1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 namespace {
27
28 struct AMDGPUImageDMaskIntrinsic {
29 unsigned Intr;
30 };
31
32 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
33 #include "InstCombineTables.inc"
34
35 } // end anonymous namespace
36
37 /// Check to see if the specified operand of the specified instruction is a
38 /// constant integer. If so, check to see if there are any bits set in the
39 /// constant that are not demanded. If so, shrink the constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,const APInt & Demanded)40 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
41 const APInt &Demanded) {
42 assert(I && "No instruction?");
43 assert(OpNo < I->getNumOperands() && "Operand index too large");
44
45 // The operand must be a constant integer or splat integer.
46 Value *Op = I->getOperand(OpNo);
47 const APInt *C;
48 if (!match(Op, m_APInt(C)))
49 return false;
50
51 // If there are no bits set that aren't demanded, nothing to do.
52 if (C->isSubsetOf(Demanded))
53 return false;
54
55 // This instruction is producing bits that are not demanded. Shrink the RHS.
56 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
57
58 return true;
59 }
60
61
62
63 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
64 /// the instruction has any properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)65 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
66 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
67 KnownBits Known(BitWidth);
68 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
69
70 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
71 0, &Inst);
72 if (!V) return false;
73 if (V == &Inst) return true;
74 replaceInstUsesWith(Inst, V);
75 return true;
76 }
77
78 /// This form of SimplifyDemandedBits simplifies the specified instruction
79 /// operand if possible, updating it in place. It returns true if it made any
80 /// change and false otherwise.
SimplifyDemandedBits(Instruction * I,unsigned OpNo,const APInt & DemandedMask,KnownBits & Known,unsigned Depth)81 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
82 const APInt &DemandedMask,
83 KnownBits &Known,
84 unsigned Depth) {
85 Use &U = I->getOperandUse(OpNo);
86 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
87 Depth, I);
88 if (!NewVal) return false;
89 U = NewVal;
90 return true;
91 }
92
93
94 /// This function attempts to replace V with a simpler value based on the
95 /// demanded bits. When this function is called, it is known that only the bits
96 /// set in DemandedMask of the result of V are ever used downstream.
97 /// Consequently, depending on the mask and V, it may be possible to replace V
98 /// with a constant or one of its operands. In such cases, this function does
99 /// the replacement and returns true. In all other cases, it returns false after
100 /// analyzing the expression and setting KnownOne and known to be one in the
101 /// expression. Known.Zero contains all the bits that are known to be zero in
102 /// the expression. These are provided to potentially allow the caller (which
103 /// might recursively be SimplifyDemandedBits itself) to simplify the
104 /// expression.
105 /// Known.One and Known.Zero always follow the invariant that:
106 /// Known.One & Known.Zero == 0.
107 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
108 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
109 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
110 /// be the same.
111 ///
112 /// This returns null if it did not change anything and it permits no
113 /// simplification. This returns V itself if it did some simplification of V's
114 /// operands based on the information about what bits are demanded. This returns
115 /// some other non-null value if it found out that V is equal to another value
116 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,KnownBits & Known,unsigned Depth,Instruction * CxtI)117 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
118 KnownBits &Known, unsigned Depth,
119 Instruction *CxtI) {
120 assert(V != nullptr && "Null pointer of Value???");
121 assert(Depth <= 6 && "Limit Search Depth");
122 uint32_t BitWidth = DemandedMask.getBitWidth();
123 Type *VTy = V->getType();
124 assert(
125 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
126 Known.getBitWidth() == BitWidth &&
127 "Value *V, DemandedMask and Known must have same BitWidth");
128
129 if (isa<Constant>(V)) {
130 computeKnownBits(V, Known, Depth, CxtI);
131 return nullptr;
132 }
133
134 Known.resetAll();
135 if (DemandedMask.isNullValue()) // Not demanding any bits from V.
136 return UndefValue::get(VTy);
137
138 if (Depth == 6) // Limit search depth.
139 return nullptr;
140
141 Instruction *I = dyn_cast<Instruction>(V);
142 if (!I) {
143 computeKnownBits(V, Known, Depth, CxtI);
144 return nullptr; // Only analyze instructions.
145 }
146
147 // If there are multiple uses of this value and we aren't at the root, then
148 // we can't do any simplifications of the operands, because DemandedMask
149 // only reflects the bits demanded by *one* of the users.
150 if (Depth != 0 && !I->hasOneUse())
151 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
152
153 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
154
155 // If this is the root being simplified, allow it to have multiple uses,
156 // just set the DemandedMask to all bits so that we can try to simplify the
157 // operands. This allows visitTruncInst (for example) to simplify the
158 // operand of a trunc without duplicating all the logic below.
159 if (Depth == 0 && !V->hasOneUse())
160 DemandedMask.setAllBits();
161
162 switch (I->getOpcode()) {
163 default:
164 computeKnownBits(I, Known, Depth, CxtI);
165 break;
166 case Instruction::And: {
167 // If either the LHS or the RHS are Zero, the result is zero.
168 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
169 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
170 Depth + 1))
171 return I;
172 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
173 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
174
175 // Output known-0 are known to be clear if zero in either the LHS | RHS.
176 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
177 // Output known-1 bits are only known if set in both the LHS & RHS.
178 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
179
180 // If the client is only demanding bits that we know, return the known
181 // constant.
182 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
183 return Constant::getIntegerValue(VTy, IKnownOne);
184
185 // If all of the demanded bits are known 1 on one side, return the other.
186 // These bits cannot contribute to the result of the 'and'.
187 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
188 return I->getOperand(0);
189 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
190 return I->getOperand(1);
191
192 // If the RHS is a constant, see if we can simplify it.
193 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
194 return I;
195
196 Known.Zero = std::move(IKnownZero);
197 Known.One = std::move(IKnownOne);
198 break;
199 }
200 case Instruction::Or: {
201 // If either the LHS or the RHS are One, the result is One.
202 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
203 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
204 Depth + 1))
205 return I;
206 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
207 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
208
209 // Output known-0 bits are only known if clear in both the LHS & RHS.
210 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
211 // Output known-1 are known. to be set if s.et in either the LHS | RHS.
212 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
213
214 // If the client is only demanding bits that we know, return the known
215 // constant.
216 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
217 return Constant::getIntegerValue(VTy, IKnownOne);
218
219 // If all of the demanded bits are known zero on one side, return the other.
220 // These bits cannot contribute to the result of the 'or'.
221 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
222 return I->getOperand(0);
223 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
224 return I->getOperand(1);
225
226 // If the RHS is a constant, see if we can simplify it.
