1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 #ifndef TENSORFLOW_CORE_FRAMEWORK_ALLOCATOR_H_
17 #define TENSORFLOW_CORE_FRAMEWORK_ALLOCATOR_H_
18
19 #include <stdlib.h>
20
21 #include <limits>
22
23 #include "absl/strings/string_view.h"
24 #include "absl/types/optional.h"
25 #include "tensorflow/core/framework/numeric_types.h"
26 #include "tensorflow/core/framework/resource_handle.h"
27 #include "tensorflow/core/framework/type_traits.h"
28 #include "tensorflow/core/platform/logging.h"
29 #include "tensorflow/core/platform/mutex.h"
30 #include "tensorflow/core/platform/numa.h"
31 #include "tensorflow/core/platform/types.h"
32
33 namespace tensorflow {
34
35 class Variant;
36
37 // Attributes for a single allocation call. Different calls to the same
38 // allocator could potentially have different allocation attributes.
39 struct AllocationAttributes {
40 // If the first attempt to allocate the memory fails, the allocation
41 // should return immediately without retrying.
42 // An example use case is optional scratch spaces where a failure
43 // has only performance impact.
44 bool no_retry_on_failure = false;
45 // If a Tensor is allocated without the following set to true, then
46 // it is logged as an unknown allocation. During execution Tensors
47 // should be allocated through the OpKernelContext which records
48 // which Op is performing the allocation, and sets this flag to
49 // true.
50 bool allocation_will_be_logged = false;
51 // EXPERIMENTAL: If provided, then evaluates to a timing count such that only
52 // a memory chunk whose last-freed count is at this value or earlier may be
53 // returned.
54 std::function<uint64()> freed_by_func = nullptr;
55 };
56
57 // Runtime statistics collected by an allocator. Exactly the same as
58 // stream_executor::AllocatorStats, but independently defined to preserve the
59 // mutual independence of StreamExecutor and TensorFlow.
60 struct AllocatorStats {
61 int64 num_allocs; // Number of allocations.
62 int64 bytes_in_use; // Number of bytes in use.
63 int64 peak_bytes_in_use; // The peak bytes in use.
64 int64 largest_alloc_size; // The largest single allocation seen.
65
66 // The upper limit of bytes of user allocatable device memory, if such a limit
67 // is known.
68 absl::optional<int64> bytes_limit;
69
AllocatorStatsAllocatorStats70 AllocatorStats()
71 : num_allocs(0),
72 bytes_in_use(0),
73 peak_bytes_in_use(0),
74 largest_alloc_size(0) {}
75
76 string DebugString() const;
77 };
78
79 // Allocator is an abstract interface for allocating and deallocating
80 // device memory.
81 class Allocator {
82 public:
83 // Align to 64 byte boundary.
84 static constexpr size_t kAllocatorAlignment = 64;
85
86 virtual ~Allocator();
87
88 // Return a string identifying this allocator
89 virtual string Name() = 0;
90
91 // Return an uninitialized block of memory that is "num_bytes" bytes
92 // in size. The returned pointer is guaranteed to be aligned to a
93 // multiple of "alignment" bytes.
94 // REQUIRES: "alignment" is a power of 2.
95 virtual void* AllocateRaw(size_t alignment, size_t num_bytes) = 0;
96
97 // Return an uninitialized block of memory that is "num_bytes" bytes
98 // in size with specified allocation attributes. The returned pointer is
99 // guaranteed to be aligned to a multiple of "alignment" bytes.
100 // REQUIRES: "alignment" is a power of 2.
AllocateRaw(size_t alignment,size_t num_bytes,const AllocationAttributes & allocation_attr)101 virtual void* AllocateRaw(size_t alignment, size_t num_bytes,
102 const AllocationAttributes& allocation_attr) {
103 // The default behavior is to use the implementation without any allocation
104 // attributes.
