1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/BasicBlock.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Type.h"
23 #include <algorithm>
24
25 using namespace llvm;
26
getValueSymbolTable()27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28 if (Function *F = getParent())
29 return F->getValueSymbolTable();
30 return nullptr;
31 }
32
getContext() const33 LLVMContext &BasicBlock::getContext() const {
34 return getType()->getContext();
35 }
36
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits<Instruction>;
40
BasicBlock(LLVMContext & C,const Twine & Name,Function * NewParent,BasicBlock * InsertBefore)41 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
42 BasicBlock *InsertBefore)
43 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
44
45 if (NewParent)
46 insertInto(NewParent, InsertBefore);
47 else
48 assert(!InsertBefore &&
49 "Cannot insert block before another block with no function!");
50
51 setName(Name);
52 }
53
insertInto(Function * NewParent,BasicBlock * InsertBefore)54 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
55 assert(NewParent && "Expected a parent");
56 assert(!Parent && "Already has a parent");
57
58 if (InsertBefore)
59 NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
60 else
61 NewParent->getBasicBlockList().push_back(this);
62 }
63
~BasicBlock()64 BasicBlock::~BasicBlock() {
65 // If the address of the block is taken and it is being deleted (e.g. because
66 // it is dead), this means that there is either a dangling constant expr
67 // hanging off the block, or an undefined use of the block (source code
68 // expecting the address of a label to keep the block alive even though there
69 // is no indirect branch). Handle these cases by zapping the BlockAddress
70 // nodes. There are no other possible uses at this point.
71 if (hasAddressTaken()) {
72 assert(!use_empty() && "There should be at least one blockaddress!");
73 Constant *Replacement =
74 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
75 while (!use_empty()) {
76 BlockAddress *BA = cast<BlockAddress>(user_back());
77 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
78 BA->getType()));
79 BA->destroyConstant();
80 }
81 }
82
83 assert(getParent() == nullptr && "BasicBlock still linked into the program!");
84 dropAllReferences();
85 InstList.clear();
86 }
87
setParent(Function * parent)88 void BasicBlock::setParent(Function *parent) {
89 // Set Parent=parent, updating instruction symtab entries as appropriate.
90 InstList.setSymTabObject(&Parent, parent);
91 }
92
93 iterator_range<filter_iterator<BasicBlock::const_iterator,
94 std::function<bool(const Instruction &)>>>
instructionsWithoutDebug() const95 BasicBlock::instructionsWithoutDebug() const {
96 std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
97 return !isa<DbgInfoIntrinsic>(I);
98 };
99 return make_filter_range(*this, Fn);
100 }
101
102 iterator_range<filter_iterator<BasicBlock::iterator,
103 std::function<bool(Instruction &)>>>
instructionsWithoutDebug()104 BasicBlock::instructionsWithoutDebug() {
105 std::function<bool(Instruction &)> Fn = [](Instruction &I) {
106 return !isa<DbgInfoIntrinsic>(I);
107 };
108 return make_filter_range(*this, Fn);
109 }
110
removeFromParent()111 void BasicBlock::removeFromParent() {
112 getParent()->getBasicBlockList().remove(getIterator());
113 }
114
eraseFromParent()115 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
116 return getParent()->getBasicBlockList().erase(getIterator());
117 }
118
119 /// Unlink this basic block from its current function and
120 /// insert it into the function that MovePos lives in, right before MovePos.
moveBefore(BasicBlock * MovePos)121 void BasicBlock::moveBefore(BasicBlock *MovePos) {
122 MovePos->getParent()->getBasicBlockList().splice(
123 MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
124 }
125
126 /// Unlink this basic block from its current function and
127 /// insert it into the function that MovePos lives in, right after MovePos.
