• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
17 
18 #include "CodeGenHwModes.h"
19 #include "CodeGenIntrinsics.h"
20 #include "CodeGenTarget.h"
21 #include "SDNodeProperties.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <algorithm>
28 #include <array>
29 #include <functional>
30 #include <map>
31 #include <set>
32 #include <vector>
33 
34 namespace llvm {
35 
36 class Record;
37 class Init;
38 class ListInit;
39 class DagInit;
40 class SDNodeInfo;
41 class TreePattern;
42 class TreePatternNode;
43 class CodeGenDAGPatterns;
44 class ComplexPattern;
45 
46 /// Shared pointer for TreePatternNode.
47 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
48 
49 /// This represents a set of MVTs. Since the underlying type for the MVT
50 /// is uint8_t, there are at most 256 values. To reduce the number of memory
51 /// allocations and deallocations, represent the set as a sequence of bits.
52 /// To reduce the allocations even further, make MachineValueTypeSet own
53 /// the storage and use std::array as the bit container.
54 struct MachineValueTypeSet {
55   static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
56                              uint8_t>::value,
57                 "Change uint8_t here to the SimpleValueType's type");
58   static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
59   using WordType = uint64_t;
60   static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
61   static unsigned constexpr NumWords = Capacity/WordWidth;
62   static_assert(NumWords*WordWidth == Capacity,
63                 "Capacity should be a multiple of WordWidth");
64 
65   LLVM_ATTRIBUTE_ALWAYS_INLINE
MachineValueTypeSetMachineValueTypeSet66   MachineValueTypeSet() {
67     clear();
68   }
69 
70   LLVM_ATTRIBUTE_ALWAYS_INLINE
sizeMachineValueTypeSet71   unsigned size() const {
72     unsigned Count = 0;
73     for (WordType W : Words)
74       Count += countPopulation(W);
75     return Count;
76   }
77   LLVM_ATTRIBUTE_ALWAYS_INLINE
clearMachineValueTypeSet78   void clear() {
79     std::memset(Words.data(), 0, NumWords*sizeof(WordType));
80   }
81   LLVM_ATTRIBUTE_ALWAYS_INLINE
emptyMachineValueTypeSet82   bool empty() const {
83     for (WordType W : Words)
84       if (W != 0)
85         return false;
86     return true;
87   }
88   LLVM_ATTRIBUTE_ALWAYS_INLINE
countMachineValueTypeSet89   unsigned count(MVT T) const {
90     return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
91   }
insertMachineValueTypeSet92   std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
93     bool V = count(T.SimpleTy);
94     Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
95     return {*this, V};
96   }
insertMachineValueTypeSet97   MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
98     for (unsigned i = 0; i != NumWords; ++i)
99       Words[i] |= S.Words[i];
100     return *this;
101   }
102   LLVM_ATTRIBUTE_ALWAYS_INLINE
eraseMachineValueTypeSet103   void erase(MVT T) {
104     Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
105   }
106 
107   struct const_iterator {
108     // Some implementations of the C++ library require these traits to be
109     // defined.
110     using iterator_category = std::forward_iterator_tag;
111     using value_type = MVT;
112     using difference_type = ptrdiff_t;
113     using pointer = const MVT*;
114     using reference = const MVT&;
115 
116     LLVM_ATTRIBUTE_ALWAYS_INLINE
117     MVT operator*() const {
118       assert(Pos != Capacity);
119       return MVT::SimpleValueType(Pos);
120     }
121     LLVM_ATTRIBUTE_ALWAYS_INLINE
const_iteratorMachineValueTypeSet::const_iterator122     const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
123       Pos = End ? Capacity : find_from_pos(0);
124     }
125     LLVM_ATTRIBUTE_ALWAYS_INLINE
126     const_iterator &operator++() {
127       assert(Pos != Capacity);
128       Pos = find_from_pos(Pos+1);
129       return *this;
130     }
131 
132     LLVM_ATTRIBUTE_ALWAYS_INLINE
133     bool operator==(const const_iterator &It) const {
134       return Set == It.Set && Pos == It.Pos;
135     }
136     LLVM_ATTRIBUTE_ALWAYS_INLINE
137     bool operator!=(const const_iterator &It) const {
138       return !operator==(It);
139     }
140 
141   private:
find_from_posMachineValueTypeSet::const_iterator142     unsigned find_from_pos(unsigned P) const {
143       unsigned SkipWords = P / WordWidth;
144       unsigned SkipBits = P % WordWidth;
145       unsigned Count = SkipWords * WordWidth;
146 
147       // If P is in the middle of a word, process it manually here, because
148       // the trailing bits need to be masked off to use findFirstSet.
