1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <dirent.h>
18 #include <poll.h>
19 #include <sys/prctl.h>
20 #include <sys/ptrace.h>
21 #include <sys/types.h>
22 #include <sys/wait.h>
23 #include <unistd.h>
24
25 #include <csignal>
26 #include <cstdlib>
27 #include <cstring>
28 #include <iostream>
29 #include <thread>
30 #include <memory>
31 #include <set>
32 #include <string>
33
34 #include <android-base/file.h>
35 #include <android-base/logging.h>
36 #include <android-base/macros.h>
37 #include <android-base/stringprintf.h>
38 #include <android-base/strings.h>
39 #include <android-base/unique_fd.h>
40 #include <backtrace/Backtrace.h>
41 #include <backtrace/BacktraceMap.h>
42
43 namespace art {
44 namespace {
45
46 using android::base::StringPrintf;
47 using android::base::unique_fd;
48
49 constexpr bool kUseAddr2line = true;
50
51 namespace timeout_signal {
52
53 class SignalSet {
54 public:
SignalSet()55 SignalSet() {
56 if (sigemptyset(&set_) == -1) {
57 PLOG(FATAL) << "sigemptyset failed";
58 }
59 }
60
Add(int signal)61 void Add(int signal) {
62 if (sigaddset(&set_, signal) == -1) {
63 PLOG(FATAL) << "sigaddset " << signal << " failed";
64 }
65 }
66
Block()67 void Block() {
68 if (pthread_sigmask(SIG_BLOCK, &set_, nullptr) != 0) {
69 PLOG(FATAL) << "pthread_sigmask failed";
70 }
71 }
72
Wait()73 int Wait() {
74 // Sleep in sigwait() until a signal arrives. gdb causes EINTR failures.
75 int signal_number;
76 int rc = TEMP_FAILURE_RETRY(sigwait(&set_, &signal_number));
77 if (rc != 0) {
78 PLOG(FATAL) << "sigwait failed";
79 }
80 return signal_number;
81 }
82
83 private:
84 sigset_t set_;
85 };
86
GetTimeoutSignal()87 int GetTimeoutSignal() {
88 return SIGRTMIN + 2;
89 }
90
91 } // namespace timeout_signal
92
93 namespace addr2line {
94
95 constexpr const char* kAddr2linePath =
96 "/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.17-4.8/bin/x86_64-linux-addr2line";
97
FindAddr2line()98 std::unique_ptr<std::string> FindAddr2line() {
99 const char* env_value = getenv("ANDROID_BUILD_TOP");
100 if (env_value != nullptr) {
101 std::string path = std::string(env_value) + kAddr2linePath;
102 if (access(path.c_str(), X_OK) == 0) {
103 return std::make_unique<std::string>(path);
104 }
105 }
106
107 {
108 std::string path = std::string(".") + kAddr2linePath;
109 if (access(path.c_str(), X_OK) == 0) {
110 return std::make_unique<std::string>(path);
111 }
112 }
113
114 {
115 using android::base::Dirname;
116
117 std::string exec_dir = android::base::GetExecutableDirectory();
118 std::string derived_top = Dirname(Dirname(Dirname(Dirname(exec_dir))));
119 std::string path = derived_top + kAddr2linePath;
120 if (access(path.c_str(), X_OK) == 0) {
121 return std::make_unique<std::string>(path);
122 }
123 }
124
125 constexpr const char* kHostAddr2line = "/usr/bin/addr2line";
126 if (access(kHostAddr2line, F_OK) == 0) {
127 return std::make_unique<std::string>(kHostAddr2line);
128 }
129
130 return nullptr;
131 }
132
133 // The state of an open pipe to addr2line. In "server" mode, addr2line takes input on stdin
134 // and prints the result to stdout. This struct keeps the state of the open connection.
135 struct Addr2linePipe {
Addr2linePipeart::__anonbb930b670111::addr2line::Addr2linePipe136 Addr2linePipe(int in_fd, int out_fd, const std::string& file_name, pid_t pid)
137 : in(in_fd), out(out_fd), file(file_name), child_pid(pid), odd(true) {}
138
~Addr2linePipeart::__anonbb930b670111::addr2line::Addr2linePipe139 ~Addr2linePipe() {
140 kill(child_pid, SIGKILL);
141 }
142
143 unique_fd in; // The file descriptor that is connected to the output of addr2line.
