1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
16 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
17
18 #include "CodeGenHwModes.h"
19 #include "CodeGenIntrinsics.h"
20 #include "CodeGenTarget.h"
21 #include "SDNodeProperties.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <algorithm>
28 #include <array>
29 #include <functional>
30 #include <map>
31 #include <set>
32 #include <vector>
33
34 namespace llvm {
35
36 class Record;
37 class Init;
38 class ListInit;
39 class DagInit;
40 class SDNodeInfo;
41 class TreePattern;
42 class TreePatternNode;
43 class CodeGenDAGPatterns;
44 class ComplexPattern;
45
46 /// Shared pointer for TreePatternNode.
47 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
48
49 /// This represents a set of MVTs. Since the underlying type for the MVT
50 /// is uint8_t, there are at most 256 values. To reduce the number of memory
51 /// allocations and deallocations, represent the set as a sequence of bits.
52 /// To reduce the allocations even further, make MachineValueTypeSet own
53 /// the storage and use std::array as the bit container.
54 struct MachineValueTypeSet {
55 static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
56 uint8_t>::value,
57 "Change uint8_t here to the SimpleValueType's type");
58 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
59 using WordType = uint64_t;
60 static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
61 static unsigned constexpr NumWords = Capacity/WordWidth;
62 static_assert(NumWords*WordWidth == Capacity,
63 "Capacity should be a multiple of WordWidth");
64
65 LLVM_ATTRIBUTE_ALWAYS_INLINE
MachineValueTypeSetMachineValueTypeSet66 MachineValueTypeSet() {
67 clear();
68 }
69
70 LLVM_ATTRIBUTE_ALWAYS_INLINE
sizeMachineValueTypeSet71 unsigned size() const {
72 unsigned Count = 0;
73 for (WordType W : Words)
74 Count += countPopulation(W);
75 return Count;
76 }
77 LLVM_ATTRIBUTE_ALWAYS_INLINE
clearMachineValueTypeSet78 void clear() {
79 std::memset(Words.data(), 0, NumWords*sizeof(WordType));
80 }
81 LLVM_ATTRIBUTE_ALWAYS_INLINE
emptyMachineValueTypeSet82 bool empty() const {
83 for (WordType W : Words)
84 if (W != 0)
85 return false;
86 return true;
87 }
88 LLVM_ATTRIBUTE_ALWAYS_INLINE
countMachineValueTypeSet89 unsigned count(MVT T) const {
90 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
91 }
insertMachineValueTypeSet92 std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
93 bool V = count(T.SimpleTy);
94 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
95 return {*this, V};
96 }
insertMachineValueTypeSet97 MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
98 for (unsigned i = 0; i != NumWords; ++i)
99 Words[i] |= S.Words[i];
100 return *this;
101 }
102 LLVM_ATTRIBUTE_ALWAYS_INLINE
eraseMachineValueTypeSet103 void erase(MVT T) {
104 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
105 }
106
107 struct const_iterator {
108 // Some implementations of the C++ library require these traits to be
109 // defined.
110 using iterator_category = std::forward_iterator_tag;
111 using value_type = MVT;
112 using difference_type = ptrdiff_t;
113 using pointer = const MVT*;
114 using reference = const MVT&;
115
116 LLVM_ATTRIBUTE_ALWAYS_INLINE
117 MVT operator*() const {
118 assert(Pos != Capacity);
119 return MVT::SimpleValueType(Pos);
120 }
121 LLVM_ATTRIBUTE_ALWAYS_INLINE
const_iteratorMachineValueTypeSet::const_iterator122 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
123 Pos = End ? Capacity : find_from_pos(0);
124 }
125 LLVM_ATTRIBUTE_ALWAYS_INLINE
126 const_iterator &operator++() {
127 assert(Pos != Capacity);
128 Pos = find_from_pos(Pos+1);
129 return *this;
130 }
131
132 LLVM_ATTRIBUTE_ALWAYS_INLINE
133 bool operator==(const const_iterator &It) const {
134 return Set == It.Set && Pos == It.Pos;
135 }
136 LLVM_ATTRIBUTE_ALWAYS_INLINE
137 bool operator!=(const const_iterator &It) const {
138 return !operator==(It);
139 }
140
141 private:
find_from_posMachineValueTypeSet::const_iterator142 unsigned find_from_pos(unsigned P) const {
143 unsigned SkipWords = P / WordWidth;
144 unsigned SkipBits = P % WordWidth;
145 unsigned Count = SkipWords * WordWidth;
146
147 // If P is in the middle of a word, process it manually here, because
148 // the trailing bits need to be masked off to use findFirstSet.