149       if (SkipBits != 0) {
150         WordType W = Set->Words[SkipWords];
151         W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
152         if (W != 0)
153           return Count + findFirstSet(W);
154         Count += WordWidth;
155         SkipWords++;
156       }
157 
158       for (unsigned i = SkipWords; i != NumWords; ++i) {
159         WordType W = Set->Words[i];
160         if (W != 0)
161           return Count + findFirstSet(W);
162         Count += WordWidth;
163       }
164       return Capacity;
165     }
166 
167     const MachineValueTypeSet *Set;
168     unsigned Pos;
169   };
170 
171   LLVM_ATTRIBUTE_ALWAYS_INLINE
beginMachineValueTypeSet172   const_iterator begin() const { return const_iterator(this, false); }
173   LLVM_ATTRIBUTE_ALWAYS_INLINE
endMachineValueTypeSet174   const_iterator end()   const { return const_iterator(this, true); }
175 
176   LLVM_ATTRIBUTE_ALWAYS_INLINE
177   bool operator==(const MachineValueTypeSet &S) const {
178     return Words == S.Words;
179   }
180   LLVM_ATTRIBUTE_ALWAYS_INLINE
181   bool operator!=(const MachineValueTypeSet &S) const {
182     return !operator==(S);
183   }
184 
185 private:
186   friend struct const_iterator;
187   std::array<WordType,NumWords> Words;
188 };
189 
190 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
191   using SetType = MachineValueTypeSet;
192 
193   TypeSetByHwMode() = default;
194   TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
TypeSetByHwModeTypeSetByHwMode195   TypeSetByHwMode(MVT::SimpleValueType VT)
196     : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
TypeSetByHwModeTypeSetByHwMode197   TypeSetByHwMode(ValueTypeByHwMode VT)
198     : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
199   TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
200 
getOrCreateTypeSetByHwMode201   SetType &getOrCreate(unsigned Mode) {
202     if (hasMode(Mode))
203       return get(Mode);
204     return Map.insert({Mode,SetType()}).first->second;
205   }
206 
207   bool isValueTypeByHwMode(bool AllowEmpty) const;
208   ValueTypeByHwMode getValueTypeByHwMode() const;
209 
210   LLVM_ATTRIBUTE_ALWAYS_INLINE
isMachineValueTypeTypeSetByHwMode211   bool isMachineValueType() const {
212     return isDefaultOnly() && Map.begin()->second.size() == 1;
213   }
214 
215   LLVM_ATTRIBUTE_ALWAYS_INLINE
getMachineValueTypeTypeSetByHwMode216   MVT getMachineValueType() const {
217     assert(isMachineValueType());
218     return *Map.begin()->second.begin();
219   }
220 
221   bool isPossible() const;
222 
223   LLVM_ATTRIBUTE_ALWAYS_INLINE
isDefaultOnlyTypeSetByHwMode224   bool isDefaultOnly() const {
225     return Map.size() == 1 && Map.begin()->first == DefaultMode;
226   }
227 
228   bool insert(const ValueTypeByHwMode &VVT);
229   bool constrain(const TypeSetByHwMode &VTS);
230   template <typename Predicate> bool constrain(Predicate P);
231   template <typename Predicate>
232   bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
233 
234   void writeToStream(raw_ostream &OS) const;
235   static void writeToStream(const SetType &S, raw_ostream &OS);
236 
237   bool operator==(const TypeSetByHwMode &VTS) const;
238   bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
239 
240   void dump() const;
241   bool validate() const;
242 
243 private:
244   /// Intersect two sets. Return true if anything has changed.
245   bool intersect(SetType &Out, const SetType &In);
246 };
247 
248 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
249 
250 struct TypeInfer {
TypeInferTypeInfer251   TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
252 
isConcreteTypeInfer253   bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
254     return VTS.isValueTypeByHwMode(AllowEmpty);
255   }
getConcreteTypeInfer256   ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
257                                 bool AllowEmpty) const {
258     assert(VTS.isValueTypeByHwMode(AllowEmpty));
259     return VTS.getValueTypeByHwMode();
260   }
261 
262   /// The protocol in the following functions (Merge*, force*, Enforce*,
263   /// expand*) is to return "true" if a change has been made, "false"
264   /// otherwise.
265 
266   bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
MergeInTypeInfoTypeInfer267   bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
268     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
269   }
MergeInTypeInfoTypeInfer270   bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
271     return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
272   }
273 
274   /// Reduce the set \p Out to have at most one element for each mode.
275   bool forceArbitrary(TypeSetByHwMode &Out);
276 
277   /// The following four functions ensure that upon return the set \p Out
278   /// will only contain types of the specified kind: integer, floating-point,
279   /// scalar, or vector.
280   /// If \p Out is empty, all legal types of the specified kind will be added
281   /// to it. Otherwise, all types that are not of the specified kind will be
282   /// removed from \p Out.
283   bool EnforceInteger(TypeSetByHwMode &Out);
284   bool EnforceFloatingPoint(TypeSetByHwMode &Out);
285   bool EnforceScalar(TypeSetByHwMode &Out);
286   bool EnforceVector(TypeSetByHwMode &Out);
287 
288   /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
289   /// unchanged.
290   bool EnforceAny(TypeSetByHwMode &Out);
291   /// Make sure that for each type in \p Small, there exists a larger type
292   /// in \p Big.
293   bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
294   /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
295   ///    for each type U in \p Elem, U is a scalar type.
296   /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
297   ///    (vector) type T in \p Vec, such that U is the element type of T.
298   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
299   bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
300                               const ValueTypeByHwMode &VVT);
301   /// Ensure that for each type T in \p Sub, T is a vector type, and there
302   /// exists a type U in \p Vec such that U is a vector type with the same
303   /// element type as T and at least as many elements as T.
304   bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
305                                     TypeSetByHwMode &Sub);
306   /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
307   /// 2. Ensure that for each vector type T in \p V, there exists a vector
308   ///    type U in \p W, such that T and U have the same number of elements.
309   /// 3. Ensure that for each vector type U in \p W, there exists a vector
310   ///    type T in \p V, such that T and U have the same number of elements
311   ///    (reverse of 2).
312   bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
313   /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
314   ///    such that T and U have equal size in bits.
315   /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
316   ///    such that T and U have equal size in bits (reverse of 1).
317   bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
318 
319   /// For each overloaded type (i.e. of form *Any), replace it with the
320   /// corresponding subset of legal, specific types.