227 if (ShrinkDemandedConstant(I, 1, DemandedMask))
228 return I;
229
230 Known.Zero = std::move(IKnownZero);
231 Known.One = std::move(IKnownOne);
232 break;
233 }
234 case Instruction::Xor: {
235 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
236 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
237 return I;
238 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
239 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
240
241 // Output known-0 bits are known if clear or set in both the LHS & RHS.
242 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
243 (RHSKnown.One & LHSKnown.One);
244 // Output known-1 are known to be set if set in only one of the LHS, RHS.
245 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
246 (RHSKnown.One & LHSKnown.Zero);
247
248 // If the client is only demanding bits that we know, return the known
249 // constant.
250 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
251 return Constant::getIntegerValue(VTy, IKnownOne);
252
253 // If all of the demanded bits are known zero on one side, return the other.
254 // These bits cannot contribute to the result of the 'xor'.
255 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
256 return I->getOperand(0);
257 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
258 return I->getOperand(1);
259
260 // If all of the demanded bits are known to be zero on one side or the
261 // other, turn this into an *inclusive* or.
262 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
263 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
264 Instruction *Or =
265 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
266 I->getName());
267 return InsertNewInstWith(Or, *I);
268 }
269
270 // If all of the demanded bits on one side are known, and all of the set
271 // bits on that side are also known to be set on the other side, turn this
272 // into an AND, as we know the bits will be cleared.
273 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
274 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
275 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
276 Constant *AndC = Constant::getIntegerValue(VTy,
277 ~RHSKnown.One & DemandedMask);
278 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
279 return InsertNewInstWith(And, *I);
280 }
281
282 // If the RHS is a constant, see if we can simplify it.
283 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
284 if (ShrinkDemandedConstant(I, 1, DemandedMask))
285 return I;
286
287 // If our LHS is an 'and' and if it has one use, and if any of the bits we
288 // are flipping are known to be set, then the xor is just resetting those
289 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
290 // simplifying both of them.
291 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
292 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
293 isa<ConstantInt>(I->getOperand(1)) &&
294 isa<ConstantInt>(LHSInst->getOperand(1)) &&
295 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
296 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
297 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
298 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
299
300 Constant *AndC =
301 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
302 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
303 InsertNewInstWith(NewAnd, *I);
304
305 Constant *XorC =
306 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
307 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
308 return InsertNewInstWith(NewXor, *I);
309 }
310
311 // Output known-0 bits are known if clear or set in both the LHS & RHS.
312 Known.Zero = std::move(IKnownZero);
313 // Output known-1 are known to be set if set in only one of the LHS, RHS.
314 Known.One = std::move(IKnownOne);
315 break;
316 }
317 case Instruction::Select:
318 // If this is a select as part of a min/max pattern, don't simplify any
319 // further in case we break the structure.
320 Value *LHS, *RHS;
321 if (matchSelectPattern(I, LHS, RHS).Flavor != SPF_UNKNOWN)
322 return nullptr;
323
324 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
325 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
326 return I;
327 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
328 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
329
330 // If the operands are constants, see if we can simplify them.
331 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
332 ShrinkDemandedConstant(I, 2, DemandedMask))
333 return I;
334
335 // Only known if known in both the LHS and RHS.
336 Known.One = RHSKnown.One & LHSKnown.One;
337 Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
338 break;
339 case Instruction::ZExt:
340 case Instruction::Trunc: {
341 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
342
343 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
344 KnownBits InputKnown(SrcBitWidth);
345 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
346 return I;
347 Known = InputKnown.zextOrTrunc(BitWidth);
348 // Any top bits are known to be zero.
349 if (BitWidth > SrcBitWidth)
350 Known.Zero.setBitsFrom(SrcBitWidth);
351 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
352 break;
353 }
354 case Instruction::BitCast:
355 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
356 return nullptr; // vector->int or fp->int?
357
358 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
359 if (VectorType *SrcVTy =
360 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
361 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
362 // Don't touch a bitcast between vectors of different element counts.
363 return nullptr;
364 } else
365 // Don't touch a scalar-to-vector bitcast.
366 return nullptr;
367 } else if (I->getOperand(0)->getType()->isVectorTy())
368 // Don't touch a vector-to-scalar bitcast.
369 return nullptr;
370
371 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
372 return I;
373 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
374 break;
375 case Instruction::SExt: {
376 // Compute the bits in the result that are not present in the input.
377 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
378
379 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
380
381 // If any of the sign extended bits are demanded, we know that the sign
382 // bit is demanded.
383 if (DemandedMask.getActiveBits() > SrcBitWidth)
384 InputDemandedBits.setBit(SrcBitWidth-1);
385
386 KnownBits InputKnown(SrcBitWidth);
387 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
388 return I;
389
390 // If the input sign bit is known zero, or if the NewBits are not demanded
391 // convert this into a zero extension.
392 if (InputKnown.isNonNegative() ||
393 DemandedMask.getActiveBits() <= SrcBitWidth) {
394 // Convert to ZExt cast.
395 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
396 return InsertNewInstWith(NewCast, *I);
397 }
398
399 // If the sign bit of the input is known set or clear, then we know the
400 // top bits of the result.
401 Known = InputKnown.sext(BitWidth);
402 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
403 break;
404 }
405 case Instruction::Add:
406 case Instruction::Sub: {
407 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
408 /// about the high bits of the operands.
409 unsigned NLZ = DemandedMask.countLeadingZeros();
410 // Right fill the mask of bits for this ADD/SUB to demand the most
411 // significant bit and all those below it.
412 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
413 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
414 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
415 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
416 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
417 if (NLZ > 0) {
418 // Disable the nsw and nuw flags here: We can no longer guarantee that
419 // we won't wrap after simplification. Removing the nsw/nuw flags is
420 // legal here because the top bit is not demanded.
421 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
422 BinOP.setHasNoSignedWrap(false);
423 BinOP.setHasNoUnsignedWrap(false);
424 }
425 return I;
426 }
427
428 // If we are known to be adding/subtracting zeros to every bit below
429 // the highest demanded bit, we just return the other side.
430 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
431 return I->getOperand(0);
432 // We can't do this with the LHS for subtraction, unless we are only
433 // demanding the LSB.
434 if ((I->getOpcode() == Instruction::Add ||
435 DemandedFromOps.isOneValue()) &&
436 DemandedFromOps.isSubsetOf(LHSKnown.Zero))
437 return I->getOperand(1);
438
439 // Otherwise just compute the known bits of the result.
440 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
441 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
442 NSW, LHSKnown, RHSKnown);
443 break;
444 }
445 case Instruction::Shl: {
446 const APInt *SA;
447 if (match(I->getOperand(1), m_APInt(SA))) {
448 const APInt *ShrAmt;
449 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
450 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
451 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
452 DemandedMask, Known))
453 return R;
454
455 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
456 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
457
458 // If the shift is NUW/NSW, then it does demand the high bits.