149 if (SkipBits != 0) {
150 WordType W = Set->Words[SkipWords];
151 W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
152 if (W != 0)
153 return Count + findFirstSet(W);
154 Count += WordWidth;
155 SkipWords++;
156 }
157
158 for (unsigned i = SkipWords; i != NumWords; ++i) {
159 WordType W = Set->Words[i];
160 if (W != 0)
161 return Count + findFirstSet(W);
162 Count += WordWidth;
163 }
164 return Capacity;
165 }
166
167 const MachineValueTypeSet *Set;
168 unsigned Pos;
169 };
170
171 LLVM_ATTRIBUTE_ALWAYS_INLINE
beginMachineValueTypeSet172 const_iterator begin() const { return const_iterator(this, false); }
173 LLVM_ATTRIBUTE_ALWAYS_INLINE
endMachineValueTypeSet174 const_iterator end() const { return const_iterator(this, true); }
175
176 LLVM_ATTRIBUTE_ALWAYS_INLINE
177 bool operator==(const MachineValueTypeSet &S) const {
178 return Words == S.Words;
179 }
180 LLVM_ATTRIBUTE_ALWAYS_INLINE
181 bool operator!=(const MachineValueTypeSet &S) const {
182 return !operator==(S);
183 }
184
185 private:
186 friend struct const_iterator;
187 std::array<WordType,NumWords> Words;
188 };
189
190 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
191 using SetType = MachineValueTypeSet;
192
193 TypeSetByHwMode() = default;
194 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
TypeSetByHwModeTypeSetByHwMode195 TypeSetByHwMode(MVT::SimpleValueType VT)
196 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
TypeSetByHwModeTypeSetByHwMode197 TypeSetByHwMode(ValueTypeByHwMode VT)
198 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
199 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
200
getOrCreateTypeSetByHwMode201 SetType &getOrCreate(unsigned Mode) {
202 if (hasMode(Mode))
203 return get(Mode);
204 return Map.insert({Mode,SetType()}).first->second;
205 }
206
207 bool isValueTypeByHwMode(bool AllowEmpty) const;
208 ValueTypeByHwMode getValueTypeByHwMode() const;
209
210 LLVM_ATTRIBUTE_ALWAYS_INLINE
isMachineValueTypeTypeSetByHwMode211 bool isMachineValueType() const {
212 return isDefaultOnly() && Map.begin()->second.size() == 1;
213 }
214
215 LLVM_ATTRIBUTE_ALWAYS_INLINE
getMachineValueTypeTypeSetByHwMode216 MVT getMachineValueType() const {
217 assert(isMachineValueType());
218 return *Map.begin()->second.begin();
219 }
220
221 bool isPossible() const;
222
223 LLVM_ATTRIBUTE_ALWAYS_INLINE
isDefaultOnlyTypeSetByHwMode224 bool isDefaultOnly() const {
225 return Map.size() == 1 && Map.begin()->first == DefaultMode;
226 }
227
228 bool insert(const ValueTypeByHwMode &VVT);
229 bool constrain(const TypeSetByHwMode &VTS);
230 template <typename Predicate> bool constrain(Predicate P);
231 template <typename Predicate>
232 bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
233
234 void writeToStream(raw_ostream &OS) const;
235 static void writeToStream(const SetType &S, raw_ostream &OS);
236
237 bool operator==(const TypeSetByHwMode &VTS) const;
238 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
239
240 void dump() const;
241 bool validate() const;
242
243 private:
244 /// Intersect two sets. Return true if anything has changed.
245 bool intersect(SetType &Out, const SetType &In);
246 };
247
248 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
249
250 struct TypeInfer {
TypeInferTypeInfer251 TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
252
isConcreteTypeInfer253 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
254 return VTS.isValueTypeByHwMode(AllowEmpty);
255 }
getConcreteTypeInfer256 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
257 bool AllowEmpty) const {
258 assert(VTS.isValueTypeByHwMode(AllowEmpty));
259 return VTS.getValueTypeByHwMode();
260 }
261
262 /// The protocol in the following functions (Merge*, force*, Enforce*,
263 /// expand*) is to return "true" if a change has been made, "false"
264 /// otherwise.
265
266 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
MergeInTypeInfoTypeInfer267 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
268 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
269 }
MergeInTypeInfoTypeInfer270 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
271 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
272 }
273
274 /// Reduce the set \p Out to have at most one element for each mode.
275 bool forceArbitrary(TypeSetByHwMode &Out);
276
277 /// The following four functions ensure that upon return the set \p Out
278 /// will only contain types of the specified kind: integer, floating-point,
279 /// scalar, or vector.
280 /// If \p Out is empty, all legal types of the specified kind will be added
281 /// to it. Otherwise, all types that are not of the specified kind will be
282 /// removed from \p Out.
283 bool EnforceInteger(TypeSetByHwMode &Out);
284 bool EnforceFloatingPoint(TypeSetByHwMode &Out);
285 bool EnforceScalar(TypeSetByHwMode &Out);
286 bool EnforceVector(TypeSetByHwMode &Out);
287
288 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
289 /// unchanged.
290 bool EnforceAny(TypeSetByHwMode &Out);
291 /// Make sure that for each type in \p Small, there exists a larger type
292 /// in \p Big.
293 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
294 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
295 /// for each type U in \p Elem, U is a scalar type.
296 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
297 /// (vector) type T in \p Vec, such that U is the element type of T.
298 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
299 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
300 const ValueTypeByHwMode &VVT);
301 /// Ensure that for each type T in \p Sub, T is a vector type, and there
302 /// exists a type U in \p Vec such that U is a vector type with the same
303 /// element type as T and at least as many elements as T.
304 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
305 TypeSetByHwMode &Sub);
306 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
307 /// 2. Ensure that for each vector type T in \p V, there exists a vector
308 /// type U in \p W, such that T and U have the same number of elements.
309 /// 3. Ensure that for each vector type U in \p W, there exists a vector
310 /// type T in \p V, such that T and U have the same number of elements
311 /// (reverse of 2).
312 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
313 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
314 /// such that T and U have equal size in bits.
315 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
316 /// such that T and U have equal size in bits (reverse of 1).
317 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
318
319 /// For each overloaded type (i.e. of form *Any), replace it with the
320 /// corresponding subset of legal, specific types.
321 void expandOverloads(TypeSetByHwMode &VTS);
322 void expandOverloads(TypeSetByHwMode::SetType &Out,
323 const TypeSetByHwMode::SetType &Legal);
324
325 struct ValidateOnExit {
ValidateOnExitTypeInfer::ValidateOnExit326 ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
327 #ifndef NDEBUG
328 ~ValidateOnExit();
329 #else
~ValidateOnExitTypeInfer::ValidateOnExit330 ~ValidateOnExit() {} // Empty destructor with NDEBUG.