321   void expandOverloads(TypeSetByHwMode &VTS);
322   void expandOverloads(TypeSetByHwMode::SetType &Out,
323                        const TypeSetByHwMode::SetType &Legal);
324 
325   struct ValidateOnExit {
ValidateOnExitTypeInfer::ValidateOnExit326     ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
327   #ifndef NDEBUG
328     ~ValidateOnExit();
329   #else
~ValidateOnExitTypeInfer::ValidateOnExit330     ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
331   #endif
332     TypeInfer &Infer;
333     TypeSetByHwMode &VTS;
334   };
335 
336   struct SuppressValidation {
SuppressValidationTypeInfer::SuppressValidation337     SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
338       Infer.Validate = false;
339     }
~SuppressValidationTypeInfer::SuppressValidation340     ~SuppressValidation() {
341       Infer.Validate = SavedValidate;
342     }
343     TypeInfer &Infer;
344     bool SavedValidate;
345   };
346 
347   TreePattern &TP;
348   unsigned ForceMode;     // Mode to use when set.
349   bool CodeGen = false;   // Set during generation of matcher code.
350   bool Validate = true;   // Indicate whether to validate types.
351 
352 private:
353   TypeSetByHwMode getLegalTypes();
354 
355   /// Cached legal types.
356   bool LegalTypesCached = false;
357   TypeSetByHwMode::SetType LegalCache = {};
358 };
359 
360 /// Set type used to track multiply used variables in patterns
361 typedef StringSet<> MultipleUseVarSet;
362 
363 /// SDTypeConstraint - This is a discriminated union of constraints,
364 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
365 struct SDTypeConstraint {
366   SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
367 
368   unsigned OperandNo;   // The operand # this constraint applies to.
369   enum {
370     SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
371     SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
372     SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
373   } ConstraintType;
374 
375   union {   // The discriminated union.
376     struct {
377       unsigned OtherOperandNum;
378     } SDTCisSameAs_Info;
379     struct {
380       unsigned OtherOperandNum;
381     } SDTCisVTSmallerThanOp_Info;
382     struct {
383       unsigned BigOperandNum;
384     } SDTCisOpSmallerThanOp_Info;
385     struct {
386       unsigned OtherOperandNum;
387     } SDTCisEltOfVec_Info;
388     struct {
389       unsigned OtherOperandNum;
390     } SDTCisSubVecOfVec_Info;
391     struct {
392       unsigned OtherOperandNum;
393     } SDTCisSameNumEltsAs_Info;
394     struct {
395       unsigned OtherOperandNum;
396     } SDTCisSameSizeAs_Info;
397   } x;
398 
399   // The VT for SDTCisVT and SDTCVecEltisVT.
400   // Must not be in the union because it has a non-trivial destructor.
401   ValueTypeByHwMode VVT;
402 
403   /// ApplyTypeConstraint - Given a node in a pattern, apply this type
404   /// constraint to the nodes operands.  This returns true if it makes a
405   /// change, false otherwise.  If a type contradiction is found, an error
406   /// is flagged.
407   bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
408                            TreePattern &TP) const;
409 };
410 
411 /// SDNodeInfo - One of these records is created for each SDNode instance in
412 /// the target .td file.  This represents the various dag nodes we will be
413 /// processing.
414 class SDNodeInfo {
415   Record *Def;
416   StringRef EnumName;
417   StringRef SDClassName;
418   unsigned Properties;
419   unsigned NumResults;
420   int NumOperands;
421   std::vector<SDTypeConstraint> TypeConstraints;
422 public:
423   // Parse the specified record.
424   SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
425 
getNumResults()426   unsigned getNumResults() const { return NumResults; }
427 
428   /// getNumOperands - This is the number of operands required or -1 if
429   /// variadic.
getNumOperands()430   int getNumOperands() const { return NumOperands; }
getRecord()431   Record *getRecord() const { return Def; }
getEnumName()432   StringRef getEnumName() const { return EnumName; }
getSDClassName()433   StringRef getSDClassName() const { return SDClassName; }
434 
getTypeConstraints()435   const std::vector<SDTypeConstraint> &getTypeConstraints() const {
436     return TypeConstraints;
437   }
438 
439   /// getKnownType - If the type constraints on this node imply a fixed type
440   /// (e.g. all stores return void, etc), then return it as an
441   /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
442   MVT::SimpleValueType getKnownType(unsigned ResNo) const;
443 
444   /// hasProperty - Return true if this node has the specified property.
445   ///
hasProperty(enum SDNP Prop)446   bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
447 
448   /// ApplyTypeConstraints - Given a node in a pattern, apply the type
449   /// constraints for this node to the operands of the node.  This returns
450   /// true if it makes a change, false otherwise.  If a type contradiction is
451   /// found, an error is flagged.
452   bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
453 };
454 
455 /// TreePredicateFn - This is an abstraction that represents the predicates on
456 /// a PatFrag node.  This is a simple one-word wrapper around a pointer to
457 /// provide nice accessors.
458 class TreePredicateFn {
459   /// PatFragRec - This is the TreePattern for the PatFrag that we
460   /// originally came from.
461   TreePattern *PatFragRec;
462 public:
463   /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
464   TreePredicateFn(TreePattern *N);
465 
466 
getOrigPatFragRecord()467   TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
468 
469   /// isAlwaysTrue - Return true if this is a noop predicate.
470   bool isAlwaysTrue() const;
471 
isImmediatePattern()472   bool isImmediatePattern() const { return hasImmCode(); }
473 
474   /// getImmediatePredicateCode - Return the code that evaluates this pattern if
475   /// this is an immediate predicate.  It is an error to call this on a
476   /// non-immediate pattern.
getImmediatePredicateCode()477   std::string getImmediatePredicateCode() const {
478     std::string Result = getImmCode();
479     assert(!Result.empty() && "Isn't an immediate pattern!");
480     return Result;
481   }
482 
483   bool operator==(const TreePredicateFn &RHS) const {
484     return PatFragRec == RHS.PatFragRec;
485   }
486 
487   bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
488 
489   /// Return the name to use in the generated code to reference this, this is
490   /// "Predicate_foo" if from a pattern fragment "foo".