144 unique_fd out; // The file descriptor that is connected to the input of addr2line.
145
146 const std::string file; // The file addr2line is working on, so that we know when to close
147 // and restart.
148 const pid_t child_pid; // The pid of the child, which we should kill when we're done.
149 bool odd; // Print state for indentation of lines.
150 };
151
Connect(const std::string & name,const char * args[])152 std::unique_ptr<Addr2linePipe> Connect(const std::string& name, const char* args[]) {
153 int caller_to_addr2line[2];
154 int addr2line_to_caller[2];
155
156 if (pipe(caller_to_addr2line) == -1) {
157 return nullptr;
158 }
159 if (pipe(addr2line_to_caller) == -1) {
160 close(caller_to_addr2line[0]);
161 close(caller_to_addr2line[1]);
162 return nullptr;
163 }
164
165 pid_t pid = fork();
166 if (pid == -1) {
167 close(caller_to_addr2line[0]);
168 close(caller_to_addr2line[1]);
169 close(addr2line_to_caller[0]);
170 close(addr2line_to_caller[1]);
171 return nullptr;
172 }
173
174 if (pid == 0) {
175 dup2(caller_to_addr2line[0], STDIN_FILENO);
176 dup2(addr2line_to_caller[1], STDOUT_FILENO);
177
178 close(caller_to_addr2line[0]);
179 close(caller_to_addr2line[1]);
180 close(addr2line_to_caller[0]);
181 close(addr2line_to_caller[1]);
182
183 execv(args[0], const_cast<char* const*>(args));
184 exit(1);
185 } else {
186 close(caller_to_addr2line[0]);
187 close(addr2line_to_caller[1]);
188 return std::make_unique<Addr2linePipe>(addr2line_to_caller[0],
189 caller_to_addr2line[1],
190 name,
191 pid);
192 }
193 }
194
WritePrefix(std::ostream & os,const char * prefix,bool odd)195 void WritePrefix(std::ostream& os, const char* prefix, bool odd) {
196 if (prefix != nullptr) {
197 os << prefix;
198 }
199 os << " ";
200 if (!odd) {
201 os << " ";
202 }
203 }
204
Drain(size_t expected,const char * prefix,std::unique_ptr<Addr2linePipe> * pipe,std::ostream & os)205 void Drain(size_t expected,
206 const char* prefix,
207 std::unique_ptr<Addr2linePipe>* pipe /* inout */,
208 std::ostream& os) {
209 DCHECK(pipe != nullptr);
210 DCHECK(pipe->get() != nullptr);
211 int in = pipe->get()->in.get();
212 DCHECK_GE(in, 0);
213
214 bool prefix_written = false;
215
216 for (;;) {
217 constexpr uint32_t kWaitTimeExpectedMilli = 500;
218 constexpr uint32_t kWaitTimeUnexpectedMilli = 50;
219
220 int timeout = expected > 0 ? kWaitTimeExpectedMilli : kWaitTimeUnexpectedMilli;
221 struct pollfd read_fd{in, POLLIN, 0};
222 int retval = TEMP_FAILURE_RETRY(poll(&read_fd, 1, timeout));
223 if (retval == -1) {
224 // An error occurred.
225 pipe->reset();
226 return;
227 }
228
229 if (retval == 0) {
230 // Timeout.
231 return;
232 }
233
234 if (!(read_fd.revents & POLLIN)) {
235 // addr2line call exited.
236 pipe->reset();
237 return;
238 }
239
240 constexpr size_t kMaxBuffer = 128; // Relatively small buffer. Should be OK as we're on an
241 // alt stack, but just to be sure...
242 char buffer[kMaxBuffer];
243 memset(buffer, 0, kMaxBuffer);
244 int bytes_read = TEMP_FAILURE_RETRY(read(in, buffer, kMaxBuffer - 1));
245 if (bytes_read <= 0) {
246 // This should not really happen...
