1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "gallivm/lp_bld_const.h"
25 #include "gallivm/lp_bld_gather.h"
26 #include "gallivm/lp_bld_intr.h"
27 #include "gallivm/lp_bld_logic.h"
28 #include "gallivm/lp_bld_arit.h"
29 #include "gallivm/lp_bld_flow.h"
30 #include "gallivm/lp_bld_misc.h"
31 #include "util/u_memory.h"
32 #include "util/u_string.h"
33 #include "tgsi/tgsi_build.h"
34 #include "tgsi/tgsi_util.h"
35 #include "tgsi/tgsi_dump.h"
36
37 #include "ac_binary.h"
38 #include "ac_llvm_util.h"
39 #include "ac_exp_param.h"
40 #include "ac_shader_util.h"
41 #include "si_shader_internal.h"
42 #include "si_pipe.h"
43 #include "sid.h"
44
45 #include "compiler/nir/nir.h"
46
47 static const char *scratch_rsrc_dword0_symbol =
48 "SCRATCH_RSRC_DWORD0";
49
50 static const char *scratch_rsrc_dword1_symbol =
51 "SCRATCH_RSRC_DWORD1";
52
53 struct si_shader_output_values
54 {
55 LLVMValueRef values[4];
56 unsigned semantic_name;
57 unsigned semantic_index;
58 ubyte vertex_stream[4];
59 };
60
61 /**
62 * Used to collect types and other info about arguments of the LLVM function
63 * before the function is created.
64 */
65 struct si_function_info {
66 LLVMTypeRef types[100];
67 LLVMValueRef *assign[100];
68 unsigned num_sgpr_params;
69 unsigned num_params;
70 };
71
72 enum si_arg_regfile {
73 ARG_SGPR,
74 ARG_VGPR
75 };
76
77 static void si_init_shader_ctx(struct si_shader_context *ctx,
78 struct si_screen *sscreen,
79 LLVMTargetMachineRef tm);
80
81 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
82 struct lp_build_tgsi_context *bld_base,
83 struct lp_build_emit_data *emit_data);
84
85 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
86 FILE *f);
87
88 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
89 union si_shader_part_key *key);
90 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
91 union si_shader_part_key *key);
92 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
93 union si_shader_part_key *key);
94 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
95 union si_shader_part_key *key);
96
97 /* Ideally pass the sample mask input to the PS epilog as v14, which
98 * is its usual location, so that the shader doesn't have to add v_mov.
99 */
100 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
101
102 enum {
103 CONST_ADDR_SPACE = 2,
104 LOCAL_ADDR_SPACE = 3,
105 };
106
llvm_type_is_64bit(struct si_shader_context * ctx,LLVMTypeRef type)107 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
108 LLVMTypeRef type)
109 {
110 if (type == ctx->ac.i64 || type == ctx->ac.f64)
111 return true;
112
113 return false;
114 }
115
is_merged_shader(struct si_shader * shader)116 static bool is_merged_shader(struct si_shader *shader)
117 {
118 if (shader->selector->screen->info.chip_class <= VI)
119 return false;
120
121 return shader->key.as_ls ||
122 shader->key.as_es ||
123 shader->selector->type == PIPE_SHADER_TESS_CTRL ||
124 shader->selector->type == PIPE_SHADER_GEOMETRY;
125 }
126
si_init_function_info(struct si_function_info * fninfo)127 static void si_init_function_info(struct si_function_info *fninfo)
128 {
129 fninfo->num_params = 0;
130 fninfo->num_sgpr_params = 0;
131 }
132
add_arg_assign(struct si_function_info * fninfo,enum si_arg_regfile regfile,LLVMTypeRef type,LLVMValueRef * assign)133 static unsigned add_arg_assign(struct si_function_info *fninfo,
134 enum si_arg_regfile regfile, LLVMTypeRef type,
135 LLVMValueRef *assign)
136 {
137 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
138
139 unsigned idx = fninfo->num_params++;
140 assert(idx < ARRAY_SIZE(fninfo->types));
141
142 if (regfile == ARG_SGPR)
143 fninfo->num_sgpr_params = fninfo->num_params;
144
145 fninfo->types[idx] = type;
146 fninfo->assign[idx] = assign;
147 return idx;
148 }
149
add_arg(struct si_function_info * fninfo,enum si_arg_regfile regfile,LLVMTypeRef type)150 static unsigned add_arg(struct si_function_info *fninfo,
151 enum si_arg_regfile regfile, LLVMTypeRef type)
152 {
153 return add_arg_assign(fninfo, regfile, type, NULL);
154 }
155
add_arg_assign_checked(struct si_function_info * fninfo,enum si_arg_regfile regfile,LLVMTypeRef type,LLVMValueRef * assign,unsigned idx)156 static void add_arg_assign_checked(struct si_function_info *fninfo,
157 enum si_arg_regfile regfile, LLVMTypeRef type,
158 LLVMValueRef *assign, unsigned idx)
159 {
160 MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
161 assert(actual == idx);
162 }
163
add_arg_checked(struct si_function_info * fninfo,enum si_arg_regfile regfile,LLVMTypeRef type,unsigned idx)164 static void add_arg_checked(struct si_function_info *fninfo,
165 enum si_arg_regfile regfile, LLVMTypeRef type,
166 unsigned idx)
167 {
168 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
169 }
170
171 /**
172 * Returns a unique index for a per-patch semantic name and index. The index
173 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
174 * can be calculated.
175 */
si_shader_io_get_unique_index_patch(unsigned semantic_name,unsigned index)176 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
177 {
178 switch (semantic_name) {
179 case TGSI_SEMANTIC_TESSOUTER:
180 return 0;
181 case TGSI_SEMANTIC_TESSINNER:
182 return 1;
183 case TGSI_SEMANTIC_PATCH:
184 assert(index < 30);
185 return 2 + index;
186
187 default:
188 assert(!"invalid semantic name");
189 return 0;
190 }
191 }
192
193 /**
194 * Returns a unique index for a semantic name and index. The index must be
195 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
196 * calculated.
197 */
si_shader_io_get_unique_index(unsigned semantic_name,unsigned index)198 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index)
199 {
200 switch (semantic_name) {
201 case TGSI_SEMANTIC_POSITION:
202 return 0;
203 case TGSI_SEMANTIC_GENERIC:
204 /* Since some shader stages use the the highest used IO index
205 * to determine the size to allocate for inputs/outputs
206 * (in LDS, tess and GS rings). GENERIC should be placed right
207 * after POSITION to make that size as small as possible.
208 */
209 if (index < SI_MAX_IO_GENERIC)
210 return 1 + index;
211
212 assert(!"invalid generic index");
213 return 0;
214 case TGSI_SEMANTIC_PSIZE:
215 return SI_MAX_IO_GENERIC + 1;
216 case TGSI_SEMANTIC_CLIPDIST:
217 assert(index <= 1);
218 return SI_MAX_IO_GENERIC + 2 + index;
219 case TGSI_SEMANTIC_FOG:
220 return SI_MAX_IO_GENERIC + 4;
221 case TGSI_SEMANTIC_LAYER:
222 return SI_MAX_IO_GENERIC + 5;
223 case TGSI_SEMANTIC_VIEWPORT_INDEX:
224 return SI_MAX_IO_GENERIC + 6;
225 case TGSI_SEMANTIC_PRIMID:
226 return SI_MAX_IO_GENERIC + 7;
227 case TGSI_SEMANTIC_COLOR: /* these alias */
228 case TGSI_SEMANTIC_BCOLOR:
229 assert(index < 2);
230 return SI_MAX_IO_GENERIC + 8 + index;
231 case TGSI_SEMANTIC_TEXCOORD:
232 assert(index < 8);
233 assert(SI_MAX_IO_GENERIC + 10 + index < 64);
234 return SI_MAX_IO_GENERIC + 10 + index;
235 default:
236 assert(!"invalid semantic name");
237 return 0;
238 }
239 }
240
241 /**
242 * Get the value of a shader input parameter and extract a bitfield.
243 */
unpack_llvm_param(struct si_shader_context * ctx,LLVMValueRef value,unsigned rshift,unsigned bitwidth)244 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
245 LLVMValueRef value, unsigned rshift,
246 unsigned bitwidth)
247 {
248 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
249 value = ac_to_integer(&ctx->ac, value);
250
251 if (rshift)
252 value = LLVMBuildLShr(ctx->ac.builder, value,
253 LLVMConstInt(ctx->i32, rshift, 0), "");
254
255 if (rshift + bitwidth < 32) {
256 unsigned mask = (1 << bitwidth) - 1;
257 value = LLVMBuildAnd(ctx->ac.builder, value,
258 LLVMConstInt(ctx->i32, mask, 0), "");
259 }
260
261 return value;
262 }
263
unpack_param(struct si_shader_context * ctx,unsigned param,unsigned rshift,unsigned bitwidth)264 static LLVMValueRef unpack_param(struct si_shader_context *ctx,
265 unsigned param, unsigned rshift,
266 unsigned bitwidth)
267 {
268 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
269
270 return unpack_llvm_param(ctx, value, rshift, bitwidth);
271 }
272
get_rel_patch_id(struct si_shader_context * ctx)273 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
274 {
275 switch (ctx->type) {
276 case PIPE_SHADER_TESS_CTRL:
277 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
278
279 case PIPE_SHADER_TESS_EVAL:
280 return LLVMGetParam(ctx->main_fn,
281 ctx->param_tes_rel_patch_id);
282
283 default:
284 assert(0);
285 return NULL;
286 }
287 }
288
289 /* Tessellation shaders pass outputs to the next shader using LDS.
290 *
291 * LS outputs = TCS inputs
292 * TCS outputs = TES inputs
293 *
294 * The LDS layout is:
295 * - TCS inputs for patch 0
296 * - TCS inputs for patch 1
297 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
298 * - ...
299 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
300 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
301 * - TCS outputs for patch 1
302 * - Per-patch TCS outputs for patch 1
303 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
304 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
305 * - ...
306 *
307 * All three shaders VS(LS), TCS, TES share the same LDS space.
308 */
309
310 static LLVMValueRef
get_tcs_in_patch_stride(struct si_shader_context * ctx)311 get_tcs_in_patch_stride(struct si_shader_context *ctx)
312 {
313 return unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
314 }
315
get_tcs_out_vertex_dw_stride_constant(struct si_shader_context * ctx)316 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
317 {
318 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
319
320 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
321 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
322
323 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
324 }
325
get_tcs_out_vertex_dw_stride(struct si_shader_context * ctx)326 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
327 {
328 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
329
330 return LLVMConstInt(ctx->i32, stride, 0);
331 }
332
get_tcs_out_patch_stride(struct si_shader_context * ctx)333 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
334 {
335 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
336 return unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
337
338 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
339 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
340 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
341 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
342 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
343 num_patch_outputs * 4;
344 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
345 }
346
347 static LLVMValueRef
get_tcs_out_patch0_offset(struct si_shader_context * ctx)348 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
349 {
350 return lp_build_mul_imm(&ctx->bld_base.uint_bld,
351 unpack_param(ctx,
352 ctx->param_tcs_out_lds_offsets,
353 0, 16),
354 4);
355 }
356
357 static LLVMValueRef
get_tcs_out_patch0_patch_data_offset(struct si_shader_context * ctx)358 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
359 {
360 return lp_build_mul_imm(&ctx->bld_base.uint_bld,
361 unpack_param(ctx,
362 ctx->param_tcs_out_lds_offsets,
363 16, 16),
364 4);
365 }
366
367 static LLVMValueRef
get_tcs_in_current_patch_offset(struct si_shader_context * ctx)368 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
369 {
370 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
371 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
372
373 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
374 }
375
376 static LLVMValueRef
get_tcs_out_current_patch_offset(struct si_shader_context * ctx)377 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
378 {
379 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
380 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
381 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
382
383 return LLVMBuildAdd(ctx->ac.builder, patch0_offset,
384 LLVMBuildMul(ctx->ac.builder, patch_stride,
385 rel_patch_id, ""),
386 "");
387 }
388
389 static LLVMValueRef
get_tcs_out_current_patch_data_offset(struct si_shader_context * ctx)390 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
391 {
392 LLVMValueRef patch0_patch_data_offset =
393 get_tcs_out_patch0_patch_data_offset(ctx);
394 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
395 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
396
397 return LLVMBuildAdd(ctx->ac.builder, patch0_patch_data_offset,
398 LLVMBuildMul(ctx->ac.builder, patch_stride,
399 rel_patch_id, ""),
400 "");
401 }
402
get_num_tcs_out_vertices(struct si_shader_context * ctx)403 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
404 {
405 unsigned tcs_out_vertices =
406 ctx->shader->selector ?
407 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
408
409 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
410 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
411 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
412
413 return unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
414 }
415
get_tcs_in_vertex_dw_stride(struct si_shader_context * ctx)416 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
417 {
418 unsigned stride;
419
420 switch (ctx->type) {
421 case PIPE_SHADER_VERTEX:
422 stride = util_last_bit64(ctx->shader->selector->outputs_written);
423 return LLVMConstInt(ctx->i32, stride * 4, 0);
424
425 case PIPE_SHADER_TESS_CTRL:
426 if (ctx->screen->info.chip_class >= GFX9 &&
427 ctx->shader->is_monolithic) {
428 stride = util_last_bit64(ctx->shader->key.part.tcs.ls->outputs_written);
429 return LLVMConstInt(ctx->i32, stride * 4, 0);
430 }
431 return unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
432
433 default:
434 assert(0);
435 return NULL;
436 }
437 }
438
get_instance_index_for_fetch(struct si_shader_context * ctx,unsigned param_start_instance,LLVMValueRef divisor)439 static LLVMValueRef get_instance_index_for_fetch(
440 struct si_shader_context *ctx,
441 unsigned param_start_instance, LLVMValueRef divisor)
442 {
443 LLVMValueRef result = ctx->abi.instance_id;
444
445 /* The division must be done before START_INSTANCE is added. */
446 if (divisor != ctx->i32_1)
447 result = LLVMBuildUDiv(ctx->ac.builder, result, divisor, "");
448
449 return LLVMBuildAdd(ctx->ac.builder, result,
450 LLVMGetParam(ctx->main_fn, param_start_instance), "");
451 }
452
453 /* Bitcast <4 x float> to <2 x double>, extract the component, and convert
454 * to float. */
extract_double_to_float(struct si_shader_context * ctx,LLVMValueRef vec4,unsigned double_index)455 static LLVMValueRef extract_double_to_float(struct si_shader_context *ctx,
456 LLVMValueRef vec4,
457 unsigned double_index)
458 {
459 LLVMBuilderRef builder = ctx->ac.builder;
460 LLVMTypeRef f64 = LLVMDoubleTypeInContext(ctx->ac.context);
461 LLVMValueRef dvec2 = LLVMBuildBitCast(builder, vec4,
462 LLVMVectorType(f64, 2), "");
463 LLVMValueRef index = LLVMConstInt(ctx->i32, double_index, 0);
464 LLVMValueRef value = LLVMBuildExtractElement(builder, dvec2, index, "");
465 return LLVMBuildFPTrunc(builder, value, ctx->f32, "");
466 }
467
unpack_sint16(struct si_shader_context * ctx,LLVMValueRef i32,unsigned index)468 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
469 LLVMValueRef i32, unsigned index)
470 {
471 assert(index <= 1);
472
473 if (index == 1)
474 return LLVMBuildAShr(ctx->ac.builder, i32,
475 LLVMConstInt(ctx->i32, 16, 0), "");
476
477 return LLVMBuildSExt(ctx->ac.builder,
478 LLVMBuildTrunc(ctx->ac.builder, i32,
479 ctx->ac.i16, ""),
480 ctx->i32, "");
481 }
482
si_llvm_load_input_vs(struct si_shader_context * ctx,unsigned input_index,LLVMValueRef out[4])483 void si_llvm_load_input_vs(
484 struct si_shader_context *ctx,
485 unsigned input_index,
486 LLVMValueRef out[4])
487 {
488 unsigned vs_blit_property =
489 ctx->shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
490
491 if (vs_blit_property) {
492 LLVMValueRef vertex_id = ctx->abi.vertex_id;
493 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
494 LLVMIntULE, vertex_id,
495 ctx->i32_1, "");
496 /* Use LLVMIntNE, because we have 3 vertices and only
497 * the middle one should use y2.
498 */
499 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
500 LLVMIntNE, vertex_id,
501 ctx->i32_1, "");
502
503 if (input_index == 0) {
504 /* Position: */
505 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
506 ctx->param_vs_blit_inputs);
507 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
508 ctx->param_vs_blit_inputs + 1);
509
510 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
511 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
512 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
513 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
514
515 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
516 x1, x2, "");
517 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
518 y1, y2, "");
519
520 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
521 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
522 out[2] = LLVMGetParam(ctx->main_fn,
523 ctx->param_vs_blit_inputs + 2);
524 out[3] = ctx->ac.f32_1;
525 return;
526 }
527
528 /* Color or texture coordinates: */
529 assert(input_index == 1);
530
531 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
532 for (int i = 0; i < 4; i++) {
533 out[i] = LLVMGetParam(ctx->main_fn,
534 ctx->param_vs_blit_inputs + 3 + i);
535 }
536 } else {
537 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
538 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
539 ctx->param_vs_blit_inputs + 3);
540 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
541 ctx->param_vs_blit_inputs + 4);
542 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
543 ctx->param_vs_blit_inputs + 5);
544 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
545 ctx->param_vs_blit_inputs + 6);
546
547 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
548 x1, x2, "");
549 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
550 y1, y2, "");
551 out[2] = LLVMGetParam(ctx->main_fn,
552 ctx->param_vs_blit_inputs + 7);
553 out[3] = LLVMGetParam(ctx->main_fn,
554 ctx->param_vs_blit_inputs + 8);
555 }
556 return;
557 }
558
559 unsigned chan;
560 unsigned fix_fetch;
561 unsigned num_fetches;
562 unsigned fetch_stride;
563
564 LLVMValueRef t_list_ptr;
565 LLVMValueRef t_offset;
566 LLVMValueRef t_list;
567 LLVMValueRef vertex_index;
568 LLVMValueRef input[3];
569
570 /* Load the T list */
571 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
572
573 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
574
575 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
576
577 vertex_index = LLVMGetParam(ctx->main_fn,
578 ctx->param_vertex_index0 +
579 input_index);
580
581 fix_fetch = ctx->shader->key.mono.vs_fix_fetch[input_index];
582
583 /* Do multiple loads for special formats. */
584 switch (fix_fetch) {
585 case SI_FIX_FETCH_RGB_64_FLOAT:
586 num_fetches = 3; /* 3 2-dword loads */
587 fetch_stride = 8;
588 break;
589 case SI_FIX_FETCH_RGBA_64_FLOAT:
590 num_fetches = 2; /* 2 4-dword loads */
591 fetch_stride = 16;
592 break;
593 case SI_FIX_FETCH_RGB_8:
594 case SI_FIX_FETCH_RGB_8_INT:
595 num_fetches = 3;
596 fetch_stride = 1;
597 break;
598 case SI_FIX_FETCH_RGB_16:
599 case SI_FIX_FETCH_RGB_16_INT:
600 num_fetches = 3;
601 fetch_stride = 2;
602 break;
603 default:
604 num_fetches = 1;
605 fetch_stride = 0;
606 }
607
608 for (unsigned i = 0; i < num_fetches; i++) {
609 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
610
611 input[i] = ac_build_buffer_load_format(&ctx->ac, t_list,
612 vertex_index, voffset,
613 true);
614 }
615
616 /* Break up the vec4 into individual components */
617 for (chan = 0; chan < 4; chan++) {
618 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
619 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
620 input[0], llvm_chan, "");
621 }
622
623 switch (fix_fetch) {
624 case SI_FIX_FETCH_A2_SNORM:
625 case SI_FIX_FETCH_A2_SSCALED:
626 case SI_FIX_FETCH_A2_SINT: {
627 /* The hardware returns an unsigned value; convert it to a
628 * signed one.
629 */
630 LLVMValueRef tmp = out[3];
631 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
632
633 /* First, recover the sign-extended signed integer value. */
634 if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
635 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
636 else
637 tmp = ac_to_integer(&ctx->ac, tmp);
638
639 /* For the integer-like cases, do a natural sign extension.
640 *
641 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
642 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
643 * exponent.
644 */
645 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
646 fix_fetch == SI_FIX_FETCH_A2_SNORM ?
647 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
648 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
649
650 /* Convert back to the right type. */
651 if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
652 LLVMValueRef clamp;
653 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
654 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
655 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
656 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
657 } else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
658 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
659 }
660
661 out[3] = tmp;
662 break;
663 }
664 case SI_FIX_FETCH_RGBA_32_UNORM:
665 case SI_FIX_FETCH_RGBX_32_UNORM:
666 for (chan = 0; chan < 4; chan++) {
667 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
668 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
669 out[chan], ctx->f32, "");
670 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
671 LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
672 }
673 /* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
674 if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
675 out[3] = LLVMConstReal(ctx->f32, 1);
676 break;
677 case SI_FIX_FETCH_RGBA_32_SNORM:
678 case SI_FIX_FETCH_RGBX_32_SNORM:
679 case SI_FIX_FETCH_RGBA_32_FIXED:
680 case SI_FIX_FETCH_RGBX_32_FIXED: {
681 double scale;
682 if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
683 scale = 1.0 / 0x10000;
684 else
685 scale = 1.0 / INT_MAX;
686
687 for (chan = 0; chan < 4; chan++) {
688 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
689 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
690 out[chan], ctx->f32, "");
691 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
692 LLVMConstReal(ctx->f32, scale), "");
693 }
694 /* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
695 if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
696 fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
697 out[3] = LLVMConstReal(ctx->f32, 1);
698 break;
699 }
700 case SI_FIX_FETCH_RGBA_32_USCALED:
701 for (chan = 0; chan < 4; chan++) {
702 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
703 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
704 out[chan], ctx->f32, "");
705 }
706 break;
707 case SI_FIX_FETCH_RGBA_32_SSCALED:
708 for (chan = 0; chan < 4; chan++) {
709 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
710 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
711 out[chan], ctx->f32, "");
712 }
713 break;
714 case SI_FIX_FETCH_RG_64_FLOAT:
715 for (chan = 0; chan < 2; chan++)
716 out[chan] = extract_double_to_float(ctx, input[0], chan);
717
718 out[2] = LLVMConstReal(ctx->f32, 0);
719 out[3] = LLVMConstReal(ctx->f32, 1);
720 break;
721 case SI_FIX_FETCH_RGB_64_FLOAT:
722 for (chan = 0; chan < 3; chan++)
723 out[chan] = extract_double_to_float(ctx, input[chan], 0);
724
725 out[3] = LLVMConstReal(ctx->f32, 1);
726 break;
727 case SI_FIX_FETCH_RGBA_64_FLOAT:
728 for (chan = 0; chan < 4; chan++) {
729 out[chan] = extract_double_to_float(ctx, input[chan / 2],
730 chan % 2);
731 }
732 break;
733 case SI_FIX_FETCH_RGB_8:
734 case SI_FIX_FETCH_RGB_8_INT:
735 case SI_FIX_FETCH_RGB_16:
736 case SI_FIX_FETCH_RGB_16_INT:
737 for (chan = 0; chan < 3; chan++) {
738 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
739 input[chan],
740 ctx->i32_0, "");
741 }
742 if (fix_fetch == SI_FIX_FETCH_RGB_8 ||
743 fix_fetch == SI_FIX_FETCH_RGB_16) {
744 out[3] = LLVMConstReal(ctx->f32, 1);
745 } else {
746 out[3] = ac_to_float(&ctx->ac, ctx->i32_1);
747 }
748 break;
749 }
750 }
751
declare_input_vs(struct si_shader_context * ctx,unsigned input_index,const struct tgsi_full_declaration * decl,LLVMValueRef out[4])752 static void declare_input_vs(
753 struct si_shader_context *ctx,
754 unsigned input_index,
755 const struct tgsi_full_declaration *decl,
756 LLVMValueRef out[4])
757 {
758 si_llvm_load_input_vs(ctx, input_index, out);
759 }
760
get_primitive_id(struct si_shader_context * ctx,unsigned swizzle)761 static LLVMValueRef get_primitive_id(struct si_shader_context *ctx,
762 unsigned swizzle)
763 {
764 if (swizzle > 0)
765 return ctx->i32_0;
766
767 switch (ctx->type) {
768 case PIPE_SHADER_VERTEX:
769 return LLVMGetParam(ctx->main_fn,
770 ctx->param_vs_prim_id);
771 case PIPE_SHADER_TESS_CTRL:
772 return ctx->abi.tcs_patch_id;
773 case PIPE_SHADER_TESS_EVAL:
774 return ctx->abi.tes_patch_id;
775 case PIPE_SHADER_GEOMETRY:
776 return ctx->abi.gs_prim_id;
777 default:
778 assert(0);
779 return ctx->i32_0;
780 }
781 }
782
783 /**
784 * Return the value of tgsi_ind_register for indexing.
785 * This is the indirect index with the constant offset added to it.
786 */
si_get_indirect_index(struct si_shader_context * ctx,const struct tgsi_ind_register * ind,unsigned addr_mul,int rel_index)787 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
788 const struct tgsi_ind_register *ind,
789 unsigned addr_mul,
790 int rel_index)
791 {
792 LLVMValueRef result;
793
794 if (ind->File == TGSI_FILE_ADDRESS) {
795 result = ctx->addrs[ind->Index][ind->Swizzle];
796 result = LLVMBuildLoad(ctx->ac.builder, result, "");
797 } else {
798 struct tgsi_full_src_register src = {};
799
800 src.Register.File = ind->File;
801 src.Register.Index = ind->Index;
802
803 /* Set the second index to 0 for constants. */
804 if (ind->File == TGSI_FILE_CONSTANT)
805 src.Register.Dimension = 1;
806
807 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
808 TGSI_TYPE_SIGNED,
809 ind->Swizzle);
810 result = ac_to_integer(&ctx->ac, result);
811 }
812
813 if (addr_mul != 1)
814 result = LLVMBuildMul(ctx->ac.builder, result,
815 LLVMConstInt(ctx->i32, addr_mul, 0), "");
816 result = LLVMBuildAdd(ctx->ac.builder, result,
817 LLVMConstInt(ctx->i32, rel_index, 0), "");
818 return result;
819 }
820
821 /**
822 * Like si_get_indirect_index, but restricts the return value to a (possibly
823 * undefined) value inside [0..num).
824 */
si_get_bounded_indirect_index(struct si_shader_context * ctx,const struct tgsi_ind_register * ind,int rel_index,unsigned num)825 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
826 const struct tgsi_ind_register *ind,
827 int rel_index, unsigned num)
828 {
829 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
830
831 return si_llvm_bound_index(ctx, result, num);
832 }
833
get_dw_address_from_generic_indices(struct si_shader_context * ctx,LLVMValueRef vertex_dw_stride,LLVMValueRef base_addr,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned input_index,ubyte * name,ubyte * index,bool is_patch)834 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
835 LLVMValueRef vertex_dw_stride,
836 LLVMValueRef base_addr,
837 LLVMValueRef vertex_index,
838 LLVMValueRef param_index,
839 unsigned input_index,
840 ubyte *name,
841 ubyte *index,
842 bool is_patch)
843 {
844 if (vertex_dw_stride) {
845 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
846 LLVMBuildMul(ctx->ac.builder, vertex_index,
847 vertex_dw_stride, ""), "");
848 }
849
850 if (param_index) {
851 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
852 LLVMBuildMul(ctx->ac.builder, param_index,
853 LLVMConstInt(ctx->i32, 4, 0), ""), "");
854 }
855
856 int param = is_patch ?
857 si_shader_io_get_unique_index_patch(name[input_index],
858 index[input_index]) :
859 si_shader_io_get_unique_index(name[input_index],
860 index[input_index]);
861
862 /* Add the base address of the element. */
863 return LLVMBuildAdd(ctx->ac.builder, base_addr,
864 LLVMConstInt(ctx->i32, param * 4, 0), "");
865 }
866
867 /**
868 * Calculate a dword address given an input or output register and a stride.
869 */
get_dw_address(struct si_shader_context * ctx,const struct tgsi_full_dst_register * dst,const struct tgsi_full_src_register * src,LLVMValueRef vertex_dw_stride,LLVMValueRef base_addr)870 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
871 const struct tgsi_full_dst_register *dst,
872 const struct tgsi_full_src_register *src,
873 LLVMValueRef vertex_dw_stride,
874 LLVMValueRef base_addr)
875 {
876 struct tgsi_shader_info *info = &ctx->shader->selector->info;
877 ubyte *name, *index, *array_first;
878 int input_index;
879 struct tgsi_full_dst_register reg;
880 LLVMValueRef vertex_index = NULL;
881 LLVMValueRef ind_index = NULL;
882
883 /* Set the register description. The address computation is the same
884 * for sources and destinations. */
885 if (src) {
886 reg.Register.File = src->Register.File;
887 reg.Register.Index = src->Register.Index;
888 reg.Register.Indirect = src->Register.Indirect;
889 reg.Register.Dimension = src->Register.Dimension;
890 reg.Indirect = src->Indirect;
891 reg.Dimension = src->Dimension;
892 reg.DimIndirect = src->DimIndirect;
893 } else
894 reg = *dst;
895
896 /* If the register is 2-dimensional (e.g. an array of vertices
897 * in a primitive), calculate the base address of the vertex. */
898 if (reg.Register.Dimension) {
899 if (reg.Dimension.Indirect)
900 vertex_index = si_get_indirect_index(ctx, ®.DimIndirect,
901 1, reg.Dimension.Index);
902 else
903 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
904 }
905
906 /* Get information about the register. */
907 if (reg.Register.File == TGSI_FILE_INPUT) {
908 name = info->input_semantic_name;
909 index = info->input_semantic_index;
910 array_first = info->input_array_first;
911 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
912 name = info->output_semantic_name;
913 index = info->output_semantic_index;
914 array_first = info->output_array_first;
915 } else {
916 assert(0);
917 return NULL;
918 }
919
920 if (reg.Register.Indirect) {
921 /* Add the relative address of the element. */
922 if (reg.Indirect.ArrayID)
923 input_index = array_first[reg.Indirect.ArrayID];
924 else
925 input_index = reg.Register.Index;
926
927 ind_index = si_get_indirect_index(ctx, ®.Indirect,
928 1, reg.Register.Index - input_index);
929 } else {
930 input_index = reg.Register.Index;
931 }
932
933 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
934 base_addr, vertex_index,
935 ind_index, input_index,
936 name, index,
937 !reg.Register.Dimension);
938 }
939
940 /* The offchip buffer layout for TCS->TES is
941 *
942 * - attribute 0 of patch 0 vertex 0
943 * - attribute 0 of patch 0 vertex 1
944 * - attribute 0 of patch 0 vertex 2
945 * ...
946 * - attribute 0 of patch 1 vertex 0
947 * - attribute 0 of patch 1 vertex 1
948 * ...
949 * - attribute 1 of patch 0 vertex 0
950 * - attribute 1 of patch 0 vertex 1
951 * ...
952 * - per patch attribute 0 of patch 0
953 * - per patch attribute 0 of patch 1
954 * ...
955 *
956 * Note that every attribute has 4 components.
957 */
get_tcs_tes_buffer_address(struct si_shader_context * ctx,LLVMValueRef rel_patch_id,LLVMValueRef vertex_index,LLVMValueRef param_index)958 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
959 LLVMValueRef rel_patch_id,
960 LLVMValueRef vertex_index,
961 LLVMValueRef param_index)
962 {
963 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
964 LLVMValueRef param_stride, constant16;
965
966 vertices_per_patch = get_num_tcs_out_vertices(ctx);
967 num_patches = unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
968 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
969 num_patches, "");
970
971 constant16 = LLVMConstInt(ctx->i32, 16, 0);
972 if (vertex_index) {
973 base_addr = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
974 vertices_per_patch, "");
975
976 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
977 vertex_index, "");
978
979 param_stride = total_vertices;
980 } else {
981 base_addr = rel_patch_id;
982 param_stride = num_patches;
983 }
984
985 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
986 LLVMBuildMul(ctx->ac.builder, param_index,
987 param_stride, ""), "");
988
989 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
990
991 if (!vertex_index) {
992 LLVMValueRef patch_data_offset =
993 unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
994
995 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
996 patch_data_offset, "");
997 }
998 return base_addr;
999 }
1000
1001 /* This is a generic helper that can be shared by the NIR and TGSI backends */
get_tcs_tes_buffer_address_from_generic_indices(struct si_shader_context * ctx,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned param_base,ubyte * name,ubyte * index,bool is_patch)1002 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
1003 struct si_shader_context *ctx,
1004 LLVMValueRef vertex_index,
1005 LLVMValueRef param_index,
1006 unsigned param_base,
1007 ubyte *name,
1008 ubyte *index,
1009 bool is_patch)
1010 {
1011 unsigned param_index_base;
1012
1013 param_index_base = is_patch ?