491   std::string getFnName() const;
492 
493   /// getCodeToRunOnSDNode - Return the code for the function body that
494   /// evaluates this predicate.  The argument is expected to be in "Node",
495   /// not N.  This handles casting and conversion to a concrete node type as
496   /// appropriate.
497   std::string getCodeToRunOnSDNode() const;
498 
499   /// Get the data type of the argument to getImmediatePredicateCode().
500   StringRef getImmType() const;
501 
502   /// Get a string that describes the type returned by getImmType() but is
503   /// usable as part of an identifier.
504   StringRef getImmTypeIdentifier() const;
505 
506   // Is the desired predefined predicate for a load?
507   bool isLoad() const;
508   // Is the desired predefined predicate for a store?
509   bool isStore() const;
510   // Is the desired predefined predicate for an atomic?
511   bool isAtomic() const;
512 
513   /// Is this predicate the predefined unindexed load predicate?
514   /// Is this predicate the predefined unindexed store predicate?
515   bool isUnindexed() const;
516   /// Is this predicate the predefined non-extending load predicate?
517   bool isNonExtLoad() const;
518   /// Is this predicate the predefined any-extend load predicate?
519   bool isAnyExtLoad() const;
520   /// Is this predicate the predefined sign-extend load predicate?
521   bool isSignExtLoad() const;
522   /// Is this predicate the predefined zero-extend load predicate?
523   bool isZeroExtLoad() const;
524   /// Is this predicate the predefined non-truncating store predicate?
525   bool isNonTruncStore() const;
526   /// Is this predicate the predefined truncating store predicate?
527   bool isTruncStore() const;
528 
529   /// Is this predicate the predefined monotonic atomic predicate?
530   bool isAtomicOrderingMonotonic() const;
531   /// Is this predicate the predefined acquire atomic predicate?
532   bool isAtomicOrderingAcquire() const;
533   /// Is this predicate the predefined release atomic predicate?
534   bool isAtomicOrderingRelease() const;
535   /// Is this predicate the predefined acquire-release atomic predicate?
536   bool isAtomicOrderingAcquireRelease() const;
537   /// Is this predicate the predefined sequentially consistent atomic predicate?
538   bool isAtomicOrderingSequentiallyConsistent() const;
539 
540   /// Is this predicate the predefined acquire-or-stronger atomic predicate?
541   bool isAtomicOrderingAcquireOrStronger() const;
542   /// Is this predicate the predefined weaker-than-acquire atomic predicate?
543   bool isAtomicOrderingWeakerThanAcquire() const;
544 
545   /// Is this predicate the predefined release-or-stronger atomic predicate?
546   bool isAtomicOrderingReleaseOrStronger() const;
547   /// Is this predicate the predefined weaker-than-release atomic predicate?
548   bool isAtomicOrderingWeakerThanRelease() const;
549 
550   /// If non-null, indicates that this predicate is a predefined memory VT
551   /// predicate for a load/store and returns the ValueType record for the memory VT.
552   Record *getMemoryVT() const;
553   /// If non-null, indicates that this predicate is a predefined memory VT
554   /// predicate (checking only the scalar type) for load/store and returns the
555   /// ValueType record for the memory VT.
556   Record *getScalarMemoryVT() const;
557 
558   // If true, indicates that GlobalISel-based C++ code was supplied.
559   bool hasGISelPredicateCode() const;
560   std::string getGISelPredicateCode() const;
561 
562 private:
563   bool hasPredCode() const;
564   bool hasImmCode() const;
565   std::string getPredCode() const;
566   std::string getImmCode() const;
567   bool immCodeUsesAPInt() const;
568   bool immCodeUsesAPFloat() const;
569 
570   bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
571 };
572 
573 
574 class TreePatternNode {
575   /// The type of each node result.  Before and during type inference, each
576   /// result may be a set of possible types.  After (successful) type inference,
577   /// each is a single concrete type.
578   std::vector<TypeSetByHwMode> Types;
579 
580   /// Operator - The Record for the operator if this is an interior node (not
581   /// a leaf).
582   Record *Operator;
583 
584   /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
585   ///
586   Init *Val;
587 
588   /// Name - The name given to this node with the :$foo notation.
589   ///
590   std::string Name;
591 
592   /// PredicateFns - The predicate functions to execute on this node to check
593   /// for a match.  If this list is empty, no predicate is involved.
594   std::vector<TreePredicateFn> PredicateFns;
595 
596   /// TransformFn - The transformation function to execute on this node before
597   /// it can be substituted into the resulting instruction on a pattern match.
598   Record *TransformFn;
599 
600   std::vector<TreePatternNodePtr> Children;
601 
602 public:
TreePatternNode(Record * Op,std::vector<TreePatternNodePtr> Ch,unsigned NumResults)603   TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
604                   unsigned NumResults)
605       : Operator(Op), Val(nullptr), TransformFn(nullptr),
606         Children(std::move(Ch)) {
607     Types.resize(NumResults);
608   }
TreePatternNode(Init * val,unsigned NumResults)609   TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
610     : Operator(nullptr), Val(val), TransformFn(nullptr) {
611     Types.resize(NumResults);
612   }
613 
hasName()614   bool hasName() const { return !Name.empty(); }
getName()615   const std::string &getName() const { return Name; }
setName(StringRef N)616   void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
617 
isLeaf()618   bool isLeaf() const { return Val != nullptr; }
619 
620   // Type accessors.
