• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007 VMware, Inc.
4  * All Rights Reserved.
5  * Copyright 2008-2010 VMware, Inc.  All rights reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 
29 /**
30  * Texture sampling
31  *
32  * Authors:
33  *   Brian Paul
34  *   Keith Whitwell
35  */
36 
37 #include "pipe/p_context.h"
38 #include "pipe/p_defines.h"
39 #include "pipe/p_shader_tokens.h"
40 #include "util/u_math.h"
41 #include "util/u_format.h"
42 #include "util/u_memory.h"
43 #include "util/u_inlines.h"
44 #include "sp_quad.h"   /* only for #define QUAD_* tokens */
45 #include "sp_tex_sample.h"
46 #include "sp_texture.h"
47 #include "sp_tex_tile_cache.h"
48 
49 
50 /** Set to one to help debug texture sampling */
51 #define DEBUG_TEX 0
52 
53 
54 /*
55  * Return fractional part of 'f'.  Used for computing interpolation weights.
56  * Need to be careful with negative values.
57  * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
58  * of improperly weighted linear-filtered textures.
59  * The tests/texwrap.c demo is a good test.
60  */
61 static inline float
frac(float f)62 frac(float f)
63 {
64    return f - floorf(f);
65 }
66 
67 
68 
69 /**
70  * Linear interpolation macro
71  */
72 static inline float
lerp(float a,float v0,float v1)73 lerp(float a, float v0, float v1)
74 {
75    return v0 + a * (v1 - v0);
76 }
77 
78 
79 /**
80  * Do 2D/bilinear interpolation of float values.
81  * v00, v10, v01 and v11 are typically four texture samples in a square/box.
82  * a and b are the horizontal and vertical interpolants.
83  * It's important that this function is inlined when compiled with
84  * optimization!  If we find that's not true on some systems, convert
85  * to a macro.
86  */
87 static inline float
lerp_2d(float a,float b,float v00,float v10,float v01,float v11)88 lerp_2d(float a, float b,
89         float v00, float v10, float v01, float v11)
90 {
91    const float temp0 = lerp(a, v00, v10);
92    const float temp1 = lerp(a, v01, v11);
93    return lerp(b, temp0, temp1);
94 }
95 
96 
97 /**
98  * As above, but 3D interpolation of 8 values.
99  */
100 static inline float
lerp_3d(float a,float b,float c,float v000,float v100,float v010,float v110,float v001,float v101,float v011,float v111)101 lerp_3d(float a, float b, float c,
102         float v000, float v100, float v010, float v110,
103         float v001, float v101, float v011, float v111)
104 {
105    const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
106    const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
107    return lerp(c, temp0, temp1);
108 }
109 
110 
111 
112 /**
113  * Compute coord % size for repeat wrap modes.
114  * Note that if coord is negative, coord % size doesn't give the right
115  * value.  To avoid that problem we add a large multiple of the size
116  * (rather than using a conditional).
117  */
118 static inline int
repeat(int coord,unsigned size)119 repeat(int coord, unsigned size)
120 {
121    return (coord + size * 1024) % size;
122 }
123 
124 
125 /**
126  * Apply texture coord wrapping mode and return integer texture indexes
127  * for a vector of four texcoords (S or T or P).
128  * \param wrapMode  PIPE_TEX_WRAP_x
129  * \param s  the incoming texcoords
130  * \param size  the texture image size
131  * \param icoord  returns the integer texcoords
132  */
133 static void
wrap_nearest_repeat(float s,unsigned size,int offset,int * icoord)134 wrap_nearest_repeat(float s, unsigned size, int offset, int *icoord)
135 {
136    /* s limited to [0,1) */
137    /* i limited to [0,size-1] */
138    const int i = util_ifloor(s * size);
139    *icoord = repeat(i + offset, size);
140 }
141 
142 
143 static void
wrap_nearest_clamp(float s,unsigned size,int offset,int * icoord)144 wrap_nearest_clamp(float s, unsigned size, int offset, int *icoord)
145 {
146    /* s limited to [0,1] */
147    /* i limited to [0,size-1] */
148    s *= size;
149    s += offset;
150    if (s <= 0.0F)
151       *icoord = 0;
152    else if (s >= size)
153       *icoord = size - 1;
154    else
155       *icoord = util_ifloor(s);
156 }
157 
158 
159 static void
wrap_nearest_clamp_to_edge(float s,unsigned size,int offset,int * icoord)160 wrap_nearest_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
161 {
162    /* s limited to [min,max] */
163    /* i limited to [0, size-1] */
164    const float min = 0.5F;
165    const float max = (float)size - 0.5F;
166 
167    s *= size;
168    s += offset;
169 
170    if (s < min)
171       *icoord = 0;
172    else if (s > max)
173       *icoord = size - 1;
174    else
175       *icoord = util_ifloor(s);
176 }
177 
178 
179 static void
wrap_nearest_clamp_to_border(float s,unsigned size,int offset,int * icoord)180 wrap_nearest_clamp_to_border(float s, unsigned size, int offset, int *icoord)
181 {
182    /* s limited to [min,max] */
183    /* i limited to [-1, size] */
184    const float min = -0.5F;
185    const float max = size + 0.5F;
186 
187    s *= size;
188    s += offset;
189    if (s <= min)
190       *icoord = -1;
191    else if (s >= max)
192       *icoord = size;
193    else
194       *icoord = util_ifloor(s);
195 }
196 
197 static void
wrap_nearest_mirror_repeat(float s,unsigned size,int offset,int * icoord)198 wrap_nearest_mirror_repeat(float s, unsigned size, int offset, int *icoord)
199 {
200    const float min = 1.0F / (2.0F * size);
201    const float max = 1.0F - min;
202    int flr;
203    float u;
204 
205    s += (float)offset / size;
206    flr = util_ifloor(s);
207    u = frac(s);
208    if (flr & 1)
209       u = 1.0F - u;
210    if (u < min)
211       *icoord = 0;
212    else if (u > max)
213       *icoord = size - 1;
214    else
215       *icoord = util_ifloor(u * size);
216 }
217 
218 
219 static void
wrap_nearest_mirror_clamp(float s,unsigned size,int offset,int * icoord)220 wrap_nearest_mirror_clamp(float s, unsigned size, int offset, int *icoord)
221 {
222    /* s limited to [0,1] */
223    /* i limited to [0,size-1] */
224    const float u = fabsf(s * size + offset);
225    if (u <= 0.0F)
226       *icoord = 0;
227    else if (u >= size)
228       *icoord = size - 1;
229    else
230       *icoord = util_ifloor(u);
231 }
232 
233 
234 static void
wrap_nearest_mirror_clamp_to_edge(float s,unsigned size,int offset,int * icoord)235 wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
236 {
237    /* s limited to [min,max] */
238    /* i limited to [0, size-1] */
239    const float min = 0.5F;
240    const float max = (float)size - 0.5F;
241    const float u = fabsf(s * size + offset);
242 
243    if (u < min)
244       *icoord = 0;
245    else if (u > max)
246       *icoord = size - 1;
247    else
248       *icoord = util_ifloor(u);
249 }
250 
251 
252 static void
wrap_nearest_mirror_clamp_to_border(float s,unsigned size,int offset,int * icoord)253 wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int offset, int *icoord)
254 {
255    /* u limited to [-0.5, size-0.5] */
256    const float min = -0.5F;
257    const float max = (float)size + 0.5F;
258    const float u = fabsf(s * size + offset);
259 
260    if (u < min)
261       *icoord = -1;
262    else if (u > max)
263       *icoord = size;
264    else
265       *icoord = util_ifloor(u);
266 }
267 
268 
269 /**
270  * Used to compute texel locations for linear sampling
271  * \param wrapMode  PIPE_TEX_WRAP_x
272  * \param s  the texcoord
273  * \param size  the texture image size
274  * \param icoord0  returns first texture index
275  * \param icoord1  returns second texture index (usually icoord0 + 1)
276  * \param w  returns blend factor/weight between texture indices
277  * \param icoord  returns the computed integer texture coord
278  */
279 static void
wrap_linear_repeat(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)280 wrap_linear_repeat(float s, unsigned size, int offset,
281                    int *icoord0, int *icoord1, float *w)
282 {
283    const float u = s * size - 0.5F;
284    *icoord0 = repeat(util_ifloor(u) + offset, size);
285    *icoord1 = repeat(*icoord0 + 1, size);
286    *w = frac(u);
287 }
288 
289 
290 static void
wrap_linear_clamp(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)291 wrap_linear_clamp(float s, unsigned size, int offset,
292                   int *icoord0, int *icoord1, float *w)
293 {
294    const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
295 
296    *icoord0 = util_ifloor(u);
297    *icoord1 = *icoord0 + 1;
298    *w = frac(u);
299 }
300 
301 
302 static void
wrap_linear_clamp_to_edge(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)303 wrap_linear_clamp_to_edge(float s, unsigned size, int offset,
304                           int *icoord0, int *icoord1, float *w)
305 {
306    const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
307    *icoord0 = util_ifloor(u);
308    *icoord1 = *icoord0 + 1;
309    if (*icoord0 < 0)
310       *icoord0 = 0;
311    if (*icoord1 >= (int) size)
312       *icoord1 = size - 1;
313    *w = frac(u);
314 }
315 
316 
317 static void
wrap_linear_clamp_to_border(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)318 wrap_linear_clamp_to_border(float s, unsigned size, int offset,
319                             int *icoord0, int *icoord1, float *w)
320 {
321    const float min = -0.5F;
322    const float max = (float)size + 0.5F;
323    const float u = CLAMP(s * size + offset, min, max) - 0.5f;
324    *icoord0 = util_ifloor(u);
325    *icoord1 = *icoord0 + 1;
326    *w = frac(u);
327 }
328 
329 
330 static void
wrap_linear_mirror_repeat(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)331 wrap_linear_mirror_repeat(float s, unsigned size, int offset,
332                           int *icoord0, int *icoord1, float *w)
333 {
334    int flr;
335    float u;
336 
337    s += (float)offset / size;
338    flr = util_ifloor(s);
339    u = frac(s);
340    if (flr & 1)
341       u = 1.0F - u;
342    u = u * size - 0.5F;
343    *icoord0 = util_ifloor(u);
344    *icoord1 = *icoord0 + 1;
345    if (*icoord0 < 0)
346       *icoord0 = 0;
347    if (*icoord1 >= (int) size)
348       *icoord1 = size - 1;
349    *w = frac(u);
350 }
351 
352 
353 static void
wrap_linear_mirror_clamp(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)354 wrap_linear_mirror_clamp(float s, unsigned size, int offset,
355                          int *icoord0, int *icoord1, float *w)
356 {
357    float u = fabsf(s * size + offset);
358    if (u >= size)
359       u = (float) size;
360    u -= 0.5F;
361    *icoord0 = util_ifloor(u);
362    *icoord1 = *icoord0 + 1;
363    *w = frac(u);
364 }
365 
366 
367 static void
wrap_linear_mirror_clamp_to_edge(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)368 wrap_linear_mirror_clamp_to_edge(float s, unsigned size, int offset,
369                                  int *icoord0, int *icoord1, float *w)
370 {
371    float u = fabsf(s * size + offset);
372    if (u >= size)
373       u = (float) size;
374    u -= 0.5F;
375    *icoord0 = util_ifloor(u);
376    *icoord1 = *icoord0 + 1;
377    if (*icoord0 < 0)
378       *icoord0 = 0;
379    if (*icoord1 >= (int) size)
380       *icoord1 = size - 1;
381    *w = frac(u);
382 }
383 
384 
385 static void
wrap_linear_mirror_clamp_to_border(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)386 wrap_linear_mirror_clamp_to_border(float s, unsigned size, int offset,
387                                    int *icoord0, int *icoord1, float *w)
388 {
389    const float min = -0.5F;
390    const float max = size + 0.5F;
391    const float t = fabsf(s * size + offset);
392    const float u = CLAMP(t, min, max) - 0.5F;
393    *icoord0 = util_ifloor(u);
394    *icoord1 = *icoord0 + 1;
395    *w = frac(u);
396 }
397 
398 
399 /**
400  * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
401  */
402 static void
wrap_nearest_unorm_clamp(float s,unsigned size,int offset,int * icoord)403 wrap_nearest_unorm_clamp(float s, unsigned size, int offset, int *icoord)
404 {
405    const int i = util_ifloor(s);
406    *icoord = CLAMP(i + offset, 0, (int) size-1);
407 }
408 
409 
410 /**
411  * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
412  */
413 static void
wrap_nearest_unorm_clamp_to_border(float s,unsigned size,int offset,int * icoord)414 wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int offset, int *icoord)
415 {
416    *icoord = util_ifloor( CLAMP(s + offset, -0.5F, (float) size + 0.5F) );
417 }
418 
419 
420 /**
421  * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
422  */
423 static void
wrap_nearest_unorm_clamp_to_edge(float s,unsigned size,int offset,int * icoord)424 wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
425 {
426    *icoord = util_ifloor( CLAMP(s + offset, 0.5F, (float) size - 0.5F) );
427 }
428 
429 
430 /**
431  * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
432  */
433 static void
wrap_linear_unorm_clamp(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)434 wrap_linear_unorm_clamp(float s, unsigned size, int offset,
435                         int *icoord0, int *icoord1, float *w)
436 {
437    /* Not exactly what the spec says, but it matches NVIDIA output */
438    const float u = CLAMP(s + offset - 0.5F, 0.0f, (float) size - 1.0f);
439    *icoord0 = util_ifloor(u);
440    *icoord1 = *icoord0 + 1;
441    *w = frac(u);
442 }
443 
444 
445 /**
446  * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
447  */
448 static void
wrap_linear_unorm_clamp_to_border(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)449 wrap_linear_unorm_clamp_to_border(float s, unsigned size, int offset,
450                                   int *icoord0, int *icoord1, float *w)
451 {
452    const float u = CLAMP(s + offset, -0.5F, (float) size + 0.5F) - 0.5F;
453    *icoord0 = util_ifloor(u);
454    *icoord1 = *icoord0 + 1;
455    if (*icoord1 > (int) size - 1)
456       *icoord1 = size - 1;
457    *w = frac(u);
458 }
459 
460 
461 /**
462  * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
463  */
464 static void
wrap_linear_unorm_clamp_to_edge(float s,unsigned size,int offset,int * icoord0,int * icoord1,float * w)465 wrap_linear_unorm_clamp_to_edge(float s, unsigned size, int offset,
466                                 int *icoord0, int *icoord1, float *w)
467 {
468    const float u = CLAMP(s + offset, +0.5F, (float) size - 0.5F) - 0.5F;
469    *icoord0 = util_ifloor(u);
470    *icoord1 = *icoord0 + 1;
471    if (*icoord1 > (int) size - 1)
472       *icoord1 = size - 1;
473    *w = frac(u);
474 }
475 
476 
477 /**
478  * Do coordinate to array index conversion.  For array textures.