105 return AllocateRaw(alignment, num_bytes);
106 }
107
108 // Deallocate a block of memory pointer to by "ptr"
109 // REQUIRES: "ptr" was previously returned by a call to AllocateRaw
110 virtual void DeallocateRaw(void* ptr) = 0;
111
112 // Convenience functions to do typed allocation. C++ constructors
113 // and destructors are invoked for complex types if necessary,
114 // depending on the concrete Allocator implementation. May return
115 // NULL if the tensor has too many elements to represent in a single
116 // allocation.
117 template <typename T>
Allocate(size_t num_elements)118 T* Allocate(size_t num_elements) {
119 return Allocate<T>(num_elements, AllocationAttributes());
120 }
121
122 template <typename T>
Allocate(size_t num_elements,const AllocationAttributes & allocation_attr)123 T* Allocate(size_t num_elements,
124 const AllocationAttributes& allocation_attr) {
125 // TODO(jeff): Do we need to allow clients to pass in alignment
126 // requirements?
127
128 if (num_elements > (std::numeric_limits<size_t>::max() / sizeof(T))) {
129 return NULL;
130 }
131
132 void* p = AllocateRaw(kAllocatorAlignment, sizeof(T) * num_elements,
133 allocation_attr);
134 T* typed_p = reinterpret_cast<T*>(p);
135 if (typed_p) RunCtor<T>(typed_p, num_elements);
136 return typed_p;
137 }
138
139 template <typename T>
Deallocate(T * ptr,size_t num_elements)140 void Deallocate(T* ptr, size_t num_elements) {
141 if (ptr) {
142 RunDtor<T>(ptr, num_elements);
143 DeallocateRaw(ptr);
144 }
145 }
146
147 // Returns true if this allocator tracks the sizes of allocations.
148 // RequestedSize and AllocatedSize must be overridden if
149 // TracksAllocationSizes is overridden to return true.
TracksAllocationSizes()150 virtual bool TracksAllocationSizes() { return false; }
151
152 // Returns true if this allocator requires tensors with 0 elements
153 // to allocate buffers. This is false for most allocators, but may
154 // be used by special-case allocators that want to track tensor
155 // usage.
ShouldAllocateEmptyTensors()156 virtual bool ShouldAllocateEmptyTensors() { return false; }
157
158 // Returns the user-requested size of the data allocated at
159 // 'ptr'. Note that the actual buffer allocated might be larger
160 // than requested, but this function returns the size requested by
161 // the user.
162 //
163 // REQUIRES: TracksAllocationSizes() is true.
164 //
165 // REQUIRES: 'ptr!=nullptr' and points to a buffer previously
166 // allocated by this allocator.
RequestedSize(const void * ptr)167 virtual size_t RequestedSize(const void* ptr) {
168 CHECK(false) << "allocator doesn't track sizes";
169 return size_t(0);
170 }
171
172 // Returns the allocated size of the buffer at 'ptr' if known,
173 // otherwise returns RequestedSize(ptr). AllocatedSize(ptr) is
174 // guaranteed to be >= RequestedSize(ptr).
175 //
176 // REQUIRES: TracksAllocationSizes() is true.
177 //
178 // REQUIRES: 'ptr!=nullptr' and points to a buffer previously
179 // allocated by this allocator.
AllocatedSize(const void * ptr)180 virtual size_t AllocatedSize(const void* ptr) { return RequestedSize(ptr); }
181
182 // Returns either 0 or an identifier assigned to the buffer at 'ptr'
183 // when the buffer was returned by AllocateRaw. If non-zero, the
184 // identifier differs from every other ID assigned by this
185 // allocator.
186 //
187 // REQUIRES: TracksAllocationSizes() is true.
188 //
189 // REQUIRES: 'ptr!=nullptr' and points to a buffer previously
190 // allocated by this allocator.