459 ShlOperator *IOp = cast<ShlOperator>(I);
460 if (IOp->hasNoSignedWrap())
461 DemandedMaskIn.setHighBits(ShiftAmt+1);
462 else if (IOp->hasNoUnsignedWrap())
463 DemandedMaskIn.setHighBits(ShiftAmt);
464
465 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
466 return I;
467 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
468 Known.Zero <<= ShiftAmt;
469 Known.One <<= ShiftAmt;
470 // low bits known zero.
471 if (ShiftAmt)
472 Known.Zero.setLowBits(ShiftAmt);
473 }
474 break;
475 }
476 case Instruction::LShr: {
477 const APInt *SA;
478 if (match(I->getOperand(1), m_APInt(SA))) {
479 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
480
481 // Unsigned shift right.
482 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
483
484 // If the shift is exact, then it does demand the low bits (and knows that
485 // they are zero).
486 if (cast<LShrOperator>(I)->isExact())
487 DemandedMaskIn.setLowBits(ShiftAmt);
488
489 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
490 return I;
491 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
492 Known.Zero.lshrInPlace(ShiftAmt);
493 Known.One.lshrInPlace(ShiftAmt);
494 if (ShiftAmt)
495 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
496 }
497 break;
498 }
499 case Instruction::AShr: {
500 // If this is an arithmetic shift right and only the low-bit is set, we can
501 // always convert this into a logical shr, even if the shift amount is
502 // variable. The low bit of the shift cannot be an input sign bit unless
503 // the shift amount is >= the size of the datatype, which is undefined.
504 if (DemandedMask.isOneValue()) {
505 // Perform the logical shift right.
506 Instruction *NewVal = BinaryOperator::CreateLShr(
507 I->getOperand(0), I->getOperand(1), I->getName());
508 return InsertNewInstWith(NewVal, *I);
509 }
510
511 // If the sign bit is the only bit demanded by this ashr, then there is no
512 // need to do it, the shift doesn't change the high bit.
513 if (DemandedMask.isSignMask())
514 return I->getOperand(0);
515
516 const APInt *SA;
517 if (match(I->getOperand(1), m_APInt(SA))) {
518 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
519
520 // Signed shift right.
521 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
522 // If any of the high bits are demanded, we should set the sign bit as
523 // demanded.
524 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
525 DemandedMaskIn.setSignBit();
526
527 // If the shift is exact, then it does demand the low bits (and knows that
528 // they are zero).
529 if (cast<AShrOperator>(I)->isExact())
530 DemandedMaskIn.setLowBits(ShiftAmt);
531
532 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
533 return I;
534
535 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
536
537 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
538 // Compute the new bits that are at the top now plus sign bits.
539 APInt HighBits(APInt::getHighBitsSet(
540 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
541 Known.Zero.lshrInPlace(ShiftAmt);
542 Known.One.lshrInPlace(ShiftAmt);
543
544 // If the input sign bit is known to be zero, or if none of the top bits
545 // are demanded, turn this into an unsigned shift right.
546 assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
547 if (Known.Zero[BitWidth-ShiftAmt-1] ||
548 !DemandedMask.intersects(HighBits)) {
549 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
550 I->getOperand(1));
551 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
552 return InsertNewInstWith(LShr, *I);
553 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
554 Known.One |= HighBits;
555 }
556 }
557 break;
558 }
559 case Instruction::UDiv: {
560 // UDiv doesn't demand low bits that are zero in the divisor.
561 const APInt *SA;
562 if (match(I->getOperand(1), m_APInt(SA))) {
563 // If the shift is exact, then it does demand the low bits.
564 if (cast<UDivOperator>(I)->isExact())
565 break;
566
567 // FIXME: Take the demanded mask of the result into account.
568 unsigned RHSTrailingZeros = SA->countTrailingZeros();
569 APInt DemandedMaskIn =
570 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
571 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
572 return I;
573
574 // Propagate zero bits from the input.
575 Known.Zero.setHighBits(std::min(
576 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
577 }
578 break;
579 }
580 case Instruction::SRem:
581 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
582 // X % -1 demands all the bits because we don't want to introduce
583 // INT_MIN % -1 (== undef) by accident.
584 if (Rem->isMinusOne())
585 break;
586 APInt RA = Rem->getValue().abs();
587 if (RA.isPowerOf2()) {
588 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
589 return I->getOperand(0);
590
591 APInt LowBits = RA - 1;
592 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
593 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
594 return I;
595
596 // The low bits of LHS are unchanged by the srem.
597 Known.Zero = LHSKnown.Zero & LowBits;
598 Known.One = LHSKnown.One & LowBits;
599
600 // If LHS is non-negative or has all low bits zero, then the upper bits
601 // are all zero.
602 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
603 Known.Zero |= ~LowBits;
604
605 // If LHS is negative and not all low bits are zero, then the upper bits
606 // are all one.
607 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
608 Known.One |= ~LowBits;
609
610 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
611 break;
612 }
613 }
614
615 // The sign bit is the LHS's sign bit, except when the result of the
616 // remainder is zero.
617 if (DemandedMask.isSignBitSet()) {
618 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
619 // If it's known zero, our sign bit is also zero.
620 if (LHSKnown.isNonNegative())
621 Known.makeNonNegative();
622 }
623 break;
624 case Instruction::URem: {
625 KnownBits Known2(BitWidth);
626 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
627 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
628 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
629 return I;
630
631 unsigned Leaders = Known2.countMinLeadingZeros();
632 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
633 break;
634 }
635 case Instruction::Call:
636 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
637 switch (II->getIntrinsicID()) {
638 default: break;
639 case Intrinsic::bswap: {
640 // If the only bits demanded come from one byte of the bswap result,
641 // just shift the input byte into position to eliminate the bswap.
642 unsigned NLZ = DemandedMask.countLeadingZeros();
643 unsigned NTZ = DemandedMask.countTrailingZeros();
644
645 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
646 // we need all the bits down to bit 8. Likewise, round NLZ. If we
647 // have 14 leading zeros, round to 8.
648 NLZ &= ~7;
649 NTZ &= ~7;
650 // If we need exactly one byte, we can do this transformation.
651 if (BitWidth-NLZ-NTZ == 8) {
652 unsigned ResultBit = NTZ;
653 unsigned InputBit = BitWidth-NTZ-8;
654
655 // Replace this with either a left or right shift to get the byte into
656 // the right place.