479  */
480 static inline int
coord_to_layer(float coord,unsigned first_layer,unsigned last_layer)481 coord_to_layer(float coord, unsigned first_layer, unsigned last_layer)
482 {
483    const int c = util_ifloor(coord + 0.5F);
484    return CLAMP(c, (int)first_layer, (int)last_layer);
485 }
486 
487 
488 /**
489  * Examine the quad's texture coordinates to compute the partial
490  * derivatives w.r.t X and Y, then compute lambda (level of detail).
491  */
492 static float
compute_lambda_1d(const struct sp_sampler_view * sview,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE])493 compute_lambda_1d(const struct sp_sampler_view *sview,
494                   const float s[TGSI_QUAD_SIZE],
495                   const float t[TGSI_QUAD_SIZE],
496                   const float p[TGSI_QUAD_SIZE])
497 {
498    const struct pipe_resource *texture = sview->base.texture;
499    const float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
500    const float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
501    const float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
502 
503    return util_fast_log2(rho);
504 }
505 
506 
507 static float
compute_lambda_2d(const struct sp_sampler_view * sview,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE])508 compute_lambda_2d(const struct sp_sampler_view *sview,
509                   const float s[TGSI_QUAD_SIZE],
510                   const float t[TGSI_QUAD_SIZE],
511                   const float p[TGSI_QUAD_SIZE])
512 {
513    const struct pipe_resource *texture = sview->base.texture;
514    const float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
515    const float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
516    const float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
517    const float dtdy = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
518    const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
519    const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
520    const float rho  = MAX2(maxx, maxy);
521 
522    return util_fast_log2(rho);
523 }
524 
525 
526 static float
compute_lambda_3d(const struct sp_sampler_view * sview,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE])527 compute_lambda_3d(const struct sp_sampler_view *sview,
528                   const float s[TGSI_QUAD_SIZE],
529                   const float t[TGSI_QUAD_SIZE],
530                   const float p[TGSI_QUAD_SIZE])
531 {
532    const struct pipe_resource *texture = sview->base.texture;
533    const float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
534    const float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
535    const float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
536    const float dtdy = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
537    const float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
538    const float dpdy = fabsf(p[QUAD_TOP_LEFT]     - p[QUAD_BOTTOM_LEFT]);
539    const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
540    const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
541    const float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level);
542    const float rho = MAX3(maxx, maxy, maxz);
543 
544    return util_fast_log2(rho);
545 }
546 
547 
548 /**
549  * Compute lambda for a vertex texture sampler.
550  * Since there aren't derivatives to use, just return 0.
551  */
552 static float
compute_lambda_vert(const struct sp_sampler_view * sview,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE])553 compute_lambda_vert(const struct sp_sampler_view *sview,
554                     const float s[TGSI_QUAD_SIZE],
555                     const float t[TGSI_QUAD_SIZE],
556                     const float p[TGSI_QUAD_SIZE])
557 {
558    return 0.0f;
559 }
560 
561 
562 
563 /**
564  * Get a texel from a texture, using the texture tile cache.
565  *
566  * \param addr  the template tex address containing cube, z, face info.
567  * \param x  the x coord of texel within 2D image
568  * \param y  the y coord of texel within 2D image
569  * \param rgba  the quad to put the texel/color into
570  *
571  * XXX maybe move this into sp_tex_tile_cache.c and merge with the
572  * sp_get_cached_tile_tex() function.
573  */
574 
575 
576 
577 
578 static inline const float *
get_texel_2d_no_border(const struct sp_sampler_view * sp_sview,union tex_tile_address addr,int x,int y)579 get_texel_2d_no_border(const struct sp_sampler_view *sp_sview,
580                        union tex_tile_address addr, int x, int y)
581 {
582    const struct softpipe_tex_cached_tile *tile;
583    addr.bits.x = x / TEX_TILE_SIZE;
584    addr.bits.y = y / TEX_TILE_SIZE;
585    y %= TEX_TILE_SIZE;
586    x %= TEX_TILE_SIZE;
587 
588    tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
589 
590    return &tile->data.color[y][x][0];
591 }
592 
593 
594 static inline const float *
get_texel_2d(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,union tex_tile_address addr,int x,int y)595 get_texel_2d(const struct sp_sampler_view *sp_sview,
596              const struct sp_sampler *sp_samp,
597              union tex_tile_address addr, int x, int y)
598 {
599    const struct pipe_resource *texture = sp_sview->base.texture;
600    const unsigned level = addr.bits.level;
601 
602    if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
603        y < 0 || y >= (int) u_minify(texture->height0, level)) {
604       return sp_samp->base.border_color.f;
605    }
606    else {
607       return get_texel_2d_no_border( sp_sview, addr, x, y );
608    }
609 }
610 
611 
612 /*
613  * Here's the complete logic (HOLY CRAP) for finding next face and doing the
614  * corresponding coord wrapping, implemented by get_next_face,
615  * get_next_xcoord, get_next_ycoord.
616  * Read like that (first line):
617  * If face is +x and s coord is below zero, then
618  * new face is +z, new s is max , new t is old t
619  * (max is always cube size - 1).
620  *
621  * +x s- -> +z: s = max,   t = t
622  * +x s+ -> -z: s = 0,     t = t
623  * +x t- -> +y: s = max,   t = max-s
624  * +x t+ -> -y: s = max,   t = s
625  *
626  * -x s- -> -z: s = max,   t = t
627  * -x s+ -> +z: s = 0,     t = t
628  * -x t- -> +y: s = 0,     t = s
629  * -x t+ -> -y: s = 0,     t = max-s
630  *
631  * +y s- -> -x: s = t,     t = 0
632  * +y s+ -> +x: s = max-t, t = 0
633  * +y t- -> -z: s = max-s, t = 0
634  * +y t+ -> +z: s = s,     t = 0
635  *
636  * -y s- -> -x: s = max-t, t = max
637  * -y s+ -> +x: s = t,     t = max
638  * -y t- -> +z: s = s,     t = max
639  * -y t+ -> -z: s = max-s, t = max
640 
641  * +z s- -> -x: s = max,   t = t
642  * +z s+ -> +x: s = 0,     t = t
643  * +z t- -> +y: s = s,     t = max
644  * +z t+ -> -y: s = s,     t = 0
645 
646  * -z s- -> +x: s = max,   t = t
647  * -z s+ -> -x: s = 0,     t = t
648  * -z t- -> +y: s = max-s, t = 0
649  * -z t+ -> -y: s = max-s, t = max
650  */
651 
652 
653 /*
654  * seamless cubemap neighbour array.
655  * this array is used to find the adjacent face in each of 4 directions,
656  * left, right, up, down. (or -x, +x, -y, +y).
657  */
658 static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = {
659    /* pos X first then neg X is Z different, Y the same */
660    /* PIPE_TEX_FACE_POS_X,*/
661    { PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z,
662      PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
663    /* PIPE_TEX_FACE_NEG_X */
664    { PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z,
665      PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
666 
667    /* pos Y first then neg Y is X different, X the same */
668    /* PIPE_TEX_FACE_POS_Y */
669    { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
670      PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z },
671 
672    /* PIPE_TEX_FACE_NEG_Y */
673    { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
674      PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z },
675 
676    /* pos Z first then neg Y is X different, X the same */
677    /* PIPE_TEX_FACE_POS_Z */
678    { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
679      PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
680 
681    /* PIPE_TEX_FACE_NEG_Z */
682    { PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X,
683      PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }
684 };
685 
686 static inline unsigned
get_next_face(unsigned face,int idx)687 get_next_face(unsigned face, int idx)
688 {
689    return face_array[face][idx];
690 }
691 
692 /*
693  * return a new xcoord based on old face, old coords, cube size
694  * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
695  */
696 static inline int
get_next_xcoord(unsigned face,unsigned fall_off_index,int max,int xc,int yc)697 get_next_xcoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
698 {
699    if ((face == 0 && fall_off_index != 1) ||
700        (face == 1 && fall_off_index == 0) ||
701        (face == 4 && fall_off_index == 0) ||
702        (face == 5 && fall_off_index == 0)) {
703       return max;
704    }
705    if ((face == 1 && fall_off_index != 0) ||
706        (face == 0 && fall_off_index == 1) ||
707        (face == 4 && fall_off_index == 1) ||
708        (face == 5 && fall_off_index == 1)) {
709       return 0;
710    }
711    if ((face == 4 && fall_off_index >= 2) ||
712        (face == 2 && fall_off_index == 3) ||
713        (face == 3 && fall_off_index == 2)) {
714       return xc;
715    }
716    if ((face == 5 && fall_off_index >= 2) ||
717        (face == 2 && fall_off_index == 2) ||
718        (face == 3 && fall_off_index == 3)) {
719       return max - xc;
720    }
721    if ((face == 2 && fall_off_index == 0) ||
722        (face == 3 && fall_off_index == 1)) {
723       return yc;
724    }
725    /* (face == 2 && fall_off_index == 1) ||
726       (face == 3 && fall_off_index == 0)) */
727    return max - yc;
728 }
729 
730 /*
731  * return a new ycoord based on old face, old coords, cube size
732  * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
733  */
734 static inline int
get_next_ycoord(unsigned face,unsigned fall_off_index,int max,int xc,int yc)735 get_next_ycoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
736 {
737    if ((fall_off_index <= 1) && (face <= 1 || face >= 4)) {
738       return yc;
739    }
740    if (face == 2 ||
741        (face == 4 && fall_off_index == 3) ||
742        (face == 5 && fall_off_index == 2)) {
743       return 0;
744    }
745    if (face == 3 ||
746        (face == 4 && fall_off_index == 2) ||
747        (face == 5 && fall_off_index == 3)) {
748       return max;
749    }
750    if ((face == 0 && fall_off_index == 3) ||
751        (face == 1 && fall_off_index == 2)) {
752       return xc;
753    }
754    /* (face == 0 && fall_off_index == 2) ||
755       (face == 1 && fall_off_index == 3) */
756    return max - xc;
757 }
758 
759 
760 /* Gather a quad of adjacent texels within a tile:
761  */
762 static inline void
get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view * sp_sview,union tex_tile_address addr,unsigned x,unsigned y,const float * out[4])763 get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview,
764                                         union tex_tile_address addr,
765                                         unsigned x, unsigned y,
766                                         const float *out[4])
767 {
768     const struct softpipe_tex_cached_tile *tile;
769 
770    addr.bits.x = x / TEX_TILE_SIZE;
771    addr.bits.y = y / TEX_TILE_SIZE;
772    y %= TEX_TILE_SIZE;
773    x %= TEX_TILE_SIZE;
774 
775    tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
776 
777    out[0] = &tile->data.color[y  ][x  ][0];
778    out[1] = &tile->data.color[y  ][x+1][0];
779    out[2] = &tile->data.color[y+1][x  ][0];
780    out[3] = &tile->data.color[y+1][x+1][0];
781 }
782 
783 
784 /* Gather a quad of potentially non-adjacent texels:
785  */
786 static inline void
get_texel_quad_2d_no_border(const struct sp_sampler_view * sp_sview,union tex_tile_address addr,int x0,int y0,int x1,int y1,const float * out[4])787 get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview,
788                             union tex_tile_address addr,
789                             int x0, int y0,
790                             int x1, int y1,
791                             const float *out[4])
792 {
793    out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 );
794    out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 );
795    out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 );
796    out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 );
797 }
798 
799 
800 /* 3d variants:
801  */
802 static inline const float *
get_texel_3d_no_border(const struct sp_sampler_view * sp_sview,union tex_tile_address addr,int x,int y,int z)803 get_texel_3d_no_border(const struct sp_sampler_view *sp_sview,
804                        union tex_tile_address addr, int x, int y, int z)
805 {
806    const struct softpipe_tex_cached_tile *tile;
807 
808    addr.bits.x = x / TEX_TILE_SIZE;
809    addr.bits.y = y / TEX_TILE_SIZE;
810    addr.bits.z = z;
811    y %= TEX_TILE_SIZE;
812    x %= TEX_TILE_SIZE;
813 
814    tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
815 
816    return &tile->data.color[y][x][0];
817 }
818 
819 
820 static inline const float *
get_texel_3d(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,union tex_tile_address addr,int x,int y,int z)821 get_texel_3d(const struct sp_sampler_view *sp_sview,
822              const struct sp_sampler *sp_samp,
823              union tex_tile_address addr, int x, int y, int z)
824 {
825    const struct pipe_resource *texture = sp_sview->base.texture;
826    const unsigned level = addr.bits.level;
827 
828    if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
829        y < 0 || y >= (int) u_minify(texture->height0, level) ||
830        z < 0 || z >= (int) u_minify(texture->depth0, level)) {
831       return sp_samp->base.border_color.f;
832    }
833    else {
834       return get_texel_3d_no_border( sp_sview, addr, x, y, z );
835    }
836 }
837 
838 
839 /* Get texel pointer for 1D array texture */
840 static inline const float *
get_texel_1d_array(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,union tex_tile_address addr,int x,int y)841 get_texel_1d_array(const struct sp_sampler_view *sp_sview,
842                    const struct sp_sampler *sp_samp,
843                    union tex_tile_address addr, int x, int y)
844 {
845    const struct pipe_resource *texture = sp_sview->base.texture;
846    const unsigned level = addr.bits.level;
847 
848    if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
849       return sp_samp->base.border_color.f;
850    }
851    else {
852       return get_texel_2d_no_border(sp_sview, addr, x, y);
853    }
854 }
855 
856 
857 /* Get texel pointer for 2D array texture */
858 static inline const float *
get_texel_2d_array(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,union tex_tile_address addr,int x,int y,int layer)859 get_texel_2d_array(const struct sp_sampler_view *sp_sview,
860                    const struct sp_sampler *sp_samp,
861                    union tex_tile_address addr, int x, int y, int layer)
862 {
863    const struct pipe_resource *texture = sp_sview->base.texture;
864    const unsigned level = addr.bits.level;
865 
866    assert(layer < (int) texture->array_size);
867    assert(layer >= 0);
868 
869    if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
870        y < 0 || y >= (int) u_minify(texture->height0, level)) {
871       return sp_samp->base.border_color.f;
872    }
873    else {
874       return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
875    }
876 }
877 
878 
879 static inline const float *
get_texel_cube_seamless(const struct sp_sampler_view * sp_sview,union tex_tile_address addr,int x,int y,float * corner,int layer,unsigned face)880 get_texel_cube_seamless(const struct sp_sampler_view *sp_sview,
881                         union tex_tile_address addr, int x, int y,
882                         float *corner, int layer, unsigned face)
883 {
884    const struct pipe_resource *texture = sp_sview->base.texture;
885    const unsigned level = addr.bits.level;
886    int new_x, new_y, max_x;
887 
888    max_x = (int) u_minify(texture->width0, level);
889 
890    assert(texture->width0 == texture->height0);
891    new_x = x;
892    new_y = y;
893 
894    /* change the face */
895    if (x < 0) {
896       /*
897        * Cheat with corners. They are difficult and I believe because we don't get
898        * per-pixel faces we can actually have multiple corner texels per pixel,
899        * which screws things up majorly in any case (as the per spec behavior is
900        * to average the 3 remaining texels, which we might not have).