AllocationId(const void * ptr)191 virtual int64 AllocationId(const void* ptr) { return 0; }
192
193 // Returns the allocated size of the buffer at 'ptr' if known,
194 // otherwise returns 0. This method can be called when
195 // TracksAllocationSizes() is false, but can be extremely slow.
196 //
197 // REQUIRES: 'ptr!=nullptr' and points to a buffer previously
198 // allocated by this allocator.
AllocatedSizeSlow(const void * ptr)199 virtual size_t AllocatedSizeSlow(const void* ptr) {
200 if (TracksAllocationSizes()) {
201 return AllocatedSize(ptr);
202 }
203 return 0;
204 }
205
206 // Fills in 'stats' with statistics collected by this allocator.
GetStats()207 virtual absl::optional<AllocatorStats> GetStats() { return absl::nullopt; }
208
209 // Clears the internal stats except for the `in_use` field.
ClearStats()210 virtual void ClearStats() {}
211
212 private:
213 // No constructors or destructors are run for simple types
214 template <typename T>
RunCtor(T * p,size_t n)215 void RunCtor(T* p, size_t n) {
216 static_assert(is_simple_type<T>::value, "T is not a simple type.");
217 }
218
219 template <typename T>
RunDtor(T * p,size_t n)220 void RunDtor(T* p, size_t n) {}
221
222 // custom constructors and destructors that can be overridden for
223 // non-standard allocators
224
225 // Runs string's default constructor for p[0], p[1], ..., p[n-1].
RunStringCtor(string * p,size_t n)226 virtual void RunStringCtor(string* p, size_t n) {
227 for (size_t i = 0; i < n; ++p, ++i) new (p) string();
228 }
229
230 // Runs string's default destructor for p[0], p[1], ..., p[n-1].
RunStringDtor(string * p,size_t n)231 virtual void RunStringDtor(string* p, size_t n) {
232 for (size_t i = 0; i < n; ++p, ++i) p->~string();
233 }
234
RunResourceCtor(ResourceHandle * p,size_t n)235 virtual void RunResourceCtor(ResourceHandle* p, size_t n) {
236 for (size_t i = 0; i < n; ++p, ++i) new (p) ResourceHandle();
237 }
238
239 // Runs string's default destructor for p[0], p[1], ..., p[n-1].
RunResourceDtor(ResourceHandle * p,size_t n)240 virtual void RunResourceDtor(ResourceHandle* p, size_t n) {
241 for (size_t i = 0; i < n; ++p, ++i) p->~ResourceHandle();
242 }
243
244 virtual void RunVariantCtor(Variant* p, size_t n);
245
246 virtual void RunVariantDtor(Variant* p, size_t n);
247
248 // TODO(jeff): Maybe provide some interface to give info about
249 // current allocation state (total number of bytes available for
250 // allocation, number of bytes free on device, etc.)
251 };
252
253 // Allocator-specific constructors and destructors are used for
254 // strings
255 template <>
RunCtor(string * p,size_t n)256 inline void Allocator::RunCtor(string* p, size_t n) {
257 RunStringCtor(p, n);
258 }
259
260 template <>
RunDtor(string * p,size_t n)261 inline void Allocator::RunDtor(string* p, size_t n) {
262 RunStringDtor(p, n);
263 }
264
265 template <>
RunCtor(ResourceHandle * p,size_t n)266 inline void Allocator::RunCtor(ResourceHandle* p, size_t n) {
267 RunResourceCtor(p, n);
268 }
269
270 template <>
RunDtor(ResourceHandle * p,size_t n)271 inline void Allocator::RunDtor(ResourceHandle* p, size_t n) {
272 RunResourceDtor(p, n);
273 }
274
275 template <>
RunCtor(Variant * p,size_t n)276 inline void Allocator::RunCtor(Variant* p, size_t n) {
277 RunVariantCtor(p, n);
278 }
279
280 template <>
RunDtor(Variant * p,size_t n)281 inline void Allocator::RunDtor(Variant* p, size_t n) {
282 RunVariantDtor(p, n);
283 }
284
285 // An implementation of Allocator that delegates all calls to another Allocator.