657 Instruction *NewVal;
658 if (InputBit > ResultBit)
659 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
660 ConstantInt::get(I->getType(), InputBit-ResultBit));
661 else
662 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
663 ConstantInt::get(I->getType(), ResultBit-InputBit));
664 NewVal->takeName(I);
665 return InsertNewInstWith(NewVal, *I);
666 }
667
668 // TODO: Could compute known zero/one bits based on the input.
669 break;
670 }
671 case Intrinsic::x86_mmx_pmovmskb:
672 case Intrinsic::x86_sse_movmsk_ps:
673 case Intrinsic::x86_sse2_movmsk_pd:
674 case Intrinsic::x86_sse2_pmovmskb_128:
675 case Intrinsic::x86_avx_movmsk_ps_256:
676 case Intrinsic::x86_avx_movmsk_pd_256:
677 case Intrinsic::x86_avx2_pmovmskb: {
678 // MOVMSK copies the vector elements' sign bits to the low bits
679 // and zeros the high bits.
680 unsigned ArgWidth;
681 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
682 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
683 } else {
684 auto Arg = II->getArgOperand(0);
685 auto ArgType = cast<VectorType>(Arg->getType());
686 ArgWidth = ArgType->getNumElements();
687 }
688
689 // If we don't need any of low bits then return zero,
690 // we know that DemandedMask is non-zero already.
691 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
692 if (DemandedElts.isNullValue())
693 return ConstantInt::getNullValue(VTy);
694
695 // We know that the upper bits are set to zero.
696 Known.Zero.setBitsFrom(ArgWidth);
697 return nullptr;
698 }
699 case Intrinsic::x86_sse42_crc32_64_64:
700 Known.Zero.setBitsFrom(32);
701 return nullptr;
702 }
703 }
704 computeKnownBits(V, Known, Depth, CxtI);
705 break;
706 }
707
708 // If the client is only demanding bits that we know, return the known
709 // constant.
710 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
711 return Constant::getIntegerValue(VTy, Known.One);
712 return nullptr;
713 }
714
715 /// Helper routine of SimplifyDemandedUseBits. It computes Known
716 /// bits. It also tries to handle simplifications that can be done based on
717 /// DemandedMask, but without modifying the Instruction.
SimplifyMultipleUseDemandedBits(Instruction * I,const APInt & DemandedMask,KnownBits & Known,unsigned Depth,Instruction * CxtI)718 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
719 const APInt &DemandedMask,
720 KnownBits &Known,
721 unsigned Depth,
722 Instruction *CxtI) {
723 unsigned BitWidth = DemandedMask.getBitWidth();
724 Type *ITy = I->getType();
725
726 KnownBits LHSKnown(BitWidth);
727 KnownBits RHSKnown(BitWidth);
728
729 // Despite the fact that we can't simplify this instruction in all User's
730 // context, we can at least compute the known bits, and we can
731 // do simplifications that apply to *just* the one user if we know that
732 // this instruction has a simpler value in that context.
733 switch (I->getOpcode()) {
734 case Instruction::And: {
735 // If either the LHS or the RHS are Zero, the result is zero.
736 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
737 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
738 CxtI);
739
740 // Output known-0 are known to be clear if zero in either the LHS | RHS.
741 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
742 // Output known-1 bits are only known if set in both the LHS & RHS.
743 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
744
745 // If the client is only demanding bits that we know, return the known
746 // constant.
747 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
748 return Constant::getIntegerValue(ITy, IKnownOne);
749
750 // If all of the demanded bits are known 1 on one side, return the other.
751 // These bits cannot contribute to the result of the 'and' in this
752 // context.
753 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
754 return I->getOperand(0);
755 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
756 return I->getOperand(1);
757
758 Known.Zero = std::move(IKnownZero);
759 Known.One = std::move(IKnownOne);
760 break;
761 }
762 case Instruction::Or: {
763 // We can simplify (X|Y) -> X or Y in the user's context if we know that
764 // only bits from X or Y are demanded.
765
766 // If either the LHS or the RHS are One, the result is One.
767 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
768 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
769 CxtI);
770
771 // Output known-0 bits are only known if clear in both the LHS & RHS.
772 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
773 // Output known-1 are known to be set if set in either the LHS | RHS.
774 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
775
776 // If the client is only demanding bits that we know, return the known
777 // constant.
778 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
779 return Constant::getIntegerValue(ITy, IKnownOne);
780
781 // If all of the demanded bits are known zero on one side, return the
782 // other. These bits cannot contribute to the result of the 'or' in this
783 // context.
784 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
785 return I->getOperand(0);
786 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
787 return I->getOperand(1);
788
789 Known.Zero = std::move(IKnownZero);
790 Known.One = std::move(IKnownOne);
791 break;
792 }
793 case Instruction::Xor: {
794 // We can simplify (X^Y) -> X or Y in the user's context if we know that
795 // only bits from X or Y are demanded.
796
797 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
798 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
799 CxtI);
800
801 // Output known-0 bits are known if clear or set in both the LHS & RHS.
802 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
803 (RHSKnown.One & LHSKnown.One);
804 // Output known-1 are known to be set if set in only one of the LHS, RHS.
805 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
806 (RHSKnown.One & LHSKnown.Zero);
807
808 // If the client is only demanding bits that we know, return the known
809 // constant.
810 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
811 return Constant::getIntegerValue(ITy, IKnownOne);
812
813 // If all of the demanded bits are known zero on one side, return the
814 // other.
815 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
816 return I->getOperand(0);
817 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
818 return I->getOperand(1);
819
820 // Output known-0 bits are known if clear or set in both the LHS & RHS.
821 Known.Zero = std::move(IKnownZero);
822 // Output known-1 are known to be set if set in only one of the LHS, RHS.
823 Known.One = std::move(IKnownOne);
824 break;
825 }
826 default:
827 // Compute the Known bits to simplify things downstream.
828 computeKnownBits(I, Known, Depth, CxtI);
829
830 // If this user is only demanding bits that we know, return the known
831 // constant.
832 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
833 return Constant::getIntegerValue(ITy, Known.One);
834
835 break;
836 }
837
838 return nullptr;
839 }
840
841
842 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
843 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
844 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
845 /// of "C2-C1".
846 ///
847 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
848 /// ..., bn}, without considering the specific value X is holding.
849 /// This transformation is legal iff one of following conditions is hold:
850 /// 1) All the bit in S are 0, in this case E1 == E2.
851 /// 2) We don't care those bits in S, per the input DemandedMask.
852 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
853 /// rest bits.
854 ///
855 /// Currently we only test condition 2).
856 ///
857 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
858 /// not successful.