901        * Hence just make sure that the 2nd coord is clamped, will simply pick the
902        * sample which would have fallen off the x coord, but not y coord.
903        * So the filter weight of the samples will be wrong, but at least this
904        * ensures that only valid texels near the corner are used.
905        */
906       if (y < 0 || y >= max_x) {
907          y = CLAMP(y, 0, max_x - 1);
908       }
909       new_x = get_next_xcoord(face, 0, max_x -1, x, y);
910       new_y = get_next_ycoord(face, 0, max_x -1, x, y);
911       face = get_next_face(face, 0);
912    } else if (x >= max_x) {
913       if (y < 0 || y >= max_x) {
914          y = CLAMP(y, 0, max_x - 1);
915       }
916       new_x = get_next_xcoord(face, 1, max_x -1, x, y);
917       new_y = get_next_ycoord(face, 1, max_x -1, x, y);
918       face = get_next_face(face, 1);
919    } else if (y < 0) {
920       new_x = get_next_xcoord(face, 2, max_x -1, x, y);
921       new_y = get_next_ycoord(face, 2, max_x -1, x, y);
922       face = get_next_face(face, 2);
923    } else if (y >= max_x) {
924       new_x = get_next_xcoord(face, 3, max_x -1, x, y);
925       new_y = get_next_ycoord(face, 3, max_x -1, x, y);
926       face = get_next_face(face, 3);
927    }
928 
929    return get_texel_3d_no_border(sp_sview, addr, new_x, new_y, layer + face);
930 }
931 
932 
933 /* Get texel pointer for cube array texture */
934 static inline const float *
get_texel_cube_array(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,union tex_tile_address addr,int x,int y,int layer)935 get_texel_cube_array(const struct sp_sampler_view *sp_sview,
936                      const struct sp_sampler *sp_samp,
937                      union tex_tile_address addr, int x, int y, int layer)
938 {
939    const struct pipe_resource *texture = sp_sview->base.texture;
940    const unsigned level = addr.bits.level;
941 
942    assert(layer < (int) texture->array_size);
943    assert(layer >= 0);
944 
945    if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
946        y < 0 || y >= (int) u_minify(texture->height0, level)) {
947       return sp_samp->base.border_color.f;
948    }
949    else {
950       return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
951    }
952 }
953 /**
954  * Given the logbase2 of a mipmap's base level size and a mipmap level,
955  * return the size (in texels) of that mipmap level.
956  * For example, if level[0].width = 256 then base_pot will be 8.
957  * If level = 2, then we'll return 64 (the width at level=2).
958  * Return 1 if level > base_pot.
959  */
960 static inline unsigned
pot_level_size(unsigned base_pot,unsigned level)961 pot_level_size(unsigned base_pot, unsigned level)
962 {
963    return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
964 }
965 
966 
967 static void
print_sample(const char * function,const float * rgba)968 print_sample(const char *function, const float *rgba)
969 {
970    debug_printf("%s %g %g %g %g\n",
971                 function,
972                 rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
973 }
974 
975 
976 static void
print_sample_4(const char * function,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])977 print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
978 {
979    debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
980                 function,
981                 rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
982                 rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
983                 rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
984                 rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
985 }
986 
987 
988 /* Some image-filter fastpaths:
989  */
990 static inline void
img_filter_2d_linear_repeat_POT(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)991 img_filter_2d_linear_repeat_POT(const struct sp_sampler_view *sp_sview,
992                                 const struct sp_sampler *sp_samp,
993                                 const struct img_filter_args *args,
994                                 float *rgba)
995 {
996    const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
997    const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
998    const int xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
999    const int ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
1000    union tex_tile_address addr;
1001    int c;
1002 
1003    const float u = (args->s * xpot - 0.5F) + args->offset[0];
1004    const float v = (args->t * ypot - 0.5F) + args->offset[1];
1005 
1006    const int uflr = util_ifloor(u);
1007    const int vflr = util_ifloor(v);
1008 
1009    const float xw = u - (float)uflr;
1010    const float yw = v - (float)vflr;
1011 
1012    const int x0 = uflr & (xpot - 1);
1013    const int y0 = vflr & (ypot - 1);
1014 
1015    const float *tx[4];
1016 
1017    addr.value = 0;
1018    addr.bits.level = args->level;
1019    addr.bits.z = sp_sview->base.u.tex.first_layer;
1020 
1021    /* Can we fetch all four at once:
1022     */
1023    if (x0 < xmax && y0 < ymax) {
1024       get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx);
1025    }
1026    else {
1027       const unsigned x1 = (x0 + 1) & (xpot - 1);
1028       const unsigned y1 = (y0 + 1) & (ypot - 1);
1029       get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx);
1030    }
1031 
1032    /* interpolate R, G, B, A */
1033    for (c = 0; c < TGSI_NUM_CHANNELS; c++) {
1034       rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1035                                        tx[0][c], tx[1][c],
1036                                        tx[2][c], tx[3][c]);
1037    }
1038 
1039    if (DEBUG_TEX) {
1040       print_sample(__FUNCTION__, rgba);
1041    }
1042 }
1043 
1044 
1045 static inline void
img_filter_2d_nearest_repeat_POT(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1046 img_filter_2d_nearest_repeat_POT(const struct sp_sampler_view *sp_sview,
1047                                  const struct sp_sampler *sp_samp,
1048                                  const struct img_filter_args *args,
1049                                  float *rgba)
1050 {
1051    const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1052    const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1053    const float *out;
1054    union tex_tile_address addr;
1055    int c;
1056 
1057    const float u = args->s * xpot + args->offset[0];
1058    const float v = args->t * ypot + args->offset[1];
1059 
1060    const int uflr = util_ifloor(u);
1061    const int vflr = util_ifloor(v);
1062 
1063    const int x0 = uflr & (xpot - 1);
1064    const int y0 = vflr & (ypot - 1);
1065 
1066    addr.value = 0;
1067    addr.bits.level = args->level;
1068    addr.bits.z = sp_sview->base.u.tex.first_layer;
1069 
1070    out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1071    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1072       rgba[TGSI_NUM_CHANNELS*c] = out[c];
1073 
1074    if (DEBUG_TEX) {
1075       print_sample(__FUNCTION__, rgba);
1076    }
1077 }
1078 
1079 
1080 static inline void
img_filter_2d_nearest_clamp_POT(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1081 img_filter_2d_nearest_clamp_POT(const struct sp_sampler_view *sp_sview,
1082                                 const struct sp_sampler *sp_samp,
1083                                 const struct img_filter_args *args,
1084                                 float *rgba)
1085 {
1086    const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1087    const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1088    union tex_tile_address addr;
1089    int c;
1090 
1091    const float u = args->s * xpot + args->offset[0];
1092    const float v = args->t * ypot + args->offset[1];
1093 
1094    int x0, y0;
1095    const float *out;
1096 
1097    addr.value = 0;
1098    addr.bits.level = args->level;
1099    addr.bits.z = sp_sview->base.u.tex.first_layer;
1100 
1101    x0 = util_ifloor(u);
1102    if (x0 < 0)
1103       x0 = 0;
1104    else if (x0 > (int) xpot - 1)
1105       x0 = xpot - 1;
1106 
1107    y0 = util_ifloor(v);
1108    if (y0 < 0)
1109       y0 = 0;
1110    else if (y0 > (int) ypot - 1)
1111       y0 = ypot - 1;
1112 
1113    out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1114    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1115       rgba[TGSI_NUM_CHANNELS*c] = out[c];
1116 
1117    if (DEBUG_TEX) {
1118       print_sample(__FUNCTION__, rgba);
1119    }
1120 }
1121 
1122 
1123 static void
img_filter_1d_nearest(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1124 img_filter_1d_nearest(const struct sp_sampler_view *sp_sview,
1125                       const struct sp_sampler *sp_samp,
1126                       const struct img_filter_args *args,
1127                       float *rgba)
1128 {
1129    const struct pipe_resource *texture = sp_sview->base.texture;
1130    const int width = u_minify(texture->width0, args->level);
1131    int x;
1132    union tex_tile_address addr;
1133    const float *out;
1134    int c;
1135 
1136    assert(width > 0);
1137 
1138    addr.value = 0;
1139    addr.bits.level = args->level;
1140 
1141    sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1142 
1143    out = get_texel_1d_array(sp_sview, sp_samp, addr, x,
1144                             sp_sview->base.u.tex.first_layer);
1145    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1146       rgba[TGSI_NUM_CHANNELS*c] = out[c];
1147 
1148    if (DEBUG_TEX) {
1149       print_sample(__FUNCTION__, rgba);
1150    }
1151 }
1152 
1153 
1154 static void
img_filter_1d_array_nearest(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1155 img_filter_1d_array_nearest(const struct sp_sampler_view *sp_sview,
1156                             const struct sp_sampler *sp_samp,
1157                             const struct img_filter_args *args,
1158                             float *rgba)
1159 {
1160    const struct pipe_resource *texture = sp_sview->base.texture;
1161    const int width = u_minify(texture->width0, args->level);
1162    const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1163                                     sp_sview->base.u.tex.last_layer);
1164    int x;
1165    union tex_tile_address addr;
1166    const float *out;
1167    int c;
1168 
1169    assert(width > 0);
1170 
1171    addr.value = 0;
1172    addr.bits.level = args->level;
1173 
1174    sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1175 
1176    out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer);
1177    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1178       rgba[TGSI_NUM_CHANNELS*c] = out[c];
1179 
1180    if (DEBUG_TEX) {
1181       print_sample(__FUNCTION__, rgba);
1182    }
1183 }
1184 
1185 
1186 static void
img_filter_2d_nearest(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1187 img_filter_2d_nearest(const struct sp_sampler_view *sp_sview,
1188                       const struct sp_sampler *sp_samp,
1189                       const struct img_filter_args *args,
1190                       float *rgba)
1191 {
1192    const struct pipe_resource *texture = sp_sview->base.texture;
1193    const int width = u_minify(texture->width0, args->level);
1194    const int height = u_minify(texture->height0, args->level);
1195    int x, y;
1196    union tex_tile_address addr;
1197    const float *out;
1198    int c;
1199 
1200    assert(width > 0);
1201    assert(height > 0);
1202 
1203    addr.value = 0;
1204    addr.bits.level = args->level;
1205    addr.bits.z = sp_sview->base.u.tex.first_layer;
1206 
1207    sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1208    sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1209 
1210    out = get_texel_2d(sp_sview, sp_samp, addr, x, y);
1211    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1212       rgba[TGSI_NUM_CHANNELS*c] = out[c];
1213 
1214    if (DEBUG_TEX) {
1215       print_sample(__FUNCTION__, rgba);
1216    }
1217 }
1218 
1219 
1220 static void
img_filter_2d_array_nearest(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1221 img_filter_2d_array_nearest(const struct sp_sampler_view *sp_sview,
1222                             const struct sp_sampler *sp_samp,
1223                             const struct img_filter_args *args,
1224                             float *rgba)
1225 {
1226    const struct pipe_resource *texture = sp_sview->base.texture;
1227    const int width = u_minify(texture->width0, args->level);
1228    const int height = u_minify(texture->height0, args->level);
1229    const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1230                                     sp_sview->base.u.tex.last_layer);
1231    int x, y;
1232    union tex_tile_address addr;
1233    const float *out;
1234    int c;
1235 
1236    assert(width > 0);
1237    assert(height > 0);
1238 
1239    addr.value = 0;
1240    addr.bits.level = args->level;
1241 
1242    sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1243    sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1244 
1245    out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer);
1246    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1247       rgba[TGSI_NUM_CHANNELS*c] = out[c];
1248 
1249    if (DEBUG_TEX) {
1250       print_sample(__FUNCTION__, rgba);
1251    }
1252 }
1253 
1254 
1255 static void
img_filter_cube_nearest(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1256 img_filter_cube_nearest(const struct sp_sampler_view *sp_sview,
1257                         const struct sp_sampler *sp_samp,
1258                         const struct img_filter_args *args,
1259                         float *rgba)
1260 {
1261    const struct pipe_resource *texture = sp_sview->base.texture;
1262    const int width = u_minify(texture->width0, args->level);
1263    const int height = u_minify(texture->height0, args->level);
1264    const int layerface = args->face_id + sp_sview->base.u.tex.first_layer;
1265    int x, y;
1266    union tex_tile_address addr;
1267    const float *out;
1268    int c;
1269 
1270    assert(width > 0);
1271    assert(height > 0);
1272 
1273    addr.value = 0;
1274    addr.bits.level = args->level;
1275 
1276    /*
1277     * If NEAREST filtering is done within a miplevel, always apply wrap
1278     * mode CLAMP_TO_EDGE.
