VPANDNDZrmbk },
6306 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
6307 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
6308 { X86::VANDPSZrmbk, X86::VANDPDZrmbk,
6309 X86::VPANDQZrmbk, X86::VPANDDZrmbk },
6310 { X86::VORPSZrmbk, X86::VORPDZrmbk,
6311 X86::VPORQZrmbk, X86::VPORDZrmbk },
6312 { X86::VXORPSZrmbk, X86::VXORPDZrmbk,
6313 X86::VPXORQZrmbk, X86::VPXORDZrmbk },
6314 { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
6315 X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
6316 { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
6317 X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
6318 { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz,
6319 X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz },
6320 { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
6321 X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
6322 { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
6323 X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
6324 { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
6325 X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
6326 { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz,
6327 X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz },
6328 { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
6329 X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
6330 { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz,
6331 X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz },
6332 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
6333 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
6334 { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz,
6335 X86::VPANDQZrmbkz, X86::VPANDDZrmbkz },
6336 { X86::VORPSZrmbkz, X86::VORPDZrmbkz,
6337 X86::VPORQZrmbkz, X86::VPORDZrmbkz },
6338 { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz,
6339 X86::VPXORQZrmbkz, X86::VPXORDZrmbkz },
6340 };
6341
6342 // NOTE: These should only be used by the custom domain methods.
6343 static const uint16_t ReplaceableCustomInstrs[][3] = {
6344 //PackedSingle PackedDouble PackedInt
6345 { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi },
6346 { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri },
6347 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi },
6348 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri },
6349 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi },
6350 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri },
6351 };
6352 static const uint16_t ReplaceableCustomAVX2Instrs[][3] = {
6353 //PackedSingle PackedDouble PackedInt
6354 { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi },
6355 { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri },
6356 { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi },
6357 { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri },
6358 };
6359
6360 // Special table for changing EVEX logic instructions to VEX.
6361 // TODO: Should we run EVEX->VEX earlier?
6362 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
6363 // Two integer columns for 64-bit and 32-bit elements.
6364 //PackedSingle PackedDouble PackedInt PackedInt
6365 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
6366 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
6367 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm },
6368 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr },
6369 { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm },
6370 { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr },
6371 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm },
6372 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr },
6373 { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
6374 { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
6375 { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm },
6376 { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr },
6377 { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm },
6378 { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr },
6379 { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm },
6380 { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr },
6381 };
6382
6383 // FIXME: Some shuffle and unpack instructions have equivalents in different
6384 // domains, but they require a bit more work than just switching opcodes.
6385
lookup(unsigned opcode,unsigned domain,ArrayRef<uint16_t[3]> Table)6386 static const uint16_t *lookup(unsigned opcode, unsigned domain,
6387 ArrayRef<uint16_t[3]> Table) {
6388 for (const uint16_t (&Row)[3] : Table)
6389 if (Row[domain-1] == opcode)
6390 return Row;
6391 return nullptr;
6392 }
6393
lookupAVX512(unsigned opcode,unsigned domain,ArrayRef<uint16_t[4]> Table)6394 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
6395 ArrayRef<uint16_t[4]> Table) {
6396 // If this is the integer domain make sure to check both integer columns.
6397 for (const uint16_t (&Row)[4] : Table)
6398 if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
6399 return Row;
6400 return nullptr;
6401 }
6402
6403 // Helper to attempt to widen/narrow blend masks.
AdjustBlendMask(unsigned OldMask,unsigned OldWidth,unsigned NewWidth,unsigned * pNewMask=nullptr)6404 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
6405 unsigned NewWidth, unsigned *pNewMask = nullptr) {
6406 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
6407 "Illegal blend mask scale");
6408 unsigned NewMask = 0;
6409
6410 if ((OldWidth % NewWidth) == 0) {
6411 unsigned Scale = OldWidth / NewWidth;
6412 unsigned SubMask = (1u << Scale) - 1;
6413 for (unsigned i = 0; i != NewWidth; ++i) {
6414 unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
6415 if (Sub == SubMask)
6416 NewMask |= (1u << i);
6417 else if (Sub != 0x0)
6418 return false;
6419 }
6420 } else {
6421 unsigned Scale = NewWidth / OldWidth;
6422 unsigned SubMask = (1u << Scale) - 1;
6423 for (unsigned i = 0; i != OldWidth; ++i) {
6424 if (OldMask & (1 << i)) {
6425 NewMask |= (SubMask << (i * Scale));
6426 }
6427 }
6428 }
6429
6430 if (pNewMask)
6431 *pNewMask = NewMask;
6432 return true;
6433 }
6434
getExecutionDomainCustom(const MachineInstr & MI) const6435 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
6436 unsigned Opcode = MI.getOpcode();
6437 unsigned NumOperands = MI.getDesc().getNumOperands();
6438
6439 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
6440 uint16_t validDomains = 0;
6441 if (MI.getOperand(NumOperands - 1).isImm()) {
6442 unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
6443 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
6444 validDomains |= 0x2; // PackedSingle
6445 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
6446 validDomains |= 0x4; // PackedDouble
6447 if (!Is256 || Subtarget.hasAVX2())
6448 validDomains |= 0x8; // PackedInt
6449 }
6450 return validDomains;
6451 };
6452
6453 switch (Opcode) {
6454 case X86::BLENDPDrmi:
6455 case X86::BLENDPDrri:
6456 case X86::VBLENDPDrmi:
6457 case X86::VBLENDPDrri:
6458 return GetBlendDomains(2, false);
6459 case X86::VBLENDPDYrmi:
6460 case X86::VBLENDPDYrri:
6461 return GetBlendDomains(4, true);
6462 case X86::BLENDPSrmi:
6463 case X86::BLENDPSrri:
6464 case X86::VBLENDPSrmi:
6465 case X86::VBLENDPSrri:
6466 case X86::VPBLENDDrmi:
6467 case X86::VPBLENDDrri:
6468 return GetBlendDomains(4, false);
6469 case X86::VBLENDPSYrmi:
6470 case X86::VBLENDPSYrri:
6471 case X86::VPBLENDDYrmi:
6472 case X86::VPBLENDDYrri:
6473 return GetBlendDomains(8, true);
6474 case X86::PBLENDWrmi:
6475 case X86::PBLENDWrri:
6476 case X86::VPBLENDWrmi:
6477 case X86::VPBLENDWrri:
6478 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6479 case X86::VPBLENDWYrmi:
6480 case X86::VPBLENDWYrri:
6481 return GetBlendDomains(8, false);
6482 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
6483 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
6484 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
6485 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
6486 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6487 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6488 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6489 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6490 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
6491 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
6492 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
6493 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
6494 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
6495 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
6496 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
6497 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm:
6498 // If we don't have DQI see if we can still switch from an EVEX integer
6499 // instruction to a VEX floating point instruction.
6500 if (Subtarget.hasDQI())
6501 return 0;
6502
6503 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
6504 return 0;
6505 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
6506 return 0;
6507 // Register forms will have 3 operands. Memory form will have more.
6508 if (NumOperands == 3 &&
6509 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
6510 return 0;
6511
6512 // All domains are valid.