331 #endif
332 TypeInfer &Infer;
333 TypeSetByHwMode &VTS;
334 };
335
336 struct SuppressValidation {
SuppressValidationTypeInfer::SuppressValidation337 SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
338 Infer.Validate = false;
339 }
~SuppressValidationTypeInfer::SuppressValidation340 ~SuppressValidation() {
341 Infer.Validate = SavedValidate;
342 }
343 TypeInfer &Infer;
344 bool SavedValidate;
345 };
346
347 TreePattern &TP;
348 unsigned ForceMode; // Mode to use when set.
349 bool CodeGen = false; // Set during generation of matcher code.
350 bool Validate = true; // Indicate whether to validate types.
351
352 private:
353 TypeSetByHwMode getLegalTypes();
354
355 /// Cached legal types.
356 bool LegalTypesCached = false;
357 TypeSetByHwMode::SetType LegalCache = {};
358 };
359
360 /// Set type used to track multiply used variables in patterns
361 typedef StringSet<> MultipleUseVarSet;
362
363 /// SDTypeConstraint - This is a discriminated union of constraints,
364 /// corresponding to the SDTypeConstraint tablegen class in Target.td.
365 struct SDTypeConstraint {
366 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
367
368 unsigned OperandNo; // The operand # this constraint applies to.
369 enum {
370 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
371 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
372 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
373 } ConstraintType;
374
375 union { // The discriminated union.
376 struct {
377 unsigned OtherOperandNum;
378 } SDTCisSameAs_Info;
379 struct {
380 unsigned OtherOperandNum;
381 } SDTCisVTSmallerThanOp_Info;
382 struct {
383 unsigned BigOperandNum;
384 } SDTCisOpSmallerThanOp_Info;
385 struct {
386 unsigned OtherOperandNum;
387 } SDTCisEltOfVec_Info;
388 struct {
389 unsigned OtherOperandNum;
390 } SDTCisSubVecOfVec_Info;
391 struct {
392 unsigned OtherOperandNum;
393 } SDTCisSameNumEltsAs_Info;
394 struct {
395 unsigned OtherOperandNum;
396 } SDTCisSameSizeAs_Info;
397 } x;
398
399 // The VT for SDTCisVT and SDTCVecEltisVT.
400 // Must not be in the union because it has a non-trivial destructor.
401 ValueTypeByHwMode VVT;
402
403 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
404 /// constraint to the nodes operands. This returns true if it makes a
405 /// change, false otherwise. If a type contradiction is found, an error
406 /// is flagged.
407 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
408 TreePattern &TP) const;
409 };
410
411 /// SDNodeInfo - One of these records is created for each SDNode instance in
412 /// the target .td file. This represents the various dag nodes we will be
413 /// processing.
414 class SDNodeInfo {
415 Record *Def;
416 StringRef EnumName;
417 StringRef SDClassName;
418 unsigned Properties;
419 unsigned NumResults;
420 int NumOperands;
421 std::vector<SDTypeConstraint> TypeConstraints;
422 public:
423 // Parse the specified record.
424 SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
425
getNumResults()426 unsigned getNumResults() const { return NumResults; }
427
428 /// getNumOperands - This is the number of operands required or -1 if
429 /// variadic.
getNumOperands()430 int getNumOperands() const { return NumOperands; }
getRecord()431 Record *getRecord() const { return Def; }
getEnumName()432 StringRef getEnumName() const { return EnumName; }
getSDClassName()433 StringRef getSDClassName() const { return SDClassName; }
434
getTypeConstraints()435 const std::vector<SDTypeConstraint> &getTypeConstraints() const {
436 return TypeConstraints;
437 }
438
439 /// getKnownType - If the type constraints on this node imply a fixed type
440 /// (e.g. all stores return void, etc), then return it as an
441 /// MVT::SimpleValueType. Otherwise, return MVT::Other.
442 MVT::SimpleValueType getKnownType(unsigned ResNo) const;
443
444 /// hasProperty - Return true if this node has the specified property.
445 ///
hasProperty(enum SDNP Prop)446 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
447
448 /// ApplyTypeConstraints - Given a node in a pattern, apply the type
449 /// constraints for this node to the operands of the node. This returns
450 /// true if it makes a change, false otherwise. If a type contradiction is
451 /// found, an error is flagged.
452 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
453 };
454
455 /// TreePredicateFn - This is an abstraction that represents the predicates on
456 /// a PatFrag node. This is a simple one-word wrapper around a pointer to
457 /// provide nice accessors.
458 class TreePredicateFn {
459 /// PatFragRec - This is the TreePattern for the PatFrag that we
460 /// originally came from.
461 TreePattern *PatFragRec;
462 public:
463 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
464 TreePredicateFn(TreePattern *N);
465
466
getOrigPatFragRecord()467 TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
468
469 /// isAlwaysTrue - Return true if this is a noop predicate.
470 bool isAlwaysTrue() const;
471
isImmediatePattern()472 bool isImmediatePattern() const { return hasImmCode(); }
473
474 /// getImmediatePredicateCode - Return the code that evaluates this pattern if
475 /// this is an immediate predicate. It is an error to call this on a
476 /// non-immediate pattern.
getImmediatePredicateCode()477 std::string getImmediatePredicateCode() const {
478 std::string Result = getImmCode();
479 assert(!Result.empty() && "Isn't an immediate pattern!");
480 return Result;
481 }
482
483 bool operator==(const TreePredicateFn &RHS) const {
484 return PatFragRec == RHS.PatFragRec;
485 }
486
487 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
488
489 /// Return the name to use in the generated code to reference this, this is
490 /// "Predicate_foo" if from a pattern fragment "foo".