859 Value *
simplifyShrShlDemandedBits(Instruction * Shr,const APInt & ShrOp1,Instruction * Shl,const APInt & ShlOp1,const APInt & DemandedMask,KnownBits & Known)860 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
861 Instruction *Shl, const APInt &ShlOp1,
862 const APInt &DemandedMask,
863 KnownBits &Known) {
864 if (!ShlOp1 || !ShrOp1)
865 return nullptr; // No-op.
866
867 Value *VarX = Shr->getOperand(0);
868 Type *Ty = VarX->getType();
869 unsigned BitWidth = Ty->getScalarSizeInBits();
870 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
871 return nullptr; // Undef.
872
873 unsigned ShlAmt = ShlOp1.getZExtValue();
874 unsigned ShrAmt = ShrOp1.getZExtValue();
875
876 Known.One.clearAllBits();
877 Known.Zero.setLowBits(ShlAmt - 1);
878 Known.Zero &= DemandedMask;
879
880 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
881 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
882
883 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
884 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
885 (BitMask1.ashr(ShrAmt) << ShlAmt);
886
887 if (ShrAmt <= ShlAmt) {
888 BitMask2 <<= (ShlAmt - ShrAmt);
889 } else {
890 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
891 BitMask2.ashr(ShrAmt - ShlAmt);
892 }
893
894 // Check if condition-2 (see the comment to this function) is satified.
895 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
896 if (ShrAmt == ShlAmt)
897 return VarX;
898
899 if (!Shr->hasOneUse())
900 return nullptr;
901
902 BinaryOperator *New;
903 if (ShrAmt < ShlAmt) {
904 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
905 New = BinaryOperator::CreateShl(VarX, Amt);
906 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
907 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
908 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
909 } else {
910 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
911 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
912 BinaryOperator::CreateAShr(VarX, Amt);
913 if (cast<BinaryOperator>(Shr)->isExact())
914 New->setIsExact(true);
915 }
916
917 return InsertNewInstWith(New, *Shl);
918 }
919
920 return nullptr;
921 }
922
923 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst * II,APInt DemandedElts,int DMaskIdx)924 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
925 APInt DemandedElts,
926 int DMaskIdx) {
927 unsigned VWidth = II->getType()->getVectorNumElements();
928 if (VWidth == 1)
929 return nullptr;
930
931 ConstantInt *NewDMask = nullptr;
932
933 if (DMaskIdx < 0) {
934 // Pretend that a prefix of elements is demanded to simplify the code
935 // below.
936 DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
937 } else {
938 ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx));
939 if (!DMask)
940 return nullptr; // non-constant dmask is not supported by codegen
941
942 unsigned DMaskVal = DMask->getZExtValue() & 0xf;
943
944 // Mask off values that are undefined because the dmask doesn't cover them
945 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
946
947 unsigned NewDMaskVal = 0;
948 unsigned OrigLoadIdx = 0;
949 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
950 const unsigned Bit = 1 << SrcIdx;
951 if (!!(DMaskVal & Bit)) {
952 if (!!DemandedElts[OrigLoadIdx])
953 NewDMaskVal |= Bit;
954 OrigLoadIdx++;
955 }
956 }
957
958 if (DMaskVal != NewDMaskVal)
959 NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
960 }
961
962 // TODO: Handle 3 vectors when supported in code gen.
963 unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation());
964 if (!NewNumElts)
965 return UndefValue::get(II->getType());
966
967 if (NewNumElts >= VWidth && DemandedElts.isMask()) {
968 if (NewDMask)
969 II->setArgOperand(DMaskIdx, NewDMask);
970 return nullptr;
971 }
972
973 // Determine the overload types of the original intrinsic.
974 auto IID = II->getIntrinsicID();
975 SmallVector<Intrinsic::IITDescriptor, 16> Table;
976 getIntrinsicInfoTableEntries(IID, Table);
977 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
978
979 FunctionType *FTy = II->getCalledFunction()->getFunctionType();
980 SmallVector<Type *, 6> OverloadTys;
981 Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
982 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
983 Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
984
985 // Get the new return type overload of the intrinsic.
986 Module *M = II->getParent()->getParent()->getParent();
987 Type *EltTy = II->getType()->getVectorElementType();
988 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
989
990 OverloadTys[0] = NewTy;
991 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
992
993 SmallVector<Value *, 16> Args;
994 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
995 Args.push_back(II->getArgOperand(I));
996
997 if (NewDMask)
998 Args[DMaskIdx] = NewDMask;
999
1000 IRBuilderBase::InsertPointGuard Guard(Builder);
1001 Builder.SetInsertPoint(II);
1002
1003 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1004 NewCall->takeName(II);
1005 NewCall->copyMetadata(*II);
1006
1007 if (NewNumElts == 1) {
1008 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1009 DemandedElts.countTrailingZeros());
1010 }
1011
1012 SmallVector<uint32_t, 8> EltMask;
1013 unsigned NewLoadIdx = 0;
1014 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1015 if (!!DemandedElts[OrigLoadIdx])
1016 EltMask.push_back(NewLoadIdx++);
1017 else
1018 EltMask.push_back(NewNumElts);
1019 }
1020
1021 Value *Shuffle =
1022 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1023
1024 return Shuffle;
1025 }
1026
1027 /// The specified value produces a vector with any number of elements.
1028 /// DemandedElts contains the set of elements that are actually used by the
1029 /// caller. This method analyzes which elements of the operand are undef and
1030 /// returns that information in UndefElts.
1031 ///
1032 /// If the information about demanded elements can be used to simplify the
1033 /// operation, the operation is simplified, then the resultant value is
1034 /// returned. This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth)1035 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1036 APInt &UndefElts,
1037 unsigned Depth) {
1038 unsigned VWidth = V->getType()->getVectorNumElements();
1039 APInt EltMask(APInt::getAllOnesValue(VWidth));
1040 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1041
1042 if (isa<UndefValue>(V)) {
1043 // If the entire vector is undefined, just return this info.
1044 UndefElts = EltMask;
1045 return nullptr;
1046 }
1047
1048 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1049 UndefElts = EltMask;
1050 return UndefValue::get(V->getType());
1051 }
1052
1053 UndefElts = 0;
1054
1055 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
1056 if (Constant *C = dyn_cast<Constant>(V)) {
1057 // Check if this is identity. If so, return 0 since we are not simplifying
1058 // anything.
1059 if (DemandedElts.isAllOnesValue())
1060 return nullptr;
1061
1062 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1063 Constant *Undef = UndefValue::get(EltTy);
1064
1065 SmallVector<Constant*, 16> Elts;
1066 for (unsigned i = 0; i != VWidth; ++i) {
1067 if (!DemandedElts[i]) { // If not demanded, set to undef.