247 pipe->reset();
248 return;
249 }
250 buffer[bytes_read] = '\0';
251
252 char* tmp = buffer;
253 while (*tmp != 0) {
254 if (!prefix_written) {
255 WritePrefix(os, prefix, (*pipe)->odd);
256 prefix_written = true;
257 }
258 char* new_line = strchr(tmp, '\n');
259 if (new_line == nullptr) {
260 os << tmp;
261
262 break;
263 } else {
264 os << std::string(tmp, new_line - tmp + 1);
265
266 tmp = new_line + 1;
267 prefix_written = false;
268 (*pipe)->odd = !(*pipe)->odd;
269
270 if (expected > 0) {
271 expected--;
272 }
273 }
274 }
275 }
276 }
277
Addr2line(const std::string & addr2line,const std::string & map_src,uintptr_t offset,std::ostream & os,const char * prefix,std::unique_ptr<Addr2linePipe> * pipe)278 void Addr2line(const std::string& addr2line,
279 const std::string& map_src,
280 uintptr_t offset,
281 std::ostream& os,
282 const char* prefix,
283 std::unique_ptr<Addr2linePipe>* pipe /* inout */) {
284 DCHECK(pipe != nullptr);
285
286 if (map_src == "[vdso]" || android::base::EndsWith(map_src, ".vdex")) {
287 // addr2line will not work on the vdso.
288 // vdex files are special frames injected for the interpreter
289 // so they don't have any line number information available.
290 return;
291 }
292
293 if (*pipe == nullptr || (*pipe)->file != map_src) {
294 if (*pipe != nullptr) {
295 Drain(0, prefix, pipe, os);
296 }
297 pipe->reset(); // Close early.
298
299 const char* args[] = {
300 addr2line.c_str(),
301 "--functions",
302 "--inlines",
303 "--demangle",
304 "-e",
305 map_src.c_str(),
306 nullptr
307 };
308 *pipe = Connect(map_src, args);
309 }
310
311 Addr2linePipe* pipe_ptr = pipe->get();
312 if (pipe_ptr == nullptr) {
313 // Failed...
314 return;
315 }
316
317 // Send the offset.
318 const std::string hex_offset = StringPrintf("%zx\n", offset);
319
320 if (!android::base::WriteFully(pipe_ptr->out.get(), hex_offset.data(), hex_offset.length())) {
321 // Error. :-(
322 pipe->reset();
323 return;
324 }
325
326 // Now drain (expecting two lines).
327 Drain(2U, prefix, pipe, os);
328 }
329
330 } // namespace addr2line
331
332 namespace ptrace {
333
PtraceSiblings(pid_t pid)334 std::set<pid_t> PtraceSiblings(pid_t pid) {
335 std::set<pid_t> ret;
336 std::string task_path = android::base::StringPrintf("/proc/%d/task", pid);
337
338 std::unique_ptr<DIR, int (*)(DIR*)> d(opendir(task_path.c_str()), closedir);
339
340 // Bail early if the task directory cannot be opened.
341 if (d == nullptr) {
342 PLOG(ERROR) << "Failed to scan task folder";
343 return ret;
344 }
345
346 struct dirent* de;
347 while ((de = readdir(d.get())) != nullptr) {
348 // Ignore "." and "..".
349 if (!strcmp(de->d_name, ".") || !strcmp(de->d_name, "..")) {
350 continue;
351 }
352
353 char* end;
354 pid_t tid = strtoul(de->d_name, &end, 10);
355 if (*end) {
356 continue;
357 }
358
359 if (tid == pid) {
360 continue;
361 }
362
363 if (::ptrace(PTRACE_ATTACH, tid, 0, 0) != 0) {
364 PLOG(ERROR) << "Failed to attach to tid " << tid;
365 continue;
366 }
367
368 ret.insert(tid);
369 }
370 return ret;
371 }
372
DumpABI(pid_t forked_pid)373 void DumpABI(pid_t forked_pid) {
374 enum class ABI { kArm, kArm64, kMips, kMips64, kX86, kX86_64 };
375 #if defined(__arm__)
376 constexpr ABI kDumperABI = ABI::kArm;
377 #elif defined(__aarch64__)
378 constexpr ABI kDumperABI = ABI::kArm64;
379 #elif defined(__mips__) && !defined(__LP64__)
380 constexpr ABI kDumperABI = ABI::kMips;
381 #elif defined(__mips__) && defined(__LP64__)
382 constexpr ABI kDumperABI = ABI::kMips64;
383 #elif defined(__i386__)
384 constexpr ABI kDumperABI = ABI::kX86;
385 #elif defined(__x86_64__)
386 constexpr ABI kDumperABI = ABI::kX86_64;
387 #else
388 #error Unsupported architecture
389 #endif
390
391 char data[1024]; // Should be more than enough.