getNumTypes()621   unsigned getNumTypes() const { return Types.size(); }
getType(unsigned ResNo)622   ValueTypeByHwMode getType(unsigned ResNo) const {
623     return Types[ResNo].getValueTypeByHwMode();
624   }
getExtTypes()625   const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
getExtType(unsigned ResNo)626   const TypeSetByHwMode &getExtType(unsigned ResNo) const {
627     return Types[ResNo];
628   }
getExtType(unsigned ResNo)629   TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
setType(unsigned ResNo,const TypeSetByHwMode & T)630   void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
getSimpleType(unsigned ResNo)631   MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
632     return Types[ResNo].getMachineValueType().SimpleTy;
633   }
634 
hasConcreteType(unsigned ResNo)635   bool hasConcreteType(unsigned ResNo) const {
636     return Types[ResNo].isValueTypeByHwMode(false);
637   }
isTypeCompletelyUnknown(unsigned ResNo,TreePattern & TP)638   bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
639     return Types[ResNo].empty();
640   }
641 
getLeafValue()642   Init *getLeafValue() const { assert(isLeaf()); return Val; }
getOperator()643   Record *getOperator() const { assert(!isLeaf()); return Operator; }
644 
getNumChildren()645   unsigned getNumChildren() const { return Children.size(); }
getChild(unsigned N)646   TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
getChildShared(unsigned N)647   const TreePatternNodePtr &getChildShared(unsigned N) const {
648     return Children[N];
649   }
setChild(unsigned i,TreePatternNodePtr N)650   void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
651 
652   /// hasChild - Return true if N is any of our children.
hasChild(const TreePatternNode * N)653   bool hasChild(const TreePatternNode *N) const {
654     for (unsigned i = 0, e = Children.size(); i != e; ++i)
655       if (Children[i].get() == N)
656         return true;
657     return false;
658   }
659 
660   bool hasProperTypeByHwMode() const;
661   bool hasPossibleType() const;
662   bool setDefaultMode(unsigned Mode);
663 
hasAnyPredicate()664   bool hasAnyPredicate() const { return !PredicateFns.empty(); }
665 
getPredicateFns()666   const std::vector<TreePredicateFn> &getPredicateFns() const {
667     return PredicateFns;
668   }
clearPredicateFns()669   void clearPredicateFns() { PredicateFns.clear(); }
setPredicateFns(const std::vector<TreePredicateFn> & Fns)670   void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
671     assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
672     PredicateFns = Fns;
673   }
addPredicateFn(const TreePredicateFn & Fn)674   void addPredicateFn(const TreePredicateFn &Fn) {
675     assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
676     if (!is_contained(PredicateFns, Fn))
677       PredicateFns.push_back(Fn);
678   }
679 
getTransformFn()680   Record *getTransformFn() const { return TransformFn; }
setTransformFn(Record * Fn)681   void setTransformFn(Record *Fn) { TransformFn = Fn; }
682 
683   /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
684   /// CodeGenIntrinsic information for it, otherwise return a null pointer.
685   const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
686 
687   /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
688   /// return the ComplexPattern information, otherwise return null.
689   const ComplexPattern *
690   getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
691 
692   /// Returns the number of MachineInstr operands that would be produced by this
693   /// node if it mapped directly to an output Instruction's
694   /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
695   /// for Operands; otherwise 1.
696   unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
697 
698   /// NodeHasProperty - Return true if this node has the specified property.
699   bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
700 
701   /// TreeHasProperty - Return true if any node in this tree has the specified
702   /// property.
703   bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
704 
705   /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
706   /// marked isCommutative.
707   bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
708 
709   void print(raw_ostream &OS) const;
710   void dump() const;
711 
712 public:   // Higher level manipulation routines.
713 
714   /// clone - Return a new copy of this tree.
715   ///
716   TreePatternNodePtr clone() const;
717 
718   /// RemoveAllTypes - Recursively strip all the types of this tree.
719   void RemoveAllTypes();
720 
721   /// isIsomorphicTo - Return true if this node is recursively isomorphic to
722   /// the specified node.  For this comparison, all of the state of the node
723   /// is considered, except for the assigned name.  Nodes with differing names
724   /// that are otherwise identical are considered isomorphic.
725   bool isIsomorphicTo(const TreePatternNode *N,
726                       const MultipleUseVarSet &DepVars) const;
727 
728   /// SubstituteFormalArguments - Replace the formal arguments in this tree
729   /// with actual values specified by ArgMap.
730   void
731   SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
732 
733   /// InlinePatternFragments - If this pattern refers to any pattern
734   /// fragments, return the set of inlined versions (this can be more than
735   /// one if a PatFrags record has multiple alternatives).
736   void InlinePatternFragments(TreePatternNodePtr T,
737                               TreePattern &TP,
738                               std::vector<TreePatternNodePtr> &OutAlternatives);
739 
740   /// ApplyTypeConstraints - Apply all of the type constraints relevant to
741   /// this node and its children in the tree.  This returns true if it makes a
742   /// change, false otherwise.  If a type contradiction is found, flag an error.
743   bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
744 
745   /// UpdateNodeType - Set the node type of N to VT if VT contains
746   /// information.  If N already contains a conflicting type, then flag an
747   /// error.  This returns true if any information was updated.
748   ///
749   bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
750                       TreePattern &TP);
751   bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
752                       TreePattern &TP);
753   bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
754                       TreePattern &TP);
755 
756   // Update node type with types inferred from an instruction operand or result
757   // def from the ins/outs lists.
758   // Return true if the type changed.
759   bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
760 
761   /// ContainsUnresolvedType - Return true if this tree contains any
762   /// unresolved types.
763   bool ContainsUnresolvedType(TreePattern &TP) const;
764 
765   /// canPatternMatch - If it is impossible for this pattern to match on this
766   /// target, fill in Reason and return false.  Otherwise, return true.
767   bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
768 };
769 
770 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
771   TPN.print(OS);
772   return OS;
773 }
774 
775 
776 /// TreePattern - Represent a pattern, used for instructions, pattern
777 /// fragments, etc.
778 ///
779 class TreePattern {
780   /// Trees - The list of pattern trees which corresponds to this pattern.
781   /// Note that PatFrag's only have a single tree.