6513 return 0xe;
6514 }
6515 return 0;
6516 }
6517
setExecutionDomainCustom(MachineInstr & MI,unsigned Domain) const6518 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
6519 unsigned Domain) const {
6520 assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
6521 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6522 assert(dom && "Not an SSE instruction");
6523
6524 unsigned Opcode = MI.getOpcode();
6525 unsigned NumOperands = MI.getDesc().getNumOperands();
6526
6527 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
6528 if (MI.getOperand(NumOperands - 1).isImm()) {
6529 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
6530 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
6531 unsigned NewImm = Imm;
6532
6533 const uint16_t *table = lookup(Opcode, dom, ReplaceableCustomInstrs);
6534 if (!table)
6535 table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs);
6536
6537 if (Domain == 1) { // PackedSingle
6538 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6539 } else if (Domain == 2) { // PackedDouble
6540 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
6541 } else if (Domain == 3) { // PackedInt
6542 if (Subtarget.hasAVX2()) {
6543 // If we are already VPBLENDW use that, else use VPBLENDD.
6544 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
6545 table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs);
6546 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
6547 }
6548 } else {
6549 assert(!Is256 && "128-bit vector expected");
6550 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
6551 }
6552 }
6553
6554 assert(table && table[Domain - 1] && "Unknown domain op");
6555 MI.setDesc(get(table[Domain - 1]));
6556 MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
6557 }
6558 return true;
6559 };
6560
6561 switch (Opcode) {
6562 case X86::BLENDPDrmi:
6563 case X86::BLENDPDrri:
6564 case X86::VBLENDPDrmi:
6565 case X86::VBLENDPDrri:
6566 return SetBlendDomain(2, false);
6567 case X86::VBLENDPDYrmi:
6568 case X86::VBLENDPDYrri:
6569 return SetBlendDomain(4, true);
6570 case X86::BLENDPSrmi:
6571 case X86::BLENDPSrri:
6572 case X86::VBLENDPSrmi:
6573 case X86::VBLENDPSrri:
6574 case X86::VPBLENDDrmi:
6575 case X86::VPBLENDDrri:
6576 return SetBlendDomain(4, false);
6577 case X86::VBLENDPSYrmi:
6578 case X86::VBLENDPSYrri:
6579 case X86::VPBLENDDYrmi:
6580 case X86::VPBLENDDYrri:
6581 return SetBlendDomain(8, true);
6582 case X86::PBLENDWrmi:
6583 case X86::PBLENDWrri:
6584 case X86::VPBLENDWrmi:
6585 case X86::VPBLENDWrri:
6586 return SetBlendDomain(8, false);
6587 case X86::VPBLENDWYrmi:
6588 case X86::VPBLENDWYrri:
6589 return SetBlendDomain(16, true);
6590 case X86::VPANDDZ128rr: case X86::VPANDDZ128rm:
6591 case X86::VPANDDZ256rr: case X86::VPANDDZ256rm:
6592 case X86::VPANDQZ128rr: case X86::VPANDQZ128rm:
6593 case X86::VPANDQZ256rr: case X86::VPANDQZ256rm:
6594 case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
6595 case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
6596 case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
6597 case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
6598 case X86::VPORDZ128rr: case X86::VPORDZ128rm:
6599 case X86::VPORDZ256rr: case X86::VPORDZ256rm:
6600 case X86::VPORQZ128rr: case X86::VPORQZ128rm:
6601 case X86::VPORQZ256rr: case X86::VPORQZ256rm:
6602 case X86::VPXORDZ128rr: case X86::VPXORDZ128rm:
6603 case X86::VPXORDZ256rr: case X86::VPXORDZ256rm:
6604 case X86::VPXORQZ128rr: case X86::VPXORQZ128rm:
6605 case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: {
6606 // Without DQI, convert EVEX instructions to VEX instructions.
6607 if (Subtarget.hasDQI())
6608 return false;
6609
6610 const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
6611 ReplaceableCustomAVX512LogicInstrs);
6612 assert(table && "Instruction not found in table?");
6613 // Don't change integer Q instructions to D instructions and
6614 // use D intructions if we started with a PS instruction.
6615 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6616 Domain = 4;
6617 MI.setDesc(get(table[Domain - 1]));
6618 return true;
6619 }
6620 }
6621 return false;
6622 }
6623
6624 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const6625 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
6626 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6627 unsigned opcode = MI.getOpcode();
6628 uint16_t validDomains = 0;
6629 if (domain) {
6630 // Attempt to match for custom instructions.
6631 validDomains = getExecutionDomainCustom(MI);
6632 if (validDomains)
6633 return std::make_pair(domain, validDomains);
6634
6635 if (lookup(opcode, domain, ReplaceableInstrs)) {
6636 validDomains = 0xe;
6637 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
6638 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
6639 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
6640 // Insert/extract instructions should only effect domain if AVX2
6641 // is enabled.
6642 if (!Subtarget.hasAVX2())
6643 return std::make_pair(0, 0);
6644 validDomains = 0xe;
6645 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
6646 validDomains = 0xe;
6647 } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
6648 ReplaceableInstrsAVX512DQ)) {
6649 validDomains = 0xe;
6650 } else if (Subtarget.hasDQI()) {
6651 if (const uint16_t *table = lookupAVX512(opcode, domain,
6652 ReplaceableInstrsAVX512DQMasked)) {
6653 if (domain == 1 || (domain == 3 && table[3] == opcode))
6654 validDomains = 0xa;
6655 else
6656 validDomains = 0xc;
6657 }
6658 }
6659 }
6660 return std::make_pair(domain, validDomains);
6661 }
6662
setExecutionDomain(MachineInstr & MI,unsigned Domain) const6663 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
6664 assert(Domain>0 && Domain<4 && "Invalid execution domain");
6665 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
6666 assert(dom && "Not an SSE instruction");
6667
6668 // Attempt to match for custom instructions.
6669 if (setExecutionDomainCustom(MI, Domain))
6670 return;
6671
6672 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
6673 if (!table) { // try the other table
6674 assert((Subtarget.hasAVX2() || Domain < 3) &&
6675 "256-bit vector operations only available in AVX2");
6676 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
6677 }
6678 if (!table) { // try the other table
6679 assert(Subtarget.hasAVX2() &&
6680 "256-bit insert/extract only available in AVX2");
6681 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
6682 }
6683 if (!table) { // try the AVX512 table
6684 assert(Subtarget.hasAVX512() && "Requires AVX-512");
6685 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
6686 // Don't change integer Q instructions to D instructions.
6687 if (table && Domain == 3 && table[3] == MI.getOpcode())
6688 Domain = 4;
6689 }
6690 if (!table) { // try the AVX512DQ table
6691 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6692 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
6693 // Don't change integer Q instructions to D instructions and
6694 // use D intructions if we started with a PS instruction.