1014 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
1015 si_shader_io_get_unique_index(name[param_base], index[param_base]);
1016
1017 if (param_index) {
1018 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1019 LLVMConstInt(ctx->i32, param_index_base, 0),
1020 "");
1021 } else {
1022 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
1023 }
1024
1025 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
1026 vertex_index, param_index);
1027 }
1028
get_tcs_tes_buffer_address_from_reg(struct si_shader_context * ctx,const struct tgsi_full_dst_register * dst,const struct tgsi_full_src_register * src)1029 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
1030 struct si_shader_context *ctx,
1031 const struct tgsi_full_dst_register *dst,
1032 const struct tgsi_full_src_register *src)
1033 {
1034 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1035 ubyte *name, *index, *array_first;
1036 struct tgsi_full_src_register reg;
1037 LLVMValueRef vertex_index = NULL;
1038 LLVMValueRef param_index = NULL;
1039 unsigned param_base;
1040
1041 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
1042
1043 if (reg.Register.Dimension) {
1044
1045 if (reg.Dimension.Indirect)
1046 vertex_index = si_get_indirect_index(ctx, ®.DimIndirect,
1047 1, reg.Dimension.Index);
1048 else
1049 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
1050 }
1051
1052 /* Get information about the register. */
1053 if (reg.Register.File == TGSI_FILE_INPUT) {
1054 name = info->input_semantic_name;
1055 index = info->input_semantic_index;
1056 array_first = info->input_array_first;
1057 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
1058 name = info->output_semantic_name;
1059 index = info->output_semantic_index;
1060 array_first = info->output_array_first;
1061 } else {
1062 assert(0);
1063 return NULL;
1064 }
1065
1066 if (reg.Register.Indirect) {
1067 if (reg.Indirect.ArrayID)
1068 param_base = array_first[reg.Indirect.ArrayID];
1069 else
1070 param_base = reg.Register.Index;
1071
1072 param_index = si_get_indirect_index(ctx, ®.Indirect,
1073 1, reg.Register.Index - param_base);
1074
1075 } else {
1076 param_base = reg.Register.Index;
1077 }
1078
1079 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1080 param_index, param_base,
1081 name, index, !reg.Register.Dimension);
1082 }
1083
buffer_load(struct lp_build_tgsi_context * bld_base,LLVMTypeRef type,unsigned swizzle,LLVMValueRef buffer,LLVMValueRef offset,LLVMValueRef base,bool can_speculate)1084 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
1085 LLVMTypeRef type, unsigned swizzle,
1086 LLVMValueRef buffer, LLVMValueRef offset,
1087 LLVMValueRef base, bool can_speculate)
1088 {
1089 struct si_shader_context *ctx = si_shader_context(bld_base);
1090 LLVMValueRef value, value2;
1091 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
1092
1093 if (swizzle == ~0) {
1094 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1095 0, 1, 0, can_speculate, false);
1096
1097 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1098 }
1099
1100 if (!llvm_type_is_64bit(ctx, type)) {
1101 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1102 0, 1, 0, can_speculate, false);
1103
1104 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1105 return LLVMBuildExtractElement(ctx->ac.builder, value,
1106 LLVMConstInt(ctx->i32, swizzle, 0), "");
1107 }
1108
1109 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1110 swizzle * 4, 1, 0, can_speculate, false);
1111
1112 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1113 swizzle * 4 + 4, 1, 0, can_speculate, false);
1114
1115 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1116 }
1117
1118 /**
1119 * Load from LDS.
1120 *
1121 * \param type output value type
1122 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
1123 * \param dw_addr address in dwords
1124 */
lds_load(struct lp_build_tgsi_context * bld_base,LLVMTypeRef type,unsigned swizzle,LLVMValueRef dw_addr)1125 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
1126 LLVMTypeRef type, unsigned swizzle,
1127 LLVMValueRef dw_addr)
1128 {
1129 struct si_shader_context *ctx = si_shader_context(bld_base);
1130 LLVMValueRef value;
1131
1132 if (swizzle == ~0) {
1133 LLVMValueRef values[TGSI_NUM_CHANNELS];
1134
1135 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1136 values[chan] = lds_load(bld_base, type, chan, dw_addr);
1137
1138 return lp_build_gather_values(&ctx->gallivm, values,
1139 TGSI_NUM_CHANNELS);
1140 }
1141
1142 /* Split 64-bit loads. */
1143 if (llvm_type_is_64bit(ctx, type)) {
1144 LLVMValueRef lo, hi;
1145
1146 lo = lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1147 hi = lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1148 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1149 }
1150
1151 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
1152 LLVMConstInt(ctx->i32, swizzle, 0));
1153
1154 value = ac_lds_load(&ctx->ac, dw_addr);
1155
1156 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1157 }
1158
1159 /**
1160 * Store to LDS.
1161 *
1162 * \param swizzle offset (typically 0..3)
1163 * \param dw_addr address in dwords
1164 * \param value value to store
1165 */
lds_store(struct si_shader_context * ctx,unsigned dw_offset_imm,LLVMValueRef dw_addr,LLVMValueRef value)1166 static void lds_store(struct si_shader_context *ctx,
1167 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1168 LLVMValueRef value)
1169 {
1170 dw_addr = lp_build_add(&ctx->bld_base.uint_bld, dw_addr,
1171 LLVMConstInt(ctx->i32, dw_offset_imm, 0));
1172
1173 ac_lds_store(&ctx->ac, dw_addr, value);
1174 }
1175
desc_from_addr_base64k(struct si_shader_context * ctx,unsigned param)1176 static LLVMValueRef desc_from_addr_base64k(struct si_shader_context *ctx,
1177 unsigned param)
1178 {
1179 LLVMBuilderRef builder = ctx->ac.builder;
1180
1181 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1182 addr = LLVMBuildZExt(builder, addr, ctx->i64, "");
1183 addr = LLVMBuildShl(builder, addr, LLVMConstInt(ctx->i64, 16, 0), "");
1184
1185 uint64_t desc2 = 0xffffffff;
1186 uint64_t desc3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1187 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1188 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1189 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1190 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1191 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
1192 LLVMValueRef hi = LLVMConstInt(ctx->i64, desc2 | (desc3 << 32), 0);
1193
1194 LLVMValueRef desc = LLVMGetUndef(LLVMVectorType(ctx->i64, 2));
1195 desc = LLVMBuildInsertElement(builder, desc, addr, ctx->i32_0, "");
1196 desc = LLVMBuildInsertElement(builder, desc, hi, ctx->i32_1, "");
1197 return LLVMBuildBitCast(builder, desc, ctx->v4i32, "");
1198 }
1199
fetch_input_tcs(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)1200 static LLVMValueRef fetch_input_tcs(
1201 struct lp_build_tgsi_context *bld_base,
1202 const struct tgsi_full_src_register *reg,
1203 enum tgsi_opcode_type type, unsigned swizzle)
1204 {
1205 struct si_shader_context *ctx = si_shader_context(bld_base);
1206 LLVMValueRef dw_addr, stride;
1207
1208 stride = get_tcs_in_vertex_dw_stride(ctx);
1209 dw_addr = get_tcs_in_current_patch_offset(ctx);
1210 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1211
1212 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1213 }
1214
si_nir_load_tcs_varyings(struct ac_shader_abi * abi,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned const_index,unsigned location,unsigned driver_location,unsigned component,unsigned num_components,bool is_patch,bool is_compact,bool load_input)1215 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1216 LLVMValueRef vertex_index,
1217 LLVMValueRef param_index,
1218 unsigned const_index,
1219 unsigned location,
1220 unsigned driver_location,
1221 unsigned component,
1222 unsigned num_components,
1223 bool is_patch,
1224 bool is_compact,
1225 bool load_input)
1226 {
1227 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1228 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1229 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1230 LLVMValueRef dw_addr, stride;
1231
1232 driver_location = driver_location / 4;
1233
1234 if (load_input) {
1235 stride = get_tcs_in_vertex_dw_stride(ctx);
1236 dw_addr = get_tcs_in_current_patch_offset(ctx);
1237 } else {
1238 if (is_patch) {
1239 stride = NULL;
1240 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1241 } else {
1242 stride = get_tcs_out_vertex_dw_stride(ctx);
1243 dw_addr = get_tcs_out_current_patch_offset(ctx);
1244 }
1245 }
1246
1247 if (param_index) {
1248 /* Add the constant index to the indirect index */
1249 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1250 LLVMConstInt(ctx->i32, const_index, 0), "");
1251 } else {
1252 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1253 }
1254
1255 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1256 vertex_index, param_index,
1257 driver_location,
1258 info->input_semantic_name,
1259 info->input_semantic_index,
1260 is_patch);
1261
1262 LLVMValueRef value[4];
1263 for (unsigned i = 0; i < num_components + component; i++) {
1264 value[i] = lds_load(bld_base, ctx->i32, i, dw_addr);
1265 }
1266
1267 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1268 }
1269
fetch_output_tcs(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)1270 static LLVMValueRef fetch_output_tcs(
1271 struct lp_build_tgsi_context *bld_base,
1272 const struct tgsi_full_src_register *reg,
1273 enum tgsi_opcode_type type, unsigned swizzle)
1274 {
1275 struct si_shader_context *ctx = si_shader_context(bld_base);
1276 LLVMValueRef dw_addr, stride;
1277
1278 if (reg->Register.Dimension) {
1279 stride = get_tcs_out_vertex_dw_stride(ctx);
1280 dw_addr = get_tcs_out_current_patch_offset(ctx);
1281 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1282 } else {
1283 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1284 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1285 }
1286
1287 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1288 }
1289
fetch_input_tes(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)1290 static LLVMValueRef fetch_input_tes(
1291 struct lp_build_tgsi_context *bld_base,
1292 const struct tgsi_full_src_register *reg,
1293 enum tgsi_opcode_type type, unsigned swizzle)
1294 {
1295 struct si_shader_context *ctx = si_shader_context(bld_base);
1296 LLVMValueRef buffer, base, addr;
1297
1298 buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1299
1300 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1301 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1302
1303 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1304 buffer, base, addr, true);
1305 }
1306
si_nir_load_input_tes(struct ac_shader_abi * abi,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned const_index,unsigned location,unsigned driver_location,unsigned component,unsigned num_components,bool is_patch,bool is_compact,bool load_input)1307 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1308 LLVMValueRef vertex_index,
1309 LLVMValueRef param_index,
1310 unsigned const_index,
1311 unsigned location,
1312 unsigned driver_location,
1313 unsigned component,
1314 unsigned num_components,
1315 bool is_patch,
1316 bool is_compact,
1317 bool load_input)
1318 {
1319 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1320 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1321 LLVMValueRef buffer, base, addr;
1322
1323 driver_location = driver_location / 4;
1324
1325 buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1326
1327 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1328
1329 if (param_index) {
1330 /* Add the constant index to the indirect index */
1331 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1332 LLVMConstInt(ctx->i32, const_index, 0), "");
1333 } else {
1334 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1335 }
1336
1337 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1338 param_index, driver_location,
1339 info->input_semantic_name,
1340 info->input_semantic_index,
1341 is_patch);
1342
1343 /* TODO: This will generate rather ordinary llvm code, although it
1344 * should be easy for the optimiser to fix up. In future we might want
1345 * to refactor buffer_load(), but for now this maximises code sharing
1346 * between the NIR and TGSI backends.
1347 */
1348 LLVMValueRef value[4];
1349 for (unsigned i = component; i < num_components + component; i++) {
1350 value[i] = buffer_load(&ctx->bld_base, ctx->i32, i, buffer, base, addr, true);
1351 }
1352
1353 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1354 }
1355
store_output_tcs(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_instruction * inst,const struct tgsi_opcode_info * info,unsigned index,LLVMValueRef dst[4])1356 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1357 const struct tgsi_full_instruction *inst,
1358 const struct tgsi_opcode_info *info,
1359 unsigned index,
1360 LLVMValueRef dst[4])
1361 {
1362 struct si_shader_context *ctx = si_shader_context(bld_base);
1363 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1364 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1365 unsigned chan_index;
1366 LLVMValueRef dw_addr, stride;
1367 LLVMValueRef buffer, base, buf_addr;
1368 LLVMValueRef values[4];
1369 bool skip_lds_store;
1370 bool is_tess_factor = false, is_tess_inner = false;
1371
1372 /* Only handle per-patch and per-vertex outputs here.
1373 * Vectors will be lowered to scalars and this function will be called again.
1374 */
1375 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1376 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1377 si_llvm_emit_store(bld_base, inst, info, index, dst);
1378 return;
1379 }
1380
1381 if (reg->Register.Dimension) {
1382 stride = get_tcs_out_vertex_dw_stride(ctx);
1383 dw_addr = get_tcs_out_current_patch_offset(ctx);
1384 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1385 skip_lds_store = !sh_info->reads_pervertex_outputs;
1386 } else {
1387 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1388 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1389 skip_lds_store = !sh_info->reads_perpatch_outputs;
1390
1391 if (!reg->Register.Indirect) {
1392 int name = sh_info->output_semantic_name[reg->Register.Index];
1393
1394 /* Always write tess factors into LDS for the TCS epilog. */
1395 if (name == TGSI_SEMANTIC_TESSINNER ||
1396 name == TGSI_SEMANTIC_TESSOUTER) {
1397 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1398 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1399 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1400 is_tess_factor = true;
1401 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1402 }
1403 }
1404 }
1405
1406 buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1407
1408 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1409 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1410
1411 uint32_t writemask = reg->Register.WriteMask;
1412 while (writemask) {
1413 chan_index = u_bit_scan(&writemask);
1414 LLVMValueRef value = dst[chan_index];
1415
1416 if (inst->Instruction.Saturate)
1417 value = ac_build_clamp(&ctx->ac, value);
1418
1419 /* Skip LDS stores if there is no LDS read of this output. */
1420 if (!skip_lds_store)
1421 lds_store(ctx, chan_index, dw_addr, value);
1422
1423 value = ac_to_integer(&ctx->ac, value);
1424 values[chan_index] = value;
1425
1426 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1427 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1428 buf_addr, base,
1429 4 * chan_index, 1, 0, true, false);
1430 }
1431
1432 /* Write tess factors into VGPRs for the epilog. */
1433 if (is_tess_factor &&
1434 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1435 if (!is_tess_inner) {
1436 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1437 ctx->invoc0_tess_factors[chan_index]);
1438 } else if (chan_index < 2) {
1439 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1440 ctx->invoc0_tess_factors[4 + chan_index]);
1441 }
1442 }
1443 }
1444
1445 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1446 LLVMValueRef value = lp_build_gather_values(&ctx->gallivm,
1447 values, 4);
1448 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1449 base, 0, 1, 0, true, false);
1450 }
1451 }
1452
si_nir_store_output_tcs(struct ac_shader_abi * abi,const struct nir_variable * var,LLVMValueRef vertex_index,LLVMValueRef param_index,unsigned const_index,LLVMValueRef src,unsigned writemask)1453 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1454 const struct nir_variable *var,
1455 LLVMValueRef vertex_index,
1456 LLVMValueRef param_index,
1457 unsigned const_index,
1458 LLVMValueRef src,
1459 unsigned writemask)
1460 {
1461 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1462 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1463 const unsigned component = var->data.location_frac;
1464 const bool is_patch = var->data.patch;
1465 unsigned driver_location = var->data.driver_location;
1466 LLVMValueRef dw_addr, stride;
1467 LLVMValueRef buffer, base, addr;
1468 LLVMValueRef values[4];
1469 bool skip_lds_store;
1470 bool is_tess_factor = false, is_tess_inner = false;
1471
1472 driver_location = driver_location / 4;
1473
1474 if (param_index) {
1475 /* Add the constant index to the indirect index */
1476 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1477 LLVMConstInt(ctx->i32, const_index, 0), "");
1478 } else {
1479 if (const_index != 0)
1480 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1481 }
1482
1483 if (!is_patch) {
1484 stride = get_tcs_out_vertex_dw_stride(ctx);
1485 dw_addr = get_tcs_out_current_patch_offset(ctx);
1486 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1487 vertex_index, param_index,
1488 driver_location,
1489 info->output_semantic_name,
1490 info->output_semantic_index,
1491 is_patch);
1492
1493 skip_lds_store = !info->reads_pervertex_outputs;
1494 } else {
1495 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1496 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1497 vertex_index, param_index,
1498 driver_location,
1499 info->output_semantic_name,
1500 info->output_semantic_index,
1501 is_patch);
1502
1503 skip_lds_store = !info->reads_perpatch_outputs;
1504
1505 if (!param_index) {
1506 int name = info->output_semantic_name[driver_location];
1507
1508 /* Always write tess factors into LDS for the TCS epilog. */
1509 if (name == TGSI_SEMANTIC_TESSINNER ||
1510 name == TGSI_SEMANTIC_TESSOUTER) {
1511 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1512 skip_lds_store = !info->reads_tessfactor_outputs &&
1513 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1514 is_tess_factor = true;
1515 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1516 }
1517 }
1518 }
1519
1520 buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1521
1522 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1523
1524 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1525 param_index, driver_location,
1526 info->output_semantic_name,
1527 info->output_semantic_index,
1528 is_patch);
1529
1530 for (unsigned chan = 0; chan < 4; chan++) {
1531 if (!(writemask & (1 << chan)))
1532 continue;
1533 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1534
1535 /* Skip LDS stores if there is no LDS read of this output. */
1536 if (!skip_lds_store)
1537 ac_lds_store(&ctx->ac, dw_addr, value);
1538
1539 value = ac_to_integer(&ctx->ac, value);
1540 values[chan] = value;
1541
1542 if (writemask != 0xF && !is_tess_factor) {
1543 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1544 addr, base,
1545 4 * chan, 1, 0, true, false);
1546 }
1547
1548 /* Write tess factors into VGPRs for the epilog. */
1549 if (is_tess_factor &&
1550 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1551 if (!is_tess_inner) {
1552 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1553 ctx->invoc0_tess_factors[chan]);
1554 } else if (chan < 2) {
1555 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1556 ctx->invoc0_tess_factors[4 + chan]);
1557 }
1558 }
1559 }
1560
1561 if (writemask == 0xF && !is_tess_factor) {
1562 LLVMValueRef value = lp_build_gather_values(&ctx->gallivm,
1563 values, 4);
1564 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1565 base, 0, 1, 0, true, false);
1566 }
1567 }
1568
si_llvm_load_input_gs(struct ac_shader_abi * abi,unsigned input_index,unsigned vtx_offset_param,LLVMTypeRef type,unsigned swizzle)1569 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1570 unsigned input_index,
1571 unsigned vtx_offset_param,
1572 LLVMTypeRef type,
1573 unsigned swizzle)
1574 {
1575 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1576 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1577 struct si_shader *shader = ctx->shader;
1578 struct lp_build_context *uint = &ctx->bld_base.uint_bld;
1579 LLVMValueRef vtx_offset, soffset;
1580 struct tgsi_shader_info *info = &shader->selector->info;
1581 unsigned semantic_name = info->input_semantic_name[input_index];
1582 unsigned semantic_index = info->input_semantic_index[input_index];
1583 unsigned param;
1584 LLVMValueRef value;
1585
1586 param = si_shader_io_get_unique_index(semantic_name, semantic_index);
1587
1588 /* GFX9 has the ESGS ring in LDS. */
1589 if (ctx->screen->info.chip_class >= GFX9) {
1590 unsigned index = vtx_offset_param;
1591
1592 switch (index / 2) {
1593 case 0:
1594 vtx_offset = unpack_param(ctx, ctx->param_gs_vtx01_offset,
1595 index % 2 ? 16 : 0, 16);
1596 break;
1597 case 1:
1598 vtx_offset = unpack_param(ctx, ctx->param_gs_vtx23_offset,
1599 index % 2 ? 16 : 0, 16);
1600 break;
1601 case 2:
1602 vtx_offset = unpack_param(ctx, ctx->param_gs_vtx45_offset,
1603 index % 2 ? 16 : 0, 16);
1604 break;
1605 default:
1606 assert(0);
1607 return NULL;
1608 }
1609
1610 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1611 LLVMConstInt(ctx->i32, param * 4, 0), "");
1612 return lds_load(bld_base, type, swizzle, vtx_offset);
1613 }
1614
1615 /* GFX6: input load from the ESGS ring in memory. */
1616 if (swizzle == ~0) {
1617 LLVMValueRef values[TGSI_NUM_CHANNELS];
1618 unsigned chan;
1619 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1620 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1621 type, chan);
1622 }
1623 return lp_build_gather_values(&ctx->gallivm, values,
1624 TGSI_NUM_CHANNELS);
1625 }
1626
1627 /* Get the vertex offset parameter on GFX6. */
1628 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1629
1630 vtx_offset = lp_build_mul_imm(uint, gs_vtx_offset, 4);
1631
1632 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1633
1634 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1635 vtx_offset, soffset, 0, 1, 0, true, false);
1636 if (llvm_type_is_64bit(ctx, type)) {
1637 LLVMValueRef value2;
1638 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1639
1640 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1641 ctx->i32_0, vtx_offset, soffset,
1642 0, 1, 0, true, false);
1643 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1644 }
1645 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1646 }
1647
fetch_input_gs(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)1648 static LLVMValueRef fetch_input_gs(
1649 struct lp_build_tgsi_context *bld_base,
1650 const struct tgsi_full_src_register *reg,
1651 enum tgsi_opcode_type type,
1652 unsigned swizzle)
1653 {
1654 struct si_shader_context *ctx = si_shader_context(bld_base);
1655 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1656
1657 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1658 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1659 return get_primitive_id(ctx, swizzle);
1660
1661 if (!reg->Register.Dimension)
1662 return NULL;
1663
1664 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1665 reg->Dimension.Index,
1666 tgsi2llvmtype(bld_base, type),
1667 swizzle);
1668 }
1669
lookup_interp_param_index(unsigned interpolate,unsigned location)1670 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1671 {
1672 switch (interpolate) {
1673 case TGSI_INTERPOLATE_CONSTANT:
1674 return 0;
1675
1676 case TGSI_INTERPOLATE_LINEAR:
1677 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1678 return SI_PARAM_LINEAR_SAMPLE;
1679 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1680 return SI_PARAM_LINEAR_CENTROID;
1681 else
1682 return SI_PARAM_LINEAR_CENTER;
1683 break;
1684 case TGSI_INTERPOLATE_COLOR:
1685 case TGSI_INTERPOLATE_PERSPECTIVE:
1686 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1687 return SI_PARAM_PERSP_SAMPLE;
1688 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1689 return SI_PARAM_PERSP_CENTROID;
1690 else
1691 return SI_PARAM_PERSP_CENTER;
1692 break;
1693 default:
1694 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1695 return -1;
1696 }
1697 }
1698
si_build_fs_interp(struct si_shader_context * ctx,unsigned attr_index,unsigned chan,LLVMValueRef prim_mask,LLVMValueRef i,LLVMValueRef j)1699 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1700 unsigned attr_index, unsigned chan,
1701 LLVMValueRef prim_mask,
1702 LLVMValueRef i, LLVMValueRef j)
1703 {
1704 if (i || j) {
1705 return ac_build_fs_interp(&ctx->ac,
1706 LLVMConstInt(ctx->i32, chan, 0),
1707 LLVMConstInt(ctx->i32, attr_index, 0),
1708 prim_mask, i, j);
1709 }
1710 return ac_build_fs_interp_mov(&ctx->ac,
1711 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1712 LLVMConstInt(ctx->i32, chan, 0),
1713 LLVMConstInt(ctx->i32, attr_index, 0),
1714 prim_mask);
1715 }
1716
1717 /**
1718 * Interpolate a fragment shader input.
1719 *
1720 * @param ctx context
1721 * @param input_index index of the input in hardware
1722 * @param semantic_name TGSI_SEMANTIC_*
1723 * @param semantic_index semantic index
1724 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1725 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1726 * @param interp_param interpolation weights (i,j)
1727 * @param prim_mask SI_PARAM_PRIM_MASK
1728 * @param face SI_PARAM_FRONT_FACE
1729 * @param result the return value (4 components)
1730 */
interp_fs_input(struct si_shader_context * ctx,unsigned input_index,unsigned semantic_name,unsigned semantic_index,unsigned num_interp_inputs,unsigned colors_read_mask,LLVMValueRef interp_param,LLVMValueRef prim_mask,LLVMValueRef face,LLVMValueRef result[4])1731 static void interp_fs_input(struct si_shader_context *ctx,
1732 unsigned input_index,
1733 unsigned semantic_name,
1734 unsigned semantic_index,
1735 unsigned num_interp_inputs,
1736 unsigned colors_read_mask,
1737 LLVMValueRef interp_param,
1738 LLVMValueRef prim_mask,
1739 LLVMValueRef face,
1740 LLVMValueRef result[4])
1741 {
1742 LLVMValueRef i = NULL, j = NULL;
1743 unsigned chan;
1744
1745 /* fs.constant returns the param from the middle vertex, so it's not
1746 * really useful for flat shading. It's meant to be used for custom
1747 * interpolation (but the intrinsic can't fetch from the other two
1748 * vertices).
1749 *
1750 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1751 * to do the right thing. The only reason we use fs.constant is that
1752 * fs.interp cannot be used on integers, because they can be equal
1753 * to NaN.
1754 *
1755 * When interp is false we will use fs.constant or for newer llvm,
1756 * amdgcn.interp.mov.
1757 */
1758 bool interp = interp_param != NULL;
1759
1760 if (interp) {
1761 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1762 LLVMVectorType(ctx->f32, 2), "");
1763
1764 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1765 ctx->i32_0, "");
1766 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1767 ctx->i32_1, "");
1768 }
1769
1770 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1771 ctx->shader->key.part.ps.prolog.color_two_side) {
1772 LLVMValueRef is_face_positive;
1773
1774 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1775 * otherwise it's at offset "num_inputs".
1776 */
1777 unsigned back_attr_offset = num_interp_inputs;
1778 if (semantic_index == 1 && colors_read_mask & 0xf)
1779 back_attr_offset += 1;
1780
1781 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1782 face, ctx->i32_0, "");
1783
1784 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1785 LLVMValueRef front, back;
1786
1787 front = si_build_fs_interp(ctx,
1788 input_index, chan,
1789 prim_mask, i, j);
1790 back = si_build_fs_interp(ctx,
1791 back_attr_offset, chan,
1792 prim_mask, i, j);
1793
1794 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1795 is_face_positive,
1796 front,
1797 back,
1798 "");
1799 }
1800 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1801 result[0] = si_build_fs_interp(ctx, input_index,
1802 0, prim_mask, i, j);
1803 result[1] =
1804 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1805 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1806 } else {
1807 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1808 result[chan] = si_build_fs_interp(ctx,
1809 input_index, chan,
1810 prim_mask, i, j);
1811 }
1812 }
1813 }
1814
si_llvm_load_input_fs(struct si_shader_context * ctx,unsigned input_index,LLVMValueRef out[4])1815 void si_llvm_load_input_fs(
1816 struct si_shader_context *ctx,
1817 unsigned input_index,
1818 LLVMValueRef out[4])
1819 {
1820 struct lp_build_context *base = &ctx->bld_base.base;
1821 struct si_shader *shader = ctx->shader;
1822 struct tgsi_shader_info *info = &shader->selector->info;
1823 LLVMValueRef main_fn = ctx->main_fn;
1824 LLVMValueRef interp_param = NULL;
1825 int interp_param_idx;
1826 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1827 unsigned semantic_index = info->input_semantic_index[input_index];
1828 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1829 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1830
1831 /* Get colors from input VGPRs (set by the prolog). */
1832 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1833 unsigned colors_read = shader->selector->info.colors_read;
1834 unsigned mask = colors_read >> (semantic_index * 4);
1835 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1836 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1837
1838 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : base->undef;
1839 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : base->undef;
1840 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : base->undef;
1841 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : base->undef;
1842 return;
1843 }
1844
1845 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1846 if (interp_param_idx == -1)
1847 return;
1848 else if (interp_param_idx) {
1849 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1850 }
1851
1852 interp_fs_input(ctx, input_index, semantic_name,
1853 semantic_index, 0, /* this param is unused */
1854 shader->selector->info.colors_read, interp_param,
1855 LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK),
1856 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1857 &out[0]);
1858 }
1859
declare_input_fs(struct si_shader_context * ctx,unsigned input_index,const struct tgsi_full_declaration * decl,LLVMValueRef out[4])1860 static void declare_input_fs(
1861 struct si_shader_context *ctx,
1862 unsigned input_index,
1863 const struct tgsi_full_declaration *decl,
1864 LLVMValueRef out[4])
1865 {
1866 si_llvm_load_input_fs(ctx, input_index, out);
1867 }
1868
get_sample_id(struct si_shader_context * ctx)1869 static LLVMValueRef get_sample_id(struct si_shader_context *ctx)
1870 {
1871 return unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1872 }
1873
1874
1875 /**
1876 * Load a dword from a constant buffer.
1877 */
buffer_load_const(struct si_shader_context * ctx,LLVMValueRef resource,LLVMValueRef offset)1878 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1879 LLVMValueRef resource,
1880 LLVMValueRef offset)
1881 {
1882 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1883 0, 0, 0, true, true);
1884 }
1885
load_sample_position(struct si_shader_context * ctx,LLVMValueRef sample_id)1886 static LLVMValueRef load_sample_position(struct si_shader_context *ctx, LLVMValueRef sample_id)
1887 {
1888 struct lp_build_context *uint_bld = &ctx->bld_base.uint_bld;
1889 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
1890 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
1891 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
1892
1893 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1894 LLVMValueRef offset0 = lp_build_mul_imm(uint_bld, sample_id, 8);
1895 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
1896
1897 LLVMValueRef pos[4] = {
1898 buffer_load_const(ctx, resource, offset0),
1899 buffer_load_const(ctx, resource, offset1),
1900 LLVMConstReal(ctx->f32, 0),
1901 LLVMConstReal(ctx->f32, 0)
1902 };
1903
1904 return lp_build_gather_values(&ctx->gallivm, pos, 4);
1905 }
1906
si_load_tess_coord(struct ac_shader_abi * abi,LLVMTypeRef type,unsigned num_components)1907 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi,
1908 LLVMTypeRef type,
1909 unsigned num_components)
1910 {
1911 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1912 struct lp_build_context *bld = &ctx->bld_base.base;
1913
1914 LLVMValueRef coord[4] = {
1915 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
1916 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
1917 ctx->ac.f32_0,
1918 ctx->ac.f32_0
1919 };
1920
1921 /* For triangles, the vector should be (u, v, 1-u-v). */
1922 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1923 PIPE_PRIM_TRIANGLES)
1924 coord[2] = lp_build_sub(bld, ctx->ac.f32_1,
1925 lp_build_add(bld, coord[0], coord[1]));
1926
1927 return lp_build_gather_values(&ctx->gallivm, coord, 4);
1928 }
1929
load_tess_level(struct si_shader_context * ctx,unsigned semantic_name)1930 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
1931 unsigned semantic_name)
1932 {
1933 LLVMValueRef buffer, base, addr;
1934
1935 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
1936
1937 buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
1938
1939 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1940 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
1941 LLVMConstInt(ctx->i32, param, 0));
1942
1943 return buffer_load(&ctx->bld_base, ctx->f32,
1944 ~0, buffer, base, addr, true);
1945
1946 }
1947
si_load_tess_level(struct ac_shader_abi * abi,unsigned varying_id)1948 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
1949 unsigned varying_id)
1950 {
1951 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1952 unsigned semantic_name;
1953
1954 switch (varying_id) {
1955 case VARYING_SLOT_TESS_LEVEL_INNER:
1956 semantic_name = TGSI_SEMANTIC_TESSINNER;
1957 break;
1958 case VARYING_SLOT_TESS_LEVEL_OUTER:
1959 semantic_name = TGSI_SEMANTIC_TESSOUTER;
1960 break;
1961 default:
1962 unreachable("unknown tess level");
1963 }
1964
1965 return load_tess_level(ctx, semantic_name);
1966
1967 }
1968
si_load_patch_vertices_in(struct ac_shader_abi * abi)1969 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
1970 {
1971 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1972 if (ctx->type == PIPE_SHADER_TESS_CTRL)
1973 return unpack_param(ctx, ctx->param_tcs_out_lds_layout, 26, 6);
1974 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
1975 return get_num_tcs_out_vertices(ctx);
1976 else
1977 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
1978 }
1979
si_load_system_value(struct si_shader_context * ctx,unsigned index,const struct tgsi_full_declaration * decl)1980 void si_load_system_value(struct si_shader_context *ctx,
1981 unsigned index,
1982 const struct tgsi_full_declaration *decl)
1983 {
1984 LLVMValueRef value = 0;
1985
1986 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
1987
1988 switch (decl->Semantic.Name) {
1989 case TGSI_SEMANTIC_INSTANCEID:
1990 value = ctx->abi.instance_id;
1991 break;
1992
1993 case TGSI_SEMANTIC_VERTEXID:
1994 value = LLVMBuildAdd(ctx->ac.builder,
1995 ctx->abi.vertex_id,
1996 ctx->abi.base_vertex, "");
1997 break;
1998
1999 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2000 /* Unused. Clarify the meaning in indexed vs. non-indexed
2001 * draws if this is ever used again. */
2002 assert(false);
2003 break;
2004
2005 case TGSI_SEMANTIC_BASEVERTEX:
2006 {
2007 /* For non-indexed draws, the base vertex set by the driver
2008 * (for direct draws) or the CP (for indirect draws) is the
2009 * first vertex ID, but GLSL expects 0 to be returned.
2010 */
2011 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn, ctx->param_vs_state_bits);
2012 LLVMValueRef indexed;
2013
2014 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
2015 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
2016
2017 value = LLVMBuildSelect(ctx->ac.builder, indexed,
2018 ctx->abi.base_vertex, ctx->i32_0, "");
2019 break;
2020 }
2021
2022 case TGSI_SEMANTIC_BASEINSTANCE:
2023 value = ctx->abi.start_instance;
2024 break;
2025
2026 case TGSI_SEMANTIC_DRAWID:
2027 value = ctx->abi.draw_id;
2028 break;
2029
2030 case TGSI_SEMANTIC_INVOCATIONID:
2031 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2032 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2033 else if (ctx->type == PIPE_SHADER_GEOMETRY)
2034 value = ctx->abi.gs_invocation_id;
2035 else
2036 assert(!"INVOCATIONID not implemented");
2037 break;
2038
2039 case TGSI_SEMANTIC_POSITION:
2040 {
2041 LLVMValueRef pos[4] = {
2042 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2043 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2044 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2045 lp_build_emit_llvm_unary(&ctx->bld_base, TGSI_OPCODE_RCP,
2046 LLVMGetParam(ctx->main_fn,
2047 SI_PARAM_POS_W_FLOAT)),
2048 };
2049 value = lp_build_gather_values(&ctx->gallivm, pos, 4);
2050 break;
2051 }
2052
2053 case TGSI_SEMANTIC_FACE:
2054 value = ctx->abi.front_face;
2055 break;
2056
2057 case TGSI_SEMANTIC_SAMPLEID:
2058 value = get_sample_id(ctx);
2059 break;
2060
2061 case TGSI_SEMANTIC_SAMPLEPOS: {
2062 LLVMValueRef pos[4] = {
2063 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2064 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2065 LLVMConstReal(ctx->f32, 0),
2066 LLVMConstReal(ctx->f32, 0)
2067 };
2068 pos[0] = lp_build_emit_llvm_unary(&ctx->bld_base,
2069 TGSI_OPCODE_FRC, pos[0]);
2070 pos[1] = lp_build_emit_llvm_unary(&ctx->bld_base,
2071 TGSI_OPCODE_FRC, pos[1]);
2072 value = lp_build_gather_values(&ctx->gallivm, pos, 4);
2073 break;
2074 }
2075
2076 case TGSI_SEMANTIC_SAMPLEMASK:
2077 /* This can only occur with the OpenGL Core profile, which
2078 * doesn't support smoothing.