moveAfter(BasicBlock * MovePos)128 void BasicBlock::moveAfter(BasicBlock *MovePos) {
129 MovePos->getParent()->getBasicBlockList().splice(
130 ++MovePos->getIterator(), getParent()->getBasicBlockList(),
131 getIterator());
132 }
133
getModule() const134 const Module *BasicBlock::getModule() const {
135 return getParent()->getParent();
136 }
137
getTerminator() const138 const TerminatorInst *BasicBlock::getTerminator() const {
139 if (InstList.empty()) return nullptr;
140 return dyn_cast<TerminatorInst>(&InstList.back());
141 }
142
getTerminatingMustTailCall() const143 const CallInst *BasicBlock::getTerminatingMustTailCall() const {
144 if (InstList.empty())
145 return nullptr;
146 const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
147 if (!RI || RI == &InstList.front())
148 return nullptr;
149
150 const Instruction *Prev = RI->getPrevNode();
151 if (!Prev)
152 return nullptr;
153
154 if (Value *RV = RI->getReturnValue()) {
155 if (RV != Prev)
156 return nullptr;
157
158 // Look through the optional bitcast.
159 if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
160 RV = BI->getOperand(0);
161 Prev = BI->getPrevNode();
162 if (!Prev || RV != Prev)
163 return nullptr;
164 }
165 }
166
167 if (auto *CI = dyn_cast<CallInst>(Prev)) {
168 if (CI->isMustTailCall())
169 return CI;
170 }
171 return nullptr;
172 }
173
getTerminatingDeoptimizeCall() const174 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
175 if (InstList.empty())
176 return nullptr;
177 auto *RI = dyn_cast<ReturnInst>(&InstList.back());
178 if (!RI || RI == &InstList.front())
179 return nullptr;
180
181 if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
182 if (Function *F = CI->getCalledFunction())
183 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
184 return CI;
185
186 return nullptr;
187 }
188
getFirstNonPHI() const189 const Instruction* BasicBlock::getFirstNonPHI() const {
190 for (const Instruction &I : *this)
191 if (!isa<PHINode>(I))
192 return &I;
193 return nullptr;
194 }
195
getFirstNonPHIOrDbg() const196 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
197 for (const Instruction &I : *this)
198 if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
199 return &I;
200 return nullptr;
201 }
202
getFirstNonPHIOrDbgOrLifetime() const203 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
204 for (const Instruction &I : *this) {
205 if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
206 continue;
207
208 if (auto *II = dyn_cast<IntrinsicInst>(&I))
209 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
210 II->getIntrinsicID() == Intrinsic::lifetime_end)
211 continue;
212
213 return &I;
214 }
215 return nullptr;
216 }
217
getFirstInsertionPt() const218 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
219 const Instruction *FirstNonPHI = getFirstNonPHI();
220 if (!FirstNonPHI)
221 return end();
222
223 const_iterator InsertPt = FirstNonPHI->getIterator();
224 if (InsertPt->isEHPad()) ++InsertPt;
225 return InsertPt;
226 }
227
dropAllReferences()228 void BasicBlock::dropAllReferences() {
229 for (Instruction &I : *this)
230 I.dropAllReferences();
231 }
232
233 /// If this basic block has a single predecessor block,
234 /// return the block, otherwise return a null pointer.
getSinglePredecessor() const235 const BasicBlock *BasicBlock::getSinglePredecessor() const {
236 const_pred_iterator PI = pred_begin(this), E = pred_end(this);
237 if (PI == E) return nullptr; // No preds.
238 const BasicBlock *ThePred = *PI;
239 ++PI;
240 return (PI == E) ? ThePred : nullptr /*multiple preds*/;
241 }
242
243 /// If this basic block has a unique predecessor block,
244 /// return the block, otherwise return a null pointer.
245 /// Note that unique predecessor doesn't mean single edge, there can be
246 /// multiple edges from the unique predecessor to this block (for example
247 /// a switch statement with multiple cases having the same destination).
getUniquePredecessor() const248 const BasicBlock *BasicBlock::getUniquePredecessor() const {
249 const_pred_iterator PI = pred_begin(this), E = pred_end(this);
250 if (PI == E) return nullptr; // No preds.
251 const BasicBlock *PredBB = *PI;
252 ++PI;
253 for (;PI != E; ++PI) {
254 if (*PI != PredBB)
255 return nullptr;
256 // The same predecessor appears multiple times in the predecessor list.
257 // This is OK.