491 std::string getFnName() const;
492
493 /// getCodeToRunOnSDNode - Return the code for the function body that
494 /// evaluates this predicate. The argument is expected to be in "Node",
495 /// not N. This handles casting and conversion to a concrete node type as
496 /// appropriate.
497 std::string getCodeToRunOnSDNode() const;
498
499 /// Get the data type of the argument to getImmediatePredicateCode().
500 StringRef getImmType() const;
501
502 /// Get a string that describes the type returned by getImmType() but is
503 /// usable as part of an identifier.
504 StringRef getImmTypeIdentifier() const;
505
506 // Is the desired predefined predicate for a load?
507 bool isLoad() const;
508 // Is the desired predefined predicate for a store?
509 bool isStore() const;
510 // Is the desired predefined predicate for an atomic?
511 bool isAtomic() const;
512
513 /// Is this predicate the predefined unindexed load predicate?
514 /// Is this predicate the predefined unindexed store predicate?
515 bool isUnindexed() const;
516 /// Is this predicate the predefined non-extending load predicate?
517 bool isNonExtLoad() const;
518 /// Is this predicate the predefined any-extend load predicate?
519 bool isAnyExtLoad() const;
520 /// Is this predicate the predefined sign-extend load predicate?
521 bool isSignExtLoad() const;
522 /// Is this predicate the predefined zero-extend load predicate?
523 bool isZeroExtLoad() const;
524 /// Is this predicate the predefined non-truncating store predicate?
525 bool isNonTruncStore() const;
526 /// Is this predicate the predefined truncating store predicate?
527 bool isTruncStore() const;
528
529 /// Is this predicate the predefined monotonic atomic predicate?
530 bool isAtomicOrderingMonotonic() const;
531 /// Is this predicate the predefined acquire atomic predicate?
532 bool isAtomicOrderingAcquire() const;
533 /// Is this predicate the predefined release atomic predicate?
534 bool isAtomicOrderingRelease() const;
535 /// Is this predicate the predefined acquire-release atomic predicate?
536 bool isAtomicOrderingAcquireRelease() const;
537 /// Is this predicate the predefined sequentially consistent atomic predicate?
538 bool isAtomicOrderingSequentiallyConsistent() const;
539
540 /// Is this predicate the predefined acquire-or-stronger atomic predicate?
541 bool isAtomicOrderingAcquireOrStronger() const;
542 /// Is this predicate the predefined weaker-than-acquire atomic predicate?
543 bool isAtomicOrderingWeakerThanAcquire() const;
544
545 /// Is this predicate the predefined release-or-stronger atomic predicate?
546 bool isAtomicOrderingReleaseOrStronger() const;
547 /// Is this predicate the predefined weaker-than-release atomic predicate?
548 bool isAtomicOrderingWeakerThanRelease() const;
549
550 /// If non-null, indicates that this predicate is a predefined memory VT
551 /// predicate for a load/store and returns the ValueType record for the memory VT.
552 Record *getMemoryVT() const;
553 /// If non-null, indicates that this predicate is a predefined memory VT
554 /// predicate (checking only the scalar type) for load/store and returns the
555 /// ValueType record for the memory VT.
556 Record *getScalarMemoryVT() const;
557
558 // If true, indicates that GlobalISel-based C++ code was supplied.
559 bool hasGISelPredicateCode() const;
560 std::string getGISelPredicateCode() const;
561
562 private:
563 bool hasPredCode() const;
564 bool hasImmCode() const;
565 std::string getPredCode() const;
566 std::string getImmCode() const;
567 bool immCodeUsesAPInt() const;
568 bool immCodeUsesAPFloat() const;
569
570 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
571 };
572
573
574 class TreePatternNode {
575 /// The type of each node result. Before and during type inference, each
576 /// result may be a set of possible types. After (successful) type inference,
577 /// each is a single concrete type.
578 std::vector<TypeSetByHwMode> Types;
579
580 /// Operator - The Record for the operator if this is an interior node (not
581 /// a leaf).
582 Record *Operator;
583
584 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
585 ///
586 Init *Val;
587
588 /// Name - The name given to this node with the :$foo notation.
589 ///
590 std::string Name;
591
592 /// PredicateFns - The predicate functions to execute on this node to check
593 /// for a match. If this list is empty, no predicate is involved.
594 std::vector<TreePredicateFn> PredicateFns;
595
596 /// TransformFn - The transformation function to execute on this node before
597 /// it can be substituted into the resulting instruction on a pattern match.
598 Record *TransformFn;
599
600 std::vector<TreePatternNodePtr> Children;
601
602 public:
TreePatternNode(Record * Op,std::vector<TreePatternNodePtr> Ch,unsigned NumResults)603 TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
604 unsigned NumResults)
605 : Operator(Op), Val(nullptr), TransformFn(nullptr),
606 Children(std::move(Ch)) {
607 Types.resize(NumResults);
608 }
TreePatternNode(Init * val,unsigned NumResults)609 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
610 : Operator(nullptr), Val(val), TransformFn(nullptr) {
611 Types.resize(NumResults);
612 }
613
hasName()614 bool hasName() const { return !Name.empty(); }
getName()615 const std::string &getName() const { return Name; }
setName(StringRef N)616 void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
617
isLeaf()618 bool isLeaf() const { return Val != nullptr; }
619
620 // Type accessors.