2079 */
2080 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2081 break;
2082
2083 case TGSI_SEMANTIC_TESSCOORD:
2084 value = si_load_tess_coord(&ctx->abi, NULL, 4);
2085 break;
2086
2087 case TGSI_SEMANTIC_VERTICESIN:
2088 value = si_load_patch_vertices_in(&ctx->abi);
2089 break;
2090
2091 case TGSI_SEMANTIC_TESSINNER:
2092 case TGSI_SEMANTIC_TESSOUTER:
2093 value = load_tess_level(ctx, decl->Semantic.Name);
2094 break;
2095
2096 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2097 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2098 {
2099 LLVMValueRef buf, slot, val[4];
2100 int i, offset;
2101
2102 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2103 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2104 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2105 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2106
2107 for (i = 0; i < 4; i++)
2108 val[i] = buffer_load_const(ctx, buf,
2109 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2110 value = lp_build_gather_values(&ctx->gallivm, val, 4);
2111 break;
2112 }
2113
2114 case TGSI_SEMANTIC_PRIMID:
2115 value = get_primitive_id(ctx, 0);
2116 break;
2117
2118 case TGSI_SEMANTIC_GRID_SIZE:
2119 value = LLVMGetParam(ctx->main_fn, ctx->param_grid_size);
2120 break;
2121
2122 case TGSI_SEMANTIC_BLOCK_SIZE:
2123 {
2124 LLVMValueRef values[3];
2125 unsigned i;
2126 unsigned *properties = ctx->shader->selector->info.properties;
2127
2128 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
2129 unsigned sizes[3] = {
2130 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
2131 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
2132 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
2133 };
2134
2135 for (i = 0; i < 3; ++i)
2136 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
2137
2138 value = lp_build_gather_values(&ctx->gallivm, values, 3);
2139 } else {
2140 value = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
2141 }
2142 break;
2143 }
2144
2145 case TGSI_SEMANTIC_BLOCK_ID:
2146 {
2147 LLVMValueRef values[3];
2148
2149 for (int i = 0; i < 3; i++) {
2150 values[i] = ctx->i32_0;
2151 if (ctx->param_block_id[i] >= 0) {
2152 values[i] = LLVMGetParam(ctx->main_fn,
2153 ctx->param_block_id[i]);
2154 }
2155 }
2156 value = lp_build_gather_values(&ctx->gallivm, values, 3);
2157 break;
2158 }
2159
2160 case TGSI_SEMANTIC_THREAD_ID:
2161 value = LLVMGetParam(ctx->main_fn, ctx->param_thread_id);
2162 break;
2163
2164 case TGSI_SEMANTIC_HELPER_INVOCATION:
2165 value = lp_build_intrinsic(ctx->ac.builder,
2166 "llvm.amdgcn.ps.live",
2167 ctx->i1, NULL, 0,
2168 LP_FUNC_ATTR_READNONE);
2169 value = LLVMBuildNot(ctx->ac.builder, value, "");
2170 value = LLVMBuildSExt(ctx->ac.builder, value, ctx->i32, "");
2171 break;
2172
2173 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2174 value = LLVMConstInt(ctx->i32, 64, 0);
2175 break;
2176
2177 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2178 value = ac_get_thread_id(&ctx->ac);
2179 break;
2180
2181 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2182 {
2183 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2184 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2185 value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2186 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2187 break;
2188 }
2189
2190 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2191 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2192 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2193 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2194 {
2195 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2196 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2197 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2198 /* All bits set except LSB */
2199 value = LLVMConstInt(ctx->i64, -2, 0);
2200 } else {
2201 /* All bits set */
2202 value = LLVMConstInt(ctx->i64, -1, 0);
2203 }
2204 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2205 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2206 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2207 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2208 value = LLVMBuildNot(ctx->ac.builder, value, "");
2209 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2210 break;
2211 }
2212
2213 default:
2214 assert(!"unknown system value");
2215 return;
2216 }
2217
2218 ctx->system_values[index] = value;
2219 }
2220
si_declare_compute_memory(struct si_shader_context * ctx,const struct tgsi_full_declaration * decl)2221 void si_declare_compute_memory(struct si_shader_context *ctx,
2222 const struct tgsi_full_declaration *decl)
2223 {
2224 struct si_shader_selector *sel = ctx->shader->selector;
2225
2226 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, LOCAL_ADDR_SPACE);
2227 LLVMValueRef var;
2228
2229 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2230 assert(decl->Range.First == decl->Range.Last);
2231 assert(!ctx->ac.lds);
2232
2233 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2234 LLVMArrayType(ctx->i8, sel->local_size),
2235 "compute_lds",
2236 LOCAL_ADDR_SPACE);
2237 LLVMSetAlignment(var, 4);
2238
2239 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2240 }
2241
load_const_buffer_desc(struct si_shader_context * ctx,int i)2242 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2243 {
2244 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2245 ctx->param_const_and_shader_buffers);
2246
2247 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2248 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2249 }
2250
load_ubo(struct ac_shader_abi * abi,LLVMValueRef index)2251 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2252 {
2253 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2254 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2255
2256 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2257 index = LLVMBuildAdd(ctx->ac.builder, index,
2258 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2259
2260 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2261 }
2262
2263 static LLVMValueRef
load_ssbo(struct ac_shader_abi * abi,LLVMValueRef index,bool write)2264 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2265 {
2266 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2267 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2268 ctx->param_const_and_shader_buffers);
2269
2270 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2271 index = LLVMBuildSub(ctx->ac.builder,
2272 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2273 index, "");
2274
2275 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2276 }
2277
fetch_constant(struct lp_build_tgsi_context * bld_base,const struct tgsi_full_src_register * reg,enum tgsi_opcode_type type,unsigned swizzle)2278 static LLVMValueRef fetch_constant(
2279 struct lp_build_tgsi_context *bld_base,
2280 const struct tgsi_full_src_register *reg,
2281 enum tgsi_opcode_type type,
2282 unsigned swizzle)
2283 {
2284 struct si_shader_context *ctx = si_shader_context(bld_base);
2285 struct si_shader_selector *sel = ctx->shader->selector;
2286 const struct tgsi_ind_register *ireg = ®->Indirect;
2287 unsigned buf, idx;
2288
2289 LLVMValueRef addr, bufp;
2290
2291 if (swizzle == LP_CHAN_ALL) {
2292 unsigned chan;
2293 LLVMValueRef values[4];
2294 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2295 values[chan] = fetch_constant(bld_base, reg, type, chan);
2296
2297 return lp_build_gather_values(&ctx->gallivm, values, 4);
2298 }
2299
2300 /* Split 64-bit loads. */
2301 if (tgsi_type_is_64bit(type)) {
2302 LLVMValueRef lo, hi;
2303
2304 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2305 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle + 1);
2306 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2307 lo, hi);
2308 }
2309
2310 idx = reg->Register.Index * 4 + swizzle;
2311 if (reg->Register.Indirect) {
2312 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2313 } else {
2314 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2315 }
2316
2317 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2318 if (sel->info.const_buffers_declared == 1 &&
2319 sel->info.shader_buffers_declared == 0) {
2320 LLVMValueRef ptr =
2321 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2322
2323 /* This enables use of s_load_dword and flat_load_dword for const buffer 0
2324 * loads, and up to x4 load opcode merging. However, it leads to horrible
2325 * code reducing SIMD wave occupancy from 8 to 2 in many cases.
2326 *
2327 * Using s_buffer_load_dword (x1) seems to be the best option right now.
2328 *
2329 * LLVM 5.0 on SI doesn't insert a required s_nop between SALU setting
2330 * a descriptor and s_buffer_load_dword using it, so we can't expand
2331 * the pointer into a full descriptor like below. We have to use
2332 * s_load_dword instead. The only case when LLVM 5.0 would select
2333 * s_buffer_load_dword (that we have to prevent) is when we use use
2334 * a literal offset where we don't need bounds checking.
2335 */
2336 if (ctx->screen->info.chip_class == SI &&
2337 HAVE_LLVM < 0x0600 &&
2338 !reg->Register.Indirect) {
2339 addr = LLVMBuildLShr(ctx->ac.builder, addr, LLVMConstInt(ctx->i32, 2, 0), "");
2340 LLVMValueRef result = ac_build_load_invariant(&ctx->ac, ptr, addr);
2341 return bitcast(bld_base, type, result);
2342 }
2343
2344 /* Do the bounds checking with a descriptor, because
2345 * doing computation and manual bounds checking of 64-bit
2346 * addresses generates horrible VALU code with very high
2347 * VGPR usage and very low SIMD occupancy.
2348 */
2349 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->i64, "");
2350 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->v2i32, "");
2351
2352 LLVMValueRef desc_elems[] = {
2353 LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_0, ""),
2354 LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_1, ""),
2355 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2356 LLVMConstInt(ctx->i32,
2357 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2358 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2359 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2360 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2361 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2362 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0)
2363 };
2364 LLVMValueRef desc = ac_build_gather_values(&ctx->ac, desc_elems, 4);
2365 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2366 return bitcast(bld_base, type, result);
2367 }
2368
2369 assert(reg->Register.Dimension);
2370 buf = reg->Dimension.Index;
2371
2372 if (reg->Dimension.Indirect) {
2373 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2374 LLVMValueRef index;
2375 index = si_get_bounded_indirect_index(ctx, ®->DimIndirect,
2376 reg->Dimension.Index,
2377 ctx->num_const_buffers);
2378 index = LLVMBuildAdd(ctx->ac.builder, index,
2379 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2380 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2381 } else
2382 bufp = load_const_buffer_desc(ctx, buf);
2383
2384 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2385 }
2386
2387 /* Upper 16 bits must be zero. */
si_llvm_pack_two_int16(struct si_shader_context * ctx,LLVMValueRef val[2])2388 static LLVMValueRef si_llvm_pack_two_int16(struct si_shader_context *ctx,
2389 LLVMValueRef val[2])
2390 {
2391 return LLVMBuildOr(ctx->ac.builder, val[0],
2392 LLVMBuildShl(ctx->ac.builder, val[1],
2393 LLVMConstInt(ctx->i32, 16, 0),
2394 ""), "");
2395 }
2396
2397 /* Upper 16 bits are ignored and will be dropped. */
si_llvm_pack_two_int32_as_int16(struct si_shader_context * ctx,LLVMValueRef val[2])2398 static LLVMValueRef si_llvm_pack_two_int32_as_int16(struct si_shader_context *ctx,
2399 LLVMValueRef val[2])
2400 {
2401 LLVMValueRef v[2] = {
2402 LLVMBuildAnd(ctx->ac.builder, val[0],
2403 LLVMConstInt(ctx->i32, 0xffff, 0), ""),
2404 val[1],
2405 };
2406 return si_llvm_pack_two_int16(ctx, v);
2407 }
2408
2409 /* Initialize arguments for the shader export intrinsic */
si_llvm_init_export_args(struct si_shader_context * ctx,LLVMValueRef * values,unsigned target,struct ac_export_args * args)2410 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2411 LLVMValueRef *values,
2412 unsigned target,
2413 struct ac_export_args *args)
2414 {
2415 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2416 LLVMBuilderRef builder = ctx->ac.builder;
2417 LLVMValueRef val[4];
2418 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2419 unsigned chan;
2420 bool is_int8, is_int10;
2421
2422 /* Default is 0xf. Adjusted below depending on the format. */
2423 args->enabled_channels = 0xf; /* writemask */
2424
2425 /* Specify whether the EXEC mask represents the valid mask */
2426 args->valid_mask = 0;
2427
2428 /* Specify whether this is the last export */
2429 args->done = 0;
2430
2431 /* Specify the target we are exporting */
2432 args->target = target;
2433
2434 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2435 const struct si_shader_key *key = &ctx->shader->key;
2436 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2437 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2438
2439 assert(cbuf >= 0 && cbuf < 8);
2440 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2441 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2442 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2443 }
2444
2445 args->compr = false;
2446 args->out[0] = f32undef;
2447 args->out[1] = f32undef;
2448 args->out[2] = f32undef;
2449 args->out[3] = f32undef;
2450
2451 switch (spi_shader_col_format) {
2452 case V_028714_SPI_SHADER_ZERO:
2453 args->enabled_channels = 0; /* writemask */
2454 args->target = V_008DFC_SQ_EXP_NULL;
2455 break;
2456
2457 case V_028714_SPI_SHADER_32_R:
2458 args->enabled_channels = 1; /* writemask */
2459 args->out[0] = values[0];
2460 break;
2461
2462 case V_028714_SPI_SHADER_32_GR:
2463 args->enabled_channels = 0x3; /* writemask */
2464 args->out[0] = values[0];
2465 args->out[1] = values[1];
2466 break;
2467
2468 case V_028714_SPI_SHADER_32_AR:
2469 args->enabled_channels = 0x9; /* writemask */
2470 args->out[0] = values[0];
2471 args->out[3] = values[3];
2472 break;
2473
2474 case V_028714_SPI_SHADER_FP16_ABGR:
2475 args->compr = 1; /* COMPR flag */
2476
2477 for (chan = 0; chan < 2; chan++) {
2478 LLVMValueRef pack_args[2] = {
2479 values[2 * chan],
2480 values[2 * chan + 1]
2481 };
2482 LLVMValueRef packed;
2483
2484 packed = ac_build_cvt_pkrtz_f16(&ctx->ac, pack_args);
2485 args->out[chan] = ac_to_float(&ctx->ac, packed);
2486 }
2487 break;
2488
2489 case V_028714_SPI_SHADER_UNORM16_ABGR:
2490 for (chan = 0; chan < 4; chan++) {
2491 val[chan] = ac_build_clamp(&ctx->ac, values[chan]);
2492 val[chan] = LLVMBuildFMul(builder, val[chan],
2493 LLVMConstReal(ctx->f32, 65535), "");
2494 val[chan] = LLVMBuildFAdd(builder, val[chan],
2495 LLVMConstReal(ctx->f32, 0.5), "");
2496 val[chan] = LLVMBuildFPToUI(builder, val[chan],
2497 ctx->i32, "");
2498 }
2499
2500 args->compr = 1; /* COMPR flag */
2501 args->out[0] = ac_to_float(&ctx->ac, si_llvm_pack_two_int16(ctx, val));
2502 args->out[1] = ac_to_float(&ctx->ac, si_llvm_pack_two_int16(ctx, val+2));
2503 break;
2504
2505 case V_028714_SPI_SHADER_SNORM16_ABGR:
2506 for (chan = 0; chan < 4; chan++) {
2507 /* Clamp between [-1, 1]. */
2508 val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base, TGSI_OPCODE_MIN,
2509 values[chan],
2510 LLVMConstReal(ctx->f32, 1));
2511 val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base, TGSI_OPCODE_MAX,
2512 val[chan],
2513 LLVMConstReal(ctx->f32, -1));
2514 /* Convert to a signed integer in [-32767, 32767]. */
2515 val[chan] = LLVMBuildFMul(builder, val[chan],
2516 LLVMConstReal(ctx->f32, 32767), "");
2517 /* If positive, add 0.5, else add -0.5. */
2518 val[chan] = LLVMBuildFAdd(builder, val[chan],
2519 LLVMBuildSelect(builder,
2520 LLVMBuildFCmp(builder, LLVMRealOGE,
2521 val[chan], ctx->ac.f32_0, ""),
2522 LLVMConstReal(ctx->f32, 0.5),
2523 LLVMConstReal(ctx->f32, -0.5), ""), "");
2524 val[chan] = LLVMBuildFPToSI(builder, val[chan], ctx->i32, "");
2525 }
2526
2527 args->compr = 1; /* COMPR flag */
2528 args->out[0] = ac_to_float(&ctx->ac, si_llvm_pack_two_int32_as_int16(ctx, val));
2529 args->out[1] = ac_to_float(&ctx->ac, si_llvm_pack_two_int32_as_int16(ctx, val+2));
2530 break;
2531
2532 case V_028714_SPI_SHADER_UINT16_ABGR: {
2533 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
2534 is_int8 ? 255 : is_int10 ? 1023 : 65535, 0);
2535 LLVMValueRef max_alpha =
2536 !is_int10 ? max_rgb : LLVMConstInt(ctx->i32, 3, 0);
2537
2538 /* Clamp. */
2539 for (chan = 0; chan < 4; chan++) {
2540 val[chan] = ac_to_integer(&ctx->ac, values[chan]);
2541 val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base, TGSI_OPCODE_UMIN,
2542 val[chan],
2543 chan == 3 ? max_alpha : max_rgb);
2544 }
2545
2546 args->compr = 1; /* COMPR flag */
2547 args->out[0] = ac_to_float(&ctx->ac, si_llvm_pack_two_int16(ctx, val));
2548 args->out[1] = ac_to_float(&ctx->ac, si_llvm_pack_two_int16(ctx, val+2));
2549 break;
2550 }
2551
2552 case V_028714_SPI_SHADER_SINT16_ABGR: {
2553 LLVMValueRef max_rgb = LLVMConstInt(ctx->i32,
2554 is_int8 ? 127 : is_int10 ? 511 : 32767, 0);
2555 LLVMValueRef min_rgb = LLVMConstInt(ctx->i32,
2556 is_int8 ? -128 : is_int10 ? -512 : -32768, 0);
2557 LLVMValueRef max_alpha =
2558 !is_int10 ? max_rgb : ctx->i32_1;
2559 LLVMValueRef min_alpha =
2560 !is_int10 ? min_rgb : LLVMConstInt(ctx->i32, -2, 0);
2561
2562 /* Clamp. */
2563 for (chan = 0; chan < 4; chan++) {
2564 val[chan] = ac_to_integer(&ctx->ac, values[chan]);
2565 val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base,
2566 TGSI_OPCODE_IMIN,
2567 val[chan], chan == 3 ? max_alpha : max_rgb);
2568 val[chan] = lp_build_emit_llvm_binary(&ctx->bld_base,
2569 TGSI_OPCODE_IMAX,
2570 val[chan], chan == 3 ? min_alpha : min_rgb);
2571 }
2572
2573 args->compr = 1; /* COMPR flag */
2574 args->out[0] = ac_to_float(&ctx->ac, si_llvm_pack_two_int32_as_int16(ctx, val));
2575 args->out[1] = ac_to_float(&ctx->ac, si_llvm_pack_two_int32_as_int16(ctx, val+2));
2576 break;
2577 }
2578
2579 case V_028714_SPI_SHADER_32_ABGR:
2580 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2581 break;
2582 }
2583 }
2584
si_alpha_test(struct lp_build_tgsi_context * bld_base,LLVMValueRef alpha)2585 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2586 LLVMValueRef alpha)
2587 {
2588 struct si_shader_context *ctx = si_shader_context(bld_base);
2589
2590 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2591 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2592 [PIPE_FUNC_LESS] = LLVMRealOLT,
2593 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2594 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2595 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2596 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2597 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2598 };
2599 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2600 assert(cond);
2601
2602 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2603 SI_PARAM_ALPHA_REF);
2604 LLVMValueRef alpha_pass =
2605 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2606 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2607 } else {
2608 ac_build_kill_if_false(&ctx->ac, LLVMConstInt(ctx->i1, 0, 0));
2609 }
2610 }
2611
si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context * bld_base,LLVMValueRef alpha,unsigned samplemask_param)2612 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2613 LLVMValueRef alpha,
2614 unsigned samplemask_param)
2615 {
2616 struct si_shader_context *ctx = si_shader_context(bld_base);
2617 LLVMValueRef coverage;
2618
2619 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2620 coverage = LLVMGetParam(ctx->main_fn,
2621 samplemask_param);
2622 coverage = ac_to_integer(&ctx->ac, coverage);
2623
2624 coverage = lp_build_intrinsic(ctx->ac.builder, "llvm.ctpop.i32",
2625 ctx->i32,
2626 &coverage, 1, LP_FUNC_ATTR_READNONE);
2627
2628 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2629 ctx->f32, "");
2630
2631 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2632 LLVMConstReal(ctx->f32,
2633 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2634
2635 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2636 }
2637
si_llvm_emit_clipvertex(struct si_shader_context * ctx,struct ac_export_args * pos,LLVMValueRef * out_elts)2638 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2639 struct ac_export_args *pos, LLVMValueRef *out_elts)
2640 {
2641 unsigned reg_index;
2642 unsigned chan;
2643 unsigned const_chan;
2644 LLVMValueRef base_elt;
2645 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2646 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2647 SI_VS_CONST_CLIP_PLANES, 0);
2648 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2649
2650 for (reg_index = 0; reg_index < 2; reg_index ++) {
2651 struct ac_export_args *args = &pos[2 + reg_index];
2652
2653 args->out[0] =
2654 args->out[1] =
2655 args->out[2] =
2656 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2657
2658 /* Compute dot products of position and user clip plane vectors */
2659 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2660 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2661 LLVMValueRef addr =
2662 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2663 const_chan) * 4, 0);
2664 base_elt = buffer_load_const(ctx, const_resource,
2665 addr);
2666 args->out[chan] =
2667 lp_build_add(&ctx->bld_base.base, args->out[chan],
2668 lp_build_mul(&ctx->bld_base.base, base_elt,
2669 out_elts[const_chan]));
2670 }
2671 }
2672
2673 args->enabled_channels = 0xf;
2674 args->valid_mask = 0;
2675 args->done = 0;
2676 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2677 args->compr = 0;
2678 }
2679 }
2680
si_dump_streamout(struct pipe_stream_output_info * so)2681 static void si_dump_streamout(struct pipe_stream_output_info *so)
2682 {
2683 unsigned i;
2684
2685 if (so->num_outputs)
2686 fprintf(stderr, "STREAMOUT\n");
2687
2688 for (i = 0; i < so->num_outputs; i++) {
2689 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2690 so->output[i].start_component;
2691 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2692 i, so->output[i].output_buffer,
2693 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2694 so->output[i].register_index,
2695 mask & 1 ? "x" : "",
2696 mask & 2 ? "y" : "",
2697 mask & 4 ? "z" : "",
2698 mask & 8 ? "w" : "");
2699 }
2700 }
2701
emit_streamout_output(struct si_shader_context * ctx,LLVMValueRef const * so_buffers,LLVMValueRef const * so_write_offsets,struct pipe_stream_output * stream_out,struct si_shader_output_values * shader_out)2702 static void emit_streamout_output(struct si_shader_context *ctx,
2703 LLVMValueRef const *so_buffers,
2704 LLVMValueRef const *so_write_offsets,
2705 struct pipe_stream_output *stream_out,
2706 struct si_shader_output_values *shader_out)
2707 {
2708 unsigned buf_idx = stream_out->output_buffer;
2709 unsigned start = stream_out->start_component;
2710 unsigned num_comps = stream_out->num_components;
2711 LLVMValueRef out[4];
2712
2713 assert(num_comps && num_comps <= 4);
2714 if (!num_comps || num_comps > 4)
2715 return;
2716
2717 /* Load the output as int. */
2718 for (int j = 0; j < num_comps; j++) {
2719 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2720
2721 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2722 }
2723
2724 /* Pack the output. */
2725 LLVMValueRef vdata = NULL;
2726
2727 switch (num_comps) {
2728 case 1: /* as i32 */
2729 vdata = out[0];
2730 break;
2731 case 2: /* as v2i32 */
2732 case 3: /* as v4i32 (aligned to 4) */
2733 case 4: /* as v4i32 */
2734 vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
2735 for (int j = 0; j < num_comps; j++) {
2736 vdata = LLVMBuildInsertElement(ctx->ac.builder, vdata, out[j],
2737 LLVMConstInt(ctx->i32, j, 0), "");
2738 }
2739 break;
2740 }
2741
2742 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2743 vdata, num_comps,
2744 so_write_offsets[buf_idx],
2745 ctx->i32_0,
2746 stream_out->dst_offset * 4, 1, 1, true, false);
2747 }
2748
2749 /**
2750 * Write streamout data to buffers for vertex stream @p stream (different
2751 * vertex streams can occur for GS copy shaders).
2752 */
si_llvm_emit_streamout(struct si_shader_context * ctx,struct si_shader_output_values * outputs,unsigned noutput,unsigned stream)2753 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2754 struct si_shader_output_values *outputs,
2755 unsigned noutput, unsigned stream)
2756 {
2757 struct si_shader_selector *sel = ctx->shader->selector;
2758 struct pipe_stream_output_info *so = &sel->so;
2759 LLVMBuilderRef builder = ctx->ac.builder;
2760 int i;
2761 struct lp_build_if_state if_ctx;
2762
2763 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2764 LLVMValueRef so_vtx_count =
2765 unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2766
2767 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2768
2769 /* can_emit = tid < so_vtx_count; */
2770 LLVMValueRef can_emit =
2771 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2772
2773 /* Emit the streamout code conditionally. This actually avoids
2774 * out-of-bounds buffer access. The hw tells us via the SGPR
2775 * (so_vtx_count) which threads are allowed to emit streamout data. */
2776 lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2777 {
2778 /* The buffer offset is computed as follows:
2779 * ByteOffset = streamout_offset[buffer_id]*4 +
2780 * (streamout_write_index + thread_id)*stride[buffer_id] +
2781 * attrib_offset
2782 */
2783
2784 LLVMValueRef so_write_index =
2785 LLVMGetParam(ctx->main_fn,
2786 ctx->param_streamout_write_index);
2787
2788 /* Compute (streamout_write_index + thread_id). */
2789 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2790
2791 /* Load the descriptor and compute the write offset for each
2792 * enabled buffer. */
2793 LLVMValueRef so_write_offset[4] = {};
2794 LLVMValueRef so_buffers[4];
2795 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2796 ctx->param_rw_buffers);
2797
2798 for (i = 0; i < 4; i++) {
2799 if (!so->stride[i])
2800 continue;
2801
2802 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2803 SI_VS_STREAMOUT_BUF0 + i, 0);
2804
2805 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2806
2807 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2808 ctx->param_streamout_offset[i]);
2809 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2810
2811 so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
2812 LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
2813 so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
2814 }
2815
2816 /* Write streamout data. */
2817 for (i = 0; i < so->num_outputs; i++) {
2818 unsigned reg = so->output[i].register_index;
2819
2820 if (reg >= noutput)
2821 continue;
2822
2823 if (stream != so->output[i].stream)
2824 continue;
2825
2826 emit_streamout_output(ctx, so_buffers, so_write_offset,
2827 &so->output[i], &outputs[reg]);
2828 }
2829 }
2830 lp_build_endif(&if_ctx);
2831 }
2832
si_export_param(struct si_shader_context * ctx,unsigned index,LLVMValueRef * values)2833 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2834 LLVMValueRef *values)
2835 {
2836 struct ac_export_args args;
2837
2838 si_llvm_init_export_args(ctx, values,
2839 V_008DFC_SQ_EXP_PARAM + index, &args);
2840 ac_build_export(&ctx->ac, &args);
2841 }
2842
si_build_param_exports(struct si_shader_context * ctx,struct si_shader_output_values * outputs,unsigned noutput)2843 static void si_build_param_exports(struct si_shader_context *ctx,
2844 struct si_shader_output_values *outputs,
2845 unsigned noutput)
2846 {
2847 struct si_shader *shader = ctx->shader;
2848 unsigned param_count = 0;
2849
2850 for (unsigned i = 0; i < noutput; i++) {
2851 unsigned semantic_name = outputs[i].semantic_name;
2852 unsigned semantic_index = outputs[i].semantic_index;
2853
2854 if (outputs[i].vertex_stream[0] != 0 &&
2855 outputs[i].vertex_stream[1] != 0 &&
2856 outputs[i].vertex_stream[2] != 0 &&
2857 outputs[i].vertex_stream[3] != 0)
2858 continue;
2859
2860 switch (semantic_name) {
2861 case TGSI_SEMANTIC_LAYER:
2862 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2863 case TGSI_SEMANTIC_CLIPDIST:
2864 case TGSI_SEMANTIC_COLOR:
2865 case TGSI_SEMANTIC_BCOLOR:
2866 case TGSI_SEMANTIC_PRIMID:
2867 case TGSI_SEMANTIC_FOG:
2868 case TGSI_SEMANTIC_TEXCOORD:
2869 case TGSI_SEMANTIC_GENERIC:
2870 break;
2871 default:
2872 continue;
2873 }
2874
2875 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2876 semantic_index < SI_MAX_IO_GENERIC) &&
2877 shader->key.opt.kill_outputs &
2878 (1ull << si_shader_io_get_unique_index(semantic_name, semantic_index)))
2879 continue;
2880
2881 si_export_param(ctx, param_count, outputs[i].values);
2882
2883 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2884 shader->info.vs_output_param_offset[i] = param_count++;
2885 }
2886
2887 shader->info.nr_param_exports = param_count;
2888 }
2889
2890 /* Generate export instructions for hardware VS shader stage */
si_llvm_export_vs(struct si_shader_context * ctx,struct si_shader_output_values * outputs,unsigned noutput)2891 static void si_llvm_export_vs(struct si_shader_context *ctx,
2892 struct si_shader_output_values *outputs,
2893 unsigned noutput)
2894 {
2895 struct si_shader *shader = ctx->shader;
2896 struct ac_export_args pos_args[4] = {};
2897 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2898 unsigned pos_idx;
2899 int i;
2900
2901 /* Build position exports. */
2902 for (i = 0; i < noutput; i++) {
2903 switch (outputs[i].semantic_name) {
2904 case TGSI_SEMANTIC_POSITION:
2905 si_llvm_init_export_args(ctx, outputs[i].values,
2906 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2907 break;
2908 case TGSI_SEMANTIC_PSIZE:
2909 psize_value = outputs[i].values[0];
2910 break;
2911 case TGSI_SEMANTIC_LAYER:
2912 layer_value = outputs[i].values[0];
2913 break;
2914 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2915 viewport_index_value = outputs[i].values[0];
2916 break;
2917 case TGSI_SEMANTIC_EDGEFLAG:
2918 edgeflag_value = outputs[i].values[0];
2919 break;
2920 case TGSI_SEMANTIC_CLIPDIST:
2921 if (!shader->key.opt.clip_disable) {
2922 unsigned index = 2 + outputs[i].semantic_index;
2923 si_llvm_init_export_args(ctx, outputs[i].values,
2924 V_008DFC_SQ_EXP_POS + index,
2925 &pos_args[index]);
2926 }
2927 break;
2928 case TGSI_SEMANTIC_CLIPVERTEX:
2929 if (!shader->key.opt.clip_disable) {
2930 si_llvm_emit_clipvertex(ctx, pos_args,
2931 outputs[i].values);
2932 }
2933 break;
2934 }
2935 }
2936
2937 /* We need to add the position output manually if it's missing. */
2938 if (!pos_args[0].out[0]) {
2939 pos_args[0].enabled_channels = 0xf; /* writemask */
2940 pos_args[0].valid_mask = 0; /* EXEC mask */
2941 pos_args[0].done = 0; /* last export? */
2942 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2943 pos_args[0].compr = 0; /* COMPR flag */
2944 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2945 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2946 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2947 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2948 }
2949
2950 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2951 if (shader->selector->info.writes_psize ||
2952 shader->selector->info.writes_edgeflag ||
2953 shader->selector->info.writes_viewport_index ||
2954 shader->selector->info.writes_layer) {
2955 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2956 (shader->selector->info.writes_edgeflag << 1) |
2957 (shader->selector->info.writes_layer << 2);
2958
2959 pos_args[1].valid_mask = 0; /* EXEC mask */
2960 pos_args[1].done = 0; /* last export? */
2961 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
2962 pos_args[1].compr = 0; /* COMPR flag */
2963 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
2964 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
2965 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
2966 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
2967
2968 if (shader->selector->info.writes_psize)
2969 pos_args[1].out[0] = psize_value;
2970
2971 if (shader->selector->info.writes_edgeflag) {
2972 /* The output is a float, but the hw expects an integer
2973 * with the first bit containing the edge flag. */
2974 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
2975 edgeflag_value,
2976 ctx->i32, "");
2977 edgeflag_value = ac_build_umin(&ctx->ac,
2978 edgeflag_value,
2979 ctx->i32_1);
2980
2981 /* The LLVM intrinsic expects a float. */
2982 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
2983 }
2984
2985 if (ctx->screen->info.chip_class >= GFX9) {
2986 /* GFX9 has the layer in out.z[10:0] and the viewport
2987 * index in out.z[19:16].
2988 */
2989 if (shader->selector->info.writes_layer)
2990 pos_args[1].out[2] = layer_value;
2991
2992 if (shader->selector->info.writes_viewport_index) {
2993 LLVMValueRef v = viewport_index_value;
2994
2995 v = ac_to_integer(&ctx->ac, v);
2996 v = LLVMBuildShl(ctx->ac.builder, v,
2997 LLVMConstInt(ctx->i32, 16, 0), "");
2998 v = LLVMBuildOr(ctx->ac.builder, v,
2999 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3000 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3001 pos_args[1].enabled_channels |= 1 << 2;
3002 }
3003 } else {
3004 if (shader->selector->info.writes_layer)
3005 pos_args[1].out[2] = layer_value;
3006
3007 if (shader->selector->info.writes_viewport_index) {
3008 pos_args[1].out[3] = viewport_index_value;
3009 pos_args[1].enabled_channels |= 1 << 3;
3010 }
3011 }
3012 }
3013
3014 for (i = 0; i < 4; i++)
3015 if (pos_args[i].out[0])
3016 shader->info.nr_pos_exports++;
3017
3018 pos_idx = 0;
3019 for (i = 0; i < 4; i++) {
3020 if (!pos_args[i].out[0])
3021 continue;
3022
3023 /* Specify the target we are exporting */
3024 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3025
3026 if (pos_idx == shader->info.nr_pos_exports)
3027 /* Specify that this is the last export */
3028 pos_args[i].done = 1;
3029
3030 ac_build_export(&ctx->ac, &pos_args[i]);
3031 }
3032
3033 /* Build parameter exports. */
3034 si_build_param_exports(ctx, outputs, noutput);
3035 }
3036
3037 /**
3038 * Forward all outputs from the vertex shader to the TES. This is only used
3039 * for the fixed function TCS.