258 }
259 return PredBB;
260 }
261
getSingleSuccessor() const262 const BasicBlock *BasicBlock::getSingleSuccessor() const {
263 succ_const_iterator SI = succ_begin(this), E = succ_end(this);
264 if (SI == E) return nullptr; // no successors
265 const BasicBlock *TheSucc = *SI;
266 ++SI;
267 return (SI == E) ? TheSucc : nullptr /* multiple successors */;
268 }
269
getUniqueSuccessor() const270 const BasicBlock *BasicBlock::getUniqueSuccessor() const {
271 succ_const_iterator SI = succ_begin(this), E = succ_end(this);
272 if (SI == E) return nullptr; // No successors
273 const BasicBlock *SuccBB = *SI;
274 ++SI;
275 for (;SI != E; ++SI) {
276 if (*SI != SuccBB)
277 return nullptr;
278 // The same successor appears multiple times in the successor list.
279 // This is OK.
280 }
281 return SuccBB;
282 }
283
phis()284 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
285 PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
286 return make_range<phi_iterator>(P, nullptr);
287 }
288
289 /// This method is used to notify a BasicBlock that the
290 /// specified Predecessor of the block is no longer able to reach it. This is
291 /// actually not used to update the Predecessor list, but is actually used to
292 /// update the PHI nodes that reside in the block. Note that this should be
293 /// called while the predecessor still refers to this block.
294 ///
removePredecessor(BasicBlock * Pred,bool DontDeleteUselessPHIs)295 void BasicBlock::removePredecessor(BasicBlock *Pred,
296 bool DontDeleteUselessPHIs) {
297 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
298 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
299 "removePredecessor: BB is not a predecessor!");
300
301 if (InstList.empty()) return;
302 PHINode *APN = dyn_cast<PHINode>(&front());
303 if (!APN) return; // Quick exit.
304
305 // If there are exactly two predecessors, then we want to nuke the PHI nodes
306 // altogether. However, we cannot do this, if this in this case:
307 //
308 // Loop:
309 // %x = phi [X, Loop]
310 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
311 // br Loop ;; %x2 does not dominate all uses
312 //
313 // This is because the PHI node input is actually taken from the predecessor
314 // basic block. The only case this can happen is with a self loop, so we
315 // check for this case explicitly now.
316 //
317 unsigned max_idx = APN->getNumIncomingValues();
318 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
319 if (max_idx == 2) {
320 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
321
322 // Disable PHI elimination!
323 if (this == Other) max_idx = 3;
324 }
325
326 // <= Two predecessors BEFORE I remove one?
327 if (max_idx <= 2 && !DontDeleteUselessPHIs) {
328 // Yup, loop through and nuke the PHI nodes
329 while (PHINode *PN = dyn_cast<PHINode>(&front())) {
330 // Remove the predecessor first.
331 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
332
333 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
334 if (max_idx == 2) {
335 if (PN->getIncomingValue(0) != PN)
336 PN->replaceAllUsesWith(PN->getIncomingValue(0));
337 else
338 // We are left with an infinite loop with no entries: kill the PHI.
339 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
340 getInstList().pop_front(); // Remove the PHI node
341 }
342
343 // If the PHI node already only had one entry, it got deleted by
344 // removeIncomingValue.
345 }
346 } else {
347 // Okay, now we know that we need to remove predecessor #pred_idx from all
348 // PHI nodes. Iterate over each PHI node fixing them up
349 PHINode *PN;
350 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
351 ++II;
352 PN->removeIncomingValue(Pred, false);
353 // If all incoming values to the Phi are the same, we can replace the Phi
354 // with that value.
355 Value* PNV = nullptr;
356 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
357 if (PNV != PN) {
358 PN->replaceAllUsesWith(PNV);
359 PN->eraseFromParent();
360 }
361 }
362 }
363 }
364
canSplitPredecessors() const365 bool BasicBlock::canSplitPredecessors() const {
366 const Instruction *FirstNonPHI = getFirstNonPHI();
367 if (isa<LandingPadInst>(FirstNonPHI))
368 return true;
369 // This is perhaps a little conservative because constructs like
370 // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors
371 // cannot handle such things just yet.
372 if (FirstNonPHI->isEHPad())
373 return false;
374 return true;
375 }
376
isLegalToHoistInto() const377 bool BasicBlock::isLegalToHoistInto() const {
378 auto *Term = getTerminator();
379 // No terminator means the block is under construction.