6695 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6696 Domain = 4;
6697 }
6698 if (!table) { // try the AVX512DQMasked table
6699 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
6700 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
6701 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
6702 Domain = 4;
6703 }
6704 assert(table && "Cannot change domain");
6705 MI.setDesc(get(table[Domain - 1]));
6706 }
6707
6708 /// Return the noop instruction to use for a noop.
getNoop(MCInst & NopInst) const6709 void X86InstrInfo::getNoop(MCInst &NopInst) const {
6710 NopInst.setOpcode(X86::NOOP);
6711 }
6712
isHighLatencyDef(int opc) const6713 bool X86InstrInfo::isHighLatencyDef(int opc) const {
6714 switch (opc) {
6715 default: return false;
6716 case X86::DIVPDrm:
6717 case X86::DIVPDrr:
6718 case X86::DIVPSrm:
6719 case X86::DIVPSrr:
6720 case X86::DIVSDrm:
6721 case X86::DIVSDrm_Int:
6722 case X86::DIVSDrr:
6723 case X86::DIVSDrr_Int:
6724 case X86::DIVSSrm:
6725 case X86::DIVSSrm_Int:
6726 case X86::DIVSSrr:
6727 case X86::DIVSSrr_Int:
6728 case X86::SQRTPDm:
6729 case X86::SQRTPDr:
6730 case X86::SQRTPSm:
6731 case X86::SQRTPSr:
6732 case X86::SQRTSDm:
6733 case X86::SQRTSDm_Int:
6734 case X86::SQRTSDr:
6735 case X86::SQRTSDr_Int:
6736 case X86::SQRTSSm:
6737 case X86::SQRTSSm_Int:
6738 case X86::SQRTSSr:
6739 case X86::SQRTSSr_Int:
6740 // AVX instructions with high latency
6741 case X86::VDIVPDrm:
6742 case X86::VDIVPDrr:
6743 case X86::VDIVPDYrm:
6744 case X86::VDIVPDYrr:
6745 case X86::VDIVPSrm:
6746 case X86::VDIVPSrr:
6747 case X86::VDIVPSYrm:
6748 case X86::VDIVPSYrr:
6749 case X86::VDIVSDrm:
6750 case X86::VDIVSDrm_Int:
6751 case X86::VDIVSDrr:
6752 case X86::VDIVSDrr_Int:
6753 case X86::VDIVSSrm:
6754 case X86::VDIVSSrm_Int:
6755 case X86::VDIVSSrr:
6756 case X86::VDIVSSrr_Int:
6757 case X86::VSQRTPDm:
6758 case X86::VSQRTPDr:
6759 case X86::VSQRTPDYm:
6760 case X86::VSQRTPDYr:
6761 case X86::VSQRTPSm:
6762 case X86::VSQRTPSr:
6763 case X86::VSQRTPSYm:
6764 case X86::VSQRTPSYr:
6765 case X86::VSQRTSDm:
6766 case X86::VSQRTSDm_Int:
6767 case X86::VSQRTSDr:
6768 case X86::VSQRTSDr_Int:
6769 case X86::VSQRTSSm:
6770 case X86::VSQRTSSm_Int:
6771 case X86::VSQRTSSr:
6772 case X86::VSQRTSSr_Int:
6773 // AVX512 instructions with high latency
6774 case X86::VDIVPDZ128rm:
6775 case X86::VDIVPDZ128rmb:
6776 case X86::VDIVPDZ128rmbk:
6777 case X86::VDIVPDZ128rmbkz:
6778 case X86::VDIVPDZ128rmk:
6779 case X86::VDIVPDZ128rmkz:
6780 case X86::VDIVPDZ128rr:
6781 case X86::VDIVPDZ128rrk:
6782 case X86::VDIVPDZ128rrkz:
6783 case X86::VDIVPDZ256rm:
6784 case X86::VDIVPDZ256rmb:
6785 case X86::VDIVPDZ256rmbk:
6786 case X86::VDIVPDZ256rmbkz:
6787 case X86::VDIVPDZ256rmk:
6788 case X86::VDIVPDZ256rmkz:
6789 case X86::VDIVPDZ256rr:
6790 case X86::VDIVPDZ256rrk:
6791 case X86::VDIVPDZ256rrkz:
6792 case X86::VDIVPDZrrb:
6793 case X86::VDIVPDZrrbk:
6794 case X86::VDIVPDZrrbkz:
6795 case X86::VDIVPDZrm:
6796 case X86::VDIVPDZrmb:
6797 case X86::VDIVPDZrmbk:
6798 case X86::VDIVPDZrmbkz:
6799 case X86::VDIVPDZrmk:
6800 case X86::VDIVPDZrmkz:
6801 case X86::VDIVPDZrr:
6802 case X86::VDIVPDZrrk:
6803 case X86::VDIVPDZrrkz:
6804 case X86::VDIVPSZ128rm:
6805 case X86::VDIVPSZ128rmb:
6806 case X86::VDIVPSZ128rmbk:
6807 case X86::VDIVPSZ128rmbkz:
6808 case X86::VDIVPSZ128rmk:
6809 case X86::VDIVPSZ128rmkz:
6810 case X86::VDIVPSZ128rr:
6811 case X86::VDIVPSZ128rrk:
6812 case X86::VDIVPSZ128rrkz:
6813 case X86::VDIVPSZ256rm:
6814 case X86::VDIVPSZ256rmb:
6815 case X86::VDIVPSZ256rmbk:
6816 case X86::VDIVPSZ256rmbkz:
6817 case X86::VDIVPSZ256rmk:
6818 case X86::VDIVPSZ256rmkz:
6819 case X86::VDIVPSZ256rr:
6820 case X86::VDIVPSZ256rrk:
6821 case X86::VDIVPSZ256rrkz:
6822 case X86::VDIVPSZrrb:
6823 case X86::VDIVPSZrrbk:
6824 case X86::VDIVPSZrrbkz:
6825 case X86::VDIVPSZrm:
6826 case X86::VDIVPSZrmb:
6827 case X86::VDIVPSZrmbk:
6828 case X86::VDIVPSZrmbkz:
6829 case X86::VDIVPSZrmk:
6830 case X86::VDIVPSZrmkz:
6831 case X86::VDIVPSZrr:
6832 case X86::VDIVPSZrrk:
6833 case X86::VDIVPSZrrkz:
6834 case X86::VDIVSDZrm:
6835 case X86::VDIVSDZrr:
6836 case X86::VDIVSDZrm_Int:
6837 case X86::VDIVSDZrm_Intk:
6838 case X86::VDIVSDZrm_Intkz:
6839 case X86::VDIVSDZrr_Int:
6840 case X86::VDIVSDZrr_Intk:
6841 case X86::VDIVSDZrr_Intkz:
6842 case X86::VDIVSDZrrb_Int:
6843 case X86::VDIVSDZrrb_Intk:
6844 case X86::VDIVSDZrrb_Intkz:
6845 case X86::VDIVSSZrm:
6846 case X86::VDIVSSZrr:
6847 case X86::VDIVSSZrm_Int:
6848 case X86::VDIVSSZrm_Intk:
6849 case X86::VDIVSSZrm_Intkz:
6850 case X86::VDIVSSZrr_Int:
6851 case X86::VDIVSSZrr_Intk:
6852 case X86::VDIVSSZrr_Intkz:
6853 case X86::VDIVSSZrrb_Int:
6854 case X86::VDIVSSZrrb_Intk:
6855 case X86::VDIVSSZrrb_Intkz:
6856 case X86::VSQRTPDZ128m:
6857 case X86::VSQRTPDZ128mb:
6858 case X86::VSQRTPDZ128mbk:
6859 case X86::VSQRTPDZ128mbkz:
6860 case X86::VSQRTPDZ128mk:
6861 case X86::VSQRTPDZ128mkz:
6862 case X86::VSQRTPDZ128r:
6863 case X86::VSQRTPDZ128rk:
6864 case X86::VSQRTPDZ128rkz:
6865 case X86::VSQRTPDZ256m:
6866 case X86::VSQRTPDZ256mb:
6867 case X86::VSQRTPDZ256mbk:
6868 case X86::VSQRTPDZ256mbkz:
6869 case X86::VSQRTPDZ256mk:
6870 case X86::VSQRTPDZ256mkz:
6871 case X86::VSQRTPDZ256r:
6872 case X86::VSQRTPDZ256rk:
6873 case X86::VSQRTPDZ256rkz:
6874 case X86::VSQRTPDZm:
6875 case X86::VSQRTPDZmb:
6876 case X86::VSQRTPDZmbk:
6877 case X86::VSQRTPDZmbkz:
6878 case X86::VSQRTPDZmk:
6879 case X86::VSQRTPDZmkz:
6880 case X86::VSQRTPDZr:
6881 case X86::VSQRTPDZrb:
6882 case X86::VSQRTPDZrbk:
6883 case X86::VSQRTPDZrbkz:
6884 case X86::VSQRTPDZrk:
6885 case X86::VSQRTPDZrkz:
6886 case X86::VSQRTPSZ128m:
6887 case X86::VSQRTPSZ128mb:
6888 case X86::VSQRTPSZ128mbk:
6889 case X86::VSQRTPSZ128mbkz:
6890 case X86::VSQRTPSZ128mk:
6891 case X86::VSQRTPSZ128mkz:
6892 case X86::VSQRTPSZ128r:
6893 case X86::VSQRTPSZ128rk:
6894 case X86::VSQRTPSZ128rkz:
6895 case X86::VSQRTPSZ256m:
6896 case X86::VSQRTPSZ256mb:
6897 case X86::VSQRTPSZ256mbk:
6898 case X86::VSQRTPSZ256mbkz:
6899 case X86::VSQRTPSZ256mk:
6900 case X86::VSQRTPSZ256mkz:
6901 case X86::VSQRTPSZ256r:
6902 case X86::VSQRTPSZ256rk:
6903 case X86::VSQRTPSZ256rkz:
6904 case X86::VSQRTPSZm:
6905 case X86::VSQRTPSZmb:
6906 case X86::VSQRTPSZmbk:
6907 case X86::VSQRTPSZmbkz:
6908 case X86::VSQRTPSZmk:
6909 case X86::VSQRTPSZmkz:
6910 case X86::VSQRTPSZr:
6911 case X86::VSQRTPSZrb:
6912 case X86::VSQRTPSZrbk:
6913 case X86::VSQRTPSZrbkz:
6914 case X86::VSQRTPSZrk:
6915 case X86::VSQRTPSZrkz:
6916 case X86::VSQRTSDZm:
6917 case X86::VSQRTSDZm_Int:
6918 case X86::VSQRTSDZm_Intk:
6919 case X86::VSQRTSDZm_Intkz:
6920 case X86::VSQRTSDZr:
6921 case X86::VSQRTSDZr_Int:
6922 case X86::VSQRTSDZr_Intk:
6923 case X86::VSQRTSDZr_Intkz:
6924 case X86::VSQRTSDZrb_Int:
6925 case X86::VSQRTSDZrb_Intk:
6926 case X86::VSQRTSDZrb_Intkz:
6927 case X86::VSQRTSSZm:
6928 case X86::VSQRTSSZm_Int:
6929 case X86::VSQRTSSZm_Intk:
6930 case X86::VSQRTSSZm_Intkz:
6931 case X86::VSQRTSSZr:
6932 case X86::VSQRTSSZr_Int:
6933 case X86::VSQRTSSZr_Intk:
6934 case X86::VSQRTSSZr_Intkz:
6935 case X86::VSQRTSSZrb_Int:
6936 case X86::VSQRTSSZrb_Intk:
6937 case X86::VSQRTSSZrb_Intkz:
6938
6939 case X86::VGATHERDPDYrm:
6940 case X86::VGATHERDPDZ128rm:
6941 case X86::VGATHERDPDZ256rm:
6942 case X86::VGATHERDPDZrm:
6943 case X86::VGATHERDPDrm:
6944 case X86::VGATHERDPSYrm:
6945 case X86::VGATHERDPSZ128rm:
6946 case X86::VGATHERDPSZ256rm:
6947 case X86::VGATHERDPSZrm:
6948 case X86::VGATHERDPSrm:
6949 case X86::VGATHERPF0DPDm:
6950 case X86::VGATHERPF0DPSm:
6951 case X86::VGATHERPF0QPDm:
6952 case X86::VGATHERPF0QPSm:
6953 case X86::VGATHERPF1DPDm:
6954 case X86::VGATHERPF1DPSm:
6955 case X86::VGATHERPF1QPDm:
6956 case X86::VGATHERPF1QPSm:
6957 case X86::VGATHERQPDYrm:
6958 case X86::VGATHERQPDZ128rm:
6959 case X86::VGATHERQPDZ256rm:
6960 case X86::VGATHERQPDZrm:
6961 case X86::VGATHERQPDrm:
6962 case X86::VGATHERQPSYrm:
6963 case X86::VGATHERQPSZ128rm:
6964 case X86::VGATHERQPSZ256rm:
6965 case X86::VGATHERQPSZrm:
6966 case X86::VGATHERQPSrm:
6967 case X86::VPGATHERDDYrm:
6968 case X86::VPGATHERDDZ128rm:
6969 case X86::VPGATHERDDZ256rm:
6970 case X86::VPGATHERDDZrm:
6971 case X86::VPGATHERDDrm:
6972 case X86::VPGATHERDQYrm:
6973 case X86::VPGATHERDQZ128rm:
6974 case X86::VPGATHERDQZ256rm:
6975 case X86::VPGATHERDQZrm:
6976 case X86::VPGATHERDQrm:
6977 case X86::VPGATHERQDYrm:
6978 case X86::VPGATHERQDZ128rm:
6979 case X86::VPGATHERQDZ256rm:
6980 case X86::VPGATHERQDZrm:
6981 case X86::VPGATHERQDrm:
6982 case X86::VPGATHERQQYrm:
6983 case X86::VPGATHERQQZ128rm:
6984 case X86::VPGATHERQQZ256rm:
6985 case X86::VPGATHERQQZrm:
6986 case X86::VPGATHERQQrm:
6987 case X86::VSCATTERDPDZ128mr:
6988 case X86::VSCATTERDPDZ256mr:
6989 case X86::VSCATTERDPDZmr:
6990 case X86::VSCATTERDPSZ128mr:
6991 case X86::VSCATTERDPSZ256mr:
6992 case X86::VSCATTERDPSZmr:
6993 case X86::VSCATTERPF0DPDm:
6994 case X86::VSCATTERPF0DPSm:
6995 case X86::VSCATTERPF0QPDm:
6996 case X86::VSCATTERPF0QPSm:
6997 case X86::VSCATTERPF1DPDm:
6998 case X86::VSCATTERPF1DPSm:
6999 case X86::VSCATTERPF1QPDm:
7000 case X86::VSCATTERPF1QPSm:
7001 case X86::VSCATTERQPDZ128mr:
7002 case X86::VSCATTERQPDZ256mr:
7003 case X86::VSCATTERQPDZmr:
7004 case X86::VSCATTERQPSZ128mr:
7005 case X86::VSCATTERQPSZ256mr:
7006 case X86::VSCATTERQPSZmr:
7007 case X86::VPSCATTERDDZ128mr:
7008 case X86::VPSCATTERDDZ256mr:
7009 case X86::VPSCATTERDDZmr:
7010 case X86::VPSCATTERDQZ128mr:
7011 case X86::VPSCATTERDQZ256mr:
7012 case X86::VPSCATTERDQZmr:
7013 case X86::VPSCATTERQDZ128mr:
7014 case X86::VPSCATTERQDZ256mr:
7015 case X86::VPSCATTERQDZmr:
7016 case X86::VPSCATTERQQZ128mr:
7017 case X86::VPSCATTERQQZ256mr:
7018 case X86::VPSCATTERQQZmr:
7019 return true;
7020 }
7021 }
7022
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const7023 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
7024 const MachineRegisterInfo *MRI,
7025 const MachineInstr &DefMI,
7026 unsigned DefIdx,
7027 const MachineInstr &UseMI,
7028 unsigned UseIdx) const {
7029 return isHighLatencyDef(DefMI.getOpcode());
7030 }
7031
hasReassociableOperands(const MachineInstr & Inst,const MachineBasicBlock * MBB) const7032 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
7033 const MachineBasicBlock *MBB) const {
7034 assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) &&
7035 "Reassociation needs binary operators");
7036
7037 // Integer binary math/logic instructions have a third source operand:
7038 // the EFLAGS register. That operand must be both defined here and never
7039 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7040 // not change anything because rearranging the operands could affect other
7041 // instructions that depend on the exact status flags (zero, sign, etc.)