782   ///
783   std::vector<TreePatternNodePtr> Trees;
784 
785   /// NamedNodes - This is all of the nodes that have names in the trees in this
786   /// pattern.
787   StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
788 
789   /// TheRecord - The actual TableGen record corresponding to this pattern.
790   ///
791   Record *TheRecord;
792 
793   /// Args - This is a list of all of the arguments to this pattern (for
794   /// PatFrag patterns), which are the 'node' markers in this pattern.
795   std::vector<std::string> Args;
796 
797   /// CDP - the top-level object coordinating this madness.
798   ///
799   CodeGenDAGPatterns &CDP;
800 
801   /// isInputPattern - True if this is an input pattern, something to match.
802   /// False if this is an output pattern, something to emit.
803   bool isInputPattern;
804 
805   /// hasError - True if the currently processed nodes have unresolvable types
806   /// or other non-fatal errors
807   bool HasError;
808 
809   /// It's important that the usage of operands in ComplexPatterns is
810   /// consistent: each named operand can be defined by at most one
811   /// ComplexPattern. This records the ComplexPattern instance and the operand
812   /// number for each operand encountered in a ComplexPattern to aid in that
813   /// check.
814   StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
815 
816   TypeInfer Infer;
817 
818 public:
819 
820   /// TreePattern constructor - Parse the specified DagInits into the
821   /// current record.
822   TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
823               CodeGenDAGPatterns &ise);
824   TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
825               CodeGenDAGPatterns &ise);
826   TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
827               CodeGenDAGPatterns &ise);
828 
829   /// getTrees - Return the tree patterns which corresponds to this pattern.
830   ///
getTrees()831   const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
getNumTrees()832   unsigned getNumTrees() const { return Trees.size(); }
getTree(unsigned i)833   const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
setTree(unsigned i,TreePatternNodePtr Tree)834   void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
getOnlyTree()835   const TreePatternNodePtr &getOnlyTree() const {
836     assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
837     return Trees[0];
838   }
839 
getNamedNodesMap()840   const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
841     if (NamedNodes.empty())
842       ComputeNamedNodes();
843     return NamedNodes;
844   }
845 
846   /// getRecord - Return the actual TableGen record corresponding to this
847   /// pattern.
848   ///
getRecord()849   Record *getRecord() const { return TheRecord; }
850 
getNumArgs()851   unsigned getNumArgs() const { return Args.size(); }
getArgName(unsigned i)852   const std::string &getArgName(unsigned i) const {
853     assert(i < Args.size() && "Argument reference out of range!");
854     return Args[i];
855   }
getArgList()856   std::vector<std::string> &getArgList() { return Args; }
857 
getDAGPatterns()858   CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
859 
860   /// InlinePatternFragments - If this pattern refers to any pattern
861   /// fragments, inline them into place, giving us a pattern without any
862   /// PatFrags references.  This may increase the number of trees in the
863   /// pattern if a PatFrags has multiple alternatives.
InlinePatternFragments()864   void InlinePatternFragments() {
865     std::vector<TreePatternNodePtr> Copy = Trees;
866     Trees.clear();
867     for (unsigned i = 0, e = Copy.size(); i != e; ++i)
868       Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
869   }
870 
871   /// InferAllTypes - Infer/propagate as many types throughout the expression
872   /// patterns as possible.  Return true if all types are inferred, false
873   /// otherwise.  Bail out if a type contradiction is found.
874   bool InferAllTypes(
875       const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
876 
877   /// error - If this is the first error in the current resolution step,
878   /// print it and set the error flag.  Otherwise, continue silently.
879   void error(const Twine &Msg);
hasError()880   bool hasError() const {
881     return HasError;
882   }
resetError()883   void resetError() {
884     HasError = false;
885   }
886 
getInfer()887   TypeInfer &getInfer() { return Infer; }
888 
889   void print(raw_ostream &OS) const;
890   void dump() const;
891 
892 private:
893   TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
894   void ComputeNamedNodes();
895   void ComputeNamedNodes(TreePatternNode *N);
896 };
897 
898 
UpdateNodeType(unsigned ResNo,const TypeSetByHwMode & InTy,TreePattern & TP)899 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
900                                             const TypeSetByHwMode &InTy,
901                                             TreePattern &TP) {
902   TypeSetByHwMode VTS(InTy);
903   TP.getInfer().expandOverloads(VTS);
904   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
905 }
906 
UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)907 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
908                                             MVT::SimpleValueType InTy,
909                                             TreePattern &TP) {
910   TypeSetByHwMode VTS(InTy);
911   TP.getInfer().expandOverloads(VTS);
912   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
913 }
914 
UpdateNodeType(unsigned ResNo,ValueTypeByHwMode InTy,TreePattern & TP)915 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
916                                             ValueTypeByHwMode InTy,
917                                             TreePattern &TP) {
918   TypeSetByHwMode VTS(InTy);
919   TP.getInfer().expandOverloads(VTS);
920   return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
921 }
922 
923 
924 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
925 /// that has a set ExecuteAlways / DefaultOps field.