getNumTypes()621 unsigned getNumTypes() const { return Types.size(); }
getType(unsigned ResNo)622 ValueTypeByHwMode getType(unsigned ResNo) const {
623 return Types[ResNo].getValueTypeByHwMode();
624 }
getExtTypes()625 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
getExtType(unsigned ResNo)626 const TypeSetByHwMode &getExtType(unsigned ResNo) const {
627 return Types[ResNo];
628 }
getExtType(unsigned ResNo)629 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
setType(unsigned ResNo,const TypeSetByHwMode & T)630 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
getSimpleType(unsigned ResNo)631 MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
632 return Types[ResNo].getMachineValueType().SimpleTy;
633 }
634
hasConcreteType(unsigned ResNo)635 bool hasConcreteType(unsigned ResNo) const {
636 return Types[ResNo].isValueTypeByHwMode(false);
637 }
isTypeCompletelyUnknown(unsigned ResNo,TreePattern & TP)638 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
639 return Types[ResNo].empty();
640 }
641
getLeafValue()642 Init *getLeafValue() const { assert(isLeaf()); return Val; }
getOperator()643 Record *getOperator() const { assert(!isLeaf()); return Operator; }
644
getNumChildren()645 unsigned getNumChildren() const { return Children.size(); }
getChild(unsigned N)646 TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
getChildShared(unsigned N)647 const TreePatternNodePtr &getChildShared(unsigned N) const {
648 return Children[N];
649 }
setChild(unsigned i,TreePatternNodePtr N)650 void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
651
652 /// hasChild - Return true if N is any of our children.
hasChild(const TreePatternNode * N)653 bool hasChild(const TreePatternNode *N) const {
654 for (unsigned i = 0, e = Children.size(); i != e; ++i)
655 if (Children[i].get() == N)
656 return true;
657 return false;
658 }
659
660 bool hasProperTypeByHwMode() const;
661 bool hasPossibleType() const;
662 bool setDefaultMode(unsigned Mode);
663
hasAnyPredicate()664 bool hasAnyPredicate() const { return !PredicateFns.empty(); }
665
getPredicateFns()666 const std::vector<TreePredicateFn> &getPredicateFns() const {
667 return PredicateFns;
668 }
clearPredicateFns()669 void clearPredicateFns() { PredicateFns.clear(); }
setPredicateFns(const std::vector<TreePredicateFn> & Fns)670 void setPredicateFns(const std::vector<TreePredicateFn> &Fns) {
671 assert(PredicateFns.empty() && "Overwriting non-empty predicate list!");
672 PredicateFns = Fns;
673 }
addPredicateFn(const TreePredicateFn & Fn)674 void addPredicateFn(const TreePredicateFn &Fn) {
675 assert(!Fn.isAlwaysTrue() && "Empty predicate string!");
676 if (!is_contained(PredicateFns, Fn))
677 PredicateFns.push_back(Fn);
678 }
679
getTransformFn()680 Record *getTransformFn() const { return TransformFn; }
setTransformFn(Record * Fn)681 void setTransformFn(Record *Fn) { TransformFn = Fn; }
682
683 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
684 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
685 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
686
687 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
688 /// return the ComplexPattern information, otherwise return null.
689 const ComplexPattern *
690 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
691
692 /// Returns the number of MachineInstr operands that would be produced by this
693 /// node if it mapped directly to an output Instruction's
694 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
695 /// for Operands; otherwise 1.
696 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
697
698 /// NodeHasProperty - Return true if this node has the specified property.
699 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
700
701 /// TreeHasProperty - Return true if any node in this tree has the specified
702 /// property.
703 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
704
705 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
706 /// marked isCommutative.
707 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
708
709 void print(raw_ostream &OS) const;
710 void dump() const;
711
712 public: // Higher level manipulation routines.
713
714 /// clone - Return a new copy of this tree.
715 ///
716 TreePatternNodePtr clone() const;
717
718 /// RemoveAllTypes - Recursively strip all the types of this tree.
719 void RemoveAllTypes();
720
721 /// isIsomorphicTo - Return true if this node is recursively isomorphic to
722 /// the specified node. For this comparison, all of the state of the node
723 /// is considered, except for the assigned name. Nodes with differing names
724 /// that are otherwise identical are considered isomorphic.
725 bool isIsomorphicTo(const TreePatternNode *N,
726 const MultipleUseVarSet &DepVars) const;
727
728 /// SubstituteFormalArguments - Replace the formal arguments in this tree
729 /// with actual values specified by ArgMap.
730 void
731 SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
732
733 /// InlinePatternFragments - If this pattern refers to any pattern
734 /// fragments, return the set of inlined versions (this can be more than
735 /// one if a PatFrags record has multiple alternatives).
736 void InlinePatternFragments(TreePatternNodePtr T,
737 TreePattern &TP,
738 std::vector<TreePatternNodePtr> &OutAlternatives);
739
740 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
741 /// this node and its children in the tree. This returns true if it makes a
742 /// change, false otherwise. If a type contradiction is found, flag an error.
743 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
744
745 /// UpdateNodeType - Set the node type of N to VT if VT contains
746 /// information. If N already contains a conflicting type, then flag an
747 /// error. This returns true if any information was updated.
748 ///
749 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
750 TreePattern &TP);
751 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
752 TreePattern &TP);
753 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
754 TreePattern &TP);
755
756 // Update node type with types inferred from an instruction operand or result
757 // def from the ins/outs lists.
758 // Return true if the type changed.
759 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
760
761 /// ContainsUnresolvedType - Return true if this tree contains any
762 /// unresolved types.
763 bool ContainsUnresolvedType(TreePattern &TP) const;
764
765 /// canPatternMatch - If it is impossible for this pattern to match on this
766 /// target, fill in Reason and return false. Otherwise, return true.
767 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
768 };
769
770 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
771 TPN.print(OS);
772 return OS;
773 }
774
775
776 /// TreePattern - Represent a pattern, used for instructions, pattern
777 /// fragments, etc.
778 ///
779 class TreePattern {
780 /// Trees - The list of pattern trees which corresponds to this pattern.
781 /// Note that PatFrag's only have a single tree.
782 ///
783 std::vector<TreePatternNodePtr> Trees;
784
785 /// NamedNodes - This is all of the nodes that have names in the trees in this
786 /// pattern.