3040 */
si_copy_tcs_inputs(struct lp_build_tgsi_context * bld_base)3041 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3042 {
3043 struct si_shader_context *ctx = si_shader_context(bld_base);
3044 LLVMValueRef invocation_id, buffer, buffer_offset;
3045 LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
3046 uint64_t inputs;
3047
3048 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3049 buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
3050 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3051
3052 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3053 lds_vertex_offset = LLVMBuildMul(ctx->ac.builder, invocation_id,
3054 lds_vertex_stride, "");
3055 lds_base = get_tcs_in_current_patch_offset(ctx);
3056 lds_base = LLVMBuildAdd(ctx->ac.builder, lds_base, lds_vertex_offset, "");
3057
3058 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3059 while (inputs) {
3060 unsigned i = u_bit_scan64(&inputs);
3061
3062 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3063 LLVMConstInt(ctx->i32, 4 * i, 0),
3064 "");
3065
3066 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3067 get_rel_patch_id(ctx),
3068 invocation_id,
3069 LLVMConstInt(ctx->i32, i, 0));
3070
3071 LLVMValueRef value = lds_load(bld_base, ctx->ac.i32, ~0,
3072 lds_ptr);
3073
3074 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3075 buffer_offset, 0, 1, 0, true, false);
3076 }
3077 }
3078
si_write_tess_factors(struct lp_build_tgsi_context * bld_base,LLVMValueRef rel_patch_id,LLVMValueRef invocation_id,LLVMValueRef tcs_out_current_patch_data_offset,LLVMValueRef invoc0_tf_outer[4],LLVMValueRef invoc0_tf_inner[2])3079 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3080 LLVMValueRef rel_patch_id,
3081 LLVMValueRef invocation_id,
3082 LLVMValueRef tcs_out_current_patch_data_offset,
3083 LLVMValueRef invoc0_tf_outer[4],
3084 LLVMValueRef invoc0_tf_inner[2])
3085 {
3086 struct si_shader_context *ctx = si_shader_context(bld_base);
3087 struct si_shader *shader = ctx->shader;
3088 unsigned tess_inner_index, tess_outer_index;
3089 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3090 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3091 unsigned stride, outer_comps, inner_comps, i, offset;
3092 struct lp_build_if_state if_ctx, inner_if_ctx;
3093
3094 /* Add a barrier before loading tess factors from LDS. */
3095 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3096 si_llvm_emit_barrier(NULL, bld_base, NULL);
3097
3098 /* Do this only for invocation 0, because the tess levels are per-patch,
3099 * not per-vertex.
3100 *
3101 * This can't jump, because invocation 0 executes this. It should
3102 * at least mask out the loads and stores for other invocations.
3103 */
3104 lp_build_if(&if_ctx, &ctx->gallivm,
3105 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3106 invocation_id, ctx->i32_0, ""));
3107
3108 /* Determine the layout of one tess factor element in the buffer. */
3109 switch (shader->key.part.tcs.epilog.prim_mode) {
3110 case PIPE_PRIM_LINES:
3111 stride = 2; /* 2 dwords, 1 vec2 store */
3112 outer_comps = 2;
3113 inner_comps = 0;
3114 break;
3115 case PIPE_PRIM_TRIANGLES:
3116 stride = 4; /* 4 dwords, 1 vec4 store */
3117 outer_comps = 3;
3118 inner_comps = 1;
3119 break;
3120 case PIPE_PRIM_QUADS:
3121 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3122 outer_comps = 4;
3123 inner_comps = 2;
3124 break;
3125 default:
3126 assert(0);
3127 return;
3128 }
3129
3130 for (i = 0; i < 4; i++) {
3131 inner[i] = LLVMGetUndef(ctx->i32);
3132 outer[i] = LLVMGetUndef(ctx->i32);
3133 }
3134
3135 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3136 /* Tess factors are in VGPRs. */
3137 for (i = 0; i < outer_comps; i++)
3138 outer[i] = out[i] = invoc0_tf_outer[i];
3139 for (i = 0; i < inner_comps; i++)
3140 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3141 } else {
3142 /* Load tess_inner and tess_outer from LDS.
3143 * Any invocation can write them, so we can't get them from a temporary.
3144 */
3145 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3146 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3147
3148 lds_base = tcs_out_current_patch_data_offset;
3149 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3150 LLVMConstInt(ctx->i32,
3151 tess_inner_index * 4, 0), "");
3152 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3153 LLVMConstInt(ctx->i32,
3154 tess_outer_index * 4, 0), "");
3155
3156 for (i = 0; i < outer_comps; i++) {
3157 outer[i] = out[i] =
3158 lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3159 }
3160 for (i = 0; i < inner_comps; i++) {
3161 inner[i] = out[outer_comps+i] =
3162 lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3163 }
3164 }
3165
3166 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3167 /* For isolines, the hardware expects tess factors in the
3168 * reverse order from what GLSL / TGSI specify.
3169 */
3170 LLVMValueRef tmp = out[0];
3171 out[0] = out[1];
3172 out[1] = tmp;
3173 }
3174
3175 /* Convert the outputs to vectors for stores. */
3176 vec0 = lp_build_gather_values(&ctx->gallivm, out, MIN2(stride, 4));
3177 vec1 = NULL;
3178
3179 if (stride > 4)
3180 vec1 = lp_build_gather_values(&ctx->gallivm, out+4, stride - 4);
3181
3182 /* Get the buffer. */
3183 buffer = desc_from_addr_base64k(ctx, ctx->param_tcs_factor_addr_base64k);
3184
3185 /* Get the offset. */
3186 tf_base = LLVMGetParam(ctx->main_fn,
3187 ctx->param_tcs_factor_offset);
3188 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3189 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3190
3191 lp_build_if(&inner_if_ctx, &ctx->gallivm,
3192 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3193 rel_patch_id, ctx->i32_0, ""));
3194
3195 /* Store the dynamic HS control word. */
3196 offset = 0;
3197 if (ctx->screen->info.chip_class <= VI) {
3198 ac_build_buffer_store_dword(&ctx->ac, buffer,
3199 LLVMConstInt(ctx->i32, 0x80000000, 0),
3200 1, ctx->i32_0, tf_base,
3201 offset, 1, 0, true, false);
3202 offset += 4;
3203 }
3204
3205 lp_build_endif(&inner_if_ctx);
3206
3207 /* Store the tessellation factors. */
3208 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3209 MIN2(stride, 4), byteoffset, tf_base,
3210 offset, 1, 0, true, false);
3211 offset += 16;
3212 if (vec1)
3213 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3214 stride - 4, byteoffset, tf_base,
3215 offset, 1, 0, true, false);
3216
3217 /* Store the tess factors into the offchip buffer if TES reads them. */
3218 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3219 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3220 LLVMValueRef tf_inner_offset;
3221 unsigned param_outer, param_inner;
3222
3223 buf = desc_from_addr_base64k(ctx, ctx->param_tcs_offchip_addr_base64k);
3224 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3225
3226 param_outer = si_shader_io_get_unique_index_patch(
3227 TGSI_SEMANTIC_TESSOUTER, 0);
3228 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3229 LLVMConstInt(ctx->i32, param_outer, 0));
3230
3231 outer_vec = lp_build_gather_values(&ctx->gallivm, outer,
3232 util_next_power_of_two(outer_comps));
3233
3234 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3235 outer_comps, tf_outer_offset,
3236 base, 0, 1, 0, true, false);
3237 if (inner_comps) {
3238 param_inner = si_shader_io_get_unique_index_patch(
3239 TGSI_SEMANTIC_TESSINNER, 0);
3240 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3241 LLVMConstInt(ctx->i32, param_inner, 0));
3242
3243 inner_vec = inner_comps == 1 ? inner[0] :
3244 lp_build_gather_values(&ctx->gallivm, inner, inner_comps);
3245 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3246 inner_comps, tf_inner_offset,
3247 base, 0, 1, 0, true, false);
3248 }
3249 }
3250
3251 lp_build_endif(&if_ctx);
3252 }
3253
3254 static LLVMValueRef
si_insert_input_ret(struct si_shader_context * ctx,LLVMValueRef ret,unsigned param,unsigned return_index)3255 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3256 unsigned param, unsigned return_index)
3257 {
3258 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3259 LLVMGetParam(ctx->main_fn, param),
3260 return_index, "");
3261 }
3262
3263 static LLVMValueRef
si_insert_input_ret_float(struct si_shader_context * ctx,LLVMValueRef ret,unsigned param,unsigned return_index)3264 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3265 unsigned param, unsigned return_index)
3266 {
3267 LLVMBuilderRef builder = ctx->ac.builder;
3268 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3269
3270 return LLVMBuildInsertValue(builder, ret,
3271 ac_to_float(&ctx->ac, p),
3272 return_index, "");
3273 }
3274
3275 static LLVMValueRef
si_insert_input_ptr_as_2xi32(struct si_shader_context * ctx,LLVMValueRef ret,unsigned param,unsigned return_index)3276 si_insert_input_ptr_as_2xi32(struct si_shader_context *ctx, LLVMValueRef ret,
3277 unsigned param, unsigned return_index)
3278 {
3279 LLVMBuilderRef builder = ctx->ac.builder;
3280 LLVMValueRef ptr, lo, hi;
3281
3282 ptr = LLVMGetParam(ctx->main_fn, param);
3283 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i64, "");
3284 ptr = LLVMBuildBitCast(builder, ptr, ctx->v2i32, "");
3285 lo = LLVMBuildExtractElement(builder, ptr, ctx->i32_0, "");
3286 hi = LLVMBuildExtractElement(builder, ptr, ctx->i32_1, "");
3287 ret = LLVMBuildInsertValue(builder, ret, lo, return_index, "");
3288 return LLVMBuildInsertValue(builder, ret, hi, return_index + 1, "");
3289 }
3290
3291 /* This only writes the tessellation factor levels. */
si_llvm_emit_tcs_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3292 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3293 unsigned max_outputs,
3294 LLVMValueRef *addrs)
3295 {
3296 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3297 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3298 LLVMBuilderRef builder = ctx->ac.builder;
3299 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3300
3301 si_copy_tcs_inputs(bld_base);
3302
3303 rel_patch_id = get_rel_patch_id(ctx);
3304 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3305 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3306
3307 if (ctx->screen->info.chip_class >= GFX9) {
3308 LLVMBasicBlockRef blocks[2] = {
3309 LLVMGetInsertBlock(builder),
3310 ctx->merged_wrap_if_state.entry_block
3311 };
3312 LLVMValueRef values[2];
3313
3314 lp_build_endif(&ctx->merged_wrap_if_state);
3315
3316 values[0] = rel_patch_id;
3317 values[1] = LLVMGetUndef(ctx->i32);
3318 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3319
3320 values[0] = tf_lds_offset;
3321 values[1] = LLVMGetUndef(ctx->i32);
3322 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3323
3324 values[0] = invocation_id;
3325 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3326 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3327 }
3328
3329 /* Return epilog parameters from this function. */
3330 LLVMValueRef ret = ctx->return_value;
3331 unsigned vgpr;
3332
3333 if (ctx->screen->info.chip_class >= GFX9) {
3334 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3335 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3336 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_addr_base64k,
3337 8 + GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K);
3338 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_addr_base64k,
3339 8 + GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K);
3340 /* Tess offchip and tess factor offsets are at the beginning. */
3341 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3342 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3343 vgpr = 8 + GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K + 1;
3344 } else {
3345 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3346 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3347 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_addr_base64k,
3348 GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K);
3349 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_addr_base64k,
3350 GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K);
3351 /* Tess offchip and tess factor offsets are after user SGPRs. */
3352 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3353 GFX6_TCS_NUM_USER_SGPR);
3354 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3355 GFX6_TCS_NUM_USER_SGPR + 1);
3356 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3357 }
3358
3359 /* VGPRs */
3360 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3361 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3362 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3363
3364 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3365 * the invocation_id output does not alias the tcs_rel_ids input,
3366 * which saves a V_MOV on gfx9.
3367 */
3368 vgpr += 2;
3369
3370 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3371 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3372
3373 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3374 vgpr++; /* skip the tess factor LDS offset */
3375 for (unsigned i = 0; i < 6; i++) {
3376 LLVMValueRef value =
3377 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3378 value = ac_to_float(&ctx->ac, value);
3379 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3380 }
3381 } else {
3382 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3383 }
3384 ctx->return_value = ret;
3385 }
3386
3387 /* Pass TCS inputs from LS to TCS on GFX9. */
si_set_ls_return_value_for_tcs(struct si_shader_context * ctx)3388 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3389 {
3390 LLVMValueRef ret = ctx->return_value;
3391
3392 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3393 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3394 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3395 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3396
3397 ret = si_insert_input_ptr_as_2xi32(ctx, ret, ctx->param_rw_buffers,
3398 8 + SI_SGPR_RW_BUFFERS);
3399 ret = si_insert_input_ptr_as_2xi32(ctx, ret,
3400 ctx->param_bindless_samplers_and_images,
3401 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3402
3403 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3404 8 + SI_SGPR_VS_STATE_BITS);
3405 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3406 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3407 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3408 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3409 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3410 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3411 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_addr_base64k,
3412 8 + GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K);
3413 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_addr_base64k,
3414 8 + GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K);
3415
3416 unsigned desc_param = ctx->param_tcs_factor_addr_base64k + 2;
3417 ret = si_insert_input_ptr_as_2xi32(ctx, ret, desc_param,
3418 8 + GFX9_SGPR_TCS_CONST_AND_SHADER_BUFFERS);
3419 ret = si_insert_input_ptr_as_2xi32(ctx, ret, desc_param + 1,
3420 8 + GFX9_SGPR_TCS_SAMPLERS_AND_IMAGES);
3421
3422 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3423 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3424 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3425 vgpr++, "");
3426 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3427 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3428 vgpr++, "");
3429 ctx->return_value = ret;
3430 }
3431
3432 /* Pass GS inputs from ES to GS on GFX9. */
si_set_es_return_value_for_gs(struct si_shader_context * ctx)3433 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3434 {
3435 LLVMValueRef ret = ctx->return_value;
3436
3437 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3438 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3439 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3440
3441 ret = si_insert_input_ptr_as_2xi32(ctx, ret, ctx->param_rw_buffers,
3442 8 + SI_SGPR_RW_BUFFERS);
3443 ret = si_insert_input_ptr_as_2xi32(ctx, ret,
3444 ctx->param_bindless_samplers_and_images,
3445 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3446
3447 unsigned desc_param = ctx->param_vs_state_bits + 1;
3448 ret = si_insert_input_ptr_as_2xi32(ctx, ret, desc_param,
3449 8 + GFX9_SGPR_GS_CONST_AND_SHADER_BUFFERS);
3450 ret = si_insert_input_ptr_as_2xi32(ctx, ret, desc_param + 1,
3451 8 + GFX9_SGPR_GS_SAMPLERS_AND_IMAGES);
3452
3453 unsigned vgpr = 8 + GFX9_GS_NUM_USER_SGPR;
3454 for (unsigned i = 0; i < 5; i++) {
3455 unsigned param = ctx->param_gs_vtx01_offset + i;
3456 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3457 }
3458 ctx->return_value = ret;
3459 }
3460
si_llvm_emit_ls_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3461 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3462 unsigned max_outputs,
3463 LLVMValueRef *addrs)
3464 {
3465 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3466 struct si_shader *shader = ctx->shader;
3467 struct tgsi_shader_info *info = &shader->selector->info;
3468 unsigned i, chan;
3469 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3470 ctx->param_rel_auto_id);
3471 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3472 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3473 vertex_dw_stride, "");
3474
3475 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3476 * its inputs from it. */
3477 for (i = 0; i < info->num_outputs; i++) {
3478 unsigned name = info->output_semantic_name[i];
3479 unsigned index = info->output_semantic_index[i];
3480
3481 /* The ARB_shader_viewport_layer_array spec contains the
3482 * following issue:
3483 *
3484 * 2) What happens if gl_ViewportIndex or gl_Layer is
3485 * written in the vertex shader and a geometry shader is
3486 * present?
3487 *
3488 * RESOLVED: The value written by the last vertex processing
3489 * stage is used. If the last vertex processing stage
3490 * (vertex, tessellation evaluation or geometry) does not
3491 * statically assign to gl_ViewportIndex or gl_Layer, index
3492 * or layer zero is assumed.
3493 *
3494 * So writes to those outputs in VS-as-LS are simply ignored.
3495 */
3496 if (name == TGSI_SEMANTIC_LAYER ||
3497 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3498 continue;
3499
3500 int param = si_shader_io_get_unique_index(name, index);
3501 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3502 LLVMConstInt(ctx->i32, param * 4, 0), "");
3503
3504 for (chan = 0; chan < 4; chan++) {
3505 if (!(info->output_usagemask[i] & (1 << chan)))
3506 continue;
3507
3508 lds_store(ctx, chan, dw_addr,
3509 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3510 }
3511 }
3512
3513 if (ctx->screen->info.chip_class >= GFX9)
3514 si_set_ls_return_value_for_tcs(ctx);
3515 }
3516
si_llvm_emit_es_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3517 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3518 unsigned max_outputs,
3519 LLVMValueRef *addrs)
3520 {
3521 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3522 struct si_shader *es = ctx->shader;
3523 struct tgsi_shader_info *info = &es->selector->info;
3524 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3525 ctx->param_es2gs_offset);
3526 LLVMValueRef lds_base = NULL;
3527 unsigned chan;
3528 int i;
3529
3530 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3531 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3532 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3533 LLVMValueRef wave_idx = unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3534 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3535 LLVMBuildMul(ctx->ac.builder, wave_idx,
3536 LLVMConstInt(ctx->i32, 64, false), ""), "");
3537 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3538 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3539 }
3540
3541 for (i = 0; i < info->num_outputs; i++) {
3542 int param;
3543
3544 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3545 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3546 continue;
3547
3548 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3549 info->output_semantic_index[i]);
3550
3551 for (chan = 0; chan < 4; chan++) {
3552 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3553 out_val = ac_to_integer(&ctx->ac, out_val);
3554
3555 /* GFX9 has the ESGS ring in LDS. */
3556 if (ctx->screen->info.chip_class >= GFX9) {
3557 lds_store(ctx, param * 4 + chan, lds_base, out_val);
3558 continue;
3559 }
3560
3561 ac_build_buffer_store_dword(&ctx->ac,
3562 ctx->esgs_ring,
3563 out_val, 1, NULL, soffset,
3564 (4 * param + chan) * 4,
3565 1, 1, true, true);
3566 }
3567 }
3568
3569 if (ctx->screen->info.chip_class >= GFX9)
3570 si_set_es_return_value_for_gs(ctx);
3571 }
3572
si_get_gs_wave_id(struct si_shader_context * ctx)3573 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3574 {
3575 if (ctx->screen->info.chip_class >= GFX9)
3576 return unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3577 else
3578 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3579 }
3580
emit_gs_epilogue(struct si_shader_context * ctx)3581 static void emit_gs_epilogue(struct si_shader_context *ctx)
3582 {
3583 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3584 si_get_gs_wave_id(ctx));
3585
3586 if (ctx->screen->info.chip_class >= GFX9)
3587 lp_build_endif(&ctx->merged_wrap_if_state);
3588 }
3589
si_llvm_emit_gs_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3590 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3591 unsigned max_outputs,
3592 LLVMValueRef *addrs)
3593 {
3594 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3595 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3596
3597 assert(info->num_outputs <= max_outputs);
3598
3599 emit_gs_epilogue(ctx);
3600 }
3601
si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context * bld_base)3602 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3603 {
3604 struct si_shader_context *ctx = si_shader_context(bld_base);
3605 emit_gs_epilogue(ctx);
3606 }
3607
si_llvm_emit_vs_epilogue(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3608 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3609 unsigned max_outputs,
3610 LLVMValueRef *addrs)
3611 {
3612 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3613 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3614 struct si_shader_output_values *outputs = NULL;
3615 int i,j;
3616
3617 assert(!ctx->shader->is_gs_copy_shader);
3618 assert(info->num_outputs <= max_outputs);
3619
3620 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3621
3622 /* Vertex color clamping.
3623 *
3624 * This uses a state constant loaded in a user data SGPR and
3625 * an IF statement is added that clamps all colors if the constant
3626 * is true.
3627 */
3628 if (ctx->type == PIPE_SHADER_VERTEX) {
3629 struct lp_build_if_state if_ctx;
3630 LLVMValueRef cond = NULL;
3631 LLVMValueRef addr, val;
3632
3633 for (i = 0; i < info->num_outputs; i++) {
3634 if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
3635 info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
3636 continue;
3637
3638 /* We've found a color. */
3639 if (!cond) {
3640 /* The state is in the first bit of the user SGPR. */
3641 cond = LLVMGetParam(ctx->main_fn,
3642 ctx->param_vs_state_bits);
3643 cond = LLVMBuildTrunc(ctx->ac.builder, cond,
3644 ctx->i1, "");
3645 lp_build_if(&if_ctx, &ctx->gallivm, cond);
3646 }
3647
3648 for (j = 0; j < 4; j++) {
3649 addr = addrs[4 * i + j];
3650 val = LLVMBuildLoad(ctx->ac.builder, addr, "");
3651 val = ac_build_clamp(&ctx->ac, val);
3652 LLVMBuildStore(ctx->ac.builder, val, addr);
3653 }
3654 }
3655
3656 if (cond)
3657 lp_build_endif(&if_ctx);
3658 }
3659
3660 for (i = 0; i < info->num_outputs; i++) {
3661 outputs[i].semantic_name = info->output_semantic_name[i];
3662 outputs[i].semantic_index = info->output_semantic_index[i];
3663
3664 for (j = 0; j < 4; j++) {
3665 outputs[i].values[j] =
3666 LLVMBuildLoad(ctx->ac.builder,
3667 addrs[4 * i + j],
3668 "");
3669 outputs[i].vertex_stream[j] =
3670 (info->output_streams[i] >> (2 * j)) & 3;
3671 }
3672 }
3673
3674 if (ctx->shader->selector->so.num_outputs)
3675 si_llvm_emit_streamout(ctx, outputs, i, 0);
3676
3677 /* Export PrimitiveID. */
3678 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3679 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3680 outputs[i].semantic_index = 0;
3681 outputs[i].values[0] = ac_to_float(&ctx->ac, get_primitive_id(ctx, 0));
3682 for (j = 1; j < 4; j++)
3683 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3684
3685 memset(outputs[i].vertex_stream, 0,
3686 sizeof(outputs[i].vertex_stream));
3687 i++;
3688 }
3689
3690 si_llvm_export_vs(ctx, outputs, i);
3691 FREE(outputs);
3692 }
3693
si_tgsi_emit_epilogue(struct lp_build_tgsi_context * bld_base)3694 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3695 {
3696 struct si_shader_context *ctx = si_shader_context(bld_base);
3697
3698 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3699 &ctx->outputs[0][0]);
3700 }
3701
3702 struct si_ps_exports {
3703 unsigned num;
3704 struct ac_export_args args[10];
3705 };
3706
si_export_mrt_z(struct lp_build_tgsi_context * bld_base,LLVMValueRef depth,LLVMValueRef stencil,LLVMValueRef samplemask,struct si_ps_exports * exp)3707 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3708 LLVMValueRef depth, LLVMValueRef stencil,
3709 LLVMValueRef samplemask, struct si_ps_exports *exp)
3710 {
3711 struct si_shader_context *ctx = si_shader_context(bld_base);
3712 struct ac_export_args args;
3713
3714 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3715
3716 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3717 }
3718
si_export_mrt_color(struct lp_build_tgsi_context * bld_base,LLVMValueRef * color,unsigned index,unsigned samplemask_param,bool is_last,struct si_ps_exports * exp)3719 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3720 LLVMValueRef *color, unsigned index,
3721 unsigned samplemask_param,
3722 bool is_last, struct si_ps_exports *exp)
3723 {
3724 struct si_shader_context *ctx = si_shader_context(bld_base);
3725 int i;
3726
3727 /* Clamp color */
3728 if (ctx->shader->key.part.ps.epilog.clamp_color)
3729 for (i = 0; i < 4; i++)
3730 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3731
3732 /* Alpha to one */
3733 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3734 color[3] = ctx->ac.f32_1;
3735
3736 /* Alpha test */
3737 if (index == 0 &&
3738 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3739 si_alpha_test(bld_base, color[3]);
3740
3741 /* Line & polygon smoothing */
3742 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3743 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3744 samplemask_param);
3745
3746 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3747 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3748 struct ac_export_args args[8];
3749 int c, last = -1;
3750
3751 /* Get the export arguments, also find out what the last one is. */
3752 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3753 si_llvm_init_export_args(ctx, color,
3754 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3755 if (args[c].enabled_channels)
3756 last = c;
3757 }
3758
3759 /* Emit all exports. */
3760 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3761 if (is_last && last == c) {
3762 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3763 args[c].done = 1; /* DONE bit */
3764 } else if (!args[c].enabled_channels)
3765 continue; /* unnecessary NULL export */
3766
3767 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3768 }
3769 } else {
3770 struct ac_export_args args;
3771
3772 /* Export */
3773 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3774 &args);
3775 if (is_last) {
3776 args.valid_mask = 1; /* whether the EXEC mask is valid */
3777 args.done = 1; /* DONE bit */
3778 } else if (!args.enabled_channels)
3779 return; /* unnecessary NULL export */
3780
3781 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3782 }
3783 }
3784
si_emit_ps_exports(struct si_shader_context * ctx,struct si_ps_exports * exp)3785 static void si_emit_ps_exports(struct si_shader_context *ctx,
3786 struct si_ps_exports *exp)
3787 {
3788 for (unsigned i = 0; i < exp->num; i++)
3789 ac_build_export(&ctx->ac, &exp->args[i]);
3790 }
3791
si_export_null(struct lp_build_tgsi_context * bld_base)3792 static void si_export_null(struct lp_build_tgsi_context *bld_base)
3793 {
3794 struct si_shader_context *ctx = si_shader_context(bld_base);
3795 struct lp_build_context *base = &bld_base->base;
3796 struct ac_export_args args;
3797
3798 args.enabled_channels = 0x0; /* enabled channels */
3799 args.valid_mask = 1; /* whether the EXEC mask is valid */
3800 args.done = 1; /* DONE bit */
3801 args.target = V_008DFC_SQ_EXP_NULL;
3802 args.compr = 0; /* COMPR flag (0 = 32-bit export) */
3803 args.out[0] = base->undef; /* R */
3804 args.out[1] = base->undef; /* G */
3805 args.out[2] = base->undef; /* B */
3806 args.out[3] = base->undef; /* A */
3807
3808 ac_build_export(&ctx->ac, &args);
3809 }
3810
3811 /**
3812 * Return PS outputs in this order:
3813 *
3814 * v[0:3] = color0.xyzw
3815 * v[4:7] = color1.xyzw
3816 * ...
3817 * vN+0 = Depth
3818 * vN+1 = Stencil
3819 * vN+2 = SampleMask
3820 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3821 *
3822 * The alpha-ref SGPR is returned via its original location.
3823 */
si_llvm_return_fs_outputs(struct ac_shader_abi * abi,unsigned max_outputs,LLVMValueRef * addrs)3824 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3825 unsigned max_outputs,
3826 LLVMValueRef *addrs)
3827 {
3828 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3829 struct si_shader *shader = ctx->shader;
3830 struct tgsi_shader_info *info = &shader->selector->info;
3831 LLVMBuilderRef builder = ctx->ac.builder;
3832 unsigned i, j, first_vgpr, vgpr;
3833
3834 LLVMValueRef color[8][4] = {};
3835 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3836 LLVMValueRef ret;
3837
3838 if (ctx->postponed_kill)
3839 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3840
3841 /* Read the output values. */
3842 for (i = 0; i < info->num_outputs; i++) {
3843 unsigned semantic_name = info->output_semantic_name[i];
3844 unsigned semantic_index = info->output_semantic_index[i];
3845
3846 switch (semantic_name) {
3847 case TGSI_SEMANTIC_COLOR:
3848 assert(semantic_index < 8);
3849 for (j = 0; j < 4; j++) {
3850 LLVMValueRef ptr = addrs[4 * i + j];
3851 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3852 color[semantic_index][j] = result;
3853 }
3854 break;
3855 case TGSI_SEMANTIC_POSITION:
3856 depth = LLVMBuildLoad(builder,
3857 addrs[4 * i + 2], "");
3858 break;
3859 case TGSI_SEMANTIC_STENCIL:
3860 stencil = LLVMBuildLoad(builder,
3861 addrs[4 * i + 1], "");
3862 break;
3863 case TGSI_SEMANTIC_SAMPLEMASK:
3864 samplemask = LLVMBuildLoad(builder,
3865 addrs[4 * i + 0], "");
3866 break;
3867 default:
3868 fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3869 semantic_name);
3870 }
3871 }
3872
3873 /* Fill the return structure. */
3874 ret = ctx->return_value;
3875
3876 /* Set SGPRs. */
3877 ret = LLVMBuildInsertValue(builder, ret,
3878 ac_to_integer(&ctx->ac,
3879 LLVMGetParam(ctx->main_fn,
3880 SI_PARAM_ALPHA_REF)),
3881 SI_SGPR_ALPHA_REF, "");
3882
3883 /* Set VGPRs */
3884 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3885 for (i = 0; i < ARRAY_SIZE(color); i++) {
3886 if (!color[i][0])
3887 continue;
3888
3889 for (j = 0; j < 4; j++)
3890 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3891 }
3892 if (depth)
3893 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3894 if (stencil)
3895 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3896 if (samplemask)
3897 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3898
3899 /* Add the input sample mask for smoothing at the end. */
3900 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3901 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3902 ret = LLVMBuildInsertValue(builder, ret,
3903 LLVMGetParam(ctx->main_fn,
3904 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3905
3906 ctx->return_value = ret;
3907 }
3908
membar_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)3909 static void membar_emit(
3910 const struct lp_build_tgsi_action *action,
3911 struct lp_build_tgsi_context *bld_base,
3912 struct lp_build_emit_data *emit_data)
3913 {
3914 struct si_shader_context *ctx = si_shader_context(bld_base);
3915 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3916 unsigned flags = LLVMConstIntGetZExtValue(src0);
3917 unsigned waitcnt = NOOP_WAITCNT;
3918
3919 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3920 waitcnt &= VM_CNT & LGKM_CNT;
3921
3922 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3923 TGSI_MEMBAR_SHADER_BUFFER |
3924 TGSI_MEMBAR_SHADER_IMAGE))
3925 waitcnt &= VM_CNT;
3926
3927 if (flags & TGSI_MEMBAR_SHARED)
3928 waitcnt &= LGKM_CNT;
3929
3930 if (waitcnt != NOOP_WAITCNT)
3931 ac_build_waitcnt(&ctx->ac, waitcnt);
3932 }
3933
clock_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)3934 static void clock_emit(
3935 const struct lp_build_tgsi_action *action,
3936 struct lp_build_tgsi_context *bld_base,
3937 struct lp_build_emit_data *emit_data)
3938 {
3939 struct si_shader_context *ctx = si_shader_context(bld_base);
3940 LLVMValueRef tmp;
3941
3942 tmp = lp_build_intrinsic(ctx->ac.builder, "llvm.readcyclecounter",
3943 ctx->i64, NULL, 0, 0);
3944 tmp = LLVMBuildBitCast(ctx->ac.builder, tmp, ctx->v2i32, "");
3945
3946 emit_data->output[0] =
3947 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3948 emit_data->output[1] =
3949 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3950 }
3951
si_const_array(LLVMTypeRef elem_type,int num_elements)3952 LLVMTypeRef si_const_array(LLVMTypeRef elem_type, int num_elements)
3953 {
3954 return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
3955 CONST_ADDR_SPACE);
3956 }
3957
si_llvm_emit_ddxy(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)3958 static void si_llvm_emit_ddxy(
3959 const struct lp_build_tgsi_action *action,
3960 struct lp_build_tgsi_context *bld_base,
3961 struct lp_build_emit_data *emit_data)
3962 {
3963 struct si_shader_context *ctx = si_shader_context(bld_base);
3964 unsigned opcode = emit_data->info->opcode;
3965 LLVMValueRef val;
3966 int idx;
3967 unsigned mask;
3968
3969 if (opcode == TGSI_OPCODE_DDX_FINE)
3970 mask = AC_TID_MASK_LEFT;
3971 else if (opcode == TGSI_OPCODE_DDY_FINE)
3972 mask = AC_TID_MASK_TOP;
3973 else
3974 mask = AC_TID_MASK_TOP_LEFT;
3975
3976 /* for DDX we want to next X pixel, DDY next Y pixel. */
3977 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3978
3979 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
3980 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
3981 emit_data->output[emit_data->chan] = val;
3982 }
3983
3984 /*
3985 * this takes an I,J coordinate pair,
3986 * and works out the X and Y derivatives.
3987 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
3988 */
si_llvm_emit_ddxy_interp(struct lp_build_tgsi_context * bld_base,LLVMValueRef interp_ij)3989 static LLVMValueRef si_llvm_emit_ddxy_interp(
3990 struct lp_build_tgsi_context *bld_base,
3991 LLVMValueRef interp_ij)
3992 {
3993 struct si_shader_context *ctx = si_shader_context(bld_base);
3994 LLVMValueRef result[4], a;
3995 unsigned i;
3996
3997 for (i = 0; i < 2; i++) {
3998 a = LLVMBuildExtractElement(ctx->ac.builder, interp_ij,
3999 LLVMConstInt(ctx->i32, i, 0), "");
4000 result[i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDX, a);
4001 result[2+i] = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_DDY, a);
4002 }
4003
4004 return lp_build_gather_values(&ctx->gallivm, result, 4);
4005 }
4006
interp_fetch_args(struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4007 static void interp_fetch_args(
4008 struct lp_build_tgsi_context *bld_base,
4009 struct lp_build_emit_data *emit_data)
4010 {
4011 struct si_shader_context *ctx = si_shader_context(bld_base);
4012 const struct tgsi_full_instruction *inst = emit_data->inst;
4013
4014 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
4015 /* offset is in second src, first two channels */
4016 emit_data->args[0] = lp_build_emit_fetch(bld_base,
4017 emit_data->inst, 1,
4018 TGSI_CHAN_X);
4019 emit_data->args[1] = lp_build_emit_fetch(bld_base,
4020 emit_data->inst, 1,
4021 TGSI_CHAN_Y);
4022 emit_data->arg_count = 2;
4023 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4024 LLVMValueRef sample_position;
4025 LLVMValueRef sample_id;
4026 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
4027
4028 /* fetch sample ID, then fetch its sample position,
4029 * and place into first two channels.