7042 // that are set by using these particular operands with this operation.
7043 if (Inst.getNumOperands() == 4) {
7044 assert(Inst.getOperand(3).isReg() &&
7045 Inst.getOperand(3).getReg() == X86::EFLAGS &&
7046 "Unexpected operand in reassociable instruction");
7047 if (!Inst.getOperand(3).isDead())
7048 return false;
7049 }
7050
7051 return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
7052 }
7053
7054 // TODO: There are many more machine instruction opcodes to match:
7055 // 1. Other data types (integer, vectors)
7056 // 2. Other math / logic operations (xor, or)
7057 // 3. Other forms of the same operation (intrinsics and other variants)
isAssociativeAndCommutative(const MachineInstr & Inst) const7058 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
7059 switch (Inst.getOpcode()) {
7060 case X86::AND8rr:
7061 case X86::AND16rr:
7062 case X86::AND32rr:
7063 case X86::AND64rr:
7064 case X86::OR8rr:
7065 case X86::OR16rr:
7066 case X86::OR32rr:
7067 case X86::OR64rr:
7068 case X86::XOR8rr:
7069 case X86::XOR16rr:
7070 case X86::XOR32rr:
7071 case X86::XOR64rr:
7072 case X86::IMUL16rr:
7073 case X86::IMUL32rr:
7074 case X86::IMUL64rr:
7075 case X86::PANDrr:
7076 case X86::PORrr:
7077 case X86::PXORrr:
7078 case X86::ANDPDrr:
7079 case X86::ANDPSrr:
7080 case X86::ORPDrr:
7081 case X86::ORPSrr:
7082 case X86::XORPDrr:
7083 case X86::XORPSrr:
7084 case X86::PADDBrr:
7085 case X86::PADDWrr:
7086 case X86::PADDDrr:
7087 case X86::PADDQrr:
7088 case X86::VPANDrr:
7089 case X86::VPANDYrr:
7090 case X86::VPANDDZ128rr:
7091 case X86::VPANDDZ256rr:
7092 case X86::VPANDDZrr:
7093 case X86::VPANDQZ128rr:
7094 case X86::VPANDQZ256rr:
7095 case X86::VPANDQZrr:
7096 case X86::VPORrr:
7097 case X86::VPORYrr:
7098 case X86::VPORDZ128rr:
7099 case X86::VPORDZ256rr:
7100 case X86::VPORDZrr:
7101 case X86::VPORQZ128rr:
7102 case X86::VPORQZ256rr:
7103 case X86::VPORQZrr:
7104 case X86::VPXORrr:
7105 case X86::VPXORYrr:
7106 case X86::VPXORDZ128rr:
7107 case X86::VPXORDZ256rr:
7108 case X86::VPXORDZrr:
7109 case X86::VPXORQZ128rr:
7110 case X86::VPXORQZ256rr:
7111 case X86::VPXORQZrr:
7112 case X86::VANDPDrr:
7113 case X86::VANDPSrr:
7114 case X86::VANDPDYrr:
7115 case X86::VANDPSYrr:
7116 case X86::VANDPDZ128rr:
7117 case X86::VANDPSZ128rr:
7118 case X86::VANDPDZ256rr:
7119 case X86::VANDPSZ256rr:
7120 case X86::VANDPDZrr:
7121 case X86::VANDPSZrr:
7122 case X86::VORPDrr:
7123 case X86::VORPSrr:
7124 case X86::VORPDYrr:
7125 case X86::VORPSYrr:
7126 case X86::VORPDZ128rr:
7127 case X86::VORPSZ128rr:
7128 case X86::VORPDZ256rr:
7129 case X86::VORPSZ256rr:
7130 case X86::VORPDZrr:
7131 case X86::VORPSZrr:
7132 case X86::VXORPDrr:
7133 case X86::VXORPSrr:
7134 case X86::VXORPDYrr:
7135 case X86::VXORPSYrr:
7136 case X86::VXORPDZ128rr:
7137 case X86::VXORPSZ128rr:
7138 case X86::VXORPDZ256rr:
7139 case X86::VXORPSZ256rr:
7140 case X86::VXORPDZrr:
7141 case X86::VXORPSZrr:
7142 case X86::KADDBrr:
7143 case X86::KADDWrr:
7144 case X86::KADDDrr:
7145 case X86::KADDQrr:
7146 case X86::KANDBrr:
7147 case X86::KANDWrr:
7148 case X86::KANDDrr:
7149 case X86::KANDQrr:
7150 case X86::KORBrr:
7151 case X86::KORWrr:
7152 case X86::KORDrr:
7153 case X86::KORQrr:
7154 case X86::KXORBrr:
7155 case X86::KXORWrr:
7156 case X86::KXORDrr:
7157 case X86::KXORQrr:
7158 case X86::VPADDBrr:
7159 case X86::VPADDWrr:
7160 case X86::VPADDDrr:
7161 case X86::VPADDQrr:
7162 case X86::VPADDBYrr:
7163 case X86::VPADDWYrr:
7164 case X86::VPADDDYrr:
7165 case X86::VPADDQYrr:
7166 case X86::VPADDBZ128rr:
7167 case X86::VPADDWZ128rr:
7168 case X86::VPADDDZ128rr:
7169 case X86::VPADDQZ128rr:
7170 case X86::VPADDBZ256rr:
7171 case X86::VPADDWZ256rr:
7172 case X86::VPADDDZ256rr:
7173 case X86::VPADDQZ256rr:
7174 case X86::VPADDBZrr:
7175 case X86::VPADDWZrr:
7176 case X86::VPADDDZrr:
7177 case X86::VPADDQZrr:
7178 case X86::VPMULLWrr:
7179 case X86::VPMULLWYrr:
7180 case X86::VPMULLWZ128rr:
7181 case X86::VPMULLWZ256rr:
7182 case X86::VPMULLWZrr:
7183 case X86::VPMULLDrr:
7184 case X86::VPMULLDYrr:
7185 case X86::VPMULLDZ128rr:
7186 case X86::VPMULLDZ256rr:
7187 case X86::VPMULLDZrr:
7188 case X86::VPMULLQZ128rr:
7189 case X86::VPMULLQZ256rr:
7190 case X86::VPMULLQZrr:
7191 // Normal min/max instructions are not commutative because of NaN and signed
7192 // zero semantics, but these are. Thus, there's no need to check for global
7193 // relaxed math; the instructions themselves have the properties we need.