926 struct DAGDefaultOperand {
927   std::vector<TreePatternNodePtr> DefaultOps;
928 };
929 
930 class DAGInstruction {
931   std::vector<Record*> Results;
932   std::vector<Record*> Operands;
933   std::vector<Record*> ImpResults;
934   TreePatternNodePtr SrcPattern;
935   TreePatternNodePtr ResultPattern;
936 
937 public:
938   DAGInstruction(const std::vector<Record*> &results,
939                  const std::vector<Record*> &operands,
940                  const std::vector<Record*> &impresults,
941                  TreePatternNodePtr srcpattern = nullptr,
942                  TreePatternNodePtr resultpattern = nullptr)
Results(results)943     : Results(results), Operands(operands), ImpResults(impresults),
944       SrcPattern(srcpattern), ResultPattern(resultpattern) {}
945 
getNumResults()946   unsigned getNumResults() const { return Results.size(); }
getNumOperands()947   unsigned getNumOperands() const { return Operands.size(); }
getNumImpResults()948   unsigned getNumImpResults() const { return ImpResults.size(); }
getImpResults()949   const std::vector<Record*>& getImpResults() const { return ImpResults; }
950 
getResult(unsigned RN)951   Record *getResult(unsigned RN) const {
952     assert(RN < Results.size());
953     return Results[RN];
954   }
955 
getOperand(unsigned ON)956   Record *getOperand(unsigned ON) const {
957     assert(ON < Operands.size());
958     return Operands[ON];
959   }
960 
getImpResult(unsigned RN)961   Record *getImpResult(unsigned RN) const {
962     assert(RN < ImpResults.size());
963     return ImpResults[RN];
964   }
965 
getSrcPattern()966   TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
getResultPattern()967   TreePatternNodePtr getResultPattern() const { return ResultPattern; }
968 };
969 
970 /// This class represents a condition that has to be satisfied for a pattern
971 /// to be tried. It is a generalization of a class "Pattern" from Target.td:
972 /// in addition to the Target.td's predicates, this class can also represent
973 /// conditions associated with HW modes. Both types will eventually become
974 /// strings containing C++ code to be executed, the difference is in how
975 /// these strings are generated.
976 class Predicate {
977 public:
Def(R)978   Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
979     assert(R->isSubClassOf("Predicate") &&
980            "Predicate objects should only be created for records derived"
981            "from Predicate class");
982   }
Def(nullptr)983   Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
984     IfCond(C), IsHwMode(true) {}
985 
986   /// Return a string which contains the C++ condition code that will serve
987   /// as a predicate during instruction selection.
getCondString()988   std::string getCondString() const {
989     // The string will excute in a subclass of SelectionDAGISel.
990     // Cast to std::string explicitly to avoid ambiguity with StringRef.
991     std::string C = IsHwMode
992         ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")")
993         : std::string(Def->getValueAsString("CondString"));
994     return IfCond ? C : "!("+C+')';
995   }
996   bool operator==(const Predicate &P) const {
997     return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
998   }
999   bool operator<(const Predicate &P) const {
1000     if (IsHwMode != P.IsHwMode)
1001       return IsHwMode < P.IsHwMode;
1002     assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
1003     if (IfCond != P.IfCond)
1004       return IfCond < P.IfCond;
1005     if (Def)
1006       return LessRecord()(Def, P.Def);
1007     return Features < P.Features;
1008   }
1009   Record *Def;            ///< Predicate definition from .td file, null for
1010                           ///< HW modes.
1011   std::string Features;   ///< Feature string for HW mode.
1012   bool IfCond;            ///< The boolean value that the condition has to
1013                           ///< evaluate to for this predicate to be true.
1014   bool IsHwMode;          ///< Does this predicate correspond to a HW mode?
1015 };
1016 
1017 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1018 /// processed to produce isel.
1019 class PatternToMatch {
1020 public:
1021   PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
1022                  TreePatternNodePtr src, TreePatternNodePtr dst,
1023                  std::vector<Record *> dstregs, int complexity,
1024                  unsigned uid, unsigned setmode = 0)
SrcRecord(srcrecord)1025       : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
1026         Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
1027         AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
1028 
1029   Record          *SrcRecord;   // Originating Record for the pattern.
1030   TreePatternNodePtr SrcPattern;      // Source pattern to match.
1031   TreePatternNodePtr DstPattern;      // Resulting pattern.
1032   std::vector<Predicate> Predicates;  // Top level predicate conditions
1033                                       // to match.
1034   std::vector<Record*> Dstregs; // Physical register defs being matched.
1035   int              AddedComplexity; // Add to matching pattern complexity.
1036   unsigned         ID;          // Unique ID for the record.
1037   unsigned         ForceMode;   // Force this mode in type inference when set.
1038 
getSrcRecord()1039   Record          *getSrcRecord()  const { return SrcRecord; }
getSrcPattern()1040   TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
getSrcPatternShared()1041   TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
getDstPattern()1042   TreePatternNode *getDstPattern() const { return DstPattern.get(); }
getDstPatternShared()1043   TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
getDstRegs()1044   const std::vector<Record*> &getDstRegs() const { return Dstregs; }
getAddedComplexity()1045   int         getAddedComplexity() const { return AddedComplexity; }
getPredicates()1046   const std::vector<Predicate> &getPredicates() const { return Predicates; }
1047 
1048   std::string getPredicateCheck() const;
1049 
1050   /// Compute the complexity metric for the input pattern.  This roughly
1051   /// corresponds to the number of nodes that are covered.
1052   int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1053 };
1054 
1055 class CodeGenDAGPatterns {
1056   RecordKeeper &Records;
1057   CodeGenTarget Target;
1058   CodeGenIntrinsicTable Intrinsics;
1059   CodeGenIntrinsicTable TgtIntrinsics;
1060 
1061   std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1062   std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1063       SDNodeXForms;
1064   std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1065   std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1066       PatternFragments;
1067   std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1068   std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1069 
1070   // Specific SDNode definitions:
1071   Record *intrinsic_void_sdnode;
1072   Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1073 
1074   /// PatternsToMatch - All of the things we are matching on the DAG.  The first
1075   /// value is the pattern to match, the second pattern is the result to
1076   /// emit.