4030 */
4031 sample_id = lp_build_emit_fetch(bld_base,
4032 emit_data->inst, 1, TGSI_CHAN_X);
4033 sample_id = ac_to_integer(&ctx->ac, sample_id);
4034
4035 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
4036 * Language 4.50 spec says about interpolateAtSample:
4037 *
4038 * "Returns the value of the input interpolant variable at
4039 * the location of sample number sample. If multisample
4040 * buffers are not available, the input variable will be
4041 * evaluated at the center of the pixel. If sample sample
4042 * does not exist, the position used to interpolate the
4043 * input variable is undefined."
4044 *
4045 * This means that sample_id values outside of the valid are
4046 * in fact valid input, and the usual mechanism for loading the
4047 * sample position doesn't work.
4048 */
4049 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4050 LLVMValueRef center[4] = {
4051 LLVMConstReal(ctx->f32, 0.5),
4052 LLVMConstReal(ctx->f32, 0.5),
4053 ctx->ac.f32_0,
4054 ctx->ac.f32_0,
4055 };
4056
4057 sample_position = lp_build_gather_values(&ctx->gallivm, center, 4);
4058 } else {
4059 sample_position = load_sample_position(ctx, sample_id);
4060 }
4061
4062 emit_data->args[0] = LLVMBuildExtractElement(ctx->ac.builder,
4063 sample_position,
4064 ctx->i32_0, "");
4065
4066 emit_data->args[0] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[0], halfval, "");
4067 emit_data->args[1] = LLVMBuildExtractElement(ctx->ac.builder,
4068 sample_position,
4069 ctx->i32_1, "");
4070 emit_data->args[1] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[1], halfval, "");
4071 emit_data->arg_count = 2;
4072 }
4073 }
4074
build_interp_intrinsic(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4075 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
4076 struct lp_build_tgsi_context *bld_base,
4077 struct lp_build_emit_data *emit_data)
4078 {
4079 struct si_shader_context *ctx = si_shader_context(bld_base);
4080 struct si_shader *shader = ctx->shader;
4081 const struct tgsi_shader_info *info = &shader->selector->info;
4082 LLVMValueRef interp_param;
4083 const struct tgsi_full_instruction *inst = emit_data->inst;
4084 const struct tgsi_full_src_register *input = &inst->Src[0];
4085 int input_base, input_array_size;
4086 int chan;
4087 int i;
4088 LLVMValueRef prim_mask = LLVMGetParam(ctx->main_fn, SI_PARAM_PRIM_MASK);
4089 LLVMValueRef array_idx;
4090 int interp_param_idx;
4091 unsigned interp;
4092 unsigned location;
4093
4094 assert(input->Register.File == TGSI_FILE_INPUT);
4095
4096 if (input->Register.Indirect) {
4097 unsigned array_id = input->Indirect.ArrayID;
4098
4099 if (array_id) {
4100 input_base = info->input_array_first[array_id];
4101 input_array_size = info->input_array_last[array_id] - input_base + 1;
4102 } else {
4103 input_base = inst->Src[0].Register.Index;
4104 input_array_size = info->num_inputs - input_base;
4105 }
4106
4107 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4108 1, input->Register.Index - input_base);
4109 } else {
4110 input_base = inst->Src[0].Register.Index;
4111 input_array_size = 1;
4112 array_idx = ctx->i32_0;
4113 }
4114
4115 interp = shader->selector->info.input_interpolate[input_base];
4116
4117 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4118 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4119 location = TGSI_INTERPOLATE_LOC_CENTER;
4120 else
4121 location = TGSI_INTERPOLATE_LOC_CENTROID;
4122
4123 interp_param_idx = lookup_interp_param_index(interp, location);
4124 if (interp_param_idx == -1)
4125 return;
4126 else if (interp_param_idx)
4127 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4128 else
4129 interp_param = NULL;
4130
4131 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4132 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4133 LLVMValueRef ij_out[2];
4134 LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
4135
4136 /*
4137 * take the I then J parameters, and the DDX/Y for it, and
4138 * calculate the IJ inputs for the interpolator.
4139 * temp1 = ddx * offset/sample.x + I;
4140 * interp_param.I = ddy * offset/sample.y + temp1;
4141 * temp1 = ddx * offset/sample.x + J;
4142 * interp_param.J = ddy * offset/sample.y + temp1;
4143 */
4144 for (i = 0; i < 2; i++) {
4145 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4146 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4147 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4148 ddxy_out, ix_ll, "");
4149 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4150 ddxy_out, iy_ll, "");
4151 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4152 interp_param, ix_ll, "");
4153 LLVMValueRef temp1, temp2;
4154
4155 interp_el = ac_to_float(&ctx->ac, interp_el);
4156
4157 temp1 = LLVMBuildFMul(ctx->ac.builder, ddx_el, emit_data->args[0], "");
4158
4159 temp1 = LLVMBuildFAdd(ctx->ac.builder, temp1, interp_el, "");
4160
4161 temp2 = LLVMBuildFMul(ctx->ac.builder, ddy_el, emit_data->args[1], "");
4162
4163 ij_out[i] = LLVMBuildFAdd(ctx->ac.builder, temp2, temp1, "");
4164 }
4165 interp_param = lp_build_gather_values(&ctx->gallivm, ij_out, 2);
4166 }
4167
4168 if (interp_param)
4169 interp_param = ac_to_float(&ctx->ac, interp_param);
4170
4171 for (chan = 0; chan < 4; chan++) {
4172 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4173 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4174
4175 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4176 LLVMValueRef v, i = NULL, j = NULL;
4177
4178 if (interp_param) {
4179 i = LLVMBuildExtractElement(
4180 ctx->ac.builder, interp_param, ctx->i32_0, "");
4181 j = LLVMBuildExtractElement(
4182 ctx->ac.builder, interp_param, ctx->i32_1, "");
4183 }
4184 v = si_build_fs_interp(ctx, input_base + idx, schan,
4185 prim_mask, i, j);
4186
4187 gather = LLVMBuildInsertElement(ctx->ac.builder,
4188 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4189 }
4190
4191 emit_data->output[chan] = LLVMBuildExtractElement(
4192 ctx->ac.builder, gather, array_idx, "");
4193 }
4194 }
4195
vote_all_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4196 static void vote_all_emit(
4197 const struct lp_build_tgsi_action *action,
4198 struct lp_build_tgsi_context *bld_base,
4199 struct lp_build_emit_data *emit_data)
4200 {
4201 struct si_shader_context *ctx = si_shader_context(bld_base);
4202
4203 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4204 emit_data->output[emit_data->chan] =
4205 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4206 }
4207
vote_any_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4208 static void vote_any_emit(
4209 const struct lp_build_tgsi_action *action,
4210 struct lp_build_tgsi_context *bld_base,
4211 struct lp_build_emit_data *emit_data)
4212 {
4213 struct si_shader_context *ctx = si_shader_context(bld_base);
4214
4215 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4216 emit_data->output[emit_data->chan] =
4217 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4218 }
4219
vote_eq_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4220 static void vote_eq_emit(
4221 const struct lp_build_tgsi_action *action,
4222 struct lp_build_tgsi_context *bld_base,
4223 struct lp_build_emit_data *emit_data)
4224 {
4225 struct si_shader_context *ctx = si_shader_context(bld_base);
4226
4227 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4228 emit_data->output[emit_data->chan] =
4229 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4230 }
4231
ballot_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4232 static void ballot_emit(
4233 const struct lp_build_tgsi_action *action,
4234 struct lp_build_tgsi_context *bld_base,
4235 struct lp_build_emit_data *emit_data)
4236 {
4237 struct si_shader_context *ctx = si_shader_context(bld_base);
4238 LLVMBuilderRef builder = ctx->ac.builder;
4239 LLVMValueRef tmp;
4240
4241 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4242 tmp = ac_build_ballot(&ctx->ac, tmp);
4243 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4244
4245 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4246 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4247 }
4248
read_invoc_fetch_args(struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4249 static void read_invoc_fetch_args(
4250 struct lp_build_tgsi_context *bld_base,
4251 struct lp_build_emit_data *emit_data)
4252 {
4253 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4254 0, emit_data->src_chan);
4255
4256 /* Always read the source invocation (= lane) from the X channel. */
4257 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4258 1, TGSI_CHAN_X);
4259 emit_data->arg_count = 2;
4260 }
4261
read_lane_emit(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4262 static void read_lane_emit(
4263 const struct lp_build_tgsi_action *action,
4264 struct lp_build_tgsi_context *bld_base,
4265 struct lp_build_emit_data *emit_data)
4266 {
4267 struct si_shader_context *ctx = si_shader_context(bld_base);
4268
4269 /* We currently have no other way to prevent LLVM from lifting the icmp
4270 * calls to a dominating basic block.
4271 */
4272 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4273
4274 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4275 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4276
4277 emit_data->output[emit_data->chan] =
4278 ac_build_intrinsic(&ctx->ac, action->intr_name,
4279 ctx->i32, emit_data->args, emit_data->arg_count,
4280 AC_FUNC_ATTR_READNONE |
4281 AC_FUNC_ATTR_CONVERGENT);
4282 }
4283
si_llvm_get_stream(struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4284 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4285 struct lp_build_emit_data *emit_data)
4286 {
4287 struct si_shader_context *ctx = si_shader_context(bld_base);
4288 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4289 LLVMValueRef imm;
4290 unsigned stream;
4291
4292 assert(src0.File == TGSI_FILE_IMMEDIATE);
4293
4294 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4295 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4296 return stream;
4297 }
4298
4299 /* Emit one vertex from the geometry shader */
si_llvm_emit_vertex(struct ac_shader_abi * abi,unsigned stream,LLVMValueRef * addrs)4300 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4301 unsigned stream,
4302 LLVMValueRef *addrs)
4303 {
4304 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4305 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4306 struct lp_build_context *uint = &ctx->bld_base.uint_bld;
4307 struct si_shader *shader = ctx->shader;
4308 struct lp_build_if_state if_state;
4309 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4310 ctx->param_gs2vs_offset);
4311 LLVMValueRef gs_next_vertex;
4312 LLVMValueRef can_emit;
4313 unsigned chan, offset;
4314 int i;
4315
4316 /* Write vertex attribute values to GSVS ring */
4317 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4318 ctx->gs_next_vertex[stream],
4319 "");
4320
4321 /* If this thread has already emitted the declared maximum number of
4322 * vertices, skip the write: excessive vertex emissions are not
4323 * supposed to have any effect.
4324 *
4325 * If the shader has no writes to memory, kill it instead. This skips
4326 * further memory loads and may allow LLVM to skip to the end
4327 * altogether.
4328 */
4329 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4330 LLVMConstInt(ctx->i32,
4331 shader->selector->gs_max_out_vertices, 0), "");
4332
4333 bool use_kill = !info->writes_memory;
4334 if (use_kill) {
4335 ac_build_kill_if_false(&ctx->ac, can_emit);
4336 } else {
4337 lp_build_if(&if_state, &ctx->gallivm, can_emit);
4338 }
4339
4340 offset = 0;
4341 for (i = 0; i < info->num_outputs; i++) {
4342 for (chan = 0; chan < 4; chan++) {
4343 if (!(info->output_usagemask[i] & (1 << chan)) ||
4344 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4345 continue;
4346
4347 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4348 LLVMValueRef voffset =
4349 LLVMConstInt(ctx->i32, offset *
4350 shader->selector->gs_max_out_vertices, 0);
4351 offset++;
4352
4353 voffset = lp_build_add(uint, voffset, gs_next_vertex);
4354 voffset = lp_build_mul_imm(uint, voffset, 4);
4355
4356 out_val = ac_to_integer(&ctx->ac, out_val);
4357
4358 ac_build_buffer_store_dword(&ctx->ac,
4359 ctx->gsvs_ring[stream],
4360 out_val, 1,
4361 voffset, soffset, 0,
4362 1, 1, true, true);
4363 }
4364 }
4365
4366 gs_next_vertex = lp_build_add(uint, gs_next_vertex,
4367 ctx->i32_1);
4368
4369 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4370
4371 /* Signal vertex emission */
4372 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4373 si_get_gs_wave_id(ctx));
4374 if (!use_kill)
4375 lp_build_endif(&if_state);
4376 }
4377
4378 /* Emit one vertex from the geometry shader */
si_tgsi_emit_vertex(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4379 static void si_tgsi_emit_vertex(
4380 const struct lp_build_tgsi_action *action,
4381 struct lp_build_tgsi_context *bld_base,
4382 struct lp_build_emit_data *emit_data)
4383 {
4384 struct si_shader_context *ctx = si_shader_context(bld_base);
4385 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4386
4387 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4388 }
4389
4390 /* Cut one primitive from the geometry shader */
si_llvm_emit_primitive(struct ac_shader_abi * abi,unsigned stream)4391 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4392 unsigned stream)
4393 {
4394 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4395
4396 /* Signal primitive cut */
4397 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4398 si_get_gs_wave_id(ctx));
4399 }
4400
4401 /* Cut one primitive from the geometry shader */
si_tgsi_emit_primitive(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4402 static void si_tgsi_emit_primitive(
4403 const struct lp_build_tgsi_action *action,
4404 struct lp_build_tgsi_context *bld_base,
4405 struct lp_build_emit_data *emit_data)
4406 {
4407 struct si_shader_context *ctx = si_shader_context(bld_base);
4408
4409 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4410 }
4411
si_llvm_emit_barrier(const struct lp_build_tgsi_action * action,struct lp_build_tgsi_context * bld_base,struct lp_build_emit_data * emit_data)4412 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4413 struct lp_build_tgsi_context *bld_base,
4414 struct lp_build_emit_data *emit_data)
4415 {
4416 struct si_shader_context *ctx = si_shader_context(bld_base);
4417
4418 /* SI only (thanks to a hw bug workaround):
4419 * The real barrier instruction isn’t needed, because an entire patch
4420 * always fits into a single wave.
4421 */
4422 if (ctx->screen->info.chip_class == SI &&
4423 ctx->type == PIPE_SHADER_TESS_CTRL) {
4424 ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4425 return;
4426 }
4427
4428 lp_build_intrinsic(ctx->ac.builder,
4429 "llvm.amdgcn.s.barrier",
4430 ctx->voidt, NULL, 0, LP_FUNC_ATTR_CONVERGENT);
4431 }
4432
4433 static const struct lp_build_tgsi_action interp_action = {
4434 .fetch_args = interp_fetch_args,
4435 .emit = build_interp_intrinsic,
4436 };
4437
si_create_function(struct si_shader_context * ctx,const char * name,LLVMTypeRef * returns,unsigned num_returns,struct si_function_info * fninfo,unsigned max_workgroup_size)4438 static void si_create_function(struct si_shader_context *ctx,
4439 const char *name,
4440 LLVMTypeRef *returns, unsigned num_returns,
4441 struct si_function_info *fninfo,
4442 unsigned max_workgroup_size)
4443 {
4444 int i;
4445
4446 si_llvm_create_func(ctx, name, returns, num_returns,
4447 fninfo->types, fninfo->num_params);
4448 ctx->return_value = LLVMGetUndef(ctx->return_type);
4449
4450 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4451 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4452
4453 /* The combination of:
4454 * - ByVal
4455 * - dereferenceable
4456 * - invariant.load
4457 * allows the optimization passes to move loads and reduces
4458 * SGPR spilling significantly.
4459 */
4460 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4461 lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_BYVAL);
4462 lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_NOALIAS);
4463 ac_add_attr_dereferenceable(P, UINT64_MAX);
4464 } else
4465 lp_add_function_attr(ctx->main_fn, i + 1, LP_FUNC_ATTR_INREG);
4466 }
4467
4468 for (i = 0; i < fninfo->num_params; ++i) {
4469 if (fninfo->assign[i])
4470 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4471 }
4472
4473 if (max_workgroup_size) {
4474 si_llvm_add_attribute(ctx->main_fn, "amdgpu-max-work-group-size",
4475 max_workgroup_size);
4476 }
4477 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4478 "no-signed-zeros-fp-math",
4479 "true");
4480
4481 if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4482 /* These were copied from some LLVM test. */
4483 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4484 "less-precise-fpmad",
4485 "true");
4486 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4487 "no-infs-fp-math",
4488 "true");
4489 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4490 "no-nans-fp-math",
4491 "true");
4492 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4493 "unsafe-fp-math",
4494 "true");
4495 }
4496 }
4497
declare_streamout_params(struct si_shader_context * ctx,struct pipe_stream_output_info * so,struct si_function_info * fninfo)4498 static void declare_streamout_params(struct si_shader_context *ctx,
4499 struct pipe_stream_output_info *so,
4500 struct si_function_info *fninfo)
4501 {
4502 int i;
4503
4504 /* Streamout SGPRs. */
4505 if (so->num_outputs) {
4506 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4507 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4508 else
4509 ctx->param_streamout_config = fninfo->num_params - 1;
4510
4511 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4512 }
4513 /* A streamout buffer offset is loaded if the stride is non-zero. */
4514 for (i = 0; i < 4; i++) {
4515 if (!so->stride[i])
4516 continue;
4517
4518 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4519 }
4520 }
4521
si_get_max_workgroup_size(const struct si_shader * shader)4522 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4523 {
4524 switch (shader->selector->type) {
4525 case PIPE_SHADER_TESS_CTRL:
4526 /* Return this so that LLVM doesn't remove s_barrier
4527 * instructions on chips where we use s_barrier. */
4528 return shader->selector->screen->info.chip_class >= CIK ? 128 : 64;
4529
4530 case PIPE_SHADER_GEOMETRY:
4531 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4532
4533 case PIPE_SHADER_COMPUTE:
4534 break; /* see below */
4535
4536 default:
4537 return 0;
4538 }
4539
4540 const unsigned *properties = shader->selector->info.properties;
4541 unsigned max_work_group_size =
4542 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4543 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4544 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4545
4546 if (!max_work_group_size) {
4547 /* This is a variable group size compute shader,
4548 * compile it for the maximum possible group size.
4549 */
4550 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4551 }
4552 return max_work_group_size;
4553 }
4554
declare_per_stage_desc_pointers(struct si_shader_context * ctx,struct si_function_info * fninfo,bool assign_params)4555 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4556 struct si_function_info *fninfo,
4557 bool assign_params)
4558 {
4559 LLVMTypeRef const_shader_buf_type;
4560
4561 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4562 ctx->shader->selector->info.shader_buffers_declared == 0)
4563 const_shader_buf_type = ctx->f32;
4564 else
4565 const_shader_buf_type = ctx->v4i32;
4566
4567 unsigned const_and_shader_buffers =
4568 add_arg(fninfo, ARG_SGPR,
4569 si_const_array(const_shader_buf_type, 0));
4570
4571 unsigned samplers_and_images =
4572 add_arg(fninfo, ARG_SGPR,
4573 si_const_array(ctx->v8i32,
4574 SI_NUM_IMAGES + SI_NUM_SAMPLERS * 2));
4575
4576 if (assign_params) {
4577 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4578 ctx->param_samplers_and_images = samplers_and_images;
4579 }
4580 }
4581
declare_global_desc_pointers(struct si_shader_context * ctx,struct si_function_info * fninfo)4582 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4583 struct si_function_info *fninfo)
4584 {
4585 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4586 si_const_array(ctx->v4i32, SI_NUM_RW_BUFFERS));
4587 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4588 si_const_array(ctx->v8i32, 0));
4589 }
4590
declare_vs_specific_input_sgprs(struct si_shader_context * ctx,struct si_function_info * fninfo)4591 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4592 struct si_function_info *fninfo)
4593 {
4594 ctx->param_vertex_buffers = add_arg(fninfo, ARG_SGPR,
4595 si_const_array(ctx->v4i32, SI_NUM_VERTEX_BUFFERS));
4596 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4597 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4598 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4599 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4600 }
4601
declare_vs_input_vgprs(struct si_shader_context * ctx,struct si_function_info * fninfo,unsigned * num_prolog_vgprs)4602 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4603 struct si_function_info *fninfo,
4604 unsigned *num_prolog_vgprs)
4605 {
4606 struct si_shader *shader = ctx->shader;
4607
4608 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4609 if (shader->key.as_ls) {
4610 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4611 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4612 } else {
4613 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4614 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4615 }
4616 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4617
4618 if (!shader->is_gs_copy_shader) {
4619 /* Vertex load indices. */
4620 ctx->param_vertex_index0 = fninfo->num_params;
4621 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4622 add_arg(fninfo, ARG_VGPR, ctx->i32);
4623 *num_prolog_vgprs += shader->selector->info.num_inputs;
4624 }
4625 }
4626
declare_tes_input_vgprs(struct si_shader_context * ctx,struct si_function_info * fninfo)4627 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4628 struct si_function_info *fninfo)
4629 {
4630 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4631 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4632 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4633 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4634 }
4635
4636 enum {
4637 /* Convenient merged shader definitions. */
4638 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4639 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4640 };
4641
create_function(struct si_shader_context * ctx)4642 static void create_function(struct si_shader_context *ctx)
4643 {
4644 struct si_shader *shader = ctx->shader;
4645 struct si_function_info fninfo;
4646 LLVMTypeRef returns[16+32*4];
4647 unsigned i, num_return_sgprs;
4648 unsigned num_returns = 0;
4649 unsigned num_prolog_vgprs = 0;
4650 unsigned type = ctx->type;
4651 unsigned vs_blit_property =
4652 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4653
4654 si_init_function_info(&fninfo);
4655
4656 /* Set MERGED shaders. */
4657 if (ctx->screen->info.chip_class >= GFX9) {
4658 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4659 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4660 else if (shader->key.as_es || type == PIPE_SHADER_GEOMETRY)
4661 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4662 }
4663
4664 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4665
4666 switch (type) {
4667 case PIPE_SHADER_VERTEX:
4668 declare_global_desc_pointers(ctx, &fninfo);
4669
4670 if (vs_blit_property) {
4671 ctx->param_vs_blit_inputs = fninfo.num_params;
4672 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4673 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4674 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* depth */
4675
4676 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4677 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color0 */
4678 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color1 */
4679 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color2 */
4680 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color3 */
4681 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4682 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4683 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4684 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4685 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4686 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4687 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4688 }
4689
4690 /* VGPRs */
4691 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4692 break;
4693 }
4694
4695 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4696 declare_vs_specific_input_sgprs(ctx, &fninfo);
4697
4698 if (shader->key.as_es) {
4699 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4700 } else if (shader->key.as_ls) {
4701 /* no extra parameters */
4702 } else {
4703 if (shader->is_gs_copy_shader) {
4704 fninfo.num_params = ctx->param_rw_buffers + 1;
4705 fninfo.num_sgpr_params = fninfo.num_params;
4706 }
4707
4708 /* The locations of the other parameters are assigned dynamically. */
4709 declare_streamout_params(ctx, &shader->selector->so,
4710 &fninfo);
4711 }
4712
4713 /* VGPRs */
4714 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4715 break;
4716
4717 case PIPE_SHADER_TESS_CTRL: /* SI-CI-VI */
4718 declare_global_desc_pointers(ctx, &fninfo);
4719 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4720 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4721 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4722 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4723 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4724 ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4725 ctx->param_tcs_factor_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4726 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4727 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4728
4729 /* VGPRs */
4730 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4731 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4732
4733 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4734 * placed after the user SGPRs.
4735 */
4736 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4737 returns[num_returns++] = ctx->i32; /* SGPRs */
4738 for (i = 0; i < 11; i++)
4739 returns[num_returns++] = ctx->f32; /* VGPRs */
4740 break;
4741
4742 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4743 /* Merged stages have 8 system SGPRs at the beginning. */
4744 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* SPI_SHADER_USER_DATA_ADDR_LO_HS */
4745 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* SPI_SHADER_USER_DATA_ADDR_HI_HS */
4746 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4747 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4748 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4749 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4750 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4751 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4752
4753 declare_global_desc_pointers(ctx, &fninfo);
4754 declare_per_stage_desc_pointers(ctx, &fninfo,
4755 ctx->type == PIPE_SHADER_VERTEX);
4756 declare_vs_specific_input_sgprs(ctx, &fninfo);
4757
4758 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4759 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4760 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4761 ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4762 ctx->param_tcs_factor_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4763 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4764
4765 declare_per_stage_desc_pointers(ctx, &fninfo,
4766 ctx->type == PIPE_SHADER_TESS_CTRL);
4767
4768 /* VGPRs (first TCS, then VS) */
4769 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4770 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4771
4772 if (ctx->type == PIPE_SHADER_VERTEX) {
4773 declare_vs_input_vgprs(ctx, &fninfo,
4774 &num_prolog_vgprs);
4775
4776 /* LS return values are inputs to the TCS main shader part. */
4777 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4778 returns[num_returns++] = ctx->i32; /* SGPRs */
4779 for (i = 0; i < 2; i++)
4780 returns[num_returns++] = ctx->f32; /* VGPRs */
4781 } else {
4782 /* TCS return values are inputs to the TCS epilog.
4783 *
4784 * param_tcs_offchip_offset, param_tcs_factor_offset,
4785 * param_tcs_offchip_layout, and param_rw_buffers
4786 * should be passed to the epilog.
4787 */
4788 for (i = 0; i <= 8 + GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K; i++)
4789 returns[num_returns++] = ctx->i32; /* SGPRs */
4790 for (i = 0; i < 11; i++)
4791 returns[num_returns++] = ctx->f32; /* VGPRs */
4792 }
4793 break;
4794
4795 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4796 /* Merged stages have 8 system SGPRs at the beginning. */
4797 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_USER_DATA_ADDR_LO_GS) */
4798 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_USER_DATA_ADDR_HI_GS) */
4799 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4800 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4801 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4802 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4803 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4804 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4805
4806 declare_global_desc_pointers(ctx, &fninfo);
4807 declare_per_stage_desc_pointers(ctx, &fninfo,
4808 (ctx->type == PIPE_SHADER_VERTEX ||
4809 ctx->type == PIPE_SHADER_TESS_EVAL));
4810 if (ctx->type == PIPE_SHADER_VERTEX) {
4811 declare_vs_specific_input_sgprs(ctx, &fninfo);
4812 } else {
4813 /* TESS_EVAL (and also GEOMETRY):
4814 * Declare as many input SGPRs as the VS has. */
4815 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4816 ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4817 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4818 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4819 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4820 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4821 }
4822
4823 declare_per_stage_desc_pointers(ctx, &fninfo,
4824 ctx->type == PIPE_SHADER_GEOMETRY);
4825
4826 /* VGPRs (first GS, then VS/TES) */
4827 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4828 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4829 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4830 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4831 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4832
4833 if (ctx->type == PIPE_SHADER_VERTEX) {
4834 declare_vs_input_vgprs(ctx, &fninfo,
4835 &num_prolog_vgprs);
4836 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4837 declare_tes_input_vgprs(ctx, &fninfo);
4838 }
4839
4840 if (ctx->type == PIPE_SHADER_VERTEX ||
4841 ctx->type == PIPE_SHADER_TESS_EVAL) {
4842 /* ES return values are inputs to GS. */
4843 for (i = 0; i < 8 + GFX9_GS_NUM_USER_SGPR; i++)
4844 returns[num_returns++] = ctx->i32; /* SGPRs */
4845 for (i = 0; i < 5; i++)
4846 returns[num_returns++] = ctx->f32; /* VGPRs */
4847 }
4848 break;
4849
4850 case PIPE_SHADER_TESS_EVAL:
4851 declare_global_desc_pointers(ctx, &fninfo);
4852 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4853 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4854 ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4855
4856 if (shader->key.as_es) {
4857 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4858 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4859 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4860 } else {
4861 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4862 declare_streamout_params(ctx, &shader->selector->so,
4863 &fninfo);
4864 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4865 }
4866
4867 /* VGPRs */
4868 declare_tes_input_vgprs(ctx, &fninfo);
4869 break;
4870
4871 case PIPE_SHADER_GEOMETRY:
4872 declare_global_desc_pointers(ctx, &fninfo);
4873 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4874 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4875 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4876
4877 /* VGPRs */
4878 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4879 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4880 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4881 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4882 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4883 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4884 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4885 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4886 break;
4887
4888 case PIPE_SHADER_FRAGMENT:
4889 declare_global_desc_pointers(ctx, &fninfo);
4890 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4891 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4892 add_arg_checked(&fninfo, ARG_SGPR, ctx->i32, SI_PARAM_PRIM_MASK);
4893
4894 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4895 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4896 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4897 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4898 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4899 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4900 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4901 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4902 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4903 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4904 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4905 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4906 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4907 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4908 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4909 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4910 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4911 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4912 shader->info.face_vgpr_index = 20;
4913 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4914 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4915 shader->info.ancillary_vgpr_index = 21;
4916 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4917 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4918 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4919
4920 /* Color inputs from the prolog. */
4921 if (shader->selector->info.colors_read) {
4922 unsigned num_color_elements =
4923 util_bitcount(shader->selector->info.colors_read);
4924
4925 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4926 for (i = 0; i < num_color_elements; i++)
4927 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4928
4929 num_prolog_vgprs += num_color_elements;
4930 }
4931
4932 /* Outputs for the epilog. */
4933 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
4934 num_returns =
4935 num_return_sgprs +
4936 util_bitcount(shader->selector->info.colors_written) * 4 +
4937 shader->selector->info.writes_z +
4938 shader->selector->info.writes_stencil +
4939 shader->selector->info.writes_samplemask +
4940 1 /* SampleMaskIn */;
4941
4942 num_returns = MAX2(num_returns,
4943 num_return_sgprs +
4944 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
4945
4946 for (i = 0; i < num_return_sgprs; i++)
4947 returns[i] = ctx->i32;
4948 for (; i < num_returns; i++)
4949 returns[i] = ctx->f32;
4950 break;
4951
4952 case PIPE_SHADER_COMPUTE:
4953 declare_global_desc_pointers(ctx, &fninfo);
4954 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4955 if (shader->selector->info.uses_grid_size)
4956 ctx->param_grid_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4957 if (shader->selector->info.uses_block_size)
4958 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
4959
4960 for (i = 0; i < 3; i++) {
4961 ctx->param_block_id[i] = -1;
4962 if (shader->selector->info.uses_block_id[i])
4963 ctx->param_block_id[i] = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4964 }
4965
4966 ctx->param_thread_id = add_arg(&fninfo, ARG_VGPR, v3i32);
4967 break;
4968 default:
4969 assert(0 && "unimplemented shader");
4970 return;
4971 }
4972
4973 si_create_function(ctx, "main", returns, num_returns, &fninfo,
4974 si_get_max_workgroup_size(shader));
4975
4976 /* Reserve register locations for VGPR inputs the PS prolog may need. */
4977 if (ctx->type == PIPE_SHADER_FRAGMENT &&
4978 ctx->separate_prolog) {
4979 si_llvm_add_attribute(ctx->main_fn,
4980 "InitialPSInputAddr",
4981 S_0286D0_PERSP_SAMPLE_ENA(1) |
4982 S_0286D0_PERSP_CENTER_ENA(1) |
4983 S_0286D0_PERSP_CENTROID_ENA(1) |
4984 S_0286D0_LINEAR_SAMPLE_ENA(1) |
4985 S_0286D0_LINEAR_CENTER_ENA(1) |
4986 S_0286D0_LINEAR_CENTROID_ENA(1) |
4987 S_0286D0_FRONT_FACE_ENA(1) |
4988 S_0286D0_ANCILLARY_ENA(1) |
4989 S_0286D0_POS_FIXED_PT_ENA(1));
4990 }
4991
4992 shader->info.num_input_sgprs = 0;
4993 shader->info.num_input_vgprs = 0;
4994
4995 for (i = 0; i < fninfo.num_sgpr_params; ++i)
4996 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
4997
4998 for (; i < fninfo.num_params; ++i)
4999 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5000
5001 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5002 shader->info.num_input_vgprs -= num_prolog_vgprs;
5003
5004 if (shader->key.as_ls ||
5005 ctx->type == PIPE_SHADER_TESS_CTRL ||
5006 /* GFX9 has the ESGS ring buffer in LDS. */
5007 type == SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY)
5008 ac_declare_lds_as_pointer(&ctx->ac);
5009 }
5010
5011 /**
5012 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5013 * for later use.
5014 */
preload_ring_buffers(struct si_shader_context * ctx)5015 static void preload_ring_buffers(struct si_shader_context *ctx)
5016 {
5017 LLVMBuilderRef builder = ctx->ac.builder;
5018
5019 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5020 ctx->param_rw_buffers);
5021
5022 if (ctx->screen->info.chip_class <= VI &&
5023 (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY)) {
5024 unsigned ring =
5025 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5026 : SI_ES_RING_ESGS;
5027 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5028
5029 ctx->esgs_ring =
5030 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5031 }
5032
5033 if (ctx->shader->is_gs_copy_shader) {
5034 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5035
5036 ctx->gsvs_ring[0] =
5037 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5038 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5039 const struct si_shader_selector *sel = ctx->shader->selector;
5040 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5041 LLVMValueRef base_ring;
5042
5043 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5044
5045 /* The conceptual layout of the GSVS ring is
5046 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5047 * but the real memory layout is swizzled across
5048 * threads:
5049 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5050 * t16v0c0 ..
5051 * Override the buffer descriptor accordingly.
5052 */
5053 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5054 uint64_t stream_offset = 0;
5055
5056 for (unsigned stream = 0; stream < 4; ++stream) {
5057 unsigned num_components;
5058 unsigned stride;
5059 unsigned num_records;
5060 LLVMValueRef ring, tmp;
5061
5062 num_components = sel->info.num_stream_output_components[stream];
5063 if (!num_components)
5064 continue;
5065
5066 stride = 4 * num_components * sel->gs_max_out_vertices;
5067
5068 /* Limit on the stride field for <= CIK. */
5069 assert(stride < (1 << 14));
5070
5071 num_records = 64;
5072
5073 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5074 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5075 tmp = LLVMBuildAdd(builder, tmp,
5076 LLVMConstInt(ctx->i64,
5077 stream_offset, 0), "");
5078 stream_offset += stride * 64;
5079
5080 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5081 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5082 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5083 tmp = LLVMBuildOr(builder, tmp,
5084 LLVMConstInt(ctx->i32,
5085 S_008F04_STRIDE(stride) |
5086 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5087 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5088 ring = LLVMBuildInsertElement(builder, ring,
5089 LLVMConstInt(ctx->i32, num_records, 0),
5090 LLVMConstInt(ctx->i32, 2, 0), "");
5091 ring = LLVMBuildInsertElement(builder, ring,
5092 LLVMConstInt(ctx->i32,
5093 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5094 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5095 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5096 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5097 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5098 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5099 S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
5100 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5101 S_008F0C_ADD_TID_ENABLE(1),
5102 0),
5103 LLVMConstInt(ctx->i32, 3, 0), "");
5104
5105 ctx->gsvs_ring[stream] = ring;
5106 }
5107 }
5108 }
5109
si_llvm_emit_polygon_stipple(struct si_shader_context * ctx,LLVMValueRef param_rw_buffers,unsigned param_pos_fixed_pt)5110 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5111 LLVMValueRef param_rw_buffers,
5112 unsigned param_pos_fixed_pt)
5113 {
5114 LLVMBuilderRef builder = ctx->ac.builder;
5115 LLVMValueRef slot, desc, offset, row, bit, address[2];
5116
5117 /* Use the fixed-point gl_FragCoord input.