787 StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
788
789 /// TheRecord - The actual TableGen record corresponding to this pattern.
790 ///
791 Record *TheRecord;
792
793 /// Args - This is a list of all of the arguments to this pattern (for
794 /// PatFrag patterns), which are the 'node' markers in this pattern.
795 std::vector<std::string> Args;
796
797 /// CDP - the top-level object coordinating this madness.
798 ///
799 CodeGenDAGPatterns &CDP;
800
801 /// isInputPattern - True if this is an input pattern, something to match.
802 /// False if this is an output pattern, something to emit.
803 bool isInputPattern;
804
805 /// hasError - True if the currently processed nodes have unresolvable types
806 /// or other non-fatal errors
807 bool HasError;
808
809 /// It's important that the usage of operands in ComplexPatterns is
810 /// consistent: each named operand can be defined by at most one
811 /// ComplexPattern. This records the ComplexPattern instance and the operand
812 /// number for each operand encountered in a ComplexPattern to aid in that
813 /// check.
814 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
815
816 TypeInfer Infer;
817
818 public:
819
820 /// TreePattern constructor - Parse the specified DagInits into the
821 /// current record.
822 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
823 CodeGenDAGPatterns &ise);
824 TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
825 CodeGenDAGPatterns &ise);
826 TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
827 CodeGenDAGPatterns &ise);
828
829 /// getTrees - Return the tree patterns which corresponds to this pattern.
830 ///
getTrees()831 const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
getNumTrees()832 unsigned getNumTrees() const { return Trees.size(); }
getTree(unsigned i)833 const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
setTree(unsigned i,TreePatternNodePtr Tree)834 void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
getOnlyTree()835 const TreePatternNodePtr &getOnlyTree() const {
836 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
837 return Trees[0];
838 }
839
getNamedNodesMap()840 const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
841 if (NamedNodes.empty())
842 ComputeNamedNodes();
843 return NamedNodes;
844 }
845
846 /// getRecord - Return the actual TableGen record corresponding to this
847 /// pattern.
848 ///
getRecord()849 Record *getRecord() const { return TheRecord; }
850
getNumArgs()851 unsigned getNumArgs() const { return Args.size(); }
getArgName(unsigned i)852 const std::string &getArgName(unsigned i) const {
853 assert(i < Args.size() && "Argument reference out of range!");
854 return Args[i];
855 }
getArgList()856 std::vector<std::string> &getArgList() { return Args; }
857
getDAGPatterns()858 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
859
860 /// InlinePatternFragments - If this pattern refers to any pattern
861 /// fragments, inline them into place, giving us a pattern without any
862 /// PatFrags references. This may increase the number of trees in the
863 /// pattern if a PatFrags has multiple alternatives.
InlinePatternFragments()864 void InlinePatternFragments() {
865 std::vector<TreePatternNodePtr> Copy = Trees;
866 Trees.clear();
867 for (unsigned i = 0, e = Copy.size(); i != e; ++i)
868 Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
869 }
870
871 /// InferAllTypes - Infer/propagate as many types throughout the expression
872 /// patterns as possible. Return true if all types are inferred, false
873 /// otherwise. Bail out if a type contradiction is found.
874 bool InferAllTypes(
875 const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
876
877 /// error - If this is the first error in the current resolution step,
878 /// print it and set the error flag. Otherwise, continue silently.
879 void error(const Twine &Msg);
hasError()880 bool hasError() const {
881 return HasError;
882 }
resetError()883 void resetError() {
884 HasError = false;
885 }
886
getInfer()887 TypeInfer &getInfer() { return Infer; }
888
889 void print(raw_ostream &OS) const;
890 void dump() const;
891
892 private:
893 TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
894 void ComputeNamedNodes();
895 void ComputeNamedNodes(TreePatternNode *N);
896 };
897
898
UpdateNodeType(unsigned ResNo,const TypeSetByHwMode & InTy,TreePattern & TP)899 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
900 const TypeSetByHwMode &InTy,
901 TreePattern &TP) {
902 TypeSetByHwMode VTS(InTy);
903 TP.getInfer().expandOverloads(VTS);
904 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
905 }
906
UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)907 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
908 MVT::SimpleValueType InTy,
909 TreePattern &TP) {
910 TypeSetByHwMode VTS(InTy);
911 TP.getInfer().expandOverloads(VTS);
912 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
913 }
914
UpdateNodeType(unsigned ResNo,ValueTypeByHwMode InTy,TreePattern & TP)915 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
916 ValueTypeByHwMode InTy,
917 TreePattern &TP) {
918 TypeSetByHwMode VTS(InTy);
919 TP.getInfer().expandOverloads(VTS);
920 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
921 }
922
923
924 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
925 /// that has a set ExecuteAlways / DefaultOps field.