392 struct iovec io_vec;
393 io_vec.iov_base = &data;
394 io_vec.iov_len = 1024;
395 ABI to_print;
396 if (0 != ::ptrace(PTRACE_GETREGSET, forked_pid, /* NT_PRSTATUS */ 1, &io_vec)) {
397 LOG(ERROR) << "Could not get registers to determine abi.";
398 // Use 64-bit as default.
399 switch (kDumperABI) {
400 case ABI::kArm:
401 case ABI::kArm64:
402 to_print = ABI::kArm64;
403 break;
404 case ABI::kMips:
405 case ABI::kMips64:
406 to_print = ABI::kMips64;
407 break;
408 case ABI::kX86:
409 case ABI::kX86_64:
410 to_print = ABI::kX86_64;
411 break;
412 default:
413 __builtin_unreachable();
414 }
415 } else {
416 // Check the length of the data. Assume that it's the same arch as the tool.
417 switch (kDumperABI) {
418 case ABI::kArm:
419 case ABI::kArm64:
420 to_print = io_vec.iov_len == 18 * sizeof(uint32_t) ? ABI::kArm : ABI::kArm64;
421 break;
422 case ABI::kMips:
423 case ABI::kMips64:
424 to_print = ABI::kMips64; // TODO Figure out how this should work.
425 break;
426 case ABI::kX86:
427 case ABI::kX86_64:
428 to_print = io_vec.iov_len == 17 * sizeof(uint32_t) ? ABI::kX86 : ABI::kX86_64;
429 break;
430 default:
431 __builtin_unreachable();
432 }
433 }
434 std::string abi_str;
435 switch (to_print) {
436 case ABI::kArm:
437 abi_str = "arm";
438 break;
439 case ABI::kArm64:
440 abi_str = "arm64";
441 break;
442 case ABI::kMips:
443 abi_str = "mips";
444 break;
445 case ABI::kMips64:
446 abi_str = "mips64";
447 break;
448 case ABI::kX86:
449 abi_str = "x86";
450 break;
451 case ABI::kX86_64:
452 abi_str = "x86_64";
453 break;
454 }
455 std::cerr << "ABI: '" << abi_str << "'" << std::endl;
456 }
457
458 } // namespace ptrace
459
460 template <typename T>
WaitLoop(uint32_t max_wait_micros,const T & handler)461 bool WaitLoop(uint32_t max_wait_micros, const T& handler) {
462 constexpr uint32_t kWaitMicros = 10;
463 const size_t kMaxLoopCount = max_wait_micros / kWaitMicros;
464
465 for (size_t loop_count = 1; loop_count <= kMaxLoopCount; ++loop_count) {
466 bool ret;
467 if (handler(&ret)) {
468 return ret;
469 }
470 usleep(kWaitMicros);
471 }
472 return false;
473 }
474
WaitForMainSigStop(const std::atomic<bool> & saw_wif_stopped_for_main)475 bool WaitForMainSigStop(const std::atomic<bool>& saw_wif_stopped_for_main) {
476 auto handler = [&](bool* res) {
477 if (saw_wif_stopped_for_main) {
478 *res = true;
479 return true;
480 }
481 return false;
482 };
483 constexpr uint32_t kMaxWaitMicros = 30 * 1000 * 1000; // 30s wait.