7194 case X86::MAXCPDrr:
7195 case X86::MAXCPSrr:
7196 case X86::MAXCSDrr:
7197 case X86::MAXCSSrr:
7198 case X86::MINCPDrr:
7199 case X86::MINCPSrr:
7200 case X86::MINCSDrr:
7201 case X86::MINCSSrr:
7202 case X86::VMAXCPDrr:
7203 case X86::VMAXCPSrr:
7204 case X86::VMAXCPDYrr:
7205 case X86::VMAXCPSYrr:
7206 case X86::VMAXCPDZ128rr:
7207 case X86::VMAXCPSZ128rr:
7208 case X86::VMAXCPDZ256rr:
7209 case X86::VMAXCPSZ256rr:
7210 case X86::VMAXCPDZrr:
7211 case X86::VMAXCPSZrr:
7212 case X86::VMAXCSDrr:
7213 case X86::VMAXCSSrr:
7214 case X86::VMAXCSDZrr:
7215 case X86::VMAXCSSZrr:
7216 case X86::VMINCPDrr:
7217 case X86::VMINCPSrr:
7218 case X86::VMINCPDYrr:
7219 case X86::VMINCPSYrr:
7220 case X86::VMINCPDZ128rr:
7221 case X86::VMINCPSZ128rr:
7222 case X86::VMINCPDZ256rr:
7223 case X86::VMINCPSZ256rr:
7224 case X86::VMINCPDZrr:
7225 case X86::VMINCPSZrr:
7226 case X86::VMINCSDrr:
7227 case X86::VMINCSSrr:
7228 case X86::VMINCSDZrr:
7229 case X86::VMINCSSZrr:
7230 return true;
7231 case X86::ADDPDrr:
7232 case X86::ADDPSrr:
7233 case X86::ADDSDrr:
7234 case X86::ADDSSrr:
7235 case X86::MULPDrr:
7236 case X86::MULPSrr:
7237 case X86::MULSDrr:
7238 case X86::MULSSrr:
7239 case X86::VADDPDrr:
7240 case X86::VADDPSrr:
7241 case X86::VADDPDYrr:
7242 case X86::VADDPSYrr:
7243 case X86::VADDPDZ128rr:
7244 case X86::VADDPSZ128rr:
7245 case X86::VADDPDZ256rr:
7246 case X86::VADDPSZ256rr:
7247 case X86::VADDPDZrr:
7248 case X86::VADDPSZrr:
7249 case X86::VADDSDrr:
7250 case X86::VADDSSrr:
7251 case X86::VADDSDZrr:
7252 case X86::VADDSSZrr:
7253 case X86::VMULPDrr:
7254 case X86::VMULPSrr:
7255 case X86::VMULPDYrr:
7256 case X86::VMULPSYrr:
7257 case X86::VMULPDZ128rr:
7258 case X86::VMULPSZ128rr:
7259 case X86::VMULPDZ256rr:
7260 case X86::VMULPSZ256rr:
7261 case X86::VMULPDZrr:
7262 case X86::VMULPSZrr:
7263 case X86::VMULSDrr:
7264 case X86::VMULSSrr:
7265 case X86::VMULSDZrr:
7266 case X86::VMULSSZrr:
7267 return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath;
7268 default:
7269 return false;
7270 }
7271 }
7272
7273 /// This is an architecture-specific helper function of reassociateOps.
7274 /// Set special operand attributes for new instructions after reassociation.
setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2) const7275 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
7276 MachineInstr &OldMI2,
7277 MachineInstr &NewMI1,
7278 MachineInstr &NewMI2) const {
7279 // Integer instructions define an implicit EFLAGS source register operand as
7280 // the third source (fourth total) operand.
7281 if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4)
7282 return;
7283
7284 assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 &&
7285 "Unexpected instruction type for reassociation");
7286
7287 MachineOperand &OldOp1 = OldMI1.getOperand(3);
7288 MachineOperand &OldOp2 = OldMI2.getOperand(3);
7289 MachineOperand &NewOp1 = NewMI1.getOperand(3);
7290 MachineOperand &NewOp2 = NewMI2.getOperand(3);
7291
7292 assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() &&
7293 "Must have dead EFLAGS operand in reassociable instruction");
7294 assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() &&
7295 "Must have dead EFLAGS operand in reassociable instruction");
7296
7297 (void)OldOp1;
7298 (void)OldOp2;
7299
7300 assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS &&
7301 "Unexpected operand in reassociable instruction");
7302 assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS &&
7303 "Unexpected operand in reassociable instruction");
7304
7305 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7306 // of this pass or other passes. The EFLAGS operands must be dead in these new
7307 // instructions because the EFLAGS operands in the original instructions must
7308 // be dead in order for reassociation to occur.
7309 NewOp1.setIsDead();
7310 NewOp2.setIsDead();
7311 }
7312
7313 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const7314 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
7315 return std::make_pair(TF, 0u);
7316 }
7317
7318 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const7319 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7320 using namespace X86II;
7321 static const std::pair<unsigned, const char *> TargetFlags[] = {
7322 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
7323 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
7324 {MO_GOT, "x86-got"},
7325 {MO_GOTOFF, "x86-gotoff"},
7326 {MO_GOTPCREL, "x86-gotpcrel"},
7327 {MO_PLT, "x86-plt"},
7328 {MO_TLSGD, "x86-tlsgd"},
7329 {MO_TLSLD, "x86-tlsld"},
7330 {MO_TLSLDM, "x86-tlsldm"},
7331 {MO_GOTTPOFF, "x86-gottpoff"},
7332 {MO_INDNTPOFF, "x86-indntpoff"},
7333 {MO_TPOFF, "x86-tpoff"},
7334 {MO_DTPOFF, "x86-dtpoff"},
7335 {MO_NTPOFF, "x86-ntpoff"},
7336 {MO_GOTNTPOFF, "x86-gotntpoff"},
7337 {MO_DLLIMPORT, "x86-dllimport"},
7338 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
7339 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
7340 {MO_TLVP, "x86-tlvp"},
7341 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
7342 {MO_SECREL, "x86-secrel"}};
7343 return makeArrayRef(TargetFlags);
7344 }
7345
7346 namespace {
7347 /// Create Global Base Reg pass. This initializes the PIC
7348 /// global base register for x86-32.