5118 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5119 * per coordinate to get the repeating effect.
5120 */
5121 address[0] = unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5122 address[1] = unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5123
5124 /* Load the buffer descriptor. */
5125 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5126 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5127
5128 /* The stipple pattern is 32x32, each row has 32 bits. */
5129 offset = LLVMBuildMul(builder, address[1],
5130 LLVMConstInt(ctx->i32, 4, 0), "");
5131 row = buffer_load_const(ctx, desc, offset);
5132 row = ac_to_integer(&ctx->ac, row);
5133 bit = LLVMBuildLShr(builder, row, address[0], "");
5134 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5135 ac_build_kill_if_false(&ctx->ac, bit);
5136 }
5137
si_shader_binary_read_config(struct ac_shader_binary * binary,struct si_shader_config * conf,unsigned symbol_offset)5138 void si_shader_binary_read_config(struct ac_shader_binary *binary,
5139 struct si_shader_config *conf,
5140 unsigned symbol_offset)
5141 {
5142 unsigned i;
5143 const unsigned char *config =
5144 ac_shader_binary_config_start(binary, symbol_offset);
5145 bool really_needs_scratch = false;
5146
5147 /* LLVM adds SGPR spills to the scratch size.
5148 * Find out if we really need the scratch buffer.
5149 */
5150 for (i = 0; i < binary->reloc_count; i++) {
5151 const struct ac_shader_reloc *reloc = &binary->relocs[i];
5152
5153 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
5154 !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5155 really_needs_scratch = true;
5156 break;
5157 }
5158 }
5159
5160 /* XXX: We may be able to emit some of these values directly rather than
5161 * extracting fields to be emitted later.
5162 */
5163
5164 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
5165 unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
5166 unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
5167 switch (reg) {
5168 case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
5169 case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
5170 case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
5171 case R_00B428_SPI_SHADER_PGM_RSRC1_HS:
5172 case R_00B848_COMPUTE_PGM_RSRC1:
5173 conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
5174 conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
5175 conf->float_mode = G_00B028_FLOAT_MODE(value);
5176 conf->rsrc1 = value;
5177 break;
5178 case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
5179 conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
5180 break;
5181 case R_00B84C_COMPUTE_PGM_RSRC2:
5182 conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
5183 conf->rsrc2 = value;
5184 break;
5185 case R_0286CC_SPI_PS_INPUT_ENA:
5186 conf->spi_ps_input_ena = value;
5187 break;
5188 case R_0286D0_SPI_PS_INPUT_ADDR:
5189 conf->spi_ps_input_addr = value;
5190 break;
5191 case R_0286E8_SPI_TMPRING_SIZE:
5192 case R_00B860_COMPUTE_TMPRING_SIZE:
5193 /* WAVESIZE is in units of 256 dwords. */
5194 if (really_needs_scratch)
5195 conf->scratch_bytes_per_wave =
5196 G_00B860_WAVESIZE(value) * 256 * 4;
5197 break;
5198 case 0x4: /* SPILLED_SGPRS */
5199 conf->spilled_sgprs = value;
5200 break;
5201 case 0x8: /* SPILLED_VGPRS */
5202 conf->spilled_vgprs = value;
5203 break;
5204 default:
5205 {
5206 static bool printed;
5207
5208 if (!printed) {
5209 fprintf(stderr, "Warning: LLVM emitted unknown "
5210 "config register: 0x%x\n", reg);
5211 printed = true;
5212 }
5213 }
5214 break;
5215 }
5216 }
5217
5218 if (!conf->spi_ps_input_addr)
5219 conf->spi_ps_input_addr = conf->spi_ps_input_ena;
5220 }
5221
si_shader_apply_scratch_relocs(struct si_shader * shader,uint64_t scratch_va)5222 void si_shader_apply_scratch_relocs(struct si_shader *shader,
5223 uint64_t scratch_va)
5224 {
5225 unsigned i;
5226 uint32_t scratch_rsrc_dword0 = scratch_va;
5227 uint32_t scratch_rsrc_dword1 =
5228 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
5229
5230 /* Enable scratch coalescing. */
5231 scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
5232
5233 for (i = 0 ; i < shader->binary.reloc_count; i++) {
5234 const struct ac_shader_reloc *reloc =
5235 &shader->binary.relocs[i];
5236 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
5237 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5238 &scratch_rsrc_dword0, 4);
5239 } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5240 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5241 &scratch_rsrc_dword1, 4);
5242 }
5243 }
5244 }
5245
si_get_shader_binary_size(const struct si_shader * shader)5246 static unsigned si_get_shader_binary_size(const struct si_shader *shader)
5247 {
5248 unsigned size = shader->binary.code_size;
5249
5250 if (shader->prolog)
5251 size += shader->prolog->binary.code_size;
5252 if (shader->previous_stage)
5253 size += shader->previous_stage->binary.code_size;
5254 if (shader->prolog2)
5255 size += shader->prolog2->binary.code_size;
5256 if (shader->epilog)
5257 size += shader->epilog->binary.code_size;
5258 return size;
5259 }
5260
si_shader_binary_upload(struct si_screen * sscreen,struct si_shader * shader)5261 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
5262 {
5263 const struct ac_shader_binary *prolog =
5264 shader->prolog ? &shader->prolog->binary : NULL;
5265 const struct ac_shader_binary *previous_stage =
5266 shader->previous_stage ? &shader->previous_stage->binary : NULL;
5267 const struct ac_shader_binary *prolog2 =
5268 shader->prolog2 ? &shader->prolog2->binary : NULL;
5269 const struct ac_shader_binary *epilog =
5270 shader->epilog ? &shader->epilog->binary : NULL;
5271 const struct ac_shader_binary *mainb = &shader->binary;
5272 unsigned bo_size = si_get_shader_binary_size(shader) +
5273 (!epilog ? mainb->rodata_size : 0);
5274 unsigned char *ptr;
5275
5276 assert(!prolog || !prolog->rodata_size);
5277 assert(!previous_stage || !previous_stage->rodata_size);
5278 assert(!prolog2 || !prolog2->rodata_size);
5279 assert((!prolog && !previous_stage && !prolog2 && !epilog) ||
5280 !mainb->rodata_size);
5281 assert(!epilog || !epilog->rodata_size);
5282
5283 r600_resource_reference(&shader->bo, NULL);
5284 shader->bo = (struct r600_resource*)
5285 si_aligned_buffer_create(&sscreen->b,
5286 sscreen->cpdma_prefetch_writes_memory ?
5287 0 : R600_RESOURCE_FLAG_READ_ONLY,
5288 PIPE_USAGE_IMMUTABLE,
5289 align(bo_size, SI_CPDMA_ALIGNMENT),
5290 256);
5291 if (!shader->bo)
5292 return -ENOMEM;
5293
5294 /* Upload. */
5295 ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5296 PIPE_TRANSFER_READ_WRITE |
5297 PIPE_TRANSFER_UNSYNCHRONIZED);
5298
5299 /* Don't use util_memcpy_cpu_to_le32. LLVM binaries are
5300 * endian-independent. */
5301 if (prolog) {
5302 memcpy(ptr, prolog->code, prolog->code_size);
5303 ptr += prolog->code_size;
5304 }
5305 if (previous_stage) {
5306 memcpy(ptr, previous_stage->code, previous_stage->code_size);
5307 ptr += previous_stage->code_size;
5308 }
5309 if (prolog2) {
5310 memcpy(ptr, prolog2->code, prolog2->code_size);
5311 ptr += prolog2->code_size;
5312 }
5313
5314 memcpy(ptr, mainb->code, mainb->code_size);
5315 ptr += mainb->code_size;
5316
5317 if (epilog)
5318 memcpy(ptr, epilog->code, epilog->code_size);
5319 else if (mainb->rodata_size > 0)
5320 memcpy(ptr, mainb->rodata, mainb->rodata_size);
5321
5322 sscreen->ws->buffer_unmap(shader->bo->buf);
5323 return 0;
5324 }
5325
si_shader_dump_disassembly(const struct ac_shader_binary * binary,struct pipe_debug_callback * debug,const char * name,FILE * file)5326 static void si_shader_dump_disassembly(const struct ac_shader_binary *binary,
5327 struct pipe_debug_callback *debug,
5328 const char *name, FILE *file)
5329 {
5330 char *line, *p;
5331 unsigned i, count;
5332
5333 if (binary->disasm_string) {
5334 fprintf(file, "Shader %s disassembly:\n", name);
5335 fprintf(file, "%s", binary->disasm_string);
5336
5337 if (debug && debug->debug_message) {
5338 /* Very long debug messages are cut off, so send the
5339 * disassembly one line at a time. This causes more
5340 * overhead, but on the plus side it simplifies
5341 * parsing of resulting logs.
5342 */
5343 pipe_debug_message(debug, SHADER_INFO,
5344 "Shader Disassembly Begin");
5345
5346 line = binary->disasm_string;
5347 while (*line) {
5348 p = util_strchrnul(line, '\n');
5349 count = p - line;
5350
5351 if (count) {
5352 pipe_debug_message(debug, SHADER_INFO,
5353 "%.*s", count, line);
5354 }
5355
5356 if (!*p)
5357 break;
5358 line = p + 1;
5359 }
5360
5361 pipe_debug_message(debug, SHADER_INFO,
5362 "Shader Disassembly End");
5363 }
5364 } else {
5365 fprintf(file, "Shader %s binary:\n", name);
5366 for (i = 0; i < binary->code_size; i += 4) {
5367 fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
5368 binary->code[i + 3], binary->code[i + 2],
5369 binary->code[i + 1], binary->code[i]);
5370 }
5371 }
5372 }
5373
si_shader_dump_stats(struct si_screen * sscreen,const struct si_shader * shader,struct pipe_debug_callback * debug,unsigned processor,FILE * file,bool check_debug_option)5374 static void si_shader_dump_stats(struct si_screen *sscreen,
5375 const struct si_shader *shader,
5376 struct pipe_debug_callback *debug,
5377 unsigned processor,
5378 FILE *file,
5379 bool check_debug_option)
5380 {
5381 const struct si_shader_config *conf = &shader->config;
5382 unsigned num_inputs = shader->selector ? shader->selector->info.num_inputs : 0;
5383 unsigned code_size = si_get_shader_binary_size(shader);
5384 unsigned lds_increment = sscreen->info.chip_class >= CIK ? 512 : 256;
5385 unsigned lds_per_wave = 0;
5386 unsigned max_simd_waves;
5387
5388 switch (sscreen->info.family) {
5389 /* These always have 8 waves: */
5390 case CHIP_POLARIS10:
5391 case CHIP_POLARIS11:
5392 case CHIP_POLARIS12:
5393 max_simd_waves = 8;
5394 break;
5395 default:
5396 max_simd_waves = 10;
5397 }
5398
5399 /* Compute LDS usage for PS. */
5400 switch (processor) {
5401 case PIPE_SHADER_FRAGMENT:
5402 /* The minimum usage per wave is (num_inputs * 48). The maximum
5403 * usage is (num_inputs * 48 * 16).
5404 * We can get anything in between and it varies between waves.
5405 *
5406 * The 48 bytes per input for a single primitive is equal to
5407 * 4 bytes/component * 4 components/input * 3 points.
5408 *
5409 * Other stages don't know the size at compile time or don't
5410 * allocate LDS per wave, but instead they do it per thread group.
5411 */
5412 lds_per_wave = conf->lds_size * lds_increment +
5413 align(num_inputs * 48, lds_increment);
5414 break;
5415 case PIPE_SHADER_COMPUTE:
5416 if (shader->selector) {
5417 unsigned max_workgroup_size =
5418 si_get_max_workgroup_size(shader);
5419 lds_per_wave = (conf->lds_size * lds_increment) /
5420 DIV_ROUND_UP(max_workgroup_size, 64);
5421 }
5422 break;
5423 }
5424
5425 /* Compute the per-SIMD wave counts. */
5426 if (conf->num_sgprs) {
5427 if (sscreen->info.chip_class >= VI)
5428 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
5429 else
5430 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
5431 }
5432
5433 if (conf->num_vgprs)
5434 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5435
5436 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5437 * 16KB makes some SIMDs unoccupied). */
5438 if (lds_per_wave)
5439 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5440
5441 if (!check_debug_option ||
5442 si_can_dump_shader(sscreen, processor)) {
5443 if (processor == PIPE_SHADER_FRAGMENT) {
5444 fprintf(file, "*** SHADER CONFIG ***\n"
5445 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5446 "SPI_PS_INPUT_ENA = 0x%04x\n",
5447 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5448 }
5449
5450 fprintf(file, "*** SHADER STATS ***\n"
5451 "SGPRS: %d\n"
5452 "VGPRS: %d\n"
5453 "Spilled SGPRs: %d\n"
5454 "Spilled VGPRs: %d\n"
5455 "Private memory VGPRs: %d\n"
5456 "Code Size: %d bytes\n"
5457 "LDS: %d blocks\n"
5458 "Scratch: %d bytes per wave\n"
5459 "Max Waves: %d\n"
5460 "********************\n\n\n",
5461 conf->num_sgprs, conf->num_vgprs,
5462 conf->spilled_sgprs, conf->spilled_vgprs,
5463 conf->private_mem_vgprs, code_size,
5464 conf->lds_size, conf->scratch_bytes_per_wave,
5465 max_simd_waves);
5466 }
5467
5468 pipe_debug_message(debug, SHADER_INFO,
5469 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5470 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5471 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5472 conf->num_sgprs, conf->num_vgprs, code_size,
5473 conf->lds_size, conf->scratch_bytes_per_wave,
5474 max_simd_waves, conf->spilled_sgprs,
5475 conf->spilled_vgprs, conf->private_mem_vgprs);
5476 }
5477
si_get_shader_name(const struct si_shader * shader,unsigned processor)5478 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5479 {
5480 switch (processor) {
5481 case PIPE_SHADER_VERTEX:
5482 if (shader->key.as_es)
5483 return "Vertex Shader as ES";
5484 else if (shader->key.as_ls)
5485 return "Vertex Shader as LS";
5486 else
5487 return "Vertex Shader as VS";
5488 case PIPE_SHADER_TESS_CTRL:
5489 return "Tessellation Control Shader";
5490 case PIPE_SHADER_TESS_EVAL:
5491 if (shader->key.as_es)
5492 return "Tessellation Evaluation Shader as ES";
5493 else
5494 return "Tessellation Evaluation Shader as VS";
5495 case PIPE_SHADER_GEOMETRY:
5496 if (shader->is_gs_copy_shader)
5497 return "GS Copy Shader as VS";
5498 else
5499 return "Geometry Shader";
5500 case PIPE_SHADER_FRAGMENT:
5501 return "Pixel Shader";
5502 case PIPE_SHADER_COMPUTE:
5503 return "Compute Shader";
5504 default:
5505 return "Unknown Shader";
5506 }
5507 }
5508
si_shader_dump(struct si_screen * sscreen,const struct si_shader * shader,struct pipe_debug_callback * debug,unsigned processor,FILE * file,bool check_debug_option)5509 void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader,
5510 struct pipe_debug_callback *debug, unsigned processor,
5511 FILE *file, bool check_debug_option)
5512 {
5513 if (!check_debug_option ||
5514 si_can_dump_shader(sscreen, processor))
5515 si_dump_shader_key(processor, shader, file);
5516
5517 if (!check_debug_option && shader->binary.llvm_ir_string) {
5518 if (shader->previous_stage &&
5519 shader->previous_stage->binary.llvm_ir_string) {
5520 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5521 si_get_shader_name(shader, processor));
5522 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5523 }
5524
5525 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5526 si_get_shader_name(shader, processor));
5527 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5528 }
5529
5530 if (!check_debug_option ||
5531 (si_can_dump_shader(sscreen, processor) &&
5532 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5533 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5534
5535 if (shader->prolog)
5536 si_shader_dump_disassembly(&shader->prolog->binary,
5537 debug, "prolog", file);
5538 if (shader->previous_stage)
5539 si_shader_dump_disassembly(&shader->previous_stage->binary,
5540 debug, "previous stage", file);
5541 if (shader->prolog2)
5542 si_shader_dump_disassembly(&shader->prolog2->binary,
5543 debug, "prolog2", file);
5544
5545 si_shader_dump_disassembly(&shader->binary, debug, "main", file);
5546
5547 if (shader->epilog)
5548 si_shader_dump_disassembly(&shader->epilog->binary,
5549 debug, "epilog", file);
5550 fprintf(file, "\n");
5551 }
5552
5553 si_shader_dump_stats(sscreen, shader, debug, processor, file,
5554 check_debug_option);
5555 }
5556
si_compile_llvm(struct si_screen * sscreen,struct ac_shader_binary * binary,struct si_shader_config * conf,LLVMTargetMachineRef tm,LLVMModuleRef mod,struct pipe_debug_callback * debug,unsigned processor,const char * name)5557 static int si_compile_llvm(struct si_screen *sscreen,
5558 struct ac_shader_binary *binary,
5559 struct si_shader_config *conf,
5560 LLVMTargetMachineRef tm,
5561 LLVMModuleRef mod,
5562 struct pipe_debug_callback *debug,
5563 unsigned processor,
5564 const char *name)
5565 {
5566 int r = 0;
5567 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5568
5569 if (si_can_dump_shader(sscreen, processor)) {
5570 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5571
5572 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5573 fprintf(stderr, "%s LLVM IR:\n\n", name);
5574 ac_dump_module(mod);
5575 fprintf(stderr, "\n");
5576 }
5577 }
5578
5579 if (sscreen->record_llvm_ir) {
5580 char *ir = LLVMPrintModuleToString(mod);
5581 binary->llvm_ir_string = strdup(ir);
5582 LLVMDisposeMessage(ir);
5583 }
5584
5585 if (!si_replace_shader(count, binary)) {
5586 r = si_llvm_compile(mod, binary, tm, debug);
5587 if (r)
5588 return r;
5589 }
5590
5591 si_shader_binary_read_config(binary, conf, 0);
5592
5593 /* Enable 64-bit and 16-bit denormals, because there is no performance
5594 * cost.
5595 *
5596 * If denormals are enabled, all floating-point output modifiers are
5597 * ignored.
5598 *
5599 * Don't enable denormals for 32-bit floats, because:
5600 * - Floating-point output modifiers would be ignored by the hw.
5601 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5602 * have to stop using those.
5603 * - SI & CI would be very slow.
5604 */
5605 conf->float_mode |= V_00B028_FP_64_DENORMS;
5606
5607 FREE(binary->config);
5608 FREE(binary->global_symbol_offsets);
5609 binary->config = NULL;
5610 binary->global_symbol_offsets = NULL;
5611
5612 /* Some shaders can't have rodata because their binaries can be
5613 * concatenated.
5614 */
5615 if (binary->rodata_size &&
5616 (processor == PIPE_SHADER_VERTEX ||
5617 processor == PIPE_SHADER_TESS_CTRL ||
5618 processor == PIPE_SHADER_TESS_EVAL ||
5619 processor == PIPE_SHADER_FRAGMENT)) {
5620 fprintf(stderr, "radeonsi: The shader can't have rodata.");
5621 return -EINVAL;
5622 }
5623
5624 return r;
5625 }
5626
si_llvm_build_ret(struct si_shader_context * ctx,LLVMValueRef ret)5627 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5628 {
5629 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5630 LLVMBuildRetVoid(ctx->ac.builder);
5631 else
5632 LLVMBuildRet(ctx->ac.builder, ret);
5633 }
5634
5635 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5636 struct si_shader *
si_generate_gs_copy_shader(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader_selector * gs_selector,struct pipe_debug_callback * debug)5637 si_generate_gs_copy_shader(struct si_screen *sscreen,
5638 LLVMTargetMachineRef tm,
5639 struct si_shader_selector *gs_selector,
5640 struct pipe_debug_callback *debug)
5641 {
5642 struct si_shader_context ctx;
5643 struct si_shader *shader;
5644 LLVMBuilderRef builder;
5645 struct lp_build_tgsi_context *bld_base = &ctx.bld_base;
5646 struct lp_build_context *uint = &bld_base->uint_bld;
5647 struct si_shader_output_values *outputs;
5648 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5649 int i, r;
5650
5651 outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
5652
5653 if (!outputs)
5654 return NULL;
5655
5656 shader = CALLOC_STRUCT(si_shader);
5657 if (!shader) {
5658 FREE(outputs);
5659 return NULL;
5660 }
5661
5662 /* We can leave the fence as permanently signaled because the GS copy
5663 * shader only becomes visible globally after it has been compiled. */
5664 util_queue_fence_init(&shader->ready);
5665
5666 shader->selector = gs_selector;
5667 shader->is_gs_copy_shader = true;
5668
5669 si_init_shader_ctx(&ctx, sscreen, tm);
5670 ctx.shader = shader;
5671 ctx.type = PIPE_SHADER_VERTEX;
5672
5673 builder = ctx.ac.builder;
5674
5675 create_function(&ctx);
5676 preload_ring_buffers(&ctx);
5677
5678 LLVMValueRef voffset =
5679 lp_build_mul_imm(uint, ctx.abi.vertex_id, 4);
5680
5681 /* Fetch the vertex stream ID.*/
5682 LLVMValueRef stream_id;
5683
5684 if (gs_selector->so.num_outputs)
5685 stream_id = unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5686 else
5687 stream_id = ctx.i32_0;
5688
5689 /* Fill in output information. */
5690 for (i = 0; i < gsinfo->num_outputs; ++i) {
5691 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5692 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5693
5694 for (int chan = 0; chan < 4; chan++) {
5695 outputs[i].vertex_stream[chan] =
5696 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5697 }
5698 }
5699
5700 LLVMBasicBlockRef end_bb;
5701 LLVMValueRef switch_inst;
5702
5703 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5704 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5705
5706 for (int stream = 0; stream < 4; stream++) {
5707 LLVMBasicBlockRef bb;
5708 unsigned offset;
5709
5710 if (!gsinfo->num_stream_output_components[stream])
5711 continue;
5712
5713 if (stream > 0 && !gs_selector->so.num_outputs)
5714 continue;
5715
5716 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5717 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5718 LLVMPositionBuilderAtEnd(builder, bb);
5719
5720 /* Fetch vertex data from GSVS ring */
5721 offset = 0;
5722 for (i = 0; i < gsinfo->num_outputs; ++i) {
5723 for (unsigned chan = 0; chan < 4; chan++) {
5724 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5725 outputs[i].vertex_stream[chan] != stream) {
5726 outputs[i].values[chan] = ctx.bld_base.base.undef;
5727 continue;
5728 }
5729
5730 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5731 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5732 offset++;
5733
5734 outputs[i].values[chan] =
5735 ac_build_buffer_load(&ctx.ac,
5736 ctx.gsvs_ring[0], 1,
5737 ctx.i32_0, voffset,
5738 soffset, 0, 1, 1,
5739 true, false);
5740 }
5741 }
5742
5743 /* Streamout and exports. */
5744 if (gs_selector->so.num_outputs) {
5745 si_llvm_emit_streamout(&ctx, outputs,
5746 gsinfo->num_outputs,
5747 stream);
5748 }
5749
5750 if (stream == 0)
5751 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5752
5753 LLVMBuildBr(builder, end_bb);
5754 }
5755
5756 LLVMPositionBuilderAtEnd(builder, end_bb);
5757
5758 LLVMBuildRetVoid(ctx.ac.builder);
5759
5760 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5761 si_llvm_optimize_module(&ctx);
5762
5763 r = si_compile_llvm(sscreen, &ctx.shader->binary,
5764 &ctx.shader->config, ctx.tm,
5765 ctx.gallivm.module,
5766 debug, PIPE_SHADER_GEOMETRY,
5767 "GS Copy Shader");
5768 if (!r) {
5769 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5770 fprintf(stderr, "GS Copy Shader:\n");
5771 si_shader_dump(sscreen, ctx.shader, debug,
5772 PIPE_SHADER_GEOMETRY, stderr, true);
5773 r = si_shader_binary_upload(sscreen, ctx.shader);
5774 }
5775
5776 si_llvm_dispose(&ctx);
5777
5778 FREE(outputs);
5779
5780 if (r != 0) {
5781 FREE(shader);
5782 shader = NULL;
5783 }
5784 return shader;
5785 }
5786
si_dump_shader_key_vs(const struct si_shader_key * key,const struct si_vs_prolog_bits * prolog,const char * prefix,FILE * f)5787 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5788 const struct si_vs_prolog_bits *prolog,
5789 const char *prefix, FILE *f)
5790 {
5791 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5792 prefix, prolog->instance_divisor_is_one);
5793 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5794 prefix, prolog->instance_divisor_is_fetched);
5795 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5796 prefix, prolog->ls_vgpr_fix);
5797
5798 fprintf(f, " mono.vs.fix_fetch = {");
5799 for (int i = 0; i < SI_MAX_ATTRIBS; i++)
5800 fprintf(f, !i ? "%u" : ", %u", key->mono.vs_fix_fetch[i]);
5801 fprintf(f, "}\n");
5802 }
5803
si_dump_shader_key(unsigned processor,const struct si_shader * shader,FILE * f)5804 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5805 FILE *f)
5806 {
5807 const struct si_shader_key *key = &shader->key;
5808
5809 fprintf(f, "SHADER KEY\n");
5810
5811 switch (processor) {
5812 case PIPE_SHADER_VERTEX:
5813 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5814 "part.vs.prolog", f);
5815 fprintf(f, " as_es = %u\n", key->as_es);
5816 fprintf(f, " as_ls = %u\n", key->as_ls);
5817 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5818 key->mono.u.vs_export_prim_id);
5819 break;
5820
5821 case PIPE_SHADER_TESS_CTRL:
5822 if (shader->selector->screen->info.chip_class >= GFX9) {
5823 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5824 "part.tcs.ls_prolog", f);
5825 }
5826 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5827 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5828 break;
5829
5830 case PIPE_SHADER_TESS_EVAL:
5831 fprintf(f, " as_es = %u\n", key->as_es);
5832 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5833 key->mono.u.vs_export_prim_id);
5834 break;
5835
5836 case PIPE_SHADER_GEOMETRY:
5837 if (shader->is_gs_copy_shader)
5838 break;
5839
5840 if (shader->selector->screen->info.chip_class >= GFX9 &&
5841 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5842 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5843 "part.gs.vs_prolog", f);
5844 }
5845 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5846 break;
5847
5848 case PIPE_SHADER_COMPUTE:
5849 break;
5850
5851 case PIPE_SHADER_FRAGMENT:
5852 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5853 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5854 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5855 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5856 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5857 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5858 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5859 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5860 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5861 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5862 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5863 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5864 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5865 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5866 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5867 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5868 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5869 break;
5870
5871 default:
5872 assert(0);
5873 }
5874
5875 if ((processor == PIPE_SHADER_GEOMETRY ||
5876 processor == PIPE_SHADER_TESS_EVAL ||
5877 processor == PIPE_SHADER_VERTEX) &&
5878 !key->as_es && !key->as_ls) {
5879 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5880 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5881 }
5882 }
5883
si_init_shader_ctx(struct si_shader_context * ctx,struct si_screen * sscreen,LLVMTargetMachineRef tm)5884 static void si_init_shader_ctx(struct si_shader_context *ctx,
5885 struct si_screen *sscreen,
5886 LLVMTargetMachineRef tm)
5887 {
5888 struct lp_build_tgsi_context *bld_base;
5889
5890 si_llvm_context_init(ctx, sscreen, tm);
5891
5892 bld_base = &ctx->bld_base;
5893 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5894
5895 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
5896 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
5897 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
5898
5899 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5900
5901 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5902
5903 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5904 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5905 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5906 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5907
5908 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
5909 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
5910 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
5911 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
5912 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
5913 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
5914 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
5915 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].fetch_args = read_invoc_fetch_args;
5916 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
5917
5918 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
5919 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
5920 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
5921 }
5922
si_optimize_vs_outputs(struct si_shader_context * ctx)5923 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
5924 {
5925 struct si_shader *shader = ctx->shader;
5926 struct tgsi_shader_info *info = &shader->selector->info;
5927
5928 if ((ctx->type != PIPE_SHADER_VERTEX &&
5929 ctx->type != PIPE_SHADER_TESS_EVAL) ||
5930 shader->key.as_ls ||
5931 shader->key.as_es)
5932 return;
5933
5934 ac_optimize_vs_outputs(&ctx->ac,
5935 ctx->main_fn,
5936 shader->info.vs_output_param_offset,
5937 info->num_outputs,
5938 &shader->info.nr_param_exports);
5939 }
5940
si_count_scratch_private_memory(struct si_shader_context * ctx)5941 static void si_count_scratch_private_memory(struct si_shader_context *ctx)
5942 {
5943 ctx->shader->config.private_mem_vgprs = 0;
5944
5945 /* Process all LLVM instructions. */
5946 LLVMBasicBlockRef bb = LLVMGetFirstBasicBlock(ctx->main_fn);
5947 while (bb) {
5948 LLVMValueRef next = LLVMGetFirstInstruction(bb);
5949
5950 while (next) {
5951 LLVMValueRef inst = next;
5952 next = LLVMGetNextInstruction(next);
5953
5954 if (LLVMGetInstructionOpcode(inst) != LLVMAlloca)
5955 continue;
5956
5957 LLVMTypeRef type = LLVMGetElementType(LLVMTypeOf(inst));
5958 /* No idea why LLVM aligns allocas to 4 elements. */
5959 unsigned alignment = LLVMGetAlignment(inst);
5960 unsigned dw_size = align(ac_get_type_size(type) / 4, alignment);
5961 ctx->shader->config.private_mem_vgprs += dw_size;
5962 }
5963 bb = LLVMGetNextBasicBlock(bb);
5964 }
5965 }
5966
si_init_exec_from_input(struct si_shader_context * ctx,unsigned param,unsigned bitoffset)5967 static void si_init_exec_from_input(struct si_shader_context *ctx,
5968 unsigned param, unsigned bitoffset)
5969 {
5970 LLVMValueRef args[] = {
5971 LLVMGetParam(ctx->main_fn, param),
5972 LLVMConstInt(ctx->i32, bitoffset, 0),
5973 };
5974 lp_build_intrinsic(ctx->ac.builder,
5975 "llvm.amdgcn.init.exec.from.input",
5976 ctx->voidt, args, 2, LP_FUNC_ATTR_CONVERGENT);
5977 }
5978
si_vs_needs_prolog(const struct si_shader_selector * sel,const struct si_vs_prolog_bits * key)5979 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
5980 const struct si_vs_prolog_bits *key)
5981 {
5982 /* VGPR initialization fixup for Vega10 and Raven is always done in the
5983 * VS prolog. */
5984 return sel->vs_needs_prolog || key->ls_vgpr_fix;
5985 }
5986
si_compile_tgsi_main(struct si_shader_context * ctx,bool is_monolithic)5987 static bool si_compile_tgsi_main(struct si_shader_context *ctx,
5988 bool is_monolithic)
5989 {
5990 struct si_shader *shader = ctx->shader;
5991 struct si_shader_selector *sel = shader->selector;
5992 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
5993
5994 // TODO clean all this up!
5995 switch (ctx->type) {
5996 case PIPE_SHADER_VERTEX:
5997 ctx->load_input = declare_input_vs;
5998 if (shader->key.as_ls)
5999 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6000 else if (shader->key.as_es)
6001 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6002 else
6003 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6004 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6005 break;
6006 case PIPE_SHADER_TESS_CTRL:
6007 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6008 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6009 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6010 bld_base->emit_store = store_output_tcs;
6011 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6012 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6013 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6014 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6015 break;
6016 case PIPE_SHADER_TESS_EVAL:
6017 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6018 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6019 ctx->abi.load_tess_coord = si_load_tess_coord;
6020 ctx->abi.load_tess_level = si_load_tess_level;
6021 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6022 if (shader->key.as_es)
6023 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6024 else
6025 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6026 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6027 break;
6028 case PIPE_SHADER_GEOMETRY:
6029 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6030 ctx->abi.load_inputs = si_nir_load_input_gs;
6031 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6032 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6033 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6034 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6035 break;
6036 case PIPE_SHADER_FRAGMENT:
6037 ctx->load_input = declare_input_fs;
6038 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6039 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6040 break;
6041 case PIPE_SHADER_COMPUTE:
6042 break;
6043 default:
6044 assert(!"Unsupported shader type");
6045 return false;
6046 }
6047
6048 ctx->abi.load_ubo = load_ubo;
6049 ctx->abi.load_ssbo = load_ssbo;
6050
6051 create_function(ctx);
6052 preload_ring_buffers(ctx);
6053
6054 /* For GFX9 merged shaders:
6055 * - Set EXEC for the first shader. If the prolog is present, set
6056 * EXEC there instead.
6057 * - Add a barrier before the second shader.
6058 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6059 * an if-statement. This is required for correctness in geometry
6060 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6061 * GS_CUT messages.
6062 *
6063 * For monolithic merged shaders, the first shader is wrapped in an
6064 * if-block together with its prolog in si_build_wrapper_function.
6065 */
6066 if (ctx->screen->info.chip_class >= GFX9) {
6067 if (!is_monolithic &&
6068 sel->info.num_instructions > 1 && /* not empty shader */
6069 (shader->key.as_es || shader->key.as_ls) &&
6070 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6071 (ctx->type == PIPE_SHADER_VERTEX &&
6072 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6073 si_init_exec_from_input(ctx,
6074 ctx->param_merged_wave_info, 0);
6075 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6076 ctx->type == PIPE_SHADER_GEOMETRY) {
6077 if (!is_monolithic)
6078 ac_init_exec_full_mask(&ctx->ac);
6079
6080 /* The barrier must execute for all shaders in a
6081 * threadgroup.