1279     */
1280    if (sp_samp->base.seamless_cube_map) {
1281       wrap_nearest_clamp_to_edge(args->s, width, args->offset[0], &x);
1282       wrap_nearest_clamp_to_edge(args->t, height, args->offset[1], &y);
1283    } else {
1284       /* Would probably make sense to ignore mode and just do edge clamp */
1285       sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1286       sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1287    }
1288 
1289    out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1290    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1291       rgba[TGSI_NUM_CHANNELS*c] = out[c];
1292 
1293    if (DEBUG_TEX) {
1294       print_sample(__FUNCTION__, rgba);
1295    }
1296 }
1297 
1298 static void
img_filter_cube_array_nearest(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1299 img_filter_cube_array_nearest(const struct sp_sampler_view *sp_sview,
1300                               const struct sp_sampler *sp_samp,
1301                               const struct img_filter_args *args,
1302                               float *rgba)
1303 {
1304    const struct pipe_resource *texture = sp_sview->base.texture;
1305    const int width = u_minify(texture->width0, args->level);
1306    const int height = u_minify(texture->height0, args->level);
1307    const int layerface =
1308       coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1309                      sp_sview->base.u.tex.first_layer,
1310                      sp_sview->base.u.tex.last_layer - 5) + args->face_id;
1311    int x, y;
1312    union tex_tile_address addr;
1313    const float *out;
1314    int c;
1315 
1316    assert(width > 0);
1317    assert(height > 0);
1318 
1319    addr.value = 0;
1320    addr.bits.level = args->level;
1321 
1322    sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1323    sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1324 
1325    out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1326    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1327       rgba[TGSI_NUM_CHANNELS*c] = out[c];
1328 
1329    if (DEBUG_TEX) {
1330       print_sample(__FUNCTION__, rgba);
1331    }
1332 }
1333 
1334 static void
img_filter_3d_nearest(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1335 img_filter_3d_nearest(const struct sp_sampler_view *sp_sview,
1336                       const struct sp_sampler *sp_samp,
1337                       const struct img_filter_args *args,
1338                       float *rgba)
1339 {
1340    const struct pipe_resource *texture = sp_sview->base.texture;
1341    const int width = u_minify(texture->width0, args->level);
1342    const int height = u_minify(texture->height0, args->level);
1343    const int depth = u_minify(texture->depth0, args->level);
1344    int x, y, z;
1345    union tex_tile_address addr;
1346    const float *out;
1347    int c;
1348 
1349    assert(width > 0);
1350    assert(height > 0);
1351    assert(depth > 0);
1352 
1353    sp_samp->nearest_texcoord_s(args->s, width,  args->offset[0], &x);
1354    sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1355    sp_samp->nearest_texcoord_p(args->p, depth,  args->offset[2], &z);
1356 
1357    addr.value = 0;
1358    addr.bits.level = args->level;
1359 
1360    out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z);
1361    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1362       rgba[TGSI_NUM_CHANNELS*c] = out[c];
1363 }
1364 
1365 
1366 static void
img_filter_1d_linear(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1367 img_filter_1d_linear(const struct sp_sampler_view *sp_sview,
1368                      const struct sp_sampler *sp_samp,
1369                      const struct img_filter_args *args,
1370                      float *rgba)
1371 {
1372    const struct pipe_resource *texture = sp_sview->base.texture;
1373    const int width = u_minify(texture->width0, args->level);
1374    int x0, x1;
1375    float xw; /* weights */
1376    union tex_tile_address addr;
1377    const float *tx0, *tx1;
1378    int c;
1379 
1380    assert(width > 0);
1381 
1382    addr.value = 0;
1383    addr.bits.level = args->level;
1384 
1385    sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1386 
1387    tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0,
1388                             sp_sview->base.u.tex.first_layer);
1389    tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1,
1390                             sp_sview->base.u.tex.first_layer);
1391 
1392    /* interpolate R, G, B, A */
1393    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1394       rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1395 }
1396 
1397 
1398 static void
img_filter_1d_array_linear(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1399 img_filter_1d_array_linear(const struct sp_sampler_view *sp_sview,
1400                            const struct sp_sampler *sp_samp,
1401                            const struct img_filter_args *args,
1402                            float *rgba)
1403 {
1404    const struct pipe_resource *texture = sp_sview->base.texture;
1405    const int width = u_minify(texture->width0, args->level);
1406    const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1407                                     sp_sview->base.u.tex.last_layer);
1408    int x0, x1;
1409    float xw; /* weights */
1410    union tex_tile_address addr;
1411    const float *tx0, *tx1;
1412    int c;
1413 
1414    assert(width > 0);
1415 
1416    addr.value = 0;
1417    addr.bits.level = args->level;
1418 
1419    sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1420 
1421    tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer);
1422    tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer);
1423 
1424    /* interpolate R, G, B, A */
1425    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1426       rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1427 }
1428 
1429 /*
1430  * Retrieve the gathered value, need to convert to the
1431  * TGSI expected interface, and take component select
1432  * and swizzling into account.
1433  */
1434 static float
get_gather_value(const struct sp_sampler_view * sp_sview,int chan_in,int comp_sel,const float * tx[4])1435 get_gather_value(const struct sp_sampler_view *sp_sview,
1436                  int chan_in, int comp_sel,
1437                  const float *tx[4])
1438 {
1439    int chan;
1440    unsigned swizzle;
1441 
1442    /*
1443     * softpipe samples in a different order
1444     * to TGSI expects, so we need to swizzle,
1445     * the samples into the correct slots.
1446     */
1447    switch (chan_in) {
1448    case 0:
1449       chan = 2;
1450       break;
1451    case 1:
1452       chan = 3;
1453       break;
1454    case 2:
1455       chan = 1;
1456       break;
1457    case 3:
1458       chan = 0;
1459       break;
1460    default:
1461       assert(0);
1462       return 0.0;
1463    }
1464 
1465    /* pick which component to use for the swizzle */
1466    switch (comp_sel) {
1467    case 0:
1468       swizzle = sp_sview->base.swizzle_r;
1469       break;
1470    case 1:
1471       swizzle = sp_sview->base.swizzle_g;
1472       break;
1473    case 2:
1474       swizzle = sp_sview->base.swizzle_b;
1475       break;
1476    case 3:
1477       swizzle = sp_sview->base.swizzle_a;
1478       break;
1479    default:
1480       assert(0);
1481       return 0.0;
1482    }
1483 
1484    /* get correct result using the channel and swizzle */
1485    switch (swizzle) {
1486    case PIPE_SWIZZLE_0:
1487       return 0.0;
1488    case PIPE_SWIZZLE_1:
1489       return 1.0;
1490    default:
1491       return tx[chan][swizzle];
1492    }
1493 }
1494 
1495 
1496 static void
img_filter_2d_linear(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1497 img_filter_2d_linear(const struct sp_sampler_view *sp_sview,
1498                      const struct sp_sampler *sp_samp,
1499                      const struct img_filter_args *args,
1500                      float *rgba)
1501 {
1502    const struct pipe_resource *texture = sp_sview->base.texture;
1503    const int width = u_minify(texture->width0, args->level);
1504    const int height = u_minify(texture->height0, args->level);
1505    int x0, y0, x1, y1;
1506    float xw, yw; /* weights */
1507    union tex_tile_address addr;
1508    const float *tx[4];
1509    int c;
1510 
1511    assert(width > 0);
1512    assert(height > 0);
1513 
1514    addr.value = 0;
1515    addr.bits.level = args->level;
1516    addr.bits.z = sp_sview->base.u.tex.first_layer;
1517 
1518    sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1519    sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1520 
1521    tx[0] = get_texel_2d(sp_sview, sp_samp, addr, x0, y0);
1522    tx[1] = get_texel_2d(sp_sview, sp_samp, addr, x1, y0);
1523    tx[2] = get_texel_2d(sp_sview, sp_samp, addr, x0, y1);
1524    tx[3] = get_texel_2d(sp_sview, sp_samp, addr, x1, y1);
1525 
1526    if (args->gather_only) {
1527       for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1528          rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1529                                                       args->gather_comp,
1530                                                       tx);
1531    } else {
1532       /* interpolate R, G, B, A */
1533       for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1534          rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1535                                              tx[0][c], tx[1][c],
1536                                              tx[2][c], tx[3][c]);
1537    }
1538 }
1539 
1540 
1541 static void
img_filter_2d_array_linear(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1542 img_filter_2d_array_linear(const struct sp_sampler_view *sp_sview,
1543                            const struct sp_sampler *sp_samp,
1544                            const struct img_filter_args *args,
1545                            float *rgba)
1546 {
1547    const struct pipe_resource *texture = sp_sview->base.texture;
1548    const int width = u_minify(texture->width0, args->level);
1549    const int height = u_minify(texture->height0, args->level);
1550    const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1551                                     sp_sview->base.u.tex.last_layer);
1552    int x0, y0, x1, y1;
1553    float xw, yw; /* weights */
1554    union tex_tile_address addr;
1555    const float *tx[4];
1556    int c;
1557 
1558    assert(width > 0);
1559    assert(height > 0);
1560 
1561    addr.value = 0;
1562    addr.bits.level = args->level;
1563 
1564    sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1565    sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1566 
1567    tx[0] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer);
1568    tx[1] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer);
1569    tx[2] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer);
1570    tx[3] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer);
1571 
1572    if (args->gather_only) {
1573       for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1574          rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1575                                                       args->gather_comp,
1576                                                       tx);
1577    } else {
1578       /* interpolate R, G, B, A */
1579       for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1580          rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1581                                              tx[0][c], tx[1][c],
1582                                              tx[2][c], tx[3][c]);
1583    }
1584 }
1585 
1586 
1587 static void
img_filter_cube_linear(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1588 img_filter_cube_linear(const struct sp_sampler_view *sp_sview,
1589                        const struct sp_sampler *sp_samp,
1590                        const struct img_filter_args *args,
1591                        float *rgba)
1592 {
1593    const struct pipe_resource *texture = sp_sview->base.texture;
1594    const int width = u_minify(texture->width0, args->level);
1595    const int height = u_minify(texture->height0, args->level);
1596    const int layer = sp_sview->base.u.tex.first_layer;
1597    int x0, y0, x1, y1;
1598    float xw, yw; /* weights */
1599    union tex_tile_address addr;
1600    const float *tx[4];
1601    float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1602          corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1603    int c;
1604 
1605    assert(width > 0);
1606    assert(height > 0);
1607 
1608    addr.value = 0;
1609    addr.bits.level = args->level;
1610 
1611    /*
1612     * For seamless if LINEAR filtering is done within a miplevel,
1613     * always apply wrap mode CLAMP_TO_BORDER.