926 struct DAGDefaultOperand {
927 std::vector<TreePatternNodePtr> DefaultOps;
928 };
929
930 class DAGInstruction {
931 std::vector<Record*> Results;
932 std::vector<Record*> Operands;
933 std::vector<Record*> ImpResults;
934 TreePatternNodePtr SrcPattern;
935 TreePatternNodePtr ResultPattern;
936
937 public:
938 DAGInstruction(const std::vector<Record*> &results,
939 const std::vector<Record*> &operands,
940 const std::vector<Record*> &impresults,
941 TreePatternNodePtr srcpattern = nullptr,
942 TreePatternNodePtr resultpattern = nullptr)
Results(results)943 : Results(results), Operands(operands), ImpResults(impresults),
944 SrcPattern(srcpattern), ResultPattern(resultpattern) {}
945
getNumResults()946 unsigned getNumResults() const { return Results.size(); }
getNumOperands()947 unsigned getNumOperands() const { return Operands.size(); }
getNumImpResults()948 unsigned getNumImpResults() const { return ImpResults.size(); }
getImpResults()949 const std::vector<Record*>& getImpResults() const { return ImpResults; }
950
getResult(unsigned RN)951 Record *getResult(unsigned RN) const {
952 assert(RN < Results.size());
953 return Results[RN];
954 }
955
getOperand(unsigned ON)956 Record *getOperand(unsigned ON) const {
957 assert(ON < Operands.size());
958 return Operands[ON];
959 }
960
getImpResult(unsigned RN)961 Record *getImpResult(unsigned RN) const {
962 assert(RN < ImpResults.size());
963 return ImpResults[RN];
964 }
965
getSrcPattern()966 TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
getResultPattern()967 TreePatternNodePtr getResultPattern() const { return ResultPattern; }
968 };
969
970 /// This class represents a condition that has to be satisfied for a pattern
971 /// to be tried. It is a generalization of a class "Pattern" from Target.td:
972 /// in addition to the Target.td's predicates, this class can also represent
973 /// conditions associated with HW modes. Both types will eventually become
974 /// strings containing C++ code to be executed, the difference is in how
975 /// these strings are generated.
976 class Predicate {
977 public:
Def(R)978 Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
979 assert(R->isSubClassOf("Predicate") &&
980 "Predicate objects should only be created for records derived"
981 "from Predicate class");
982 }
Def(nullptr)983 Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
984 IfCond(C), IsHwMode(true) {}
985
986 /// Return a string which contains the C++ condition code that will serve
987 /// as a predicate during instruction selection.
getCondString()988 std::string getCondString() const {
989 // The string will excute in a subclass of SelectionDAGISel.
990 // Cast to std::string explicitly to avoid ambiguity with StringRef.
991 std::string C = IsHwMode
992 ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")")
993 : std::string(Def->getValueAsString("CondString"));
994 return IfCond ? C : "!("+C+')';
995 }
996 bool operator==(const Predicate &P) const {
997 return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
998 }
999 bool operator<(const Predicate &P) const {
1000 if (IsHwMode != P.IsHwMode)
1001 return IsHwMode < P.IsHwMode;
1002 assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
1003 if (IfCond != P.IfCond)
1004 return IfCond < P.IfCond;
1005 if (Def)
1006 return LessRecord()(Def, P.Def);
1007 return Features < P.Features;
1008 }
1009 Record *Def; ///< Predicate definition from .td file, null for
1010 ///< HW modes.
1011 std::string Features; ///< Feature string for HW mode.
1012 bool IfCond; ///< The boolean value that the condition has to
1013 ///< evaluate to for this predicate to be true.
1014 bool IsHwMode; ///< Does this predicate correspond to a HW mode?
1015 };
1016
1017 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
1018 /// processed to produce isel.
1019 class PatternToMatch {
1020 public:
1021 PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
1022 TreePatternNodePtr src, TreePatternNodePtr dst,
1023 std::vector<Record *> dstregs, int complexity,
1024 unsigned uid, unsigned setmode = 0)
SrcRecord(srcrecord)1025 : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
1026 Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
1027 AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
1028
1029 Record *SrcRecord; // Originating Record for the pattern.
1030 TreePatternNodePtr SrcPattern; // Source pattern to match.
1031 TreePatternNodePtr DstPattern; // Resulting pattern.
1032 std::vector<Predicate> Predicates; // Top level predicate conditions
1033 // to match.
1034 std::vector<Record*> Dstregs; // Physical register defs being matched.
1035 int AddedComplexity; // Add to matching pattern complexity.
1036 unsigned ID; // Unique ID for the record.
1037 unsigned ForceMode; // Force this mode in type inference when set.
1038
getSrcRecord()1039 Record *getSrcRecord() const { return SrcRecord; }
getSrcPattern()1040 TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
getSrcPatternShared()1041 TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
getDstPattern()1042 TreePatternNode *getDstPattern() const { return DstPattern.get(); }
getDstPatternShared()1043 TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
getDstRegs()1044 const std::vector<Record*> &getDstRegs() const { return Dstregs; }
getAddedComplexity()1045 int getAddedComplexity() const { return AddedComplexity; }
getPredicates()1046 const std::vector<Predicate> &getPredicates() const { return Predicates; }
1047
1048 std::string getPredicateCheck() const;
1049
1050 /// Compute the complexity metric for the input pattern. This roughly
1051 /// corresponds to the number of nodes that are covered.
1052 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
1053 };
1054
1055 class CodeGenDAGPatterns {
1056 RecordKeeper &Records;
1057 CodeGenTarget Target;
1058 CodeGenIntrinsicTable Intrinsics;
1059 CodeGenIntrinsicTable TgtIntrinsics;
1060
1061 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
1062 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
1063 SDNodeXForms;
1064 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
1065 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
1066 PatternFragments;
1067 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
1068 std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
1069
1070 // Specific SDNode definitions:
1071 Record *intrinsic_void_sdnode;
1072 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
1073
1074 /// PatternsToMatch - All of the things we are matching on the DAG. The first
1075 /// value is the pattern to match, the second pattern is the result to
1076 /// emit.
1077 std::vector<PatternToMatch> PatternsToMatch;
1078
1079 TypeSetByHwMode LegalVTS;
1080
1081 using PatternRewriterFn = std::function<void (TreePattern *)>;
1082 PatternRewriterFn PatternRewriter;
1083
1084 public:
1085 CodeGenDAGPatterns(RecordKeeper &R,
1086 PatternRewriterFn PatternRewriter = nullptr);
1087
getTargetInfo()1088 CodeGenTarget &getTargetInfo() { return Target; }
getTargetInfo()1089 const CodeGenTarget &getTargetInfo() const { return Target; }
getLegalTypes()1090 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
1091
1092 Record *getSDNodeNamed(const std::string &Name) const;
1093
getSDNodeInfo(Record * R)1094 const SDNodeInfo &getSDNodeInfo(Record *R) const {
1095 auto F = SDNodes.find(R);
1096 assert(F != SDNodes.end() && "Unknown node!");
1097 return F->second;
1098 }
1099
1100 // Node transformation lookups.