1068 Elts.push_back(Undef);
1069 UndefElts.setBit(i);
1070 continue;
1071 }
1072
1073 Constant *Elt = C->getAggregateElement(i);
1074 if (!Elt) return nullptr;
1075
1076 if (isa<UndefValue>(Elt)) { // Already undef.
1077 Elts.push_back(Undef);
1078 UndefElts.setBit(i);
1079 } else { // Otherwise, defined.
1080 Elts.push_back(Elt);
1081 }
1082 }
1083
1084 // If we changed the constant, return it.
1085 Constant *NewCV = ConstantVector::get(Elts);
1086 return NewCV != C ? NewCV : nullptr;
1087 }
1088
1089 // Limit search depth.
1090 if (Depth == 10)
1091 return nullptr;
1092
1093 // If multiple users are using the root value, proceed with
1094 // simplification conservatively assuming that all elements
1095 // are needed.
1096 if (!V->hasOneUse()) {
1097 // Quit if we find multiple users of a non-root value though.
1098 // They'll be handled when it's their turn to be visited by
1099 // the main instcombine process.
1100 if (Depth != 0)
1101 // TODO: Just compute the UndefElts information recursively.
1102 return nullptr;
1103
1104 // Conservatively assume that all elements are needed.
1105 DemandedElts = EltMask;
1106 }
1107
1108 Instruction *I = dyn_cast<Instruction>(V);
1109 if (!I) return nullptr; // Only analyze instructions.
1110
1111 bool MadeChange = false;
1112 APInt UndefElts2(VWidth, 0);
1113 APInt UndefElts3(VWidth, 0);
1114 Value *TmpV;
1115 switch (I->getOpcode()) {
1116 default: break;
1117
1118 case Instruction::InsertElement: {
1119 // If this is a variable index, we don't know which element it overwrites.
1120 // demand exactly the same input as we produce.
1121 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1122 if (!Idx) {
1123 // Note that we can't propagate undef elt info, because we don't know
1124 // which elt is getting updated.
1125 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1126 UndefElts2, Depth + 1);
1127 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1128 break;
1129 }
1130
1131 // The element inserted overwrites whatever was there, so the input demanded
1132 // set is simpler than the output set.
1133 unsigned IdxNo = Idx->getZExtValue();
1134 APInt PreInsertDemandedElts = DemandedElts;
1135 if (IdxNo < VWidth)
1136 PreInsertDemandedElts.clearBit(IdxNo);
1137 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), PreInsertDemandedElts,
1138 UndefElts, Depth + 1);
1139 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1140
1141 // If this is inserting an element that isn't demanded, remove this
1142 // insertelement.
1143 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1144 Worklist.Add(I);
1145 return I->getOperand(0);
1146 }
1147
1148 // The inserted element is defined.
1149 UndefElts.clearBit(IdxNo);
1150 break;
1151 }
1152 case Instruction::ShuffleVector: {
1153 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1154 unsigned LHSVWidth =
1155 Shuffle->getOperand(0)->getType()->getVectorNumElements();
1156 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1157 for (unsigned i = 0; i < VWidth; i++) {
1158 if (DemandedElts[i]) {
1159 unsigned MaskVal = Shuffle->getMaskValue(i);
1160 if (MaskVal != -1u) {
1161 assert(MaskVal < LHSVWidth * 2 &&
1162 "shufflevector mask index out of range!");
1163 if (MaskVal < LHSVWidth)
1164 LeftDemanded.setBit(MaskVal);
1165 else
1166 RightDemanded.setBit(MaskVal - LHSVWidth);
1167 }
1168 }
1169 }
1170
1171 APInt LHSUndefElts(LHSVWidth, 0);
1172 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1173 LHSUndefElts, Depth + 1);
1174 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1175
1176 APInt RHSUndefElts(LHSVWidth, 0);
1177 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1178 RHSUndefElts, Depth + 1);
1179 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1180
1181 bool NewUndefElts = false;
1182 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1183 unsigned RHSIdx = -1u, RHSValIdx = -1u;
1184 bool LHSUniform = true;
1185 bool RHSUniform = true;
1186 for (unsigned i = 0; i < VWidth; i++) {
1187 unsigned MaskVal = Shuffle->getMaskValue(i);
1188 if (MaskVal == -1u) {
1189 UndefElts.setBit(i);
1190 } else if (!DemandedElts[i]) {
1191 NewUndefElts = true;
1192 UndefElts.setBit(i);
1193 } else if (MaskVal < LHSVWidth) {
1194 if (LHSUndefElts[MaskVal]) {
1195 NewUndefElts = true;
1196 UndefElts.setBit(i);
1197 } else {
1198 LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
1199 LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
1200 LHSUniform = LHSUniform && (MaskVal == i);
1201 }
1202 } else {
1203 if (RHSUndefElts[MaskVal - LHSVWidth]) {
1204 NewUndefElts = true;
1205 UndefElts.setBit(i);
1206 } else {
1207 RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
1208 RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
1209 RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
1210 }
1211 }
1212 }
1213
1214 // Try to transform shuffle with constant vector and single element from
1215 // this constant vector to single insertelement instruction.
1216 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1217 // insertelement V, C[ci], ci-n
1218 if (LHSVWidth == Shuffle->getType()->getNumElements()) {
1219 Value *Op = nullptr;
1220 Constant *Value = nullptr;
1221 unsigned Idx = -1u;
1222
1223 // Find constant vector with the single element in shuffle (LHS or RHS).
1224 if (LHSIdx < LHSVWidth && RHSUniform) {
1225 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1226 Op = Shuffle->getOperand(1);
1227 Value = CV->getOperand(LHSValIdx);
1228 Idx = LHSIdx;
1229 }
1230 }
1231 if (RHSIdx < LHSVWidth && LHSUniform) {
1232 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1233 Op = Shuffle->getOperand(0);
1234 Value = CV->getOperand(RHSValIdx);
1235 Idx = RHSIdx;
1236 }
1237 }
1238 // Found constant vector with single element - convert to insertelement.
1239 if (Op && Value) {
1240 Instruction *New = InsertElementInst::Create(
1241 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1242 Shuffle->getName());
1243 InsertNewInstWith(New, *Shuffle);
1244 return New;
1245 }
1246 }
1247 if (NewUndefElts) {
1248 // Add additional discovered undefs.