1614     */
1615    if (sp_samp->base.seamless_cube_map) {
1616       /* Note this is a bit overkill, actual clamping is not required */
1617       wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1618       wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1619    } else {
1620       /* Would probably make sense to ignore mode and just do edge clamp */
1621       sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1622       sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1623    }
1624 
1625    if (sp_samp->base.seamless_cube_map) {
1626       tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1627       tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1628       tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1629       tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1630    } else {
1631       tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1632       tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1633       tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1634       tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1635    }
1636 
1637    if (args->gather_only) {
1638       for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1639          rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1640                                                       args->gather_comp,
1641                                                       tx);
1642    } else {
1643       /* interpolate R, G, B, A */
1644       for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1645          rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1646                                              tx[0][c], tx[1][c],
1647                                              tx[2][c], tx[3][c]);
1648    }
1649 }
1650 
1651 
1652 static void
img_filter_cube_array_linear(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1653 img_filter_cube_array_linear(const struct sp_sampler_view *sp_sview,
1654                              const struct sp_sampler *sp_samp,
1655                              const struct img_filter_args *args,
1656                              float *rgba)
1657 {
1658    const struct pipe_resource *texture = sp_sview->base.texture;
1659    const int width = u_minify(texture->width0, args->level);
1660    const int height = u_minify(texture->height0, args->level);
1661    const int layer =
1662       coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1663                      sp_sview->base.u.tex.first_layer,
1664                      sp_sview->base.u.tex.last_layer - 5);
1665    int x0, y0, x1, y1;
1666    float xw, yw; /* weights */
1667    union tex_tile_address addr;
1668    const float *tx[4];
1669    float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1670          corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1671    int c;
1672 
1673    assert(width > 0);
1674    assert(height > 0);
1675 
1676    addr.value = 0;
1677    addr.bits.level = args->level;
1678 
1679    /*
1680     * For seamless if LINEAR filtering is done within a miplevel,
1681     * always apply wrap mode CLAMP_TO_BORDER.
1682     */
1683    if (sp_samp->base.seamless_cube_map) {
1684       /* Note this is a bit overkill, actual clamping is not required */
1685       wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1686       wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1687    } else {
1688       /* Would probably make sense to ignore mode and just do edge clamp */
1689       sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1690       sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1691    }
1692 
1693    if (sp_samp->base.seamless_cube_map) {
1694       tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1695       tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1696       tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1697       tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1698    } else {
1699       tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1700       tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1701       tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1702       tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1703    }
1704 
1705    if (args->gather_only) {
1706       for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1707          rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1708                                                       args->gather_comp,
1709                                                       tx);
1710    } else {
1711       /* interpolate R, G, B, A */
1712       for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1713          rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1714                                              tx[0][c], tx[1][c],
1715                                              tx[2][c], tx[3][c]);
1716    }
1717 }
1718 
1719 static void
img_filter_3d_linear(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const struct img_filter_args * args,float * rgba)1720 img_filter_3d_linear(const struct sp_sampler_view *sp_sview,
1721                      const struct sp_sampler *sp_samp,
1722                      const struct img_filter_args *args,
1723                      float *rgba)
1724 {
1725    const struct pipe_resource *texture = sp_sview->base.texture;
1726    const int width = u_minify(texture->width0, args->level);
1727    const int height = u_minify(texture->height0, args->level);
1728    const int depth = u_minify(texture->depth0, args->level);
1729    int x0, x1, y0, y1, z0, z1;
1730    float xw, yw, zw; /* interpolation weights */
1731    union tex_tile_address addr;
1732    const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
1733    int c;
1734 
1735    addr.value = 0;
1736    addr.bits.level = args->level;
1737 
1738    assert(width > 0);
1739    assert(height > 0);
1740    assert(depth > 0);
1741 
1742    sp_samp->linear_texcoord_s(args->s, width,  args->offset[0], &x0, &x1, &xw);
1743    sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1744    sp_samp->linear_texcoord_p(args->p, depth,  args->offset[2], &z0, &z1, &zw);
1745 
1746    tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0);
1747    tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0);
1748    tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0);
1749    tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0);
1750 
1751    tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1);
1752    tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1);
1753    tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1);
1754    tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1);
1755 
1756       /* interpolate R, G, B, A */
1757    for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1758       rgba[TGSI_NUM_CHANNELS*c] =  lerp_3d(xw, yw, zw,
1759                                            tx00[c], tx01[c],
1760                                            tx02[c], tx03[c],
1761                                            tx10[c], tx11[c],
1762                                            tx12[c], tx13[c]);
1763 }
1764 
1765 
1766 /* Calculate level of detail for every fragment,
1767  * with lambda already computed.
1768  * Note that lambda has already been biased by global LOD bias.
1769  * \param biased_lambda per-quad lambda.
1770  * \param lod_in per-fragment lod_bias or explicit_lod.
1771  * \param lod returns the per-fragment lod.
1772  */
1773 static inline void
compute_lod(const struct pipe_sampler_state * sampler,enum tgsi_sampler_control control,const float biased_lambda,const float lod_in[TGSI_QUAD_SIZE],float lod[TGSI_QUAD_SIZE])1774 compute_lod(const struct pipe_sampler_state *sampler,
1775             enum tgsi_sampler_control control,
1776             const float biased_lambda,
1777             const float lod_in[TGSI_QUAD_SIZE],
1778             float lod[TGSI_QUAD_SIZE])
1779 {
1780    const float min_lod = sampler->min_lod;
1781    const float max_lod = sampler->max_lod;
1782    uint i;
1783 
1784    switch (control) {
1785    case TGSI_SAMPLER_LOD_NONE:
1786    case TGSI_SAMPLER_LOD_ZERO:
1787    /* XXX FIXME */
1788    case TGSI_SAMPLER_DERIVS_EXPLICIT:
1789       lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod);
1790       break;
1791    case TGSI_SAMPLER_LOD_BIAS:
1792       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1793          lod[i] = biased_lambda + lod_in[i];
1794          lod[i] = CLAMP(lod[i], min_lod, max_lod);
1795       }
1796       break;
1797    case TGSI_SAMPLER_LOD_EXPLICIT:
1798       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1799          lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1800       }
1801       break;
1802    default:
1803       assert(0);
1804       lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1805    }
1806 }
1807 
1808 
1809 /* Calculate level of detail for every fragment. The computed value is not
1810  * clamped to lod_min and lod_max.
1811  * \param lod_in per-fragment lod_bias or explicit_lod.
1812  * \param lod results per-fragment lod.
1813  */
1814 static inline void
compute_lambda_lod_unclamped(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float lod_in[TGSI_QUAD_SIZE],enum tgsi_sampler_control control,float lod[TGSI_QUAD_SIZE])1815 compute_lambda_lod_unclamped(const struct sp_sampler_view *sp_sview,
1816                              const struct sp_sampler *sp_samp,
1817                              const float s[TGSI_QUAD_SIZE],
1818                              const float t[TGSI_QUAD_SIZE],
1819                              const float p[TGSI_QUAD_SIZE],
1820                              const float lod_in[TGSI_QUAD_SIZE],
1821                              enum tgsi_sampler_control control,
1822                              float lod[TGSI_QUAD_SIZE])
1823 {
1824    const struct pipe_sampler_state *sampler = &sp_samp->base;
1825    const float lod_bias = sampler->lod_bias;
1826    float lambda;
1827    uint i;
1828 
1829    switch (control) {
1830    case TGSI_SAMPLER_LOD_NONE:
1831       /* XXX FIXME */
1832    case TGSI_SAMPLER_DERIVS_EXPLICIT:
1833       lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1834       lod[0] = lod[1] = lod[2] = lod[3] = lambda;
1835       break;
1836    case TGSI_SAMPLER_LOD_BIAS:
1837       lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1838       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1839          lod[i] = lambda + lod_in[i];
1840       }
1841       break;
1842    case TGSI_SAMPLER_LOD_EXPLICIT:
1843       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1844          lod[i] = lod_in[i] + lod_bias;
1845       }
1846       break;
1847    case TGSI_SAMPLER_LOD_ZERO:
1848    case TGSI_SAMPLER_GATHER:
1849       lod[0] = lod[1] = lod[2] = lod[3] = lod_bias;
1850       break;
1851    default:
1852       assert(0);
1853       lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1854    }
1855 }
1856 
1857 /* Calculate level of detail for every fragment.
1858  * \param lod_in per-fragment lod_bias or explicit_lod.
1859  * \param lod results per-fragment lod.
1860  */
1861 static inline void
compute_lambda_lod(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float lod_in[TGSI_QUAD_SIZE],enum tgsi_sampler_control control,float lod[TGSI_QUAD_SIZE])1862 compute_lambda_lod(const struct sp_sampler_view *sp_sview,
1863                    const struct sp_sampler *sp_samp,
1864                    const float s[TGSI_QUAD_SIZE],
1865                    const float t[TGSI_QUAD_SIZE],
1866                    const float p[TGSI_QUAD_SIZE],
1867                    const float lod_in[TGSI_QUAD_SIZE],
1868                    enum tgsi_sampler_control control,
1869                    float lod[TGSI_QUAD_SIZE])
1870 {
1871    const struct pipe_sampler_state *sampler = &sp_samp->base;
1872    const float min_lod = sampler->min_lod;
1873    const float max_lod = sampler->max_lod;
1874    int i;
1875 
1876    compute_lambda_lod_unclamped(sp_sview, sp_samp,
1877                                 s, t, p, lod_in, control, lod);
1878    for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1879       lod[i] = CLAMP(lod[i], min_lod, max_lod);
1880    }
1881 }
1882 
1883 static inline unsigned
get_gather_component(const float lod_in[TGSI_QUAD_SIZE])1884 get_gather_component(const float lod_in[TGSI_QUAD_SIZE])
1885 {
1886    /* gather component is stored in lod_in slot as unsigned */
1887    return (*(unsigned int *)lod_in) & 0x3;
1888 }
1889 
1890 /**
1891  * Clamps given lod to both lod limits and mip level limits. Clamping to the
1892  * latter limits is done so that lod is relative to the first (base) level.
1893  */
1894 static void
clamp_lod(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float lod[TGSI_QUAD_SIZE],float clamped[TGSI_QUAD_SIZE])1895 clamp_lod(const struct sp_sampler_view *sp_sview,
1896           const struct sp_sampler *sp_samp,
1897           const float lod[TGSI_QUAD_SIZE],
1898           float clamped[TGSI_QUAD_SIZE])
1899 {
1900    const float min_lod = sp_samp->base.min_lod;
1901    const float max_lod = sp_samp->base.max_lod;
1902    const float min_level = sp_sview->base.u.tex.first_level;
1903    const float max_level = sp_sview->base.u.tex.last_level;
1904    int i;
1905 
1906    for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1907       float cl = lod[i];
1908 
1909       cl = CLAMP(cl, min_lod, max_lod);
1910       cl = CLAMP(cl, 0, max_level - min_level);
1911       clamped[i] = cl;
1912    }
1913 }
1914 
1915 /**
1916  * Get mip level relative to base level for linear mip filter
1917  */
1918 static void
mip_rel_level_linear(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float lod[TGSI_QUAD_SIZE],float level[TGSI_QUAD_SIZE])1919 mip_rel_level_linear(const struct sp_sampler_view *sp_sview,
1920                      const struct sp_sampler *sp_samp,
1921                      const float lod[TGSI_QUAD_SIZE],
1922                      float level[TGSI_QUAD_SIZE])
1923 {
1924    clamp_lod(sp_sview, sp_samp, lod, level);
1925 }
1926 
1927 static void
mip_filter_linear(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,img_filter_func min_filter,img_filter_func mag_filter,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const float lod_in[TGSI_QUAD_SIZE],const struct filter_args * filt_args,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])1928 mip_filter_linear(const struct sp_sampler_view *sp_sview,
1929                   const struct sp_sampler *sp_samp,
1930                   img_filter_func min_filter,
1931                   img_filter_func mag_filter,
1932                   const float s[TGSI_QUAD_SIZE],
1933                   const float t[TGSI_QUAD_SIZE],
1934                   const float p[TGSI_QUAD_SIZE],
1935                   const float c0[TGSI_QUAD_SIZE],
1936                   const float lod_in[TGSI_QUAD_SIZE],
1937                   const struct filter_args *filt_args,
1938                   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1939 {
1940    const struct pipe_sampler_view *psview = &sp_sview->base;
1941    int j;
1942    float lod[TGSI_QUAD_SIZE];
1943    struct img_filter_args args;
1944 
1945    compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
1946 
1947    args.offset = filt_args->offset;
1948    args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
1949    args.gather_comp = get_gather_component(lod_in);
1950 
1951    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
1952       const int level0 = psview->u.tex.first_level + (int)lod[j];
1953 
1954       args.s = s[j];
1955       args.t = t[j];
1956       args.p = p[j];
1957       args.face_id = filt_args->faces[j];
1958 
1959       if (lod[j] < 0.0) {
1960          args.level = psview->u.tex.first_level;
1961          mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
1962       }
1963       else if (level0 >= (int) psview->u.tex.last_level) {
1964          args.level = psview->u.tex.last_level;
1965          min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
1966       }
1967       else {
1968          float levelBlend = frac(lod[j]);
1969          float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1970          int c;
1971 
1972          args.level = level0;
1973          min_filter(sp_sview, sp_samp, &args, &rgbax[0][0]);
1974          args.level = level0+1;
1975          min_filter(sp_sview, sp_samp, &args, &rgbax[0][1]);
1976 
1977          for (c = 0; c < 4; c++) {
1978             rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
1979          }
1980       }
1981    }
1982 
1983    if (DEBUG_TEX) {
1984       print_sample_4(__FUNCTION__, rgba);
1985    }
1986 }
1987 
1988 
1989 /**
1990  * Get mip level relative to base level for nearest mip filter
1991  */
1992 static void
mip_rel_level_nearest(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float lod[TGSI_QUAD_SIZE],float level[TGSI_QUAD_SIZE])1993 mip_rel_level_nearest(const struct sp_sampler_view *sp_sview,
1994                       const struct sp_sampler *sp_samp,
1995                       const float lod[TGSI_QUAD_SIZE],
1996                       float level[TGSI_QUAD_SIZE])
1997 {
1998    int j;
1999 
2000    clamp_lod(sp_sview, sp_samp, lod, level);
2001    for (j = 0; j < TGSI_QUAD_SIZE; j++)
2002       /* TODO: It should rather be:
2003        * level[j] = ceil(level[j] + 0.5F) - 1.0F;
2004        */
2005       level[j] = (int)(level[j] + 0.5F);
2006 }
2007 
2008 /**
2009  * Compute nearest mipmap level from texcoords.