1101 typedef std::pair<Record*, std::string> NodeXForm;
getSDNodeTransform(Record * R)1102 const NodeXForm &getSDNodeTransform(Record *R) const {
1103 auto F = SDNodeXForms.find(R);
1104 assert(F != SDNodeXForms.end() && "Invalid transform!");
1105 return F->second;
1106 }
1107
1108 typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
1109 nx_iterator;
nx_begin()1110 nx_iterator nx_begin() const { return SDNodeXForms.begin(); }
nx_end()1111 nx_iterator nx_end() const { return SDNodeXForms.end(); }
1112
1113
getComplexPattern(Record * R)1114 const ComplexPattern &getComplexPattern(Record *R) const {
1115 auto F = ComplexPatterns.find(R);
1116 assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
1117 return F->second;
1118 }
1119
getIntrinsic(Record * R)1120 const CodeGenIntrinsic &getIntrinsic(Record *R) const {
1121 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1122 if (Intrinsics[i].TheDef == R) return Intrinsics[i];
1123 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1124 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i];
1125 llvm_unreachable("Unknown intrinsic!");
1126 }
1127
getIntrinsicInfo(unsigned IID)1128 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
1129 if (IID-1 < Intrinsics.size())
1130 return Intrinsics[IID-1];
1131 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size())
1132 return TgtIntrinsics[IID-Intrinsics.size()-1];
1133 llvm_unreachable("Bad intrinsic ID!");
1134 }
1135
getIntrinsicID(Record * R)1136 unsigned getIntrinsicID(Record *R) const {
1137 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
1138 if (Intrinsics[i].TheDef == R) return i;
1139 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i)
1140 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size();
1141 llvm_unreachable("Unknown intrinsic!");
1142 }
1143
getDefaultOperand(Record * R)1144 const DAGDefaultOperand &getDefaultOperand(Record *R) const {
1145 auto F = DefaultOperands.find(R);
1146 assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
1147 return F->second;
1148 }
1149
1150 // Pattern Fragment information.
getPatternFragment(Record * R)1151 TreePattern *getPatternFragment(Record *R) const {
1152 auto F = PatternFragments.find(R);
1153 assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
1154 return F->second.get();
1155 }
getPatternFragmentIfRead(Record * R)1156 TreePattern *getPatternFragmentIfRead(Record *R) const {
1157 auto F = PatternFragments.find(R);
1158 if (F == PatternFragments.end())
1159 return nullptr;
1160 return F->second.get();
1161 }
1162
1163 typedef std::map<Record *, std::unique_ptr<TreePattern>,
1164 LessRecordByID>::const_iterator pf_iterator;
pf_begin()1165 pf_iterator pf_begin() const { return PatternFragments.begin(); }
pf_end()1166 pf_iterator pf_end() const { return PatternFragments.end(); }
ptfs()1167 iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
1168
1169 // Patterns to match information.
1170 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
ptm_begin()1171 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
ptm_end()1172 ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
ptms()1173 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
1174
1175 /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
1176 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
1177 void parseInstructionPattern(
1178 CodeGenInstruction &CGI, ListInit *Pattern,
1179 DAGInstMap &DAGInsts);
1180
getInstruction(Record * R)1181 const DAGInstruction &getInstruction(Record *R) const {
1182 auto F = Instructions.find(R);
1183 assert(F != Instructions.end() && "Unknown instruction!");
1184 return F->second;
1185 }
1186
get_intrinsic_void_sdnode()1187 Record *get_intrinsic_void_sdnode() const {
1188 return intrinsic_void_sdnode;
1189 }
get_intrinsic_w_chain_sdnode()1190 Record *get_intrinsic_w_chain_sdnode() const {
1191 return intrinsic_w_chain_sdnode;
1192 }
get_intrinsic_wo_chain_sdnode()1193 Record *get_intrinsic_wo_chain_sdnode() const {
1194 return intrinsic_wo_chain_sdnode;
1195 }
1196
hasTargetIntrinsics()1197 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); }
1198
1199 private:
1200 void ParseNodeInfo();
1201 void ParseNodeTransforms();
1202 void ParseComplexPatterns();
1203 void ParsePatternFragments(bool OutFrags = false);
1204 void ParseDefaultOperands();
1205 void ParseInstructions();
1206 void ParsePatterns();
1207 void ExpandHwModeBasedTypes();
1208 void InferInstructionFlags();
1209 void GenerateVariants();
1210 void VerifyInstructionFlags();
1211
1212 std::vector<Predicate> makePredList(ListInit *L);
1213
1214 void ParseOnePattern(Record *TheDef,
1215 TreePattern &Pattern, TreePattern &Result,
1216 const std::vector<Record *> &InstImpResults);
1217 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
1218 void FindPatternInputsAndOutputs(
1219 TreePattern &I, TreePatternNodePtr Pat,
1220 std::map<std::string, TreePatternNodePtr> &InstInputs,
1221 std::map<std::string, TreePatternNodePtr> &InstResults,
1222 std::vector<Record *> &InstImpResults);
1223 };
1224
1225
ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)1226 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
1227 TreePattern &TP) const {
1228 bool MadeChange = false;
1229 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
1230 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
1231 return MadeChange;
1232 }
1233
1234 } // end namespace llvm
1235
1236 #endif
1237