1077   std::vector<PatternToMatch> PatternsToMatch;
1078 
1079   TypeSetByHwMode LegalVTS;
1080 
1081   using PatternRewriterFn = std::function<void (TreePattern *)>;
1082   PatternRewriterFn PatternRewriter;
1083 
1084 public:
1085   CodeGenDAGPatterns(RecordKeeper &R,
1086                      PatternRewriterFn PatternRewriter = nullptr);
1087 
getTargetInfo()1088   CodeGenTarget &getTargetInfo() { return Target; }
getTargetInfo()1089   const CodeGenTarget &getTargetInfo() const { return Target; }
getLegalTypes()1090   const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1091 
1092   Record *getSDNodeNamed(const std::string &Name) const;
1093 
getSDNodeInfo(Record * R)1094   const SDNodeInfo &getSDNodeInfo(Record *R) const {
1095     auto F = SDNodes.find(R);
1096     assert(F != SDNodes.end() && "Unknown node!");
1097     return F->second;
1098   }
1099 
1100   // Node transformation lookups.
1101   typedef std::pair<Record*, std::string> NodeXForm;
getSDNodeTransform(Record * R)1102   const NodeXForm &getSDNodeTransform(Record *R) const {
1103     auto F = SDNodeXForms.find(R);
1104     assert(F != SDNodeXForms.end() && "Invalid transform!");
1105     return F->second;
1106   }
1107 
1108   typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
1109           nx_iterator;
nx_begin()1110   nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
nx_end()1111   nx_iterator nx_end() const { return SDNodeXForms.end(); }
1112 
1113 
getComplexPattern(Record * R)1114   const ComplexPattern &getComplexPattern(Record *R) const {
1115     auto F = ComplexPatterns.find(R);
1116     assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1117     return F->second;
1118   }
1119 
getIntrinsic(Record * R)1120   const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1121     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1122       if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1123     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1124       if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
1125     llvm_unreachable("Unknown intrinsic!");
1126   }
1127 
getIntrinsicInfo(unsigned IID)1128   const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1129     if (IID-1 < Intrinsics.size())
1130       return Intrinsics[IID-1];
1131     if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
1132       return TgtIntrinsics[IID-Intrinsics.size()-1];
1133     llvm_unreachable("Bad intrinsic ID!");
1134   }
1135 
getIntrinsicID(Record * R)1136   unsigned getIntrinsicID(Record *R) const {
1137     for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1138       if (Intrinsics[i].TheDef == R) return i;
1139     for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1140       if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
1141     llvm_unreachable("Unknown intrinsic!");
1142   }
1143 
getDefaultOperand(Record * R)1144   const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1145     auto F = DefaultOperands.find(R);
1146     assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1147     return F->second;
1148   }
1149 
1150   // Pattern Fragment information.
getPatternFragment(Record * R)1151   TreePattern *getPatternFragment(Record *R) const {
1152     auto F = PatternFragments.find(R);
1153     assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1154     return F->second.get();
1155   }
getPatternFragmentIfRead(Record * R)1156   TreePattern *getPatternFragmentIfRead(Record *R) const {
1157     auto F = PatternFragments.find(R);
1158     if (F == PatternFragments.end())
1159       return nullptr;
1160     return F->second.get();
1161   }
1162 
1163   typedef std::map<Record *, std::unique_ptr<TreePattern>,
1164                    LessRecordByID>::const_iterator pf_iterator;
pf_begin()1165   pf_iterator pf_begin() const { return PatternFragments.begin(); }
pf_end()1166   pf_iterator pf_end() const { return PatternFragments.end(); }
ptfs()1167   iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1168 
1169   // Patterns to match information.
1170   typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
ptm_begin()1171   ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
ptm_end()1172   ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
ptms()1173   iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1174 
1175   /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1176   typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1177   void parseInstructionPattern(
1178       CodeGenInstruction &CGI, ListInit *Pattern,
1179       DAGInstMap &DAGInsts);
1180 
getInstruction(Record * R)1181   const DAGInstruction &getInstruction(Record *R) const {
1182     auto F = Instructions.find(R);
1183     assert(F != Instructions.end() && "Unknown instruction!");
1184     return F->second;
1185   }
1186 
get_intrinsic_void_sdnode()1187   Record *get_intrinsic_void_sdnode() const {
1188     return intrinsic_void_sdnode;
1189   }
get_intrinsic_w_chain_sdnode()1190   Record *get_intrinsic_w_chain_sdnode() const {
1191     return intrinsic_w_chain_sdnode;
1192   }
get_intrinsic_wo_chain_sdnode()1193   Record *get_intrinsic_wo_chain_sdnode() const {
1194     return intrinsic_wo_chain_sdnode;
1195   }
1196 
hasTargetIntrinsics()1197   bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
1198 
1199 private:
1200   void ParseNodeInfo();
1201   void ParseNodeTransforms();
1202   void ParseComplexPatterns();
1203   void ParsePatternFragments(bool OutFrags = false);
1204   void ParseDefaultOperands();
1205   void ParseInstructions();
1206   void ParsePatterns();
1207   void ExpandHwModeBasedTypes();
1208   void InferInstructionFlags();
1209   void GenerateVariants();
1210   void VerifyInstructionFlags();
1211 
1212   std::vector<Predicate> makePredList(ListInit *L);
1213 
1214   void ParseOnePattern(Record *TheDef,
1215                        TreePattern &Pattern, TreePattern &Result,
1216                        const std::vector<Record *> &InstImpResults);
1217   void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1218   void FindPatternInputsAndOutputs(
1219       TreePattern &I, TreePatternNodePtr Pat,
1220       std::map<std::string, TreePatternNodePtr> &InstInputs,
1221       std::map<std::string, TreePatternNodePtr> &InstResults,
1222       std::vector<Record *> &InstImpResults);
1223 };
1224 
1225 
ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)1226 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1227                                              TreePattern &TP) const {
1228     bool MadeChange = false;
1229     for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1230       MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1231     return MadeChange;
1232   }
1233 
1234 } // end namespace llvm
1235 
1236 #endif
1237