6082 */
6083 si_llvm_emit_barrier(NULL, bld_base, NULL);
6084
6085 LLVMValueRef num_threads = unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6086 LLVMValueRef ena =
6087 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6088 ac_get_thread_id(&ctx->ac), num_threads, "");
6089 lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6090 }
6091 }
6092
6093 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6094 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6095 for (unsigned i = 0; i < 6; i++) {
6096 ctx->invoc0_tess_factors[i] =
6097 lp_build_alloca_undef(&ctx->gallivm, ctx->i32, "");
6098 }
6099 }
6100
6101 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6102 int i;
6103 for (i = 0; i < 4; i++) {
6104 ctx->gs_next_vertex[i] =
6105 lp_build_alloca(&ctx->gallivm,
6106 ctx->i32, "");
6107 }
6108 }
6109
6110 if (sel->force_correct_derivs_after_kill) {
6111 ctx->postponed_kill = lp_build_alloca_undef(&ctx->gallivm, ctx->i1, "");
6112 /* true = don't kill. */
6113 LLVMBuildStore(ctx->ac.builder, LLVMConstInt(ctx->i1, 1, 0),
6114 ctx->postponed_kill);
6115 }
6116
6117 if (sel->tokens) {
6118 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6119 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6120 return false;
6121 }
6122 } else {
6123 if (!si_nir_build_llvm(ctx, sel->nir)) {
6124 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6125 return false;
6126 }
6127 }
6128
6129 si_llvm_build_ret(ctx, ctx->return_value);
6130 return true;
6131 }
6132
6133 /**
6134 * Compute the VS prolog key, which contains all the information needed to
6135 * build the VS prolog function, and set shader->info bits where needed.
6136 *
6137 * \param info Shader info of the vertex shader.
6138 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6139 * \param prolog_key Key of the VS prolog
6140 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6141 * \param key Output shader part key.
6142 */
si_get_vs_prolog_key(const struct tgsi_shader_info * info,unsigned num_input_sgprs,const struct si_vs_prolog_bits * prolog_key,struct si_shader * shader_out,union si_shader_part_key * key)6143 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6144 unsigned num_input_sgprs,
6145 const struct si_vs_prolog_bits *prolog_key,
6146 struct si_shader *shader_out,
6147 union si_shader_part_key *key)
6148 {
6149 memset(key, 0, sizeof(*key));
6150 key->vs_prolog.states = *prolog_key;
6151 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6152 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6153 key->vs_prolog.as_ls = shader_out->key.as_ls;
6154 key->vs_prolog.as_es = shader_out->key.as_es;
6155
6156 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6157 key->vs_prolog.as_ls = 1;
6158 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6159 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6160 key->vs_prolog.as_es = 1;
6161 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6162 }
6163
6164 /* Enable loading the InstanceID VGPR. */
6165 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6166
6167 if ((key->vs_prolog.states.instance_divisor_is_one |
6168 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6169 shader_out->info.uses_instanceid = true;
6170 }
6171
6172 /**
6173 * Compute the PS prolog key, which contains all the information needed to
6174 * build the PS prolog function, and set related bits in shader->config.
6175 */
si_get_ps_prolog_key(struct si_shader * shader,union si_shader_part_key * key,bool separate_prolog)6176 static void si_get_ps_prolog_key(struct si_shader *shader,
6177 union si_shader_part_key *key,
6178 bool separate_prolog)
6179 {
6180 struct tgsi_shader_info *info = &shader->selector->info;
6181
6182 memset(key, 0, sizeof(*key));
6183 key->ps_prolog.states = shader->key.part.ps.prolog;
6184 key->ps_prolog.colors_read = info->colors_read;
6185 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6186 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6187 key->ps_prolog.wqm = info->uses_derivatives &&
6188 (key->ps_prolog.colors_read ||
6189 key->ps_prolog.states.force_persp_sample_interp ||
6190 key->ps_prolog.states.force_linear_sample_interp ||
6191 key->ps_prolog.states.force_persp_center_interp ||
6192 key->ps_prolog.states.force_linear_center_interp ||
6193 key->ps_prolog.states.bc_optimize_for_persp ||
6194 key->ps_prolog.states.bc_optimize_for_linear);
6195 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6196
6197 if (info->colors_read) {
6198 unsigned *color = shader->selector->color_attr_index;
6199
6200 if (shader->key.part.ps.prolog.color_two_side) {
6201 /* BCOLORs are stored after the last input. */
6202 key->ps_prolog.num_interp_inputs = info->num_inputs;
6203 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6204 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6205 }
6206
6207 for (unsigned i = 0; i < 2; i++) {
6208 unsigned interp = info->input_interpolate[color[i]];
6209 unsigned location = info->input_interpolate_loc[color[i]];
6210
6211 if (!(info->colors_read & (0xf << i*4)))
6212 continue;
6213
6214 key->ps_prolog.color_attr_index[i] = color[i];
6215
6216 if (shader->key.part.ps.prolog.flatshade_colors &&
6217 interp == TGSI_INTERPOLATE_COLOR)
6218 interp = TGSI_INTERPOLATE_CONSTANT;
6219
6220 switch (interp) {
6221 case TGSI_INTERPOLATE_CONSTANT:
6222 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6223 break;
6224 case TGSI_INTERPOLATE_PERSPECTIVE:
6225 case TGSI_INTERPOLATE_COLOR:
6226 /* Force the interpolation location for colors here. */
6227 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6228 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6229 if (shader->key.part.ps.prolog.force_persp_center_interp)
6230 location = TGSI_INTERPOLATE_LOC_CENTER;
6231
6232 switch (location) {
6233 case TGSI_INTERPOLATE_LOC_SAMPLE:
6234 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6235 shader->config.spi_ps_input_ena |=
6236 S_0286CC_PERSP_SAMPLE_ENA(1);
6237 break;
6238 case TGSI_INTERPOLATE_LOC_CENTER:
6239 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6240 shader->config.spi_ps_input_ena |=
6241 S_0286CC_PERSP_CENTER_ENA(1);
6242 break;
6243 case TGSI_INTERPOLATE_LOC_CENTROID:
6244 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6245 shader->config.spi_ps_input_ena |=
6246 S_0286CC_PERSP_CENTROID_ENA(1);
6247 break;
6248 default:
6249 assert(0);
6250 }
6251 break;
6252 case TGSI_INTERPOLATE_LINEAR:
6253 /* Force the interpolation location for colors here. */
6254 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6255 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6256 if (shader->key.part.ps.prolog.force_linear_center_interp)
6257 location = TGSI_INTERPOLATE_LOC_CENTER;
6258
6259 /* The VGPR assignment for non-monolithic shaders
6260 * works because InitialPSInputAddr is set on the
6261 * main shader and PERSP_PULL_MODEL is never used.
6262 */
6263 switch (location) {
6264 case TGSI_INTERPOLATE_LOC_SAMPLE:
6265 key->ps_prolog.color_interp_vgpr_index[i] =
6266 separate_prolog ? 6 : 9;
6267 shader->config.spi_ps_input_ena |=
6268 S_0286CC_LINEAR_SAMPLE_ENA(1);
6269 break;
6270 case TGSI_INTERPOLATE_LOC_CENTER:
6271 key->ps_prolog.color_interp_vgpr_index[i] =
6272 separate_prolog ? 8 : 11;
6273 shader->config.spi_ps_input_ena |=
6274 S_0286CC_LINEAR_CENTER_ENA(1);
6275 break;
6276 case TGSI_INTERPOLATE_LOC_CENTROID:
6277 key->ps_prolog.color_interp_vgpr_index[i] =
6278 separate_prolog ? 10 : 13;
6279 shader->config.spi_ps_input_ena |=
6280 S_0286CC_LINEAR_CENTROID_ENA(1);
6281 break;
6282 default:
6283 assert(0);
6284 }
6285 break;
6286 default:
6287 assert(0);
6288 }
6289 }
6290 }
6291 }
6292
6293 /**
6294 * Check whether a PS prolog is required based on the key.
6295 */
si_need_ps_prolog(const union si_shader_part_key * key)6296 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6297 {
6298 return key->ps_prolog.colors_read ||
6299 key->ps_prolog.states.force_persp_sample_interp ||
6300 key->ps_prolog.states.force_linear_sample_interp ||
6301 key->ps_prolog.states.force_persp_center_interp ||
6302 key->ps_prolog.states.force_linear_center_interp ||
6303 key->ps_prolog.states.bc_optimize_for_persp ||
6304 key->ps_prolog.states.bc_optimize_for_linear ||
6305 key->ps_prolog.states.poly_stipple ||
6306 key->ps_prolog.states.samplemask_log_ps_iter;
6307 }
6308
6309 /**
6310 * Compute the PS epilog key, which contains all the information needed to
6311 * build the PS epilog function.
6312 */
si_get_ps_epilog_key(struct si_shader * shader,union si_shader_part_key * key)6313 static void si_get_ps_epilog_key(struct si_shader *shader,
6314 union si_shader_part_key *key)
6315 {
6316 struct tgsi_shader_info *info = &shader->selector->info;
6317 memset(key, 0, sizeof(*key));
6318 key->ps_epilog.colors_written = info->colors_written;
6319 key->ps_epilog.writes_z = info->writes_z;
6320 key->ps_epilog.writes_stencil = info->writes_stencil;
6321 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6322 key->ps_epilog.states = shader->key.part.ps.epilog;
6323 }
6324
6325 /**
6326 * Build the GS prolog function. Rotate the input vertices for triangle strips
6327 * with adjacency.
6328 */
si_build_gs_prolog_function(struct si_shader_context * ctx,union si_shader_part_key * key)6329 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6330 union si_shader_part_key *key)
6331 {
6332 unsigned num_sgprs, num_vgprs;
6333 struct si_function_info fninfo;
6334 LLVMBuilderRef builder = ctx->ac.builder;
6335 LLVMTypeRef returns[48];
6336 LLVMValueRef func, ret;
6337
6338 si_init_function_info(&fninfo);
6339
6340 if (ctx->screen->info.chip_class >= GFX9) {
6341 num_sgprs = 8 + GFX9_GS_NUM_USER_SGPR;
6342 num_vgprs = 5; /* ES inputs are not needed by GS */
6343 } else {
6344 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6345 num_vgprs = 8;
6346 }
6347
6348 for (unsigned i = 0; i < num_sgprs; ++i) {
6349 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6350 returns[i] = ctx->i32;
6351 }
6352
6353 for (unsigned i = 0; i < num_vgprs; ++i) {
6354 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6355 returns[num_sgprs + i] = ctx->f32;
6356 }
6357
6358 /* Create the function. */
6359 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6360 &fninfo, 0);
6361 func = ctx->main_fn;
6362
6363 /* Set the full EXEC mask for the prolog, because we are only fiddling
6364 * with registers here. The main shader part will set the correct EXEC
6365 * mask.
6366 */
6367 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6368 ac_init_exec_full_mask(&ctx->ac);
6369
6370 /* Copy inputs to outputs. This should be no-op, as the registers match,
6371 * but it will prevent the compiler from overwriting them unintentionally.
6372 */
6373 ret = ctx->return_value;
6374 for (unsigned i = 0; i < num_sgprs; i++) {
6375 LLVMValueRef p = LLVMGetParam(func, i);
6376 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6377 }
6378 for (unsigned i = 0; i < num_vgprs; i++) {
6379 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6380 p = ac_to_float(&ctx->ac, p);
6381 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6382 }
6383
6384 if (key->gs_prolog.states.tri_strip_adj_fix) {
6385 /* Remap the input vertices for every other primitive. */
6386 const unsigned gfx6_vtx_params[6] = {
6387 num_sgprs,
6388 num_sgprs + 1,
6389 num_sgprs + 3,
6390 num_sgprs + 4,
6391 num_sgprs + 5,
6392 num_sgprs + 6
6393 };
6394 const unsigned gfx9_vtx_params[3] = {
6395 num_sgprs,
6396 num_sgprs + 1,
6397 num_sgprs + 4,
6398 };
6399 LLVMValueRef vtx_in[6], vtx_out[6];
6400 LLVMValueRef prim_id, rotate;
6401
6402 if (ctx->screen->info.chip_class >= GFX9) {
6403 for (unsigned i = 0; i < 3; i++) {
6404 vtx_in[i*2] = unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6405 vtx_in[i*2+1] = unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6406 }
6407 } else {
6408 for (unsigned i = 0; i < 6; i++)
6409 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6410 }
6411
6412 prim_id = LLVMGetParam(func, num_sgprs + 2);
6413 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6414
6415 for (unsigned i = 0; i < 6; ++i) {
6416 LLVMValueRef base, rotated;
6417 base = vtx_in[i];
6418 rotated = vtx_in[(i + 4) % 6];
6419 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6420 }
6421
6422 if (ctx->screen->info.chip_class >= GFX9) {
6423 for (unsigned i = 0; i < 3; i++) {
6424 LLVMValueRef hi, out;
6425
6426 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6427 LLVMConstInt(ctx->i32, 16, 0), "");
6428 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6429 out = ac_to_float(&ctx->ac, out);
6430 ret = LLVMBuildInsertValue(builder, ret, out,
6431 gfx9_vtx_params[i], "");
6432 }
6433 } else {
6434 for (unsigned i = 0; i < 6; i++) {
6435 LLVMValueRef out;
6436
6437 out = ac_to_float(&ctx->ac, vtx_out[i]);
6438 ret = LLVMBuildInsertValue(builder, ret, out,
6439 gfx6_vtx_params[i], "");
6440 }
6441 }
6442 }
6443
6444 LLVMBuildRet(builder, ret);
6445 }
6446
6447 /**
6448 * Given a list of shader part functions, build a wrapper function that
6449 * runs them in sequence to form a monolithic shader.
6450 */
si_build_wrapper_function(struct si_shader_context * ctx,LLVMValueRef * parts,unsigned num_parts,unsigned main_part,unsigned next_shader_first_part)6451 static void si_build_wrapper_function(struct si_shader_context *ctx,
6452 LLVMValueRef *parts,
6453 unsigned num_parts,
6454 unsigned main_part,
6455 unsigned next_shader_first_part)
6456 {
6457 LLVMBuilderRef builder = ctx->ac.builder;
6458 /* PS epilog has one arg per color component; gfx9 merged shader
6459 * prologs need to forward 32 user SGPRs.
6460 */
6461 struct si_function_info fninfo;
6462 LLVMValueRef initial[64], out[64];
6463 LLVMTypeRef function_type;
6464 unsigned num_first_params;
6465 unsigned num_out, initial_num_out;
6466 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6467 MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6468 unsigned num_sgprs, num_vgprs;
6469 unsigned gprs;
6470 struct lp_build_if_state if_state;
6471
6472 si_init_function_info(&fninfo);
6473
6474 for (unsigned i = 0; i < num_parts; ++i) {
6475 lp_add_function_attr(parts[i], -1, LP_FUNC_ATTR_ALWAYSINLINE);
6476 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6477 }
6478
6479 /* The parameters of the wrapper function correspond to those of the
6480 * first part in terms of SGPRs and VGPRs, but we use the types of the
6481 * main part to get the right types. This is relevant for the
6482 * dereferenceable attribute on descriptor table pointers.
6483 */
6484 num_sgprs = 0;
6485 num_vgprs = 0;
6486
6487 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6488 num_first_params = LLVMCountParamTypes(function_type);
6489
6490 for (unsigned i = 0; i < num_first_params; ++i) {
6491 LLVMValueRef param = LLVMGetParam(parts[0], i);
6492
6493 if (ac_is_sgpr_param(param)) {
6494 assert(num_vgprs == 0);
6495 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6496 } else {
6497 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6498 }
6499 }
6500
6501 gprs = 0;
6502 while (gprs < num_sgprs + num_vgprs) {
6503 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6504 LLVMTypeRef type = LLVMTypeOf(param);
6505 unsigned size = ac_get_type_size(type) / 4;
6506
6507 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6508
6509 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6510 assert(gprs + size <= num_sgprs + num_vgprs &&
6511 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6512
6513 gprs += size;
6514 }
6515
6516 si_create_function(ctx, "wrapper", NULL, 0, &fninfo,
6517 si_get_max_workgroup_size(ctx->shader));
6518
6519 if (is_merged_shader(ctx->shader))
6520 ac_init_exec_full_mask(&ctx->ac);
6521
6522 /* Record the arguments of the function as if they were an output of
6523 * a previous part.
6524 */
6525 num_out = 0;
6526 num_out_sgpr = 0;
6527
6528 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6529 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6530 LLVMTypeRef param_type = LLVMTypeOf(param);
6531 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6532 unsigned size = ac_get_type_size(param_type) / 4;
6533
6534 if (size == 1) {
6535 if (param_type != out_type)
6536 param = LLVMBuildBitCast(builder, param, out_type, "");
6537 out[num_out++] = param;
6538 } else {
6539 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6540
6541 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6542 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6543 param_type = ctx->i64;
6544 }
6545
6546 if (param_type != vector_type)
6547 param = LLVMBuildBitCast(builder, param, vector_type, "");
6548
6549 for (unsigned j = 0; j < size; ++j)
6550 out[num_out++] = LLVMBuildExtractElement(
6551 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6552 }
6553
6554 if (i < fninfo.num_sgpr_params)
6555 num_out_sgpr = num_out;
6556 }
6557
6558 memcpy(initial, out, sizeof(out));
6559 initial_num_out = num_out;
6560 initial_num_out_sgpr = num_out_sgpr;
6561
6562 /* Now chain the parts. */
6563 for (unsigned part = 0; part < num_parts; ++part) {
6564 LLVMValueRef in[48];
6565 LLVMValueRef ret;
6566 LLVMTypeRef ret_type;
6567 unsigned out_idx = 0;
6568 unsigned num_params = LLVMCountParams(parts[part]);
6569
6570 /* Merged shaders are executed conditionally depending
6571 * on the number of enabled threads passed in the input SGPRs. */
6572 if (is_merged_shader(ctx->shader) && part == 0) {
6573 LLVMValueRef ena, count = initial[3];
6574
6575 count = LLVMBuildAnd(builder, count,
6576 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6577 ena = LLVMBuildICmp(builder, LLVMIntULT,
6578 ac_get_thread_id(&ctx->ac), count, "");
6579 lp_build_if(&if_state, &ctx->gallivm, ena);
6580 }
6581
6582 /* Derive arguments for the next part from outputs of the
6583 * previous one.
6584 */
6585 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6586 LLVMValueRef param;
6587 LLVMTypeRef param_type;
6588 bool is_sgpr;
6589 unsigned param_size;
6590 LLVMValueRef arg = NULL;
6591
6592 param = LLVMGetParam(parts[part], param_idx);
6593 param_type = LLVMTypeOf(param);
6594 param_size = ac_get_type_size(param_type) / 4;
6595 is_sgpr = ac_is_sgpr_param(param);
6596
6597 if (is_sgpr) {
6598 #if HAVE_LLVM < 0x0400
6599 LLVMRemoveAttribute(param, LLVMByValAttribute);
6600 #else
6601 unsigned kind_id = LLVMGetEnumAttributeKindForName("byval", 5);
6602 LLVMRemoveEnumAttributeAtIndex(parts[part], param_idx + 1, kind_id);
6603 #endif
6604 lp_add_function_attr(parts[part], param_idx + 1, LP_FUNC_ATTR_INREG);
6605 }
6606
6607 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6608 assert(is_sgpr || out_idx >= num_out_sgpr);
6609
6610 if (param_size == 1)
6611 arg = out[out_idx];
6612 else
6613 arg = lp_build_gather_values(&ctx->gallivm, &out[out_idx], param_size);
6614
6615 if (LLVMTypeOf(arg) != param_type) {
6616 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6617 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6618 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6619 } else {
6620 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6621 }
6622 }
6623
6624 in[param_idx] = arg;
6625 out_idx += param_size;
6626 }
6627
6628 ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
6629
6630 if (is_merged_shader(ctx->shader) &&
6631 part + 1 == next_shader_first_part) {
6632 lp_build_endif(&if_state);
6633
6634 /* The second half of the merged shader should use
6635 * the inputs from the toplevel (wrapper) function,
6636 * not the return value from the last call.
6637 *
6638 * That's because the last call was executed condi-
6639 * tionally, so we can't consume it in the main
6640 * block.
6641 */
6642 memcpy(out, initial, sizeof(initial));
6643 num_out = initial_num_out;
6644 num_out_sgpr = initial_num_out_sgpr;
6645 continue;
6646 }
6647
6648 /* Extract the returned GPRs. */
6649 ret_type = LLVMTypeOf(ret);
6650 num_out = 0;
6651 num_out_sgpr = 0;
6652
6653 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6654 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6655
6656 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6657
6658 for (unsigned i = 0; i < ret_size; ++i) {
6659 LLVMValueRef val =
6660 LLVMBuildExtractValue(builder, ret, i, "");
6661
6662 assert(num_out < ARRAY_SIZE(out));
6663 out[num_out++] = val;
6664
6665 if (LLVMTypeOf(val) == ctx->i32) {
6666 assert(num_out_sgpr + 1 == num_out);
6667 num_out_sgpr = num_out;
6668 }
6669 }
6670 }
6671 }
6672
6673 LLVMBuildRetVoid(builder);
6674 }
6675
si_compile_tgsi_shader(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,bool is_monolithic,struct pipe_debug_callback * debug)6676 int si_compile_tgsi_shader(struct si_screen *sscreen,
6677 LLVMTargetMachineRef tm,
6678 struct si_shader *shader,
6679 bool is_monolithic,
6680 struct pipe_debug_callback *debug)
6681 {
6682 struct si_shader_selector *sel = shader->selector;
6683 struct si_shader_context ctx;
6684 int r = -1;
6685
6686 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6687 * conversion fails. */
6688 if (si_can_dump_shader(sscreen, sel->info.processor) &&
6689 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6690 if (sel->tokens)
6691 tgsi_dump(sel->tokens, 0);
6692 else
6693 nir_print_shader(sel->nir, stderr);
6694 si_dump_streamout(&sel->so);
6695 }
6696
6697 si_init_shader_ctx(&ctx, sscreen, tm);
6698 si_llvm_context_set_tgsi(&ctx, shader);
6699 ctx.separate_prolog = !is_monolithic;
6700
6701 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6702 sizeof(shader->info.vs_output_param_offset));
6703
6704 shader->info.uses_instanceid = sel->info.uses_instanceid;
6705
6706 if (!si_compile_tgsi_main(&ctx, is_monolithic)) {
6707 si_llvm_dispose(&ctx);
6708 return -1;
6709 }
6710
6711 if (is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6712 LLVMValueRef parts[2];
6713 bool need_prolog = sel->vs_needs_prolog;
6714
6715 parts[1] = ctx.main_fn;
6716
6717 if (need_prolog) {
6718 union si_shader_part_key prolog_key;
6719 si_get_vs_prolog_key(&sel->info,
6720 shader->info.num_input_sgprs,
6721 &shader->key.part.vs.prolog,
6722 shader, &prolog_key);
6723 si_build_vs_prolog_function(&ctx, &prolog_key);
6724 parts[0] = ctx.main_fn;
6725 }
6726
6727 si_build_wrapper_function(&ctx, parts + !need_prolog,
6728 1 + need_prolog, need_prolog, 0);
6729 } else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6730 if (sscreen->info.chip_class >= GFX9) {
6731 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6732 LLVMValueRef parts[4];
6733 bool vs_needs_prolog =
6734 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6735
6736 /* TCS main part */
6737 parts[2] = ctx.main_fn;
6738
6739 /* TCS epilog */
6740 union si_shader_part_key tcs_epilog_key;
6741 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6742 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6743 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6744 parts[3] = ctx.main_fn;
6745
6746 /* VS prolog */
6747 if (vs_needs_prolog) {
6748 union si_shader_part_key vs_prolog_key;
6749 si_get_vs_prolog_key(&ls->info,
6750 shader->info.num_input_sgprs,
6751 &shader->key.part.tcs.ls_prolog,
6752 shader, &vs_prolog_key);
6753 vs_prolog_key.vs_prolog.is_monolithic = true;
6754 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6755 parts[0] = ctx.main_fn;
6756 }
6757
6758 /* VS as LS main part */
6759 struct si_shader shader_ls = {};
6760 shader_ls.selector = ls;
6761 shader_ls.key.as_ls = 1;
6762 shader_ls.key.mono = shader->key.mono;
6763 shader_ls.key.opt = shader->key.opt;
6764 si_llvm_context_set_tgsi(&ctx, &shader_ls);
6765
6766 if (!si_compile_tgsi_main(&ctx, true)) {
6767 si_llvm_dispose(&ctx);
6768 return -1;
6769 }
6770 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6771 parts[1] = ctx.main_fn;
6772
6773 /* Reset the shader context. */
6774 ctx.shader = shader;
6775 ctx.type = PIPE_SHADER_TESS_CTRL;
6776
6777 si_build_wrapper_function(&ctx,
6778 parts + !vs_needs_prolog,
6779 4 - !vs_needs_prolog, 0,
6780 vs_needs_prolog ? 2 : 1);
6781 } else {
6782 LLVMValueRef parts[2];
6783 union si_shader_part_key epilog_key;
6784
6785 parts[0] = ctx.main_fn;
6786
6787 memset(&epilog_key, 0, sizeof(epilog_key));
6788 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6789 si_build_tcs_epilog_function(&ctx, &epilog_key);
6790 parts[1] = ctx.main_fn;
6791
6792 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
6793 }
6794 } else if (is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
6795 if (ctx.screen->info.chip_class >= GFX9) {
6796 struct si_shader_selector *es = shader->key.part.gs.es;
6797 LLVMValueRef es_prolog = NULL;
6798 LLVMValueRef es_main = NULL;
6799 LLVMValueRef gs_prolog = NULL;
6800 LLVMValueRef gs_main = ctx.main_fn;
6801
6802 /* GS prolog */
6803 union si_shader_part_key gs_prolog_key;
6804 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
6805 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6806 gs_prolog_key.gs_prolog.is_monolithic = true;
6807 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
6808 gs_prolog = ctx.main_fn;
6809
6810 /* ES prolog */
6811 if (es->vs_needs_prolog) {
6812 union si_shader_part_key vs_prolog_key;
6813 si_get_vs_prolog_key(&es->info,
6814 shader->info.num_input_sgprs,
6815 &shader->key.part.gs.vs_prolog,
6816 shader, &vs_prolog_key);
6817 vs_prolog_key.vs_prolog.is_monolithic = true;
6818 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6819 es_prolog = ctx.main_fn;
6820 }
6821
6822 /* ES main part */
6823 struct si_shader shader_es = {};
6824 shader_es.selector = es;
6825 shader_es.key.as_es = 1;
6826 shader_es.key.mono = shader->key.mono;
6827 shader_es.key.opt = shader->key.opt;
6828 si_llvm_context_set_tgsi(&ctx, &shader_es);
6829
6830 if (!si_compile_tgsi_main(&ctx, true)) {
6831 si_llvm_dispose(&ctx);
6832 return -1;
6833 }
6834 shader->info.uses_instanceid |= es->info.uses_instanceid;
6835 es_main = ctx.main_fn;
6836
6837 /* Reset the shader context. */
6838 ctx.shader = shader;
6839 ctx.type = PIPE_SHADER_GEOMETRY;
6840
6841 /* Prepare the array of shader parts. */
6842 LLVMValueRef parts[4];
6843 unsigned num_parts = 0, main_part, next_first_part;
6844
6845 if (es_prolog)
6846 parts[num_parts++] = es_prolog;
6847
6848 parts[main_part = num_parts++] = es_main;
6849 parts[next_first_part = num_parts++] = gs_prolog;
6850 parts[num_parts++] = gs_main;
6851
6852 si_build_wrapper_function(&ctx, parts, num_parts,
6853 main_part, next_first_part);
6854 } else {
6855 LLVMValueRef parts[2];
6856 union si_shader_part_key prolog_key;
6857
6858 parts[1] = ctx.main_fn;
6859
6860 memset(&prolog_key, 0, sizeof(prolog_key));
6861 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6862 si_build_gs_prolog_function(&ctx, &prolog_key);
6863 parts[0] = ctx.main_fn;
6864
6865 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
6866 }
6867 } else if (is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
6868 LLVMValueRef parts[3];
6869 union si_shader_part_key prolog_key;
6870 union si_shader_part_key epilog_key;
6871 bool need_prolog;
6872
6873 si_get_ps_prolog_key(shader, &prolog_key, false);
6874 need_prolog = si_need_ps_prolog(&prolog_key);
6875
6876 parts[need_prolog ? 1 : 0] = ctx.main_fn;
6877
6878 if (need_prolog) {
6879 si_build_ps_prolog_function(&ctx, &prolog_key);
6880 parts[0] = ctx.main_fn;
6881 }
6882
6883 si_get_ps_epilog_key(shader, &epilog_key);
6884 si_build_ps_epilog_function(&ctx, &epilog_key);
6885 parts[need_prolog ? 2 : 1] = ctx.main_fn;
6886
6887 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
6888 need_prolog ? 1 : 0, 0);
6889 }
6890
6891 si_llvm_optimize_module(&ctx);
6892
6893 /* Post-optimization transformations and analysis. */
6894 si_optimize_vs_outputs(&ctx);
6895
6896 if ((debug && debug->debug_message) ||
6897 si_can_dump_shader(sscreen, ctx.type))
6898 si_count_scratch_private_memory(&ctx);
6899
6900 /* Compile to bytecode. */
6901 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, tm,
6902 ctx.gallivm.module, debug, ctx.type, "TGSI shader");
6903 si_llvm_dispose(&ctx);
6904 if (r) {
6905 fprintf(stderr, "LLVM failed to compile shader\n");
6906 return r;
6907 }
6908
6909 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
6910 * LLVM 3.9svn has this bug.
6911 */
6912 if (sel->type == PIPE_SHADER_COMPUTE) {
6913 unsigned wave_size = 64;
6914 unsigned max_vgprs = 256;
6915 unsigned max_sgprs = sscreen->info.chip_class >= VI ? 800 : 512;
6916 unsigned max_sgprs_per_wave = 128;
6917 unsigned max_block_threads = si_get_max_workgroup_size(shader);
6918 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
6919 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
6920
6921 max_vgprs = max_vgprs / min_waves_per_simd;
6922 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
6923
6924 if (shader->config.num_sgprs > max_sgprs ||
6925 shader->config.num_vgprs > max_vgprs) {
6926 fprintf(stderr, "LLVM failed to compile a shader correctly: "
6927 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
6928 shader->config.num_sgprs, shader->config.num_vgprs,
6929 max_sgprs, max_vgprs);
6930
6931 /* Just terminate the process, because dependent
6932 * shaders can hang due to bad input data, but use
6933 * the env var to allow shader-db to work.
6934 */
6935 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
6936 abort();
6937 }
6938 }
6939
6940 /* Add the scratch offset to input SGPRs. */
6941 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(shader))
6942 shader->info.num_input_sgprs += 1; /* scratch byte offset */
6943
6944 /* Calculate the number of fragment input VGPRs. */
6945 if (ctx.type == PIPE_SHADER_FRAGMENT) {
6946 shader->info.num_input_vgprs = 0;
6947 shader->info.face_vgpr_index = -1;
6948 shader->info.ancillary_vgpr_index = -1;
6949
6950 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
6951 shader->info.num_input_vgprs += 2;
6952 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
6953 shader->info.num_input_vgprs += 2;
6954 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
6955 shader->info.num_input_vgprs += 2;
6956 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
6957 shader->info.num_input_vgprs += 3;
6958 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
6959 shader->info.num_input_vgprs += 2;
6960 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
6961 shader->info.num_input_vgprs += 2;
6962 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
6963 shader->info.num_input_vgprs += 2;
6964 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
6965 shader->info.num_input_vgprs += 1;
6966 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
6967 shader->info.num_input_vgprs += 1;
6968 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
6969 shader->info.num_input_vgprs += 1;
6970 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
6971 shader->info.num_input_vgprs += 1;
6972 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
6973 shader->info.num_input_vgprs += 1;
6974 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
6975 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
6976 shader->info.num_input_vgprs += 1;
6977 }
6978 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
6979 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
6980 shader->info.num_input_vgprs += 1;
6981 }
6982 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
6983 shader->info.num_input_vgprs += 1;
6984 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
6985 shader->info.num_input_vgprs += 1;
6986 }
6987
6988 return 0;
6989 }
6990
6991 /**
6992 * Create, compile and return a shader part (prolog or epilog).