286 //
287 // Useful to clients who want to override part of the functionality of another
288 // allocator.
289 class AllocatorWrapper : public Allocator {
290 public:
AllocatorWrapper(Allocator * wrapped)291 explicit AllocatorWrapper(Allocator* wrapped) : wrapped_(wrapped) {}
292
~AllocatorWrapper()293 ~AllocatorWrapper() override {}
294
295 // Returns the wrapped allocator to which all calls are delegated.
wrapped()296 Allocator* wrapped() const { return wrapped_; }
297
Name()298 string Name() override { return wrapped_->Name(); }
299
AllocateRaw(size_t alignment,size_t num_bytes)300 void* AllocateRaw(size_t alignment, size_t num_bytes) override {
301 return wrapped_->AllocateRaw(alignment, num_bytes);
302 }
303
AllocateRaw(size_t alignment,size_t num_bytes,const AllocationAttributes & allocation_attr)304 void* AllocateRaw(size_t alignment, size_t num_bytes,
305 const AllocationAttributes& allocation_attr) override {
306 return wrapped_->AllocateRaw(alignment, num_bytes, allocation_attr);
307 }
308
DeallocateRaw(void * ptr)309 void DeallocateRaw(void* ptr) override { wrapped_->DeallocateRaw(ptr); }
310
TracksAllocationSizes()311 bool TracksAllocationSizes() override {
312 return wrapped_->TracksAllocationSizes();
313 }
314
ShouldAllocateEmptyTensors()315 bool ShouldAllocateEmptyTensors() override {
316 return wrapped_->TracksAllocationSizes();
317 }
318
RequestedSize(const void * ptr)319 size_t RequestedSize(const void* ptr) override {
320 return wrapped_->RequestedSize(ptr);
321 }
322
AllocatedSize(const void * ptr)323 size_t AllocatedSize(const void* ptr) override {
324 return wrapped_->AllocatedSize(ptr);
325 }
326
AllocationId(const void * ptr)327 int64 AllocationId(const void* ptr) override {
328 return wrapped_->AllocationId(ptr);
329 }
330
AllocatedSizeSlow(const void * ptr)331 size_t AllocatedSizeSlow(const void* ptr) override {
332 return wrapped_->AllocatedSizeSlow(ptr);
333 }
334
335 private:
336 Allocator* const wrapped_;
337 };
338
339 // A tensorflow Op may need access to different kinds of memory that
340 // are not simply a function of the device to which the Op has been
341 // assigned. For example, an Op executing on a GPU may still need
342 // to allocate CPU RAM for some purpose. Internal to the tensorflow
343 // runtime we may choose to allocate CPU ram from special regions
344 // that have been prepared for higher performance in some use
345 // contexts, e.g. doing DMA with particular devices. For these
346 // reasons, the Device interface does not expose just one memory
347 // Allocator, but instead provides an accessor that takes a
348 // specification of the desired memory attributes in order to select
349 // an Allocator.
350 //
351 // Example use:
352 // // Allocator for ordinary device memory:
353 // Allocator* a = allocator(AllocatorAttributes());
354 // ...
355 // // Allocator for CPU RAM, regardless of where Op is executing:
356 // AllocatorAttributes attr;
357 // attr.set_on_host(true);
358 // Allocator* a = allocator(attr);
359 struct AllocatorAttributes {
set_on_hostAllocatorAttributes360 void set_on_host(bool v) { value |= (static_cast<int>(v)); }
on_hostAllocatorAttributes361 bool on_host() const { return value & 0x1; }
set_nic_compatibleAllocatorAttributes362 void set_nic_compatible(bool v) { value |= (static_cast<int>(v) << 1); }
nic_compatibleAllocatorAttributes363 bool nic_compatible() const { return value & (0x1 << 1); }
set_gpu_compatibleAllocatorAttributes364 void set_gpu_compatible(bool v) { value |= (static_cast<int>(v) << 2); }
gpu_compatibleAllocatorAttributes365 bool gpu_compatible() const { return value & (0x1 << 2); }
MergeAllocatorAttributes366 void Merge(AllocatorAttributes other) {
367 value |= other.value;
368 scope_id = (scope_id > 0 && other.scope_id == 0)
369 ? scope_id
370 : ((scope_id == 0) ? other.scope_id : 0);
371 }
372 // Returns true if the fields set in *this is a subset of or equal to
373 // those set in other.