380 if (!Term)
381 return true;
382
383 // If the block has no successors, there can be no instructions to hoist.
384 assert(Term->getNumSuccessors() > 0);
385
386 // Instructions should not be hoisted across exception handling boundaries.
387 return !Term->isExceptional();
388 }
389
390 /// This splits a basic block into two at the specified
391 /// instruction. Note that all instructions BEFORE the specified iterator stay
392 /// as part of the original basic block, an unconditional branch is added to
393 /// the new BB, and the rest of the instructions in the BB are moved to the new
394 /// BB, including the old terminator. This invalidates the iterator.
395 ///
396 /// Note that this only works on well formed basic blocks (must have a
397 /// terminator), and 'I' must not be the end of instruction list (which would
398 /// cause a degenerate basic block to be formed, having a terminator inside of
399 /// the basic block).
400 ///
splitBasicBlock(iterator I,const Twine & BBName)401 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
402 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
403 assert(I != InstList.end() &&
404 "Trying to get me to create degenerate basic block!");
405
406 BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
407 this->getNextNode());
408
409 // Save DebugLoc of split point before invalidating iterator.
410 DebugLoc Loc = I->getDebugLoc();
411 // Move all of the specified instructions from the original basic block into
412 // the new basic block.
413 New->getInstList().splice(New->end(), this->getInstList(), I, end());
414
415 // Add a branch instruction to the newly formed basic block.
416 BranchInst *BI = BranchInst::Create(New, this);
417 BI->setDebugLoc(Loc);
418
419 // Now we must loop through all of the successors of the New block (which
420 // _were_ the successors of the 'this' block), and update any PHI nodes in
421 // successors. If there were PHI nodes in the successors, then they need to
422 // know that incoming branches will be from New, not from Old.
423 //
424 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
425 // Loop over any phi nodes in the basic block, updating the BB field of
426 // incoming values...
427 BasicBlock *Successor = *I;
428 for (auto &PN : Successor->phis()) {
429 int Idx = PN.getBasicBlockIndex(this);
430 while (Idx != -1) {
431 PN.setIncomingBlock((unsigned)Idx, New);
432 Idx = PN.getBasicBlockIndex(this);
433 }
434 }
435 }
436 return New;
437 }
438
replaceSuccessorsPhiUsesWith(BasicBlock * New)439 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
440 TerminatorInst *TI = getTerminator();
441 if (!TI)
442 // Cope with being called on a BasicBlock that doesn't have a terminator
443 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
444 return;
445 for (BasicBlock *Succ : TI->successors()) {
446 // N.B. Succ might not be a complete BasicBlock, so don't assume
447 // that it ends with a non-phi instruction.
448 for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) {
449 PHINode *PN = dyn_cast<PHINode>(II);
450 if (!PN)
451 break;
452 int i;
453 while ((i = PN->getBasicBlockIndex(this)) >= 0)
454 PN->setIncomingBlock(i, New);
455 }
456 }
457 }
458
459 /// Return true if this basic block is a landing pad. I.e., it's
460 /// the destination of the 'unwind' edge of an invoke instruction.
isLandingPad() const461 bool BasicBlock::isLandingPad() const {
462 return isa<LandingPadInst>(getFirstNonPHI());
463 }
464
465 /// Return the landingpad instruction associated with the landing pad.
getLandingPadInst() const466 const LandingPadInst *BasicBlock::getLandingPadInst() const {
467 return dyn_cast<LandingPadInst>(getFirstNonPHI());
468 }
469
getIrrLoopHeaderWeight() const470 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
471 const TerminatorInst *TI = getTerminator();
472 if (MDNode *MDIrrLoopHeader =
473 TI->getMetadata(LLVMContext::MD_irr_loop)) {
474 MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
475 if (MDName->getString().equals("loop_header_weight")) {
476 auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
477 return Optional<uint64_t>(CI->getValue().getZExtValue());
478 }
479 }
480 return Optional<uint64_t>();
481 }
482
skipDebugIntrinsics(BasicBlock::iterator It)483 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
484 while (isa<DbgInfoIntrinsic>(It))
485 ++It;
486 return It;
487 }
488