484 return WaitLoop(kMaxWaitMicros, handler);
485 }
486
WaitForSigStopped(pid_t pid,uint32_t max_wait_micros)487 bool WaitForSigStopped(pid_t pid, uint32_t max_wait_micros) {
488 auto handler = [&](bool* res) {
489 int status;
490 pid_t rc = TEMP_FAILURE_RETRY(waitpid(pid, &status, WNOHANG));
491 if (rc == -1) {
492 PLOG(ERROR) << "Failed to waitpid for " << pid;
493 *res = false;
494 return true;
495 }
496 if (rc == pid) {
497 if (!(WIFSTOPPED(status))) {
498 LOG(ERROR) << "Did not get expected stopped signal for " << pid;
499 *res = false;
500 } else {
501 *res = true;
502 }
503 return true;
504 }
505 return false;
506 };
507 return WaitLoop(max_wait_micros, handler);
508 }
509
510 #ifdef __LP64__
511 constexpr bool kIs64Bit = true;
512 #else
513 constexpr bool kIs64Bit = false;
514 #endif
515
DumpThread(pid_t pid,pid_t tid,const std::string * addr2line_path,const char * prefix,BacktraceMap * map)516 void DumpThread(pid_t pid,
517 pid_t tid,
518 const std::string* addr2line_path,
519 const char* prefix,
520 BacktraceMap* map) {
521 // Use std::cerr to avoid the LOG prefix.
522 std::cerr << std::endl << "=== pid: " << pid << " tid: " << tid << " ===" << std::endl;
523
524 constexpr uint32_t kMaxWaitMicros = 1000 * 1000; // 1s.
525 if (pid != tid && !WaitForSigStopped(tid, kMaxWaitMicros)) {
526 LOG(ERROR) << "Failed to wait for sigstop on " << tid;
527 }
528
529 std::unique_ptr<Backtrace> backtrace(Backtrace::Create(pid, tid, map));
530 if (backtrace == nullptr) {
531 LOG(ERROR) << prefix << "(failed to create Backtrace for thread " << tid << ")";
532 return;
533 }
534 backtrace->SetSkipFrames(false);
535 if (!backtrace->Unwind(0, nullptr)) {
536 LOG(ERROR) << prefix << "(backtrace::Unwind failed for thread " << tid
537 << ": " << backtrace->GetErrorString(backtrace->GetError()) << ")";
538 return;
539 }
540 if (backtrace->NumFrames() == 0) {
541 LOG(ERROR) << prefix << "(no native stack frames for thread " << tid << ")";
542 return;
543 }
544
545 std::unique_ptr<addr2line::Addr2linePipe> addr2line_state;
546
547 for (Backtrace::const_iterator it = backtrace->begin();
548 it != backtrace->end(); ++it) {
549 std::ostringstream oss;
550 oss << prefix << StringPrintf("#%02zu pc ", it->num);
551 bool try_addr2line = false;
552 if (!BacktraceMap::IsValid(it->map)) {
553 oss << StringPrintf(kIs64Bit ? "%016" PRIx64 " ???" : "%08" PRIx64 " ???", it->pc);
554 } else {
555 oss << StringPrintf(kIs64Bit ? "%016" PRIx64 " " : "%08" PRIx64 " ", it->rel_pc);
556 if (it->map.name.empty()) {
557 oss << StringPrintf("<anonymous:%" PRIx64 ">", it->map.start);
558 } else {
559 oss << it->map.name;
560 }
561 if (it->map.offset != 0) {
562 oss << StringPrintf(" (offset %" PRIx64 ")", it->map.offset);
563 }
564 oss << " (";
565 if (!it->func_name.empty()) {
566 oss << it->func_name;
567 if (it->func_offset != 0) {
568 oss << "+" << it->func_offset;
569 }
570 // Functions found using the gdb jit interface will be in an empty
571 // map that cannot be found using addr2line.
572 if (!it->map.name.empty()) {
573 try_addr2line = true;
574 }
575 } else {
576 oss << "???";
577 }
578 oss << ")";
579 }
580 std::cerr << oss.str() << std::endl;
581 if (try_addr2line && addr2line_path != nullptr) {
582 addr2line::Addr2line(*addr2line_path,
583 it->map.name,
584 it->rel_pc,
585 std::cerr,
586 prefix,
587 &addr2line_state);
588 }
589 }
590
591 if (addr2line_state != nullptr) {
592 addr2line::Drain(0, prefix, &addr2line_state, std::cerr);
593 }
594 }
595
DumpProcess(pid_t forked_pid,const std::atomic<bool> & saw_wif_stopped_for_main)596 void DumpProcess(pid_t forked_pid, const std::atomic<bool>& saw_wif_stopped_for_main) {
597 LOG(ERROR) << "Timeout for process " << forked_pid;
598
599 CHECK_EQ(0, ::ptrace(PTRACE_ATTACH, forked_pid, 0, 0));
600 std::set<pid_t> tids = ptrace::PtraceSiblings(forked_pid);
601 tids.insert(forked_pid);
602
603 ptrace::DumpABI(forked_pid);
604
605 // Check whether we have and should use addr2line.