1249 SmallVector<Constant*, 16> Elts;
1250 for (unsigned i = 0; i < VWidth; ++i) {
1251 if (UndefElts[i])
1252 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1253 else
1254 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1255 Shuffle->getMaskValue(i)));
1256 }
1257 I->setOperand(2, ConstantVector::get(Elts));
1258 MadeChange = true;
1259 }
1260 break;
1261 }
1262 case Instruction::Select: {
1263 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1264 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1265 for (unsigned i = 0; i < VWidth; i++) {
1266 Constant *CElt = CV->getAggregateElement(i);
1267 // Method isNullValue always returns false when called on a
1268 // ConstantExpr. If CElt is a ConstantExpr then skip it in order to
1269 // to avoid propagating incorrect information.
1270 if (isa<ConstantExpr>(CElt))
1271 continue;
1272 if (CElt->isNullValue())
1273 LeftDemanded.clearBit(i);
1274 else
1275 RightDemanded.clearBit(i);
1276 }
1277 }
1278
1279 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, UndefElts,
1280 Depth + 1);
1281 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1282
1283 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1284 UndefElts2, Depth + 1);
1285 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1286
1287 // Output elements are undefined if both are undefined.
1288 UndefElts &= UndefElts2;
1289 break;
1290 }
1291 case Instruction::BitCast: {
1292 // Vector->vector casts only.
1293 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1294 if (!VTy) break;
1295 unsigned InVWidth = VTy->getNumElements();
1296 APInt InputDemandedElts(InVWidth, 0);
1297 UndefElts2 = APInt(InVWidth, 0);
1298 unsigned Ratio;
1299
1300 if (VWidth == InVWidth) {
1301 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1302 // elements as are demanded of us.
1303 Ratio = 1;
1304 InputDemandedElts = DemandedElts;
1305 } else if ((VWidth % InVWidth) == 0) {
1306 // If the number of elements in the output is a multiple of the number of
1307 // elements in the input then an input element is live if any of the
1308 // corresponding output elements are live.
1309 Ratio = VWidth / InVWidth;
1310 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1311 if (DemandedElts[OutIdx])
1312 InputDemandedElts.setBit(OutIdx / Ratio);
1313 } else if ((InVWidth % VWidth) == 0) {
1314 // If the number of elements in the input is a multiple of the number of
1315 // elements in the output then an input element is live if the
1316 // corresponding output element is live.
1317 Ratio = InVWidth / VWidth;
1318 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1319 if (DemandedElts[InIdx / Ratio])
1320 InputDemandedElts.setBit(InIdx);
1321 } else {
1322 // Unsupported so far.
1323 break;
1324 }
1325
1326 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1327 UndefElts2, Depth + 1);
1328 if (TmpV) {
1329 I->setOperand(0, TmpV);
1330 MadeChange = true;
1331 }
1332
1333 if (VWidth == InVWidth) {
1334 UndefElts = UndefElts2;
1335 } else if ((VWidth % InVWidth) == 0) {
1336 // If the number of elements in the output is a multiple of the number of
1337 // elements in the input then an output element is undef if the
1338 // corresponding input element is undef.
1339 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1340 if (UndefElts2[OutIdx / Ratio])
1341 UndefElts.setBit(OutIdx);
1342 } else if ((InVWidth % VWidth) == 0) {
1343 // If the number of elements in the input is a multiple of the number of
1344 // elements in the output then an output element is undef if all of the
1345 // corresponding input elements are undef.
1346 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1347 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1348 if (SubUndef.countPopulation() == Ratio)
1349 UndefElts.setBit(OutIdx);
1350 }
1351 } else {
1352 llvm_unreachable("Unimp");
1353 }
1354 break;
1355 }
1356 case Instruction::And:
1357 case Instruction::Or:
1358 case Instruction::Xor:
1359 case Instruction::Add:
1360 case Instruction::Sub:
1361 case Instruction::Mul:
1362 // div/rem demand all inputs, because they don't want divide by zero.
1363 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1364 Depth + 1);
1365 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1366 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1367 UndefElts2, Depth + 1);
1368 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1369
1370 // Output elements are undefined if both are undefined. Consider things
1371 // like undef&0. The result is known zero, not undef.
1372 UndefElts &= UndefElts2;
1373 break;
1374 case Instruction::FPTrunc:
1375 case Instruction::FPExt:
1376 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts,
1377 Depth + 1);
1378 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1379 break;
1380
1381 case Instruction::Call: {
1382 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1383 if (!II) break;
1384 switch (II->getIntrinsicID()) {
1385 case Intrinsic::x86_xop_vfrcz_ss:
1386 case Intrinsic::x86_xop_vfrcz_sd:
1387 // The instructions for these intrinsics are speced to zero upper bits not
1388 // pass them through like other scalar intrinsics. So we shouldn't just
1389 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1390 // Instead we should return a zero vector.
1391 if (!DemandedElts[0]) {
1392 Worklist.Add(II);
1393 return ConstantAggregateZero::get(II->getType());
1394 }
1395
1396 // Only the lower element is used.
1397 DemandedElts = 1;
1398 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1399 UndefElts, Depth + 1);
1400 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1401
1402 // Only the lower element is undefined. The high elements are zero.
1403 UndefElts = UndefElts[0];
1404 break;
1405
1406 // Unary scalar-as-vector operations that work column-wise.
1407 case Intrinsic::x86_sse_rcp_ss:
1408 case Intrinsic::x86_sse_rsqrt_ss:
1409 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1410 UndefElts, Depth + 1);
1411 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1412
1413 // If lowest element of a scalar op isn't used then use Arg0.
1414 if (!DemandedElts[0]) {
1415 Worklist.Add(II);
1416 return II->getArgOperand(0);
1417 }
1418 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1419 // checks).
1420 break;
1421
1422 // Binary scalar-as-vector operations that work column-wise. The high
1423 // elements come from operand 0. The low element is a function of both
1424 // operands.
1425 case Intrinsic::x86_sse_min_ss:
1426 case Intrinsic::x86_sse_max_ss:
1427 case Intrinsic::x86_sse_cmp_ss:
1428 case Intrinsic::x86_sse2_min_sd:
1429 case Intrinsic::x86_sse2_max_sd:
1430 case Intrinsic::x86_sse2_cmp_sd: {
1431 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1432 UndefElts, Depth + 1);
1433 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1434
1435 // If lowest element of a scalar op isn't used then use Arg0.
1436 if (!DemandedElts[0]) {
1437 Worklist.Add(II);
1438 return II->getArgOperand(0);
1439 }
1440
1441 // Only lower element is used for operand 1.
1442 DemandedElts = 1;
1443 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1444 UndefElts2, Depth + 1);
1445 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1446
1447 // Lower element is undefined if both lower elements are undefined.
1448 // Consider things like undef&0. The result is known zero, not undef.
1449 if (!UndefElts2[0])
1450 UndefElts.clearBit(0);
1451
1452 break;
1453 }
1454
1455 // Binary scalar-as-vector operations that work column-wise. The high
1456 // elements come from operand 0 and the low element comes from operand 1.