IsEqualOrLessRestrictiveThanAllocatorAttributes374 bool IsEqualOrLessRestrictiveThan(const AllocatorAttributes& other) const {
375 return (value | other.value) == other.value;
376 }
377
378 // NOTE: The upper 8 bits of the value are reserved for
379 // device-specific uses. Implementors of a device can interpret these
380 // upper 8 bits in device-specific ways, and ops implemented for those
381 // devices are responsible for setting those 8 bits appropriately.
382 uint32 value = 0;
383 // EXPERIMENTAL: If this is greater than zero, then allocation is delegated to
384 // a named special-purpose allocator on the same device.
385 int32 scope_id = 0;
386 };
387
388 // Returns a trivial implementation of Allocator, which is a process singleton.
389 // Access through this function is only intended for use by restricted parts
390 // of the infrastructure.
391 Allocator* cpu_allocator_base();
392
393 // If available, calls ProcessState::GetCPUAllocator(numa_node).
394 // If not, falls back to cpu_allocator_base().
395 // Intended for use in contexts where ProcessState is not visible at
396 // compile time. Where ProcessState is visible, it's preferable to
397 // call it directly.
398 Allocator* cpu_allocator(int numa_node = port::kNUMANoAffinity);
399
400 // If 'enable' is true, the default CPU allocator implementation will collect
401 // AllocatorStats. By default, it's disabled.
402 void EnableCPUAllocatorStats(bool enable);
403 bool CPUAllocatorStatsEnabled();
404
405 // If 'enable' is true, the default CPU allocator implementation will collect
406 // full statistics. By default, it's disabled.
407 void EnableCPUAllocatorFullStats(bool enable);
408 bool CPUAllocatorFullStatsEnabled();
409
410 // An object that does the underlying suballoc/free of memory for a higher-level
411 // allocator. The expectation is that the higher-level allocator is doing some
412 // kind of cache or pool management so that it will call SubAllocator::Alloc and
413 // Free relatively infrequently, compared to the number of times its own
414 // AllocateRaw and Free methods are called.
415 class SubAllocator {
416 public:
417 // Visitor gets called with a pointer to a memory area and its
418 // size in bytes. The index value will be numa_node for a CPU
419 // allocator and GPU id for a GPU allocator.
420 typedef std::function<void(void*, int index, size_t)> Visitor;
421
422 SubAllocator(const std::vector<Visitor>& alloc_visitors,
423 const std::vector<Visitor>& free_visitors);
424
~SubAllocator()425 virtual ~SubAllocator() {}
426 virtual void* Alloc(size_t alignment, size_t num_bytes) = 0;
427 virtual void Free(void* ptr, size_t num_bytes) = 0;
428
429 protected:
430 // Implementation of Alloc() method must call this on newly allocated
431 // value.
432 void VisitAlloc(void* ptr, int index, size_t num_bytes);
433
434 // Implementation of Free() method must call this on value to be
435 // freed immediately before deallocation.
436 void VisitFree(void* ptr, int index, size_t num_bytes);
437
438 const std::vector<Visitor> alloc_visitors_;
439 const std::vector<Visitor> free_visitors_;
440 };
441
442 } // namespace tensorflow
443
444 #endif // TENSORFLOW_CORE_FRAMEWORK_ALLOCATOR_H_
445