6993 *
6994 * \param sscreen screen
6995 * \param list list of shader parts of the same category
6996 * \param type shader type
6997 * \param key shader part key
6998 * \param prolog whether the part being requested is a prolog
6999 * \param tm LLVM target machine
7000 * \param debug debug callback
7001 * \param build the callback responsible for building the main function
7002 * \return non-NULL on success
7003 */
7004 static struct si_shader_part *
si_get_shader_part(struct si_screen * sscreen,struct si_shader_part ** list,enum pipe_shader_type type,bool prolog,union si_shader_part_key * key,LLVMTargetMachineRef tm,struct pipe_debug_callback * debug,void (* build)(struct si_shader_context *,union si_shader_part_key *),const char * name)7005 si_get_shader_part(struct si_screen *sscreen,
7006 struct si_shader_part **list,
7007 enum pipe_shader_type type,
7008 bool prolog,
7009 union si_shader_part_key *key,
7010 LLVMTargetMachineRef tm,
7011 struct pipe_debug_callback *debug,
7012 void (*build)(struct si_shader_context *,
7013 union si_shader_part_key *),
7014 const char *name)
7015 {
7016 struct si_shader_part *result;
7017
7018 mtx_lock(&sscreen->shader_parts_mutex);
7019
7020 /* Find existing. */
7021 for (result = *list; result; result = result->next) {
7022 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7023 mtx_unlock(&sscreen->shader_parts_mutex);
7024 return result;
7025 }
7026 }
7027
7028 /* Compile a new one. */
7029 result = CALLOC_STRUCT(si_shader_part);
7030 result->key = *key;
7031
7032 struct si_shader shader = {};
7033 struct si_shader_context ctx;
7034
7035 si_init_shader_ctx(&ctx, sscreen, tm);
7036 ctx.shader = &shader;
7037 ctx.type = type;
7038
7039 switch (type) {
7040 case PIPE_SHADER_VERTEX:
7041 shader.key.as_ls = key->vs_prolog.as_ls;
7042 shader.key.as_es = key->vs_prolog.as_es;
7043 break;
7044 case PIPE_SHADER_TESS_CTRL:
7045 assert(!prolog);
7046 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7047 break;
7048 case PIPE_SHADER_GEOMETRY:
7049 assert(prolog);
7050 break;
7051 case PIPE_SHADER_FRAGMENT:
7052 if (prolog)
7053 shader.key.part.ps.prolog = key->ps_prolog.states;
7054 else
7055 shader.key.part.ps.epilog = key->ps_epilog.states;
7056 break;
7057 default:
7058 unreachable("bad shader part");
7059 }
7060
7061 build(&ctx, key);
7062
7063 /* Compile. */
7064 si_llvm_optimize_module(&ctx);
7065
7066 if (si_compile_llvm(sscreen, &result->binary, &result->config, tm,
7067 ctx.ac.module, debug, ctx.type, name)) {
7068 FREE(result);
7069 result = NULL;
7070 goto out;
7071 }
7072
7073 result->next = *list;
7074 *list = result;
7075
7076 out:
7077 si_llvm_dispose(&ctx);
7078 mtx_unlock(&sscreen->shader_parts_mutex);
7079 return result;
7080 }
7081
si_prolog_get_rw_buffers(struct si_shader_context * ctx)7082 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7083 {
7084 LLVMValueRef ptr[2], list;
7085 bool is_merged_shader =
7086 ctx->screen->info.chip_class >= GFX9 &&
7087 (ctx->type == PIPE_SHADER_TESS_CTRL ||
7088 ctx->type == PIPE_SHADER_GEOMETRY ||
7089 ctx->shader->key.as_ls || ctx->shader->key.as_es);
7090
7091 /* Get the pointer to rw buffers. */
7092 ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7093 ptr[1] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS_HI);
7094 list = lp_build_gather_values(&ctx->gallivm, ptr, 2);
7095 list = LLVMBuildBitCast(ctx->ac.builder, list, ctx->i64, "");
7096 list = LLVMBuildIntToPtr(ctx->ac.builder, list,
7097 si_const_array(ctx->v4i32, SI_NUM_RW_BUFFERS), "");
7098 return list;
7099 }
7100
7101 /**
7102 * Build the vertex shader prolog function.
7103 *
7104 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7105 * All inputs are returned unmodified. The vertex load indices are
7106 * stored after them, which will be used by the API VS for fetching inputs.
7107 *
7108 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7109 * input_v0,
7110 * input_v1,
7111 * input_v2,
7112 * input_v3,
7113 * (VertexID + BaseVertex),
7114 * (InstanceID + StartInstance),
7115 * (InstanceID / 2 + StartInstance)
7116 */
si_build_vs_prolog_function(struct si_shader_context * ctx,union si_shader_part_key * key)7117 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7118 union si_shader_part_key *key)
7119 {
7120 struct si_function_info fninfo;
7121 LLVMTypeRef *returns;
7122 LLVMValueRef ret, func;
7123 int num_returns, i;
7124 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7125 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7126 LLVMValueRef input_vgprs[9];
7127 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7128 num_input_vgprs;
7129 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7130
7131 si_init_function_info(&fninfo);
7132
7133 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7134 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7135 sizeof(LLVMTypeRef));
7136 num_returns = 0;
7137
7138 /* Declare input and output SGPRs. */
7139 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7140 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7141 returns[num_returns++] = ctx->i32;
7142 }
7143
7144 /* Preloaded VGPRs (outputs must be floats) */
7145 for (i = 0; i < num_input_vgprs; i++) {
7146 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7147 returns[num_returns++] = ctx->f32;
7148 }
7149
7150 /* Vertex load indices. */
7151 for (i = 0; i <= key->vs_prolog.last_input; i++)
7152 returns[num_returns++] = ctx->f32;
7153
7154 /* Create the function. */
7155 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7156 func = ctx->main_fn;
7157
7158 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7159 if (!key->vs_prolog.is_monolithic)
7160 si_init_exec_from_input(ctx, 3, 0);
7161
7162 if (key->vs_prolog.as_ls &&
7163 ctx->screen->has_ls_vgpr_init_bug) {
7164 /* If there are no HS threads, SPI loads the LS VGPRs
7165 * starting at VGPR 0. Shift them back to where they
7166 * belong.
7167 */
7168 LLVMValueRef has_hs_threads =
7169 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7170 unpack_param(ctx, 3, 8, 8),
7171 ctx->i32_0, "");
7172
7173 for (i = 4; i > 0; --i) {
7174 input_vgprs[i + 1] =
7175 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7176 input_vgprs[i + 1],
7177 input_vgprs[i - 1], "");
7178 }
7179 }
7180 }
7181
7182 ctx->abi.vertex_id = input_vgprs[first_vs_vgpr];
7183 ctx->abi.instance_id = input_vgprs[first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1)];
7184
7185 /* Copy inputs to outputs. This should be no-op, as the registers match,
7186 * but it will prevent the compiler from overwriting them unintentionally.
7187 */
7188 ret = ctx->return_value;
7189 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7190 LLVMValueRef p = LLVMGetParam(func, i);
7191 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7192 }
7193 for (i = 0; i < num_input_vgprs; i++) {
7194 LLVMValueRef p = input_vgprs[i];
7195 p = ac_to_float(&ctx->ac, p);
7196 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7197 key->vs_prolog.num_input_sgprs + i, "");
7198 }
7199
7200 /* Compute vertex load indices from instance divisors. */
7201 LLVMValueRef instance_divisor_constbuf = NULL;
7202
7203 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7204 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7205 LLVMValueRef buf_index =
7206 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7207 instance_divisor_constbuf =
7208 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7209 }
7210
7211 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7212 bool divisor_is_one =
7213 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7214 bool divisor_is_fetched =
7215 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7216 LLVMValueRef index;
7217
7218 if (divisor_is_one || divisor_is_fetched) {
7219 LLVMValueRef divisor = ctx->i32_1;
7220
7221 if (divisor_is_fetched) {
7222 divisor = buffer_load_const(ctx, instance_divisor_constbuf,
7223 LLVMConstInt(ctx->i32, i * 4, 0));
7224 divisor = ac_to_integer(&ctx->ac, divisor);
7225 }
7226
7227 /* InstanceID / Divisor + StartInstance */
7228 index = get_instance_index_for_fetch(ctx,
7229 user_sgpr_base +
7230 SI_SGPR_START_INSTANCE,
7231 divisor);
7232 } else {
7233 /* VertexID + BaseVertex */
7234 index = LLVMBuildAdd(ctx->ac.builder,
7235 ctx->abi.vertex_id,
7236 LLVMGetParam(func, user_sgpr_base +
7237 SI_SGPR_BASE_VERTEX), "");
7238 }
7239
7240 index = ac_to_float(&ctx->ac, index);
7241 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7242 fninfo.num_params + i, "");
7243 }
7244
7245 si_llvm_build_ret(ctx, ret);
7246 }
7247
si_get_vs_prolog(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug,struct si_shader * main_part,const struct si_vs_prolog_bits * key)7248 static bool si_get_vs_prolog(struct si_screen *sscreen,
7249 LLVMTargetMachineRef tm,
7250 struct si_shader *shader,
7251 struct pipe_debug_callback *debug,
7252 struct si_shader *main_part,
7253 const struct si_vs_prolog_bits *key)
7254 {
7255 struct si_shader_selector *vs = main_part->selector;
7256
7257 if (!si_vs_needs_prolog(vs, key))
7258 return true;
7259
7260 /* Get the prolog. */
7261 union si_shader_part_key prolog_key;
7262 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7263 key, shader, &prolog_key);
7264
7265 shader->prolog =
7266 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7267 PIPE_SHADER_VERTEX, true, &prolog_key, tm,
7268 debug, si_build_vs_prolog_function,
7269 "Vertex Shader Prolog");
7270 return shader->prolog != NULL;
7271 }
7272
7273 /**
7274 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7275 */
si_shader_select_vs_parts(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7276 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7277 LLVMTargetMachineRef tm,
7278 struct si_shader *shader,
7279 struct pipe_debug_callback *debug)
7280 {
7281 return si_get_vs_prolog(sscreen, tm, shader, debug, shader,
7282 &shader->key.part.vs.prolog);
7283 }
7284
7285 /**
7286 * Compile the TCS epilog function. This writes tesselation factors to memory
7287 * based on the output primitive type of the tesselator (determined by TES).
7288 */
si_build_tcs_epilog_function(struct si_shader_context * ctx,union si_shader_part_key * key)7289 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7290 union si_shader_part_key *key)
7291 {
7292 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7293 struct si_function_info fninfo;
7294 LLVMValueRef func;
7295
7296 si_init_function_info(&fninfo);
7297
7298 if (ctx->screen->info.chip_class >= GFX9) {
7299 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7300 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7301 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7302 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7303 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7304 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7305 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7306 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7307 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7308 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7309 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7310 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7311 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7312 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7313 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7314 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7315 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7316 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7317 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7318 ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7319 ctx->param_tcs_factor_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7320 } else {
7321 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7322 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7323 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7324 add_arg(&fninfo, ARG_SGPR, ctx->i64);
7325 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7326 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7327 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7328 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7329 ctx->param_tcs_offchip_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7330 ctx->param_tcs_factor_addr_base64k = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7331 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7332 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7333 }
7334
7335 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7336 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7337 unsigned tess_factors_idx =
7338 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7339 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7340 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7341
7342 for (unsigned i = 0; i < 6; i++)
7343 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7344
7345 /* Create the function. */
7346 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7347 ctx->screen->info.chip_class >= CIK ? 128 : 64);
7348 ac_declare_lds_as_pointer(&ctx->ac);
7349 func = ctx->main_fn;
7350
7351 LLVMValueRef invoc0_tess_factors[6];
7352 for (unsigned i = 0; i < 6; i++)
7353 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7354
7355 si_write_tess_factors(bld_base,
7356 LLVMGetParam(func, tess_factors_idx),
7357 LLVMGetParam(func, tess_factors_idx + 1),
7358 LLVMGetParam(func, tess_factors_idx + 2),
7359 invoc0_tess_factors, invoc0_tess_factors + 4);
7360
7361 LLVMBuildRetVoid(ctx->ac.builder);
7362 }
7363
7364 /**
7365 * Select and compile (or reuse) TCS parts (epilog).
7366 */
si_shader_select_tcs_parts(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7367 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7368 LLVMTargetMachineRef tm,
7369 struct si_shader *shader,
7370 struct pipe_debug_callback *debug)
7371 {
7372 if (sscreen->info.chip_class >= GFX9) {
7373 struct si_shader *ls_main_part =
7374 shader->key.part.tcs.ls->main_shader_part_ls;
7375
7376 if (!si_get_vs_prolog(sscreen, tm, shader, debug, ls_main_part,
7377 &shader->key.part.tcs.ls_prolog))
7378 return false;
7379
7380 shader->previous_stage = ls_main_part;
7381 }
7382
7383 /* Get the epilog. */
7384 union si_shader_part_key epilog_key;
7385 memset(&epilog_key, 0, sizeof(epilog_key));
7386 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7387
7388 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7389 PIPE_SHADER_TESS_CTRL, false,
7390 &epilog_key, tm, debug,
7391 si_build_tcs_epilog_function,
7392 "Tessellation Control Shader Epilog");
7393 return shader->epilog != NULL;
7394 }
7395
7396 /**
7397 * Select and compile (or reuse) GS parts (prolog).
7398 */
si_shader_select_gs_parts(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7399 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7400 LLVMTargetMachineRef tm,
7401 struct si_shader *shader,
7402 struct pipe_debug_callback *debug)
7403 {
7404 if (sscreen->info.chip_class >= GFX9) {
7405 struct si_shader *es_main_part =
7406 shader->key.part.gs.es->main_shader_part_es;
7407
7408 if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7409 !si_get_vs_prolog(sscreen, tm, shader, debug, es_main_part,
7410 &shader->key.part.gs.vs_prolog))
7411 return false;
7412
7413 shader->previous_stage = es_main_part;
7414 }
7415
7416 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7417 return true;
7418
7419 union si_shader_part_key prolog_key;
7420 memset(&prolog_key, 0, sizeof(prolog_key));
7421 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7422
7423 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7424 PIPE_SHADER_GEOMETRY, true,
7425 &prolog_key, tm, debug,
7426 si_build_gs_prolog_function,
7427 "Geometry Shader Prolog");
7428 return shader->prolog2 != NULL;
7429 }
7430
7431 /**
7432 * Build the pixel shader prolog function. This handles:
7433 * - two-side color selection and interpolation
7434 * - overriding interpolation parameters for the API PS
7435 * - polygon stippling
7436 *
7437 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7438 * overriden by other states. (e.g. per-sample interpolation)
7439 * Interpolated colors are stored after the preloaded VGPRs.
7440 */
si_build_ps_prolog_function(struct si_shader_context * ctx,union si_shader_part_key * key)7441 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7442 union si_shader_part_key *key)
7443 {
7444 struct si_function_info fninfo;
7445 LLVMValueRef ret, func;
7446 int num_returns, i, num_color_channels;
7447
7448 assert(si_need_ps_prolog(key));
7449
7450 si_init_function_info(&fninfo);
7451
7452 /* Declare inputs. */
7453 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7454 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7455
7456 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7457 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7458
7459 /* Declare outputs (same as inputs + add colors if needed) */
7460 num_returns = fninfo.num_params;
7461 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7462 for (i = 0; i < num_color_channels; i++)
7463 fninfo.types[num_returns++] = ctx->f32;
7464
7465 /* Create the function. */
7466 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7467 &fninfo, 0);
7468 func = ctx->main_fn;
7469
7470 /* Copy inputs to outputs. This should be no-op, as the registers match,
7471 * but it will prevent the compiler from overwriting them unintentionally.
7472 */
7473 ret = ctx->return_value;
7474 for (i = 0; i < fninfo.num_params; i++) {
7475 LLVMValueRef p = LLVMGetParam(func, i);
7476 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7477 }
7478
7479 /* Polygon stippling. */
7480 if (key->ps_prolog.states.poly_stipple) {
7481 /* POS_FIXED_PT is always last. */
7482 unsigned pos = key->ps_prolog.num_input_sgprs +
7483 key->ps_prolog.num_input_vgprs - 1;
7484 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7485
7486 si_llvm_emit_polygon_stipple(ctx, list, pos);
7487 }
7488
7489 if (key->ps_prolog.states.bc_optimize_for_persp ||
7490 key->ps_prolog.states.bc_optimize_for_linear) {
7491 unsigned i, base = key->ps_prolog.num_input_sgprs;
7492 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7493
7494 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7495 * The hw doesn't compute CENTROID if the whole wave only
7496 * contains fully-covered quads.
7497 *
7498 * PRIM_MASK is after user SGPRs.
7499 */
7500 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7501 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7502 LLVMConstInt(ctx->i32, 31, 0), "");
7503 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7504 ctx->i1, "");
7505
7506 if (key->ps_prolog.states.bc_optimize_for_persp) {
7507 /* Read PERSP_CENTER. */
7508 for (i = 0; i < 2; i++)
7509 center[i] = LLVMGetParam(func, base + 2 + i);
7510 /* Read PERSP_CENTROID. */
7511 for (i = 0; i < 2; i++)
7512 centroid[i] = LLVMGetParam(func, base + 4 + i);
7513 /* Select PERSP_CENTROID. */
7514 for (i = 0; i < 2; i++) {
7515 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7516 center[i], centroid[i], "");
7517 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7518 tmp, base + 4 + i, "");
7519 }
7520 }
7521 if (key->ps_prolog.states.bc_optimize_for_linear) {
7522 /* Read LINEAR_CENTER. */
7523 for (i = 0; i < 2; i++)
7524 center[i] = LLVMGetParam(func, base + 8 + i);
7525 /* Read LINEAR_CENTROID. */
7526 for (i = 0; i < 2; i++)
7527 centroid[i] = LLVMGetParam(func, base + 10 + i);
7528 /* Select LINEAR_CENTROID. */
7529 for (i = 0; i < 2; i++) {
7530 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7531 center[i], centroid[i], "");
7532 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7533 tmp, base + 10 + i, "");
7534 }
7535 }
7536 }
7537
7538 /* Force per-sample interpolation. */
7539 if (key->ps_prolog.states.force_persp_sample_interp) {
7540 unsigned i, base = key->ps_prolog.num_input_sgprs;
7541 LLVMValueRef persp_sample[2];
7542
7543 /* Read PERSP_SAMPLE. */
7544 for (i = 0; i < 2; i++)
7545 persp_sample[i] = LLVMGetParam(func, base + i);
7546 /* Overwrite PERSP_CENTER. */
7547 for (i = 0; i < 2; i++)
7548 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7549 persp_sample[i], base + 2 + i, "");
7550 /* Overwrite PERSP_CENTROID. */
7551 for (i = 0; i < 2; i++)
7552 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7553 persp_sample[i], base + 4 + i, "");
7554 }
7555 if (key->ps_prolog.states.force_linear_sample_interp) {
7556 unsigned i, base = key->ps_prolog.num_input_sgprs;
7557 LLVMValueRef linear_sample[2];
7558
7559 /* Read LINEAR_SAMPLE. */
7560 for (i = 0; i < 2; i++)
7561 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7562 /* Overwrite LINEAR_CENTER. */
7563 for (i = 0; i < 2; i++)
7564 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7565 linear_sample[i], base + 8 + i, "");
7566 /* Overwrite LINEAR_CENTROID. */
7567 for (i = 0; i < 2; i++)
7568 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7569 linear_sample[i], base + 10 + i, "");
7570 }
7571
7572 /* Force center interpolation. */
7573 if (key->ps_prolog.states.force_persp_center_interp) {
7574 unsigned i, base = key->ps_prolog.num_input_sgprs;
7575 LLVMValueRef persp_center[2];
7576
7577 /* Read PERSP_CENTER. */
7578 for (i = 0; i < 2; i++)
7579 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7580 /* Overwrite PERSP_SAMPLE. */
7581 for (i = 0; i < 2; i++)
7582 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7583 persp_center[i], base + i, "");
7584 /* Overwrite PERSP_CENTROID. */
7585 for (i = 0; i < 2; i++)
7586 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7587 persp_center[i], base + 4 + i, "");
7588 }
7589 if (key->ps_prolog.states.force_linear_center_interp) {
7590 unsigned i, base = key->ps_prolog.num_input_sgprs;
7591 LLVMValueRef linear_center[2];
7592
7593 /* Read LINEAR_CENTER. */
7594 for (i = 0; i < 2; i++)
7595 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7596 /* Overwrite LINEAR_SAMPLE. */
7597 for (i = 0; i < 2; i++)
7598 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7599 linear_center[i], base + 6 + i, "");
7600 /* Overwrite LINEAR_CENTROID. */
7601 for (i = 0; i < 2; i++)
7602 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7603 linear_center[i], base + 10 + i, "");
7604 }
7605
7606 /* Interpolate colors. */
7607 unsigned color_out_idx = 0;
7608 for (i = 0; i < 2; i++) {
7609 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7610 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7611 key->ps_prolog.face_vgpr_index;
7612 LLVMValueRef interp[2], color[4];
7613 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7614
7615 if (!writemask)
7616 continue;
7617
7618 /* If the interpolation qualifier is not CONSTANT (-1). */
7619 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7620 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7621 key->ps_prolog.color_interp_vgpr_index[i];
7622
7623 /* Get the (i,j) updated by bc_optimize handling. */
7624 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7625 interp_vgpr, "");
7626 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7627 interp_vgpr + 1, "");
7628 interp_ij = lp_build_gather_values(&ctx->gallivm, interp, 2);
7629 }
7630
7631 /* Use the absolute location of the input. */
7632 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7633
7634 if (key->ps_prolog.states.color_two_side) {
7635 face = LLVMGetParam(func, face_vgpr);
7636 face = ac_to_integer(&ctx->ac, face);
7637 }
7638
7639 interp_fs_input(ctx,
7640 key->ps_prolog.color_attr_index[i],
7641 TGSI_SEMANTIC_COLOR, i,
7642 key->ps_prolog.num_interp_inputs,
7643 key->ps_prolog.colors_read, interp_ij,
7644 prim_mask, face, color);
7645
7646 while (writemask) {
7647 unsigned chan = u_bit_scan(&writemask);
7648 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7649 fninfo.num_params + color_out_idx++, "");
7650 }
7651 }
7652
7653 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7654 * says:
7655 *
7656 * "When per-sample shading is active due to the use of a fragment
7657 * input qualified by sample or due to the use of the gl_SampleID
7658 * or gl_SamplePosition variables, only the bit for the current
7659 * sample is set in gl_SampleMaskIn. When state specifies multiple
7660 * fragment shader invocations for a given fragment, the sample
7661 * mask for any single fragment shader invocation may specify a
7662 * subset of the covered samples for the fragment. In this case,
7663 * the bit corresponding to each covered sample will be set in
7664 * exactly one fragment shader invocation."
7665 *
7666 * The samplemask loaded by hardware is always the coverage of the
7667 * entire pixel/fragment, so mask bits out based on the sample ID.
7668 */
7669 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7670 /* The bit pattern matches that used by fixed function fragment
7671 * processing. */
7672 static const uint16_t ps_iter_masks[] = {
7673 0xffff, /* not used */
7674 0x5555,
7675 0x1111,
7676 0x0101,
7677 0x0001,
7678 };
7679 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7680
7681 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7682 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7683 key->ps_prolog.ancillary_vgpr_index;
7684 LLVMValueRef sampleid = unpack_param(ctx, ancillary_vgpr, 8, 4);
7685 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7686
7687 samplemask = ac_to_integer(&ctx->ac, samplemask);
7688 samplemask = LLVMBuildAnd(
7689 ctx->ac.builder,
7690 samplemask,
7691 LLVMBuildShl(ctx->ac.builder,
7692 LLVMConstInt(ctx->i32, ps_iter_mask, false),
7693 sampleid, ""),
7694 "");
7695 samplemask = ac_to_float(&ctx->ac, samplemask);
7696
7697 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7698 ancillary_vgpr + 1, "");
7699 }
7700
7701 /* Tell LLVM to insert WQM instruction sequence when needed. */
7702 if (key->ps_prolog.wqm) {
7703 LLVMAddTargetDependentFunctionAttr(func,
7704 "amdgpu-ps-wqm-outputs", "");
7705 }
7706
7707 si_llvm_build_ret(ctx, ret);
7708 }
7709
7710 /**
7711 * Build the pixel shader epilog function. This handles everything that must be
7712 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7713 */
si_build_ps_epilog_function(struct si_shader_context * ctx,union si_shader_part_key * key)7714 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
7715 union si_shader_part_key *key)
7716 {
7717 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7718 struct si_function_info fninfo;
7719 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
7720 int i;
7721 struct si_ps_exports exp = {};
7722
7723 si_init_function_info(&fninfo);
7724
7725 /* Declare input SGPRs. */
7726 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->i64);
7727 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->i64);
7728 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->i64);
7729 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->i64);
7730 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
7731
7732 /* Declare input VGPRs. */
7733 unsigned required_num_params =
7734 fninfo.num_sgpr_params +
7735 util_bitcount(key->ps_epilog.colors_written) * 4 +
7736 key->ps_epilog.writes_z +
7737 key->ps_epilog.writes_stencil +
7738 key->ps_epilog.writes_samplemask;
7739
7740 required_num_params = MAX2(required_num_params,
7741 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
7742
7743 while (fninfo.num_params < required_num_params)
7744 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7745
7746 /* Create the function. */
7747 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
7748 /* Disable elimination of unused inputs. */
7749 si_llvm_add_attribute(ctx->main_fn,
7750 "InitialPSInputAddr", 0xffffff);
7751
7752 /* Process colors. */
7753 unsigned vgpr = fninfo.num_sgpr_params;
7754 unsigned colors_written = key->ps_epilog.colors_written;
7755 int last_color_export = -1;
7756
7757 /* Find the last color export. */
7758 if (!key->ps_epilog.writes_z &&
7759 !key->ps_epilog.writes_stencil &&
7760 !key->ps_epilog.writes_samplemask) {
7761 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
7762
7763 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
7764 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
7765 /* Just set this if any of the colorbuffers are enabled. */
7766 if (spi_format &
7767 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
7768 last_color_export = 0;
7769 } else {
7770 for (i = 0; i < 8; i++)
7771 if (colors_written & (1 << i) &&
7772 (spi_format >> (i * 4)) & 0xf)
7773 last_color_export = i;
7774 }
7775 }
7776
7777 while (colors_written) {
7778 LLVMValueRef color[4];
7779 int mrt = u_bit_scan(&colors_written);
7780
7781 for (i = 0; i < 4; i++)
7782 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
7783
7784 si_export_mrt_color(bld_base, color, mrt,
7785 fninfo.num_params - 1,
7786 mrt == last_color_export, &exp);
7787 }
7788
7789 /* Process depth, stencil, samplemask. */
7790 if (key->ps_epilog.writes_z)
7791 depth = LLVMGetParam(ctx->main_fn, vgpr++);
7792 if (key->ps_epilog.writes_stencil)
7793 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
7794 if (key->ps_epilog.writes_samplemask)
7795 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
7796
7797 if (depth || stencil || samplemask)
7798 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
7799 else if (last_color_export == -1)
7800 si_export_null(bld_base);
7801
7802 if (exp.num)
7803 si_emit_ps_exports(ctx, &exp);
7804
7805 /* Compile. */
7806 LLVMBuildRetVoid(ctx->ac.builder);
7807 }
7808
7809 /**
7810 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
7811 */
si_shader_select_ps_parts(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7812 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
7813 LLVMTargetMachineRef tm,
7814 struct si_shader *shader,
7815 struct pipe_debug_callback *debug)
7816 {
7817 union si_shader_part_key prolog_key;
7818 union si_shader_part_key epilog_key;
7819
7820 /* Get the prolog. */
7821 si_get_ps_prolog_key(shader, &prolog_key, true);
7822
7823 /* The prolog is a no-op if these aren't set. */
7824 if (si_need_ps_prolog(&prolog_key)) {
7825 shader->prolog =
7826 si_get_shader_part(sscreen, &sscreen->ps_prologs,
7827 PIPE_SHADER_FRAGMENT, true,
7828 &prolog_key, tm, debug,
7829 si_build_ps_prolog_function,
7830 "Fragment Shader Prolog");
7831 if (!shader->prolog)
7832 return false;
7833 }
7834
7835 /* Get the epilog. */
7836 si_get_ps_epilog_key(shader, &epilog_key);
7837
7838 shader->epilog =
7839 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
7840 PIPE_SHADER_FRAGMENT, false,
7841 &epilog_key, tm, debug,
7842 si_build_ps_epilog_function,
7843 "Fragment Shader Epilog");
7844 if (!shader->epilog)
7845 return false;
7846
7847 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
7848 if (shader->key.part.ps.prolog.poly_stipple) {
7849 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
7850 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
7851 }
7852
7853 /* Set up the enable bits for per-sample shading if needed. */
7854 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
7855 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7856 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7857 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
7858 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7859 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
7860 }
7861 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
7862 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7863 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7864 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
7865 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7866 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
7867 }
7868 if (shader->key.part.ps.prolog.force_persp_center_interp &&
7869 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7870 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7871 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
7872 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7873 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7874 }
7875 if (shader->key.part.ps.prolog.force_linear_center_interp &&
7876 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7877 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7878 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
7879 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7880 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7881 }
7882
7883 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
7884 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
7885 !(shader->config.spi_ps_input_ena & 0xf)) {
7886 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7887 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
7888 }
7889
7890 /* At least one pair of interpolation weights must be enabled. */
7891 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
7892 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7893 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
7894 }
7895
7896 /* Samplemask fixup requires the sample ID. */
7897 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
7898 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
7899 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
7900 }
7901
7902 /* The sample mask input is always enabled, because the API shader always
7903 * passes it through to the epilog. Disable it here if it's unused.
7904 */
7905 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
7906 !shader->selector->info.reads_samplemask)
7907 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
7908
7909 return true;
7910 }
7911
si_multiwave_lds_size_workaround(struct si_screen * sscreen,unsigned * lds_size)7912 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
7913 unsigned *lds_size)
7914 {
7915 /* SPI barrier management bug:
7916 * Make sure we have at least 4k of LDS in use to avoid the bug.
7917 * It applies to workgroup sizes of more than one wavefront.
7918 */
7919 if (sscreen->info.family == CHIP_BONAIRE ||
7920 sscreen->info.family == CHIP_KABINI ||
7921 sscreen->info.family == CHIP_MULLINS)
7922 *lds_size = MAX2(*lds_size, 8);
7923 }
7924
si_fix_resource_usage(struct si_screen * sscreen,struct si_shader * shader)7925 static void si_fix_resource_usage(struct si_screen *sscreen,
7926 struct si_shader *shader)
7927 {
7928 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
7929
7930 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
7931
7932 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
7933 si_get_max_workgroup_size(shader) > 64) {
7934 si_multiwave_lds_size_workaround(sscreen,
7935 &shader->config.lds_size);
7936 }
7937 }
7938
si_shader_create(struct si_screen * sscreen,LLVMTargetMachineRef tm,struct si_shader * shader,struct pipe_debug_callback * debug)7939 int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
7940 struct si_shader *shader,
7941 struct pipe_debug_callback *debug)
7942 {
7943 struct si_shader_selector *sel = shader->selector;
7944 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
7945 int r;
7946
7947 /* LS, ES, VS are compiled on demand if the main part hasn't been
7948 * compiled for that stage.
7949 *
7950 * Vertex shaders are compiled on demand when a vertex fetch
7951 * workaround must be applied.
7952 */
7953 if (shader->is_monolithic) {
7954 /* Monolithic shader (compiled as a whole, has many variants,
7955 * may take a long time to compile).
7956 */
7957 r = si_compile_tgsi_shader(sscreen, tm, shader, true, debug);
7958 if (r)
7959 return r;
7960 } else {
7961 /* The shader consists of several parts:
7962 *
7963 * - the middle part is the user shader, it has 1 variant only
7964 * and it was compiled during the creation of the shader
7965 * selector
7966 * - the prolog part is inserted at the beginning
7967 * - the epilog part is inserted at the end
7968 *
7969 * The prolog and epilog have many (but simple) variants.
7970 *
7971 * Starting with gfx9, geometry and tessellation control
7972 * shaders also contain the prolog and user shader parts of
7973 * the previous shader stage.
7974 */
7975
7976 if (!mainp)
7977 return -1;
7978
7979 /* Copy the compiled TGSI shader data over. */
7980 shader->is_binary_shared = true;
7981 shader->binary = mainp->binary;
7982 shader->config = mainp->config;
7983 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
7984 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
7985 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
7986 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
7987 memcpy(shader->info.vs_output_param_offset,
7988 mainp->info.vs_output_param_offset,
7989 sizeof(mainp->info.vs_output_param_offset));
7990 shader->info.uses_instanceid = mainp->info.uses_instanceid;
7991 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
7992 shader->info.nr_param_exports = mainp->info.nr_param_exports;
7993
7994 /* Select prologs and/or epilogs. */
7995 switch (sel->type) {
7996 case PIPE_SHADER_VERTEX:
7997 if (!si_shader_select_vs_parts(sscreen, tm, shader, debug))
7998 return -1;
7999 break;
8000 case PIPE_SHADER_TESS_CTRL:
8001 if (!si_shader_select_tcs_parts(sscreen, tm, shader, debug))
8002 return -1;
8003 break;
8004 case PIPE_SHADER_TESS_EVAL:
8005 break;
8006 case PIPE_SHADER_GEOMETRY:
8007 if (!si_shader_select_gs_parts(sscreen, tm, shader, debug))
8008 return -1;
8009 break;
8010 case PIPE_SHADER_FRAGMENT:
8011 if (!si_shader_select_ps_parts(sscreen, tm, shader, debug))
8012 return -1;
8013
8014 /* Make sure we have at least as many VGPRs as there
8015 * are allocated inputs.
8016 */
8017 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8018 shader->info.num_input_vgprs);
8019 break;
8020 }
8021
8022 /* Update SGPR and VGPR counts. */
8023 if (shader->prolog) {
8024 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8025 shader->prolog->config.num_sgprs);
8026 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8027 shader->prolog->config.num_vgprs);
8028 }
8029 if (shader->previous_stage) {
8030 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8031 shader->previous_stage->config.num_sgprs);
8032 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8033 shader->previous_stage->config.num_vgprs);
8034 shader->config.spilled_sgprs =
8035 MAX2(shader->config.spilled_sgprs,
8036 shader->previous_stage->config.spilled_sgprs);
8037 shader->config.spilled_vgprs =
8038 MAX2(shader->config.spilled_vgprs,
8039 shader->previous_stage->config.spilled_vgprs);
8040 shader->config.private_mem_vgprs =
8041 MAX2(shader->config.private_mem_vgprs,
8042 shader->previous_stage->config.private_mem_vgprs);
8043 shader->config.scratch_bytes_per_wave =
8044 MAX2(shader->config.scratch_bytes_per_wave,
8045 shader->previous_stage->config.scratch_bytes_per_wave);
8046 shader->info.uses_instanceid |=
8047 shader->previous_stage->info.uses_instanceid;
8048 }
8049 if (shader->prolog2) {
8050 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8051 shader->prolog2->config.num_sgprs);
8052 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8053 shader->prolog2->config.num_vgprs);
8054 }
8055 if (shader->epilog) {
8056 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8057 shader->epilog->config.num_sgprs);
8058 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8059 shader->epilog->config.num_vgprs);
8060 }
8061 }
8062
8063 si_fix_resource_usage(sscreen, shader);
8064 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8065 stderr, true);
8066
8067 /* Upload. */
8068 r = si_shader_binary_upload(sscreen, shader);
8069 if (r) {
8070 fprintf(stderr, "LLVM failed to upload shader\n");
8071 return r;
8072 }
8073
8074 return 0;
8075 }
8076
si_shader_destroy(struct si_shader * shader)8077 void si_shader_destroy(struct si_shader *shader)
8078 {
8079 if (shader->scratch_bo)
8080 r600_resource_reference(&shader->scratch_bo, NULL);
8081
8082 r600_resource_reference(&shader->bo, NULL);
8083
8084 if (!shader->is_binary_shared)
8085 ac_shader_binary_clean(&shader->binary);
8086
8087 free(shader->shader_log);
8088 }
8089