2010  * Then sample the texture level for four elements of a quad.
2011  * \param c0  the LOD bias factors, or absolute LODs (depending on control)
2012  */
2013 static void
mip_filter_nearest(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,img_filter_func min_filter,img_filter_func mag_filter,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const float lod_in[TGSI_QUAD_SIZE],const struct filter_args * filt_args,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])2014 mip_filter_nearest(const struct sp_sampler_view *sp_sview,
2015                    const struct sp_sampler *sp_samp,
2016                    img_filter_func min_filter,
2017                    img_filter_func mag_filter,
2018                    const float s[TGSI_QUAD_SIZE],
2019                    const float t[TGSI_QUAD_SIZE],
2020                    const float p[TGSI_QUAD_SIZE],
2021                    const float c0[TGSI_QUAD_SIZE],
2022                    const float lod_in[TGSI_QUAD_SIZE],
2023                    const struct filter_args *filt_args,
2024                    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2025 {
2026    const struct pipe_sampler_view *psview = &sp_sview->base;
2027    float lod[TGSI_QUAD_SIZE];
2028    int j;
2029    struct img_filter_args args;
2030 
2031    args.offset = filt_args->offset;
2032    args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2033    args.gather_comp = get_gather_component(lod_in);
2034 
2035    compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2036 
2037    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2038       args.s = s[j];
2039       args.t = t[j];
2040       args.p = p[j];
2041       args.face_id = filt_args->faces[j];
2042 
2043       if (lod[j] < 0.0) {
2044          args.level = psview->u.tex.first_level;
2045          mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2046       } else {
2047          const int level = psview->u.tex.first_level + (int)(lod[j] + 0.5F);
2048          args.level = MIN2(level, (int)psview->u.tex.last_level);
2049          min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2050       }
2051    }
2052 
2053    if (DEBUG_TEX) {
2054       print_sample_4(__FUNCTION__, rgba);
2055    }
2056 }
2057 
2058 
2059 /**
2060  * Get mip level relative to base level for none mip filter
2061  */
2062 static void
mip_rel_level_none(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float lod[TGSI_QUAD_SIZE],float level[TGSI_QUAD_SIZE])2063 mip_rel_level_none(const struct sp_sampler_view *sp_sview,
2064                    const struct sp_sampler *sp_samp,
2065                    const float lod[TGSI_QUAD_SIZE],
2066                    float level[TGSI_QUAD_SIZE])
2067 {
2068    int j;
2069 
2070    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2071       level[j] = 0;
2072    }
2073 }
2074 
2075 static void
mip_filter_none(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,img_filter_func min_filter,img_filter_func mag_filter,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const float lod_in[TGSI_QUAD_SIZE],const struct filter_args * filt_args,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])2076 mip_filter_none(const struct sp_sampler_view *sp_sview,
2077                 const struct sp_sampler *sp_samp,
2078                 img_filter_func min_filter,
2079                 img_filter_func mag_filter,
2080                 const float s[TGSI_QUAD_SIZE],
2081                 const float t[TGSI_QUAD_SIZE],
2082                 const float p[TGSI_QUAD_SIZE],
2083                 const float c0[TGSI_QUAD_SIZE],
2084                 const float lod_in[TGSI_QUAD_SIZE],
2085                 const struct filter_args *filt_args,
2086                 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2087 {
2088    float lod[TGSI_QUAD_SIZE];
2089    int j;
2090    struct img_filter_args args;
2091 
2092    args.level = sp_sview->base.u.tex.first_level;
2093    args.offset = filt_args->offset;
2094    args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2095 
2096    compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2097 
2098    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2099       args.s = s[j];
2100       args.t = t[j];
2101       args.p = p[j];
2102       args.face_id = filt_args->faces[j];
2103       if (lod[j] < 0.0) {
2104          mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2105       }
2106       else {
2107          min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2108       }
2109    }
2110 }
2111 
2112 
2113 /**
2114  * Get mip level relative to base level for none mip filter
2115  */
2116 static void
mip_rel_level_none_no_filter_select(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float lod[TGSI_QUAD_SIZE],float level[TGSI_QUAD_SIZE])2117 mip_rel_level_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2118                                     const struct sp_sampler *sp_samp,
2119                                     const float lod[TGSI_QUAD_SIZE],
2120                                     float level[TGSI_QUAD_SIZE])
2121 {
2122    mip_rel_level_none(sp_sview, sp_samp, lod, level);
2123 }
2124 
2125 static void
mip_filter_none_no_filter_select(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,img_filter_func min_filter,img_filter_func mag_filter,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const float lod_in[TGSI_QUAD_SIZE],const struct filter_args * filt_args,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])2126 mip_filter_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2127                                  const struct sp_sampler *sp_samp,
2128                                  img_filter_func min_filter,
2129                                  img_filter_func mag_filter,
2130                                  const float s[TGSI_QUAD_SIZE],
2131                                  const float t[TGSI_QUAD_SIZE],
2132                                  const float p[TGSI_QUAD_SIZE],
2133                                  const float c0[TGSI_QUAD_SIZE],
2134                                  const float lod_in[TGSI_QUAD_SIZE],
2135                                  const struct filter_args *filt_args,
2136                                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2137 {
2138    int j;
2139    struct img_filter_args args;
2140    args.level = sp_sview->base.u.tex.first_level;
2141    args.offset = filt_args->offset;
2142    args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2143    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2144       args.s = s[j];
2145       args.t = t[j];
2146       args.p = p[j];
2147       args.face_id = filt_args->faces[j];
2148       mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2149    }
2150 }
2151 
2152 
2153 /* For anisotropic filtering */
2154 #define WEIGHT_LUT_SIZE 1024
2155 
2156 static const float *weightLut = NULL;
2157 
2158 /**
2159  * Creates the look-up table used to speed-up EWA sampling
2160  */
2161 static void
create_filter_table(void)2162 create_filter_table(void)
2163 {
2164    unsigned i;
2165    if (!weightLut) {
2166       float *lut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
2167 
2168       for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
2169          const float alpha = 2;
2170          const float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
2171          const float weight = (float) exp(-alpha * r2);
2172          lut[i] = weight;
2173       }
2174       weightLut = lut;
2175    }
2176 }
2177 
2178 
2179 /**
2180  * Elliptical weighted average (EWA) filter for producing high quality
2181  * anisotropic filtered results.
2182  * Based on the Higher Quality Elliptical Weighted Average Filter
2183  * published by Paul S. Heckbert in his Master's Thesis
2184  * "Fundamentals of Texture Mapping and Image Warping" (1989)
2185  */
2186 static void
img_filter_2d_ewa(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,img_filter_func min_filter,img_filter_func mag_filter,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const uint faces[TGSI_QUAD_SIZE],const int8_t * offset,unsigned level,const float dudx,const float dvdx,const float dudy,const float dvdy,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])2187 img_filter_2d_ewa(const struct sp_sampler_view *sp_sview,
2188                   const struct sp_sampler *sp_samp,
2189                   img_filter_func min_filter,
2190                   img_filter_func mag_filter,
2191                   const float s[TGSI_QUAD_SIZE],
2192                   const float t[TGSI_QUAD_SIZE],
2193                   const float p[TGSI_QUAD_SIZE],
2194                   const uint faces[TGSI_QUAD_SIZE],
2195                   const int8_t *offset,
2196                   unsigned level,
2197                   const float dudx, const float dvdx,
2198                   const float dudy, const float dvdy,
2199                   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2200 {
2201    const struct pipe_resource *texture = sp_sview->base.texture;
2202 
2203    // ??? Won't the image filters blow up if level is negative?
2204    const unsigned level0 = level > 0 ? level : 0;
2205    const float scaling = 1.0f / (1 << level0);
2206    const int width = u_minify(texture->width0, level0);
2207    const int height = u_minify(texture->height0, level0);
2208    struct img_filter_args args;
2209    const float ux = dudx * scaling;
2210    const float vx = dvdx * scaling;
2211    const float uy = dudy * scaling;
2212    const float vy = dvdy * scaling;
2213 
2214    /* compute ellipse coefficients to bound the region:
2215     * A*x*x + B*x*y + C*y*y = F.
2216     */
2217    float A = vx*vx+vy*vy+1;
2218    float B = -2*(ux*vx+uy*vy);
2219    float C = ux*ux+uy*uy+1;
2220    float F = A*C-B*B/4.0f;
2221 
2222    /* check if it is an ellipse */
2223    /* assert(F > 0.0); */
2224 
2225    /* Compute the ellipse's (u,v) bounding box in texture space */
2226    const float d = -B*B+4.0f*C*A;
2227    const float box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with   */
2228    const float box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */
2229 
2230    float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2231    float s_buffer[TGSI_QUAD_SIZE];
2232    float t_buffer[TGSI_QUAD_SIZE];
2233    float weight_buffer[TGSI_QUAD_SIZE];
2234    int j;
2235 
2236    /* For each quad, the du and dx values are the same and so the ellipse is
2237     * also the same. Note that texel/image access can only be performed using
2238     * a quad, i.e. it is not possible to get the pixel value for a single
2239     * tex coord. In order to have a better performance, the access is buffered
2240     * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
2241     * full, then the pixel values are read from the image.
2242     */
2243    const float ddq = 2 * A;
2244 
2245    /* Scale ellipse formula to directly index the Filter Lookup Table.
2246     * i.e. scale so that F = WEIGHT_LUT_SIZE-1
2247     */
2248    const double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
2249    A *= formScale;
2250    B *= formScale;
2251    C *= formScale;
2252    /* F *= formScale; */ /* no need to scale F as we don't use it below here */
2253 
2254    args.level = level;
2255    args.offset = offset;
2256 
2257    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2258       /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
2259        * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
2260        * value, q, is less than F, we're inside the ellipse
2261        */
2262       const float tex_u = -0.5F + s[j] * texture->width0 * scaling;
2263       const float tex_v = -0.5F + t[j] * texture->height0 * scaling;
2264 
2265       const int u0 = (int) floorf(tex_u - box_u);
2266       const int u1 = (int) ceilf(tex_u + box_u);
2267       const int v0 = (int) floorf(tex_v - box_v);
2268       const int v1 = (int) ceilf(tex_v + box_v);
2269       const float U = u0 - tex_u;
2270 
2271       float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
2272       unsigned buffer_next = 0;
2273       float den = 0;
2274       int v;
2275       args.face_id = faces[j];
2276 
2277       for (v = v0; v <= v1; ++v) {
2278          const float V = v - tex_v;
2279          float dq = A * (2 * U + 1) + B * V;
2280          float q = (C * V + B * U) * V + A * U * U;
2281 
2282          int u;
2283          for (u = u0; u <= u1; ++u) {
2284             /* Note that the ellipse has been pre-scaled so F =
2285              * WEIGHT_LUT_SIZE - 1
2286              */
2287             if (q < WEIGHT_LUT_SIZE) {
2288                /* as a LUT is used, q must never be negative;
2289                 * should not happen, though
2290                 */
2291                const int qClamped = q >= 0.0F ? q : 0;
2292                const float weight = weightLut[qClamped];
2293 
2294                weight_buffer[buffer_next] = weight;
2295                s_buffer[buffer_next] = u / ((float) width);
2296                t_buffer[buffer_next] = v / ((float) height);
2297 
2298                buffer_next++;
2299                if (buffer_next == TGSI_QUAD_SIZE) {
2300                   /* 4 texel coords are in the buffer -> read it now */
2301                   unsigned jj;
2302                   /* it is assumed that samp->min_img_filter is set to
2303                    * img_filter_2d_nearest or one of the
2304                    * accelerated img_filter_2d_nearest_XXX functions.