7349 struct CGBR : public MachineFunctionPass {
7350 static char ID;
CGBR__anon157757000511::CGBR7351 CGBR() : MachineFunctionPass(ID) {}
7352
runOnMachineFunction__anon157757000511::CGBR7353 bool runOnMachineFunction(MachineFunction &MF) override {
7354 const X86TargetMachine *TM =
7355 static_cast<const X86TargetMachine *>(&MF.getTarget());
7356 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
7357
7358 // Don't do anything in the 64-bit small and kernel code models. They use
7359 // RIP-relative addressing for everything.
7360 if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
7361 TM->getCodeModel() == CodeModel::Kernel))
7362 return false;
7363
7364 // Only emit a global base reg in PIC mode.
7365 if (!TM->isPositionIndependent())
7366 return false;
7367
7368 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7369 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
7370
7371 // If we didn't need a GlobalBaseReg, don't insert code.
7372 if (GlobalBaseReg == 0)
7373 return false;
7374
7375 // Insert the set of GlobalBaseReg into the first MBB of the function
7376 MachineBasicBlock &FirstMBB = MF.front();
7377 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
7378 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
7379 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7380 const X86InstrInfo *TII = STI.getInstrInfo();
7381
7382 unsigned PC;
7383 if (STI.isPICStyleGOT())
7384 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
7385 else
7386 PC = GlobalBaseReg;
7387
7388 if (STI.is64Bit()) {
7389 if (TM->getCodeModel() == CodeModel::Medium) {
7390 // In the medium code model, use a RIP-relative LEA to materialize the
7391 // GOT.
7392 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
7393 .addReg(X86::RIP)
7394 .addImm(0)
7395 .addReg(0)
7396 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7397 .addReg(0);
7398 } else if (TM->getCodeModel() == CodeModel::Large) {
7399 // Loading the GOT in the large code model requires math with labels,
7400 // so we use a pseudo instruction and expand it during MC emission.
7401 unsigned Scratch = RegInfo.createVirtualRegister(&X86::GR64RegClass);
7402 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVGOT64r), PC)
7403 .addReg(Scratch, RegState::Undef | RegState::Define)
7404 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
7405 } else {
7406 llvm_unreachable("unexpected code model");
7407 }
7408 } else {
7409 // Operand of MovePCtoStack is completely ignored by asm printer. It's
7410 // only used in JIT code emission as displacement to pc.
7411 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
7412
7413 // If we're using vanilla 'GOT' PIC style, we should use relative
7414 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7415 if (STI.isPICStyleGOT()) {
7416 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7417 // %some_register
7418 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
7419 .addReg(PC)
7420 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7421 X86II::MO_GOT_ABSOLUTE_ADDRESS);
7422 }
7423 }
7424
7425 return true;
7426 }
7427
getPassName__anon157757000511::CGBR7428 StringRef getPassName() const override {
7429 return "X86 PIC Global Base Reg Initialization";
7430 }
7431
getAnalysisUsage__anon157757000511::CGBR7432 void getAnalysisUsage(AnalysisUsage &AU) const override {
7433 AU.setPreservesCFG();
7434 MachineFunctionPass::getAnalysisUsage(AU);
7435 }
7436 };
7437 }
7438
7439 char CGBR::ID = 0;
7440 FunctionPass*
createX86GlobalBaseRegPass()7441 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7442
7443 namespace {
7444 struct LDTLSCleanup : public MachineFunctionPass {
7445 static char ID;
LDTLSCleanup__anon157757000611::LDTLSCleanup7446 LDTLSCleanup() : MachineFunctionPass(ID) {}
7447
runOnMachineFunction__anon157757000611::LDTLSCleanup7448 bool runOnMachineFunction(MachineFunction &MF) override {
7449 if (skipFunction(MF.getFunction()))
7450 return false;
7451
7452 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
7453 if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
7454 // No point folding accesses if there isn't at least two.
7455 return false;
7456 }
7457
7458 MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
7459 return VisitNode(DT->getRootNode(), 0);
7460 }
7461
7462 // Visit the dominator subtree rooted at Node in pre-order.
7463 // If TLSBaseAddrReg is non-null, then use that to replace any
7464 // TLS_base_addr instructions. Otherwise, create the register
7465 // when the first such instruction is seen, and then use it
7466 // as we encounter more instructions.
VisitNode__anon157757000611::LDTLSCleanup7467 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
7468 MachineBasicBlock *BB = Node->getBlock();
7469 bool Changed = false;
7470
7471 // Traverse the current block.
7472 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
7473 ++I) {
7474 switch (I->getOpcode()) {
7475 case X86::TLS_base_addr32:
7476 case X86::TLS_base_addr64:
7477 if (TLSBaseAddrReg)
7478 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
7479 else
7480 I = SetRegister(*I, &TLSBaseAddrReg);
7481 Changed = true;
7482 break;
7483 default:
7484 break;
7485 }
7486 }
7487
7488 // Visit the children of this block in the dominator tree.
7489 for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
7490 I != E; ++I) {
7491 Changed |= VisitNode(*I, TLSBaseAddrReg);
7492 }
7493
7494 return Changed;
7495 }
7496
7497 // Replace the TLS_base_addr instruction I with a copy from
7498 // TLSBaseAddrReg, returning the new instruction.
ReplaceTLSBaseAddrCall__anon157757000611::LDTLSCleanup7499 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
7500 unsigned TLSBaseAddrReg) {
7501 MachineFunction *MF = I.getParent()->getParent();
7502 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7503 const bool is64Bit = STI.is64Bit();
7504 const X86InstrInfo *TII = STI.getInstrInfo();
7505
7506 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7507 MachineInstr *Copy =
7508 BuildMI(*I.getParent(), I, I.getDebugLoc(),
7509 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
7510 .addReg(TLSBaseAddrReg);
7511
7512 // Erase the TLS_base_addr instruction.
7513 I.eraseFromParent();
7514
7515 return Copy;
7516 }
7517
7518 // Create a virtual register in *TLSBaseAddrReg, and populate it by
7519 // inserting a copy instruction after I. Returns the new instruction.
SetRegister__anon157757000611::LDTLSCleanup7520 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
7521 MachineFunction *MF = I.getParent()->getParent();
7522 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
7523 const bool is64Bit = STI.is64Bit();
7524 const X86InstrInfo *TII = STI.getInstrInfo();
7525
7526 // Create a virtual register for the TLS base address.