606 std::unique_ptr<std::string> addr2line_path;
607 if (kUseAddr2line) {
608 addr2line_path = addr2line::FindAddr2line();
609 if (addr2line_path == nullptr) {
610 LOG(ERROR) << "Did not find usable addr2line";
611 }
612 }
613
614 if (!WaitForMainSigStop(saw_wif_stopped_for_main)) {
615 LOG(ERROR) << "Did not receive SIGSTOP for pid " << forked_pid;
616 }
617
618 std::unique_ptr<BacktraceMap> backtrace_map(BacktraceMap::Create(forked_pid));
619 if (backtrace_map == nullptr) {
620 LOG(ERROR) << "Could not create BacktraceMap";
621 return;
622 }
623
624 for (pid_t tid : tids) {
625 DumpThread(forked_pid, tid, addr2line_path.get(), " ", backtrace_map.get());
626 }
627 }
628
629 [[noreturn]]
WaitMainLoop(pid_t forked_pid,std::atomic<bool> * saw_wif_stopped_for_main)630 void WaitMainLoop(pid_t forked_pid, std::atomic<bool>* saw_wif_stopped_for_main) {
631 for (;;) {
632 // Consider switching to waitid to not get woken up for WIFSTOPPED.
633 int status;
634 pid_t res = TEMP_FAILURE_RETRY(waitpid(forked_pid, &status, 0));
635 if (res == -1) {
636 PLOG(FATAL) << "Failure during waitpid";
637 __builtin_unreachable();
638 }
639
640 if (WIFEXITED(status)) {
641 _exit(WEXITSTATUS(status));
642 __builtin_unreachable();
643 }
644 if (WIFSIGNALED(status)) {
645 _exit(1);
646 __builtin_unreachable();
647 }
648 if (WIFSTOPPED(status)) {
649 *saw_wif_stopped_for_main = true;
650 continue;
651 }
652 if (WIFCONTINUED(status)) {
653 continue;
654 }
655
656 LOG(FATAL) << "Unknown status " << std::hex << status;
657 }
658 }
659
660 [[noreturn]]
SetupAndWait(pid_t forked_pid)661 void SetupAndWait(pid_t forked_pid) {
662 timeout_signal::SignalSet signals;
663 signals.Add(timeout_signal::GetTimeoutSignal());
664 signals.Block();
665
666 std::atomic<bool> saw_wif_stopped_for_main(false);
667
668 std::thread signal_catcher([&]() {
669 signals.Block();
670 int sig = signals.Wait();
671 CHECK_EQ(sig, timeout_signal::GetTimeoutSignal());
672
673 DumpProcess(forked_pid, saw_wif_stopped_for_main);
674
675 // Don't clean up. Just kill the child and exit.
676 kill(forked_pid, SIGKILL);
677 _exit(1);
678 });
679
680 WaitMainLoop(forked_pid, &saw_wif_stopped_for_main);
681 }
682
683 } // namespace
684 } // namespace art
685
main(int argc ATTRIBUTE_UNUSED,char ** argv)686 int main(int argc ATTRIBUTE_UNUSED, char** argv) {
687 pid_t orig_ppid = getpid();
688
689 pid_t pid = fork();
690 if (pid == 0) {
691 if (prctl(PR_SET_PDEATHSIG, SIGTERM) == -1) {
692 _exit(1);
693 }
694
695 if (getppid() != orig_ppid) {
696 _exit(2);
697 }
698
699 execvp(argv[1], &argv[1]);
700
701 _exit(3);
702 __builtin_unreachable();
703 }
704
705 art::SetupAndWait(pid);
706 __builtin_unreachable();
707 }
708