2305                    */
2306                   for (jj = 0; jj < buffer_next; jj++) {
2307                      args.s = s_buffer[jj];
2308                      args.t = t_buffer[jj];
2309                      args.p = p[jj];
2310                      min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2311                      num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2312                      num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2313                      num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2314                      num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2315                   }
2316 
2317                   buffer_next = 0;
2318                }
2319 
2320                den += weight;
2321             }
2322             q += dq;
2323             dq += ddq;
2324          }
2325       }
2326 
2327       /* if the tex coord buffer contains unread values, we will read
2328        * them now.
2329        */
2330       if (buffer_next > 0) {
2331          unsigned jj;
2332          /* it is assumed that samp->min_img_filter is set to
2333           * img_filter_2d_nearest or one of the
2334           * accelerated img_filter_2d_nearest_XXX functions.
2335           */
2336          for (jj = 0; jj < buffer_next; jj++) {
2337             args.s = s_buffer[jj];
2338             args.t = t_buffer[jj];
2339             args.p = p[jj];
2340             min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2341             num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2342             num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2343             num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2344             num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2345          }
2346       }
2347 
2348       if (den <= 0.0F) {
2349          /* Reaching this place would mean that no pixels intersected
2350           * the ellipse.  This should never happen because the filter
2351           * we use always intersects at least one pixel.
2352           */
2353 
2354          /*rgba[0]=0;
2355          rgba[1]=0;
2356          rgba[2]=0;
2357          rgba[3]=0;*/
2358          /* not enough pixels in resampling, resort to direct interpolation */
2359          args.s = s[j];
2360          args.t = t[j];
2361          args.p = p[j];
2362          min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][j]);
2363          den = 1;
2364          num[0] = rgba_temp[0][j];
2365          num[1] = rgba_temp[1][j];
2366          num[2] = rgba_temp[2][j];
2367          num[3] = rgba_temp[3][j];
2368       }
2369 
2370       rgba[0][j] = num[0] / den;
2371       rgba[1][j] = num[1] / den;
2372       rgba[2][j] = num[2] / den;
2373       rgba[3][j] = num[3] / den;
2374    }
2375 }
2376 
2377 
2378 /**
2379  * Get mip level relative to base level for linear mip filter
2380  */
2381 static void
mip_rel_level_linear_aniso(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float lod[TGSI_QUAD_SIZE],float level[TGSI_QUAD_SIZE])2382 mip_rel_level_linear_aniso(const struct sp_sampler_view *sp_sview,
2383                            const struct sp_sampler *sp_samp,
2384                            const float lod[TGSI_QUAD_SIZE],
2385                            float level[TGSI_QUAD_SIZE])
2386 {
2387    mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2388 }
2389 
2390 /**
2391  * Sample 2D texture using an anisotropic filter.
2392  */
2393 static void
mip_filter_linear_aniso(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,img_filter_func min_filter,img_filter_func mag_filter,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const float lod_in[TGSI_QUAD_SIZE],const struct filter_args * filt_args,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])2394 mip_filter_linear_aniso(const struct sp_sampler_view *sp_sview,
2395                         const struct sp_sampler *sp_samp,
2396                         img_filter_func min_filter,
2397                         img_filter_func mag_filter,
2398                         const float s[TGSI_QUAD_SIZE],
2399                         const float t[TGSI_QUAD_SIZE],
2400                         const float p[TGSI_QUAD_SIZE],
2401                         const float c0[TGSI_QUAD_SIZE],
2402                         const float lod_in[TGSI_QUAD_SIZE],
2403                         const struct filter_args *filt_args,
2404                         float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2405 {
2406    const struct pipe_resource *texture = sp_sview->base.texture;
2407    const struct pipe_sampler_view *psview = &sp_sview->base;
2408    int level0;
2409    float lambda;
2410    float lod[TGSI_QUAD_SIZE];
2411 
2412    const float s_to_u = u_minify(texture->width0, psview->u.tex.first_level);
2413    const float t_to_v = u_minify(texture->height0, psview->u.tex.first_level);
2414    const float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2415    const float dudy = (s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2416    const float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2417    const float dvdy = (t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2418    struct img_filter_args args;
2419 
2420    args.offset = filt_args->offset;
2421 
2422    if (filt_args->control == TGSI_SAMPLER_LOD_BIAS ||
2423        filt_args->control == TGSI_SAMPLER_LOD_NONE ||
2424        /* XXX FIXME */
2425        filt_args->control == TGSI_SAMPLER_DERIVS_EXPLICIT) {
2426       /* note: instead of working with Px and Py, we will use the
2427        * squared length instead, to avoid sqrt.
2428        */
2429       const float Px2 = dudx * dudx + dvdx * dvdx;
2430       const float Py2 = dudy * dudy + dvdy * dvdy;
2431 
2432       float Pmax2;
2433       float Pmin2;
2434       float e;
2435       const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy;
2436 
2437       if (Px2 < Py2) {
2438          Pmax2 = Py2;
2439          Pmin2 = Px2;
2440       }
2441       else {
2442          Pmax2 = Px2;
2443          Pmin2 = Py2;
2444       }
2445 
2446       /* if the eccentricity of the ellipse is too big, scale up the shorter
2447        * of the two vectors to limit the maximum amount of work per pixel
2448        */
2449       e = Pmax2 / Pmin2;
2450       if (e > maxEccentricity) {
2451          /* float s=e / maxEccentricity;
2452             minor[0] *= s;
2453             minor[1] *= s;
2454             Pmin2 *= s; */
2455          Pmin2 = Pmax2 / maxEccentricity;
2456       }
2457 
2458       /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
2459        * this since 0.5*log(x) = log(sqrt(x))
2460        */
2461       lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias;
2462       compute_lod(&sp_samp->base, filt_args->control, lambda, lod_in, lod);
2463    }
2464    else {
2465       assert(filt_args->control == TGSI_SAMPLER_LOD_EXPLICIT ||
2466              filt_args->control == TGSI_SAMPLER_LOD_ZERO);
2467       compute_lod(&sp_samp->base, filt_args->control, sp_samp->base.lod_bias, lod_in, lod);
2468    }
2469 
2470    /* XXX: Take into account all lod values.
2471     */
2472    lambda = lod[0];
2473    level0 = psview->u.tex.first_level + (int)lambda;
2474 
2475    /* If the ellipse covers the whole image, we can
2476     * simply return the average of the whole image.
2477     */
2478    if (level0 >= (int) psview->u.tex.last_level) {
2479       int j;
2480       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2481          args.s = s[j];
2482          args.t = t[j];
2483          args.p = p[j];
2484          args.level = psview->u.tex.last_level;
2485          args.face_id = filt_args->faces[j];
2486          /*
2487           * XXX: we overwrote any linear filter with nearest, so this
2488           * isn't right (albeit if last level is 1x1 and no border it
2489           * will work just the same).
2490           */
2491          min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2492       }
2493    }
2494    else {
2495       /* don't bother interpolating between multiple LODs; it doesn't
2496        * seem to be worth the extra running time.
2497        */
2498       img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter,
2499                         s, t, p, filt_args->faces, filt_args->offset,
2500                         level0, dudx, dvdx, dudy, dvdy, rgba);
2501    }
2502 
2503    if (DEBUG_TEX) {
2504       print_sample_4(__FUNCTION__, rgba);
2505    }
2506 }
2507 
2508 /**
2509  * Get mip level relative to base level for linear mip filter
2510  */
2511 static void
mip_rel_level_linear_2d_linear_repeat_POT(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float lod[TGSI_QUAD_SIZE],float level[TGSI_QUAD_SIZE])2512 mip_rel_level_linear_2d_linear_repeat_POT(
2513    const struct sp_sampler_view *sp_sview,
2514    const struct sp_sampler *sp_samp,
2515    const float lod[TGSI_QUAD_SIZE],
2516    float level[TGSI_QUAD_SIZE])
2517 {
2518    mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2519 }
2520 
2521 /**
2522  * Specialized version of mip_filter_linear with hard-wired calls to
2523  * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2524  */
2525 static void
mip_filter_linear_2d_linear_repeat_POT(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,img_filter_func min_filter,img_filter_func mag_filter,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const float lod_in[TGSI_QUAD_SIZE],const struct filter_args * filt_args,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])2526 mip_filter_linear_2d_linear_repeat_POT(
2527    const struct sp_sampler_view *sp_sview,
2528    const struct sp_sampler *sp_samp,
2529    img_filter_func min_filter,
2530    img_filter_func mag_filter,
2531    const float s[TGSI_QUAD_SIZE],
2532    const float t[TGSI_QUAD_SIZE],
2533    const float p[TGSI_QUAD_SIZE],
2534    const float c0[TGSI_QUAD_SIZE],
2535    const float lod_in[TGSI_QUAD_SIZE],
2536    const struct filter_args *filt_args,
2537    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2538 {
2539    const struct pipe_sampler_view *psview = &sp_sview->base;
2540    int j;
2541    float lod[TGSI_QUAD_SIZE];
2542 
2543    compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2544 
2545    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2546       const int level0 = psview->u.tex.first_level + (int)lod[j];
2547       struct img_filter_args args;
2548       /* Catches both negative and large values of level0:
2549        */
2550       args.s = s[j];
2551       args.t = t[j];
2552       args.p = p[j];
2553       args.face_id = filt_args->faces[j];
2554       args.offset = filt_args->offset;
2555       args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2556       if ((unsigned)level0 >= psview->u.tex.last_level) {
2557          if (level0 < 0)
2558             args.level = psview->u.tex.first_level;
2559          else
2560             args.level = psview->u.tex.last_level;
2561          img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args,
2562                                          &rgba[0][j]);
2563 
2564       }
2565       else {
2566          const float levelBlend = frac(lod[j]);
2567          float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2568          int c;
2569 
2570          args.level = level0;
2571          img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][0]);
2572          args.level = level0+1;
2573          img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][1]);
2574 
2575          for (c = 0; c < TGSI_NUM_CHANNELS; c++)
2576             rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2577       }
2578    }
2579 
2580    if (DEBUG_TEX) {
2581       print_sample_4(__FUNCTION__, rgba);
2582    }
2583 }
2584 
2585 static const struct sp_filter_funcs funcs_linear = {
2586    mip_rel_level_linear,
2587    mip_filter_linear
2588 };
2589 
2590 static const struct sp_filter_funcs funcs_nearest = {
2591    mip_rel_level_nearest,
2592    mip_filter_nearest
2593 };
2594 
2595 static const struct sp_filter_funcs funcs_none = {
2596    mip_rel_level_none,
2597    mip_filter_none
2598 };
2599 
2600 static const struct sp_filter_funcs funcs_none_no_filter_select = {
2601    mip_rel_level_none_no_filter_select,
2602    mip_filter_none_no_filter_select
2603 };
2604 
2605 static const struct sp_filter_funcs funcs_linear_aniso = {
2606    mip_rel_level_linear_aniso,
2607    mip_filter_linear_aniso
2608 };
2609 
2610 static const struct sp_filter_funcs funcs_linear_2d_linear_repeat_POT = {
2611    mip_rel_level_linear_2d_linear_repeat_POT,
2612    mip_filter_linear_2d_linear_repeat_POT
2613 };
2614 
2615 /**
2616  * Do shadow/depth comparisons.
2617  */
2618 static void
sample_compare(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const float c1[TGSI_QUAD_SIZE],enum tgsi_sampler_control control,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])2619 sample_compare(const struct sp_sampler_view *sp_sview,
2620                const struct sp_sampler *sp_samp,
2621                const float s[TGSI_QUAD_SIZE],
2622                const float t[TGSI_QUAD_SIZE],
2623                const float p[TGSI_QUAD_SIZE],
2624                const float c0[TGSI_QUAD_SIZE],
2625                const float c1[TGSI_QUAD_SIZE],
2626                enum tgsi_sampler_control control,
2627                float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2628 {
2629    const struct pipe_sampler_state *sampler = &sp_samp->base;
2630    int j, v;
2631    int k[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2632    float pc[4];
2633    const struct util_format_description *format_desc =
2634       util_format_description(sp_sview->base.format);
2635    /* not entirely sure we couldn't end up with non-valid swizzle here */
2636    const unsigned chan_type =
2637       format_desc->swizzle[0] <= PIPE_SWIZZLE_W ?
2638       format_desc->channel[format_desc->swizzle[0]].type :
2639       UTIL_FORMAT_TYPE_FLOAT;
2640    const bool is_gather = (control == TGSI_SAMPLER_GATHER);
2641 
2642    /**
2643     * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2644     * for 2D Array texture we need to use the 'c0' (aka Q).
2645     * When we sampled the depth texture, the depth value was put into all
2646     * RGBA channels.  We look at the red channel here.
2647     */
2648 
2649    if (sp_sview->base.target == PIPE_TEXTURE_2D_ARRAY ||
2650        sp_sview->base.target == PIPE_TEXTURE_CUBE) {
2651       pc[0] = c0[0];
2652       pc[1] = c0[1];
2653       pc[2] = c0[2];
2654       pc[3] = c0[3];
2655    } else if (sp_sview->base.target == PIPE_TEXTURE_CUBE_ARRAY) {
2656       pc[0] = c1[0];
2657       pc[1] = c1[1];
2658       pc[2] = c1[2];
2659       pc[3] = c1[3];
2660    } else {
2661       pc[0] = p[0];
2662       pc[1] = p[1];
2663       pc[2] = p[2];
2664       pc[3] = p[3];
2665    }
2666 
2667    if (chan_type != UTIL_FORMAT_TYPE_FLOAT) {
2668       /*
2669        * clamping is a result of conversion to texture format, hence
2670        * doesn't happen with floats. Technically also should do comparison
2671        * in texture format (quantization!).
2672        */
2673       pc[0] = CLAMP(pc[0], 0.0F, 1.0F);
2674       pc[1] = CLAMP(pc[1], 0.0F, 1.0F);
2675       pc[2] = CLAMP(pc[2], 0.0F, 1.0F);
2676       pc[3] = CLAMP(pc[3], 0.0F, 1.0F);
2677    }
2678 
2679    for (v = 0; v < (is_gather ? TGSI_NUM_CHANNELS : 1); v++) {
2680       /* compare four texcoords vs. four texture samples */
2681       switch (sampler->compare_func) {
2682       case PIPE_FUNC_LESS:
2683          k[v][0] = pc[0] < rgba[v][0];
2684          k[v][1] = pc[1] < rgba[v][1];
2685          k[v][2] = pc[2] < rgba[v][2];
2686          k[v][3] = pc[3] < rgba[v][3];
2687          break;
2688       case PIPE_FUNC_LEQUAL:
2689          k[v][0] = pc[0] <= rgba[v][0];
2690          k[v][1] = pc[1] <= rgba[v][1];
2691          k[v][2] = pc[2] <= rgba[v][2];
2692          k[v][3] = pc[3] <= rgba[v][3];
2693          break;
2694       case PIPE_FUNC_GREATER:
2695          k[v][0] = pc[0] > rgba[v][0];
2696          k[v][1] = pc[1] > rgba[v][1];
2697          k[v][2] = pc[2] > rgba[v][2];
2698          k[v][3] = pc[3] > rgba[v][3];
2699          break;
2700       case PIPE_FUNC_GEQUAL:
2701          k[v][0] = pc[0] >= rgba[v][0];
2702          k[v][1] = pc[1] >= rgba[v][1];
2703          k[v][2] = pc[2] >= rgba[v][2];
2704          k[v][3] = pc[3] >= rgba[v][3];
2705          break;
2706       case PIPE_FUNC_EQUAL:
2707          k[v][0] = pc[0] == rgba[v][0];
2708          k[v][1] = pc[1] == rgba[v][1];
2709          k[v][2] = pc[2] == rgba[v][2];
2710          k[v][3] = pc[3] == rgba[v][3];
2711          break;
2712       case PIPE_FUNC_NOTEQUAL:
2713          k[v][0] = pc[0] != rgba[v][0];
2714          k[v][1] = pc[1] != rgba[v][1];
2715          k[v][2] = pc[2] != rgba[v][2];
2716          k[v][3] = pc[3] != rgba[v][3];
2717          break;
2718       case PIPE_FUNC_ALWAYS:
2719          k[v][0] = k[v][1] = k[v][2] = k[v][3] = 1;
2720          break;
2721       case PIPE_FUNC_NEVER:
2722          k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2723          break;
2724       default:
2725          k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2726          assert(0);
2727          break;
2728       }
2729    }
2730 
2731    if (is_gather) {
2732       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2733          for (v = 0; v < TGSI_NUM_CHANNELS; v++) {
2734             rgba[v][j] = k[v][j];
2735          }
2736       }
2737    } else {
2738       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2739          rgba[0][j] = k[0][j];
2740          rgba[1][j] = k[0][j];
2741          rgba[2][j] = k[0][j];
2742          rgba[3][j] = 1.0F;
2743       }
2744    }
2745 }
2746 
2747 static void
do_swizzling(const struct pipe_sampler_view * sview,float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])2748 do_swizzling(const struct pipe_sampler_view *sview,
2749              float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
2750              float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2751 {
2752    int j;
2753    const unsigned swizzle_r = sview->swizzle_r;
2754    const unsigned swizzle_g = sview->swizzle_g;
2755    const unsigned swizzle_b = sview->swizzle_b;
2756    const unsigned swizzle_a = sview->swizzle_a;
2757 
2758    switch (swizzle_r) {
2759    case PIPE_SWIZZLE_0:
2760       for (j = 0; j < 4; j++)
2761          out[0][j] = 0.0f;
2762       break;
2763    case PIPE_SWIZZLE_1:
2764       for (j = 0; j < 4; j++)
2765          out[0][j] = 1.0f;
2766       break;
2767    default:
2768       assert(swizzle_r < 4);
2769       for (j = 0; j < 4; j++)
2770          out[0][j] = in[swizzle_r][j];
2771    }
2772 
2773    switch (swizzle_g) {
2774    case PIPE_SWIZZLE_0:
2775       for (j = 0; j < 4; j++)
2776          out[1][j] = 0.0f;
2777       break;
2778    case PIPE_SWIZZLE_1:
2779       for (j = 0; j < 4; j++)
2780          out[1][j] = 1.0f;
2781       break;
2782    default:
2783       assert(swizzle_g < 4);
2784       for (j = 0; j < 4; j++)
2785          out[1][j] = in[swizzle_g][j];
2786    }
2787 
2788    switch (swizzle_b) {
2789    case PIPE_SWIZZLE_0:
2790       for (j = 0; j < 4; j++)
2791          out[2][j] = 0.0f;
2792       break;
2793    case PIPE_SWIZZLE_1:
2794       for (j = 0; j < 4; j++)
2795          out[2][j] = 1.0f;
2796       break;
2797    default:
2798       assert(swizzle_b < 4);
2799       for (j = 0; j < 4; j++)
2800          out[2][j] = in[swizzle_b][j];
2801    }
2802 
2803    switch (swizzle_a) {
2804    case PIPE_SWIZZLE_0:
2805       for (j = 0; j < 4; j++)
2806          out[3][j] = 0.0f;
2807       break;
2808    case PIPE_SWIZZLE_1:
2809       for (j = 0; j < 4; j++)
2810          out[3][j] = 1.0f;
2811       break;
2812    default:
2813       assert(swizzle_a < 4);
2814       for (j = 0; j < 4; j++)
2815          out[3][j] = in[swizzle_a][j];
2816    }
2817 }
2818 
2819 
2820 static wrap_nearest_func
get_nearest_unorm_wrap(unsigned mode)2821 get_nearest_unorm_wrap(unsigned mode)
2822 {
2823    switch (mode) {
2824    case PIPE_TEX_WRAP_CLAMP:
2825       return wrap_nearest_unorm_clamp;
2826    case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2827       return wrap_nearest_unorm_clamp_to_edge;
2828    case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2829       return wrap_nearest_unorm_clamp_to_border;
2830    default:
2831       debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2832       return wrap_nearest_unorm_clamp;
2833    }
2834 }
2835 
2836 
2837 static wrap_nearest_func
get_nearest_wrap(unsigned mode)2838 get_nearest_wrap(unsigned mode)
2839 {
2840    switch (mode) {
2841    case PIPE_TEX_WRAP_REPEAT:
2842       return wrap_nearest_repeat;
2843    case PIPE_TEX_WRAP_CLAMP:
2844       return wrap_nearest_clamp;
2845    case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2846       return wrap_nearest_clamp_to_edge;
2847    case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2848       return wrap_nearest_clamp_to_border;
2849    case PIPE_TEX_WRAP_MIRROR_REPEAT:
2850       return wrap_nearest_mirror_repeat;
2851    case PIPE_TEX_WRAP_MIRROR_CLAMP:
2852       return wrap_nearest_mirror_clamp;
2853    case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2854       return wrap_nearest_mirror_clamp_to_edge;
2855    case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2856       return wrap_nearest_mirror_clamp_to_border;
2857    default:
2858       assert(0);
2859       return wrap_nearest_repeat;
2860    }
2861 }
2862 
2863 
2864 static wrap_linear_func
get_linear_unorm_wrap(unsigned mode)2865 get_linear_unorm_wrap(unsigned mode)
2866 {
2867    switch (mode) {
2868    case PIPE_TEX_WRAP_CLAMP:
2869       return wrap_linear_unorm_clamp;
2870    case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2871       return wrap_linear_unorm_clamp_to_edge;
2872    case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2873       return wrap_linear_unorm_clamp_to_border;
2874    default:
2875       debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2876       return wrap_linear_unorm_clamp;
2877    }
2878 }
2879 
2880 
2881 static wrap_linear_func
get_linear_wrap(unsigned mode)2882 get_linear_wrap(unsigned mode)
2883 {
2884    switch (mode) {
2885    case PIPE_TEX_WRAP_REPEAT:
2886       return wrap_linear_repeat;
2887    case PIPE_TEX_WRAP_CLAMP:
2888       return wrap_linear_clamp;
2889    case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2890       return wrap_linear_clamp_to_edge;
2891    case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2892       return wrap_linear_clamp_to_border;
2893    case PIPE_TEX_WRAP_MIRROR_REPEAT:
2894       return wrap_linear_mirror_repeat;
2895    case PIPE_TEX_WRAP_MIRROR_CLAMP:
2896       return wrap_linear_mirror_clamp;
2897    case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2898       return wrap_linear_mirror_clamp_to_edge;
2899    case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2900       return wrap_linear_mirror_clamp_to_border;
2901    default:
2902       assert(0);
2903       return wrap_linear_repeat;
2904    }
2905 }
2906 
2907 
2908 /**
2909  * Is swizzling needed for the given state key?
2910  */
2911 static inline bool
any_swizzle(const struct pipe_sampler_view * view)2912 any_swizzle(const struct pipe_sampler_view *view)
2913 {
2914    return (view->swizzle_r != PIPE_SWIZZLE_X ||
2915            view->swizzle_g != PIPE_SWIZZLE_Y ||
2916            view->swizzle_b != PIPE_SWIZZLE_Z ||
2917            view->swizzle_a != PIPE_SWIZZLE_W);
2918 }
2919 
2920 
2921 static img_filter_func
get_img_filter(const struct sp_sampler_view * sp_sview,const struct pipe_sampler_state * sampler,unsigned filter,bool gather)2922 get_img_filter(const struct sp_sampler_view *sp_sview,
2923                const struct pipe_sampler_state *sampler,
2924                unsigned filter, bool gather)
2925 {
2926    switch (sp_sview->base.target) {
2927    case PIPE_BUFFER:
2928    case PIPE_TEXTURE_1D:
2929       if (filter == PIPE_TEX_FILTER_NEAREST)
2930          return img_filter_1d_nearest;
2931       else
2932          return img_filter_1d_linear;
2933       break;
2934    case PIPE_TEXTURE_1D_ARRAY:
2935       if (filter == PIPE_TEX_FILTER_NEAREST)
2936          return img_filter_1d_array_nearest;
2937       else
2938          return img_filter_1d_array_linear;
2939       break;
2940    case PIPE_TEXTURE_2D:
2941    case PIPE_TEXTURE_RECT:
2942       /* Try for fast path:
2943        */
2944       if (!gather && sp_sview->pot2d &&
2945           sampler->wrap_s == sampler->wrap_t &&
2946           sampler->normalized_coords)
2947       {
2948          switch (sampler->wrap_s) {
2949          case PIPE_TEX_WRAP_REPEAT:
2950             switch (filter) {
2951             case PIPE_TEX_FILTER_NEAREST:
2952                return img_filter_2d_nearest_repeat_POT;
2953             case PIPE_TEX_FILTER_LINEAR:
2954                return img_filter_2d_linear_repeat_POT;
2955             default:
2956                break;
2957             }
2958             break;
2959          case PIPE_TEX_WRAP_CLAMP:
2960             switch (filter) {
2961             case PIPE_TEX_FILTER_NEAREST:
2962                return img_filter_2d_nearest_clamp_POT;
2963             default:
2964                break;
2965             }
2966          }
2967       }
2968       /* Otherwise use default versions:
2969        */
2970       if (filter == PIPE_TEX_FILTER_NEAREST)
2971          return img_filter_2d_nearest;
2972       else
2973          return img_filter_2d_linear;
2974       break;
2975    case PIPE_TEXTURE_2D_ARRAY:
2976       if (filter == PIPE_TEX_FILTER_NEAREST)
2977          return img_filter_2d_array_nearest;
2978       else
2979          return img_filter_2d_array_linear;
2980       break;
2981    case PIPE_TEXTURE_CUBE:
2982       if (filter == PIPE_TEX_FILTER_NEAREST)
2983          return img_filter_cube_nearest;
2984       else
2985          return img_filter_cube_linear;
2986       break;
2987    case PIPE_TEXTURE_CUBE_ARRAY:
2988       if (filter == PIPE_TEX_FILTER_NEAREST)
2989          return img_filter_cube_array_nearest;
2990       else
2991          return img_filter_cube_array_linear;
2992       break;
2993    case PIPE_TEXTURE_3D:
2994       if (filter == PIPE_TEX_FILTER_NEAREST)
2995          return img_filter_3d_nearest;
2996       else
2997          return img_filter_3d_linear;
2998       break;
2999    default:
3000       assert(0);
3001       return img_filter_1d_nearest;
3002    }
3003 }
3004 
3005 /**
3006  * Get mip filter funcs, and optionally both img min filter and img mag
3007  * filter. Note that both img filter function pointers must be either non-NULL
3008  * or NULL.
3009  */
3010 static void
get_filters(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const enum tgsi_sampler_control control,const struct sp_filter_funcs ** funcs,img_filter_func