7527 MachineRegisterInfo &RegInfo = MF->getRegInfo();
7528 *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
7529 ? &X86::GR64RegClass
7530 : &X86::GR32RegClass);
7531
7532 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7533 MachineInstr *Next = I.getNextNode();
7534 MachineInstr *Copy =
7535 BuildMI(*I.getParent(), Next, I.getDebugLoc(),
7536 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
7537 .addReg(is64Bit ? X86::RAX : X86::EAX);
7538
7539 return Copy;
7540 }
7541
getPassName__anon157757000611::LDTLSCleanup7542 StringRef getPassName() const override {
7543 return "Local Dynamic TLS Access Clean-up";
7544 }
7545
getAnalysisUsage__anon157757000611::LDTLSCleanup7546 void getAnalysisUsage(AnalysisUsage &AU) const override {
7547 AU.setPreservesCFG();
7548 AU.addRequired<MachineDominatorTree>();
7549 MachineFunctionPass::getAnalysisUsage(AU);
7550 }
7551 };
7552 }
7553
7554 char LDTLSCleanup::ID = 0;
7555 FunctionPass*
createCleanupLocalDynamicTLSPass()7556 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7557
7558 /// Constants defining how certain sequences should be outlined.
7559 ///
7560 /// \p MachineOutlinerDefault implies that the function is called with a call
7561 /// instruction, and a return must be emitted for the outlined function frame.
7562 ///
7563 /// That is,
7564 ///
7565 /// I1 OUTLINED_FUNCTION:
7566 /// I2 --> call OUTLINED_FUNCTION I1
7567 /// I3 I2
7568 /// I3
7569 /// ret
7570 ///
7571 /// * Call construction overhead: 1 (call instruction)
7572 /// * Frame construction overhead: 1 (return instruction)
7573 ///
7574 /// \p MachineOutlinerTailCall implies that the function is being tail called.
7575 /// A jump is emitted instead of a call, and the return is already present in
7576 /// the outlined sequence. That is,
7577 ///
7578 /// I1 OUTLINED_FUNCTION:
7579 /// I2 --> jmp OUTLINED_FUNCTION I1
7580 /// ret I2
7581 /// ret
7582 ///
7583 /// * Call construction overhead: 1 (jump instruction)
7584 /// * Frame construction overhead: 0 (don't need to return)
7585 ///
7586 enum MachineOutlinerClass {
7587 MachineOutlinerDefault,
7588 MachineOutlinerTailCall
7589 };
7590
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const7591 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
7592 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
7593 unsigned SequenceSize =
7594 std::accumulate(RepeatedSequenceLocs[0].front(),
7595 std::next(RepeatedSequenceLocs[0].back()), 0,
7596 [](unsigned Sum, const MachineInstr &MI) {
7597 // FIXME: x86 doesn't implement getInstSizeInBytes, so
7598 // we can't tell the cost. Just assume each instruction
7599 // is one byte.
7600 if (MI.isDebugInstr() || MI.isKill())
7601 return Sum;
7602 return Sum + 1;
7603 });
7604
7605 // FIXME: Use real size in bytes for call and ret instructions.
7606 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
7607 for (outliner::Candidate &C : RepeatedSequenceLocs)
7608 C.setCallInfo(MachineOutlinerTailCall, 1);
7609
7610 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
7611 0, // Number of bytes to emit frame.
7612 MachineOutlinerTailCall // Type of frame.
7613 );
7614 }
7615
7616 for (outliner::Candidate &C : RepeatedSequenceLocs)
7617 C.setCallInfo(MachineOutlinerDefault, 1);
7618
7619 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
7620 MachineOutlinerDefault);
7621 }
7622
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const7623 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
7624 bool OutlineFromLinkOnceODRs) const {
7625 const Function &F = MF.getFunction();
7626
7627 // Does the function use a red zone? If it does, then we can't risk messing
7628 // with the stack.
7629 if (!F.hasFnAttribute(Attribute::NoRedZone)) {
7630 // It could have a red zone. If it does, then we don't want to touch it.
7631 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
7632 if (!X86FI || X86FI->getUsesRedZone())
7633 return false;
7634 }
7635
7636 // If we *don't* want to outline from things that could potentially be deduped
7637 // then return false.
7638 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
7639 return false;
7640
7641 // This function is viable for outlining, so return true.
7642 return true;
7643 }
7644
7645 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const7646 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
7647 MachineInstr &MI = *MIT;
7648 // Don't allow debug values to impact outlining type.
7649 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
7650 return outliner::InstrType::Invisible;
7651
7652 // At this point, KILL instructions don't really tell us much so we can go
7653 // ahead and skip over them.
7654 if (MI.isKill())
7655 return outliner::InstrType::Invisible;
7656
7657 // Is this a tail call? If yes, we can outline as a tail call.
7658 if (isTailCall(MI))
7659 return outliner::InstrType::Legal;
7660
7661 // Is this the terminator of a basic block?
7662 if (MI.isTerminator() || MI.isReturn()) {
7663
7664 // Does its parent have any successors in its MachineFunction?
7665 if (MI.getParent()->succ_empty())
7666 return outliner::InstrType::Legal;
7667
7668 // It does, so we can't tail call it.
7669 return outliner::InstrType::Illegal;
7670 }
7671
7672 // Don't outline anything that modifies or reads from the stack pointer.
7673 //
7674 // FIXME: There are instructions which are being manually built without
7675 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
7676 // able to remove the extra checks once those are fixed up. For example,
7677 // sometimes we might get something like %rax = POP64r 1. This won't be
7678 // caught by modifiesRegister or readsRegister even though the instruction
7679 // really ought to be formed so that modifiesRegister/readsRegister would
7680 // catch it.
7681 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
7682 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
7683 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
7684 return outliner::InstrType::Illegal;
7685
7686 // Outlined calls change the instruction pointer, so don't read from it.
7687 if (MI.readsRegister(X86::RIP, &RI) ||
7688 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
7689 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
7690 return outliner::InstrType::Illegal;
7691
7692 // Positions can't safely be outlined.
7693 if (MI.isPosition())
7694 return outliner::InstrType::Illegal;
7695
7696 // Make sure none of the operands of this instruction do anything tricky.
7697 for (const MachineOperand &MOP : MI.operands())
7698 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
7699 MOP.isTargetIndex())
7700 return outliner::InstrType::Illegal;
7701
7702 return outliner::InstrType::Legal;
7703 }
7704
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const7705 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
7706 MachineFunction &MF,
7707 const outliner::OutlinedFunction &OF)
7708 const {
7709 // If we're a tail call, we already have a return, so don't do anything.
7710 if (OF.FrameConstructionID == MachineOutlinerTailCall)
7711 return;
7712
7713 // We're a normal call, so our sequence doesn't have a return instruction.
7714 // Add it in.
7715 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
7716 MBB.insert(MBB.end(), retq);
7717 }
7718
7719 MachineBasicBlock::iterator
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,const outliner::Candidate & C) const7720 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
7721 MachineBasicBlock::iterator &It,
7722 MachineFunction &MF,
7723 const outliner::Candidate &C) const {
7724 // Is it a tail call?
7725 if (C.CallConstructionID == MachineOutlinerTailCall) {
7726 // Yes, just insert a JMP.
7727 It = MBB.insert(It,
7728 BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
7729 .addGlobalAddress(M.getNamedValue(MF.getName())));
7730 } else {
7731 // No, insert a call.
7732 It = MBB.insert(It,
7733 BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
7734 .addGlobalAddress(M.getNamedValue(MF.getName())));
7735 }
7736
7737 return It;
7738 }
7739