1457 case Intrinsic::x86_sse41_round_ss:
1458 case Intrinsic::x86_sse41_round_sd: {
1459 // Don't use the low element of operand 0.
1460 APInt DemandedElts2 = DemandedElts;
1461 DemandedElts2.clearBit(0);
1462 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts2,
1463 UndefElts, Depth + 1);
1464 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1465
1466 // If lowest element of a scalar op isn't used then use Arg0.
1467 if (!DemandedElts[0]) {
1468 Worklist.Add(II);
1469 return II->getArgOperand(0);
1470 }
1471
1472 // Only lower element is used for operand 1.
1473 DemandedElts = 1;
1474 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1475 UndefElts2, Depth + 1);
1476 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1477
1478 // Take the high undef elements from operand 0 and take the lower element
1479 // from operand 1.
1480 UndefElts.clearBit(0);
1481 UndefElts |= UndefElts2[0];
1482 break;
1483 }
1484
1485 // Three input scalar-as-vector operations that work column-wise. The high
1486 // elements come from operand 0 and the low element is a function of all
1487 // three inputs.
1488 case Intrinsic::x86_avx512_mask_add_ss_round:
1489 case Intrinsic::x86_avx512_mask_div_ss_round:
1490 case Intrinsic::x86_avx512_mask_mul_ss_round:
1491 case Intrinsic::x86_avx512_mask_sub_ss_round:
1492 case Intrinsic::x86_avx512_mask_max_ss_round:
1493 case Intrinsic::x86_avx512_mask_min_ss_round:
1494 case Intrinsic::x86_avx512_mask_add_sd_round:
1495 case Intrinsic::x86_avx512_mask_div_sd_round:
1496 case Intrinsic::x86_avx512_mask_mul_sd_round:
1497 case Intrinsic::x86_avx512_mask_sub_sd_round:
1498 case Intrinsic::x86_avx512_mask_max_sd_round:
1499 case Intrinsic::x86_avx512_mask_min_sd_round:
1500 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1501 UndefElts, Depth + 1);
1502 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1503
1504 // If lowest element of a scalar op isn't used then use Arg0.
1505 if (!DemandedElts[0]) {
1506 Worklist.Add(II);
1507 return II->getArgOperand(0);
1508 }
1509
1510 // Only lower element is used for operand 1 and 2.
1511 DemandedElts = 1;
1512 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1513 UndefElts2, Depth + 1);
1514 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1515 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(2), DemandedElts,
1516 UndefElts3, Depth + 1);
1517 if (TmpV) { II->setArgOperand(2, TmpV); MadeChange = true; }
1518
1519 // Lower element is undefined if all three lower elements are undefined.
1520 // Consider things like undef&0. The result is known zero, not undef.
1521 if (!UndefElts2[0] || !UndefElts3[0])
1522 UndefElts.clearBit(0);
1523
1524 break;
1525
1526 case Intrinsic::x86_sse2_packssdw_128:
1527 case Intrinsic::x86_sse2_packsswb_128:
1528 case Intrinsic::x86_sse2_packuswb_128:
1529 case Intrinsic::x86_sse41_packusdw:
1530 case Intrinsic::x86_avx2_packssdw:
1531 case Intrinsic::x86_avx2_packsswb:
1532 case Intrinsic::x86_avx2_packusdw:
1533 case Intrinsic::x86_avx2_packuswb:
1534 case Intrinsic::x86_avx512_packssdw_512:
1535 case Intrinsic::x86_avx512_packsswb_512:
1536 case Intrinsic::x86_avx512_packusdw_512:
1537 case Intrinsic::x86_avx512_packuswb_512: {
1538 auto *Ty0 = II->getArgOperand(0)->getType();
1539 unsigned InnerVWidth = Ty0->getVectorNumElements();
1540 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1541
1542 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1543 unsigned VWidthPerLane = VWidth / NumLanes;
1544 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1545
1546 // Per lane, pack the elements of the first input and then the second.
1547 // e.g.
1548 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1549 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1550 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1551 APInt OpDemandedElts(InnerVWidth, 0);
1552 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1553 unsigned LaneIdx = Lane * VWidthPerLane;
1554 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1555 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1556 if (DemandedElts[Idx])
1557 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1558 }
1559 }
1560
1561 // Demand elements from the operand.
1562 auto *Op = II->getArgOperand(OpNum);
1563 APInt OpUndefElts(InnerVWidth, 0);
1564 TmpV = SimplifyDemandedVectorElts(Op, OpDemandedElts, OpUndefElts,
1565 Depth + 1);
1566 if (TmpV) {
1567 II->setArgOperand(OpNum, TmpV);
1568 MadeChange = true;
1569 }
1570
1571 // Pack the operand's UNDEF elements, one lane at a time.
1572 OpUndefElts = OpUndefElts.zext(VWidth);
1573 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1574 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1575 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1576 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1577 UndefElts |= LaneElts;
1578 }
1579 }
1580 break;
1581 }
1582
1583 // PSHUFB
1584 case Intrinsic::x86_ssse3_pshuf_b_128:
1585 case Intrinsic::x86_avx2_pshuf_b:
1586 case Intrinsic::x86_avx512_pshuf_b_512:
1587 // PERMILVAR
1588 case Intrinsic::x86_avx_vpermilvar_ps:
1589 case Intrinsic::x86_avx_vpermilvar_ps_256:
1590 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1591 case Intrinsic::x86_avx_vpermilvar_pd:
1592 case Intrinsic::x86_avx_vpermilvar_pd_256:
1593 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1594 // PERMV
1595 case Intrinsic::x86_avx2_permd:
1596 case Intrinsic::x86_avx2_permps: {
1597 Value *Op1 = II->getArgOperand(1);
1598 TmpV = SimplifyDemandedVectorElts(Op1, DemandedElts, UndefElts,
1599 Depth + 1);
1600 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1601 break;
1602 }
1603
1604 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1605 // in an undefined state.
1606 case Intrinsic::x86_sse4a_extrq:
1607 case Intrinsic::x86_sse4a_extrqi:
1608 case Intrinsic::x86_sse4a_insertq:
1609 case Intrinsic::x86_sse4a_insertqi:
1610 UndefElts.setHighBits(VWidth / 2);
1611 break;
1612 case Intrinsic::amdgcn_buffer_load:
1613 case Intrinsic::amdgcn_buffer_load_format:
1614 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1615 default: {
1616 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
1617 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1618
1619 break;
1620 }
1621 }
1622 break;
1623 }
1624 }
1625 return MadeChange ? I : nullptr;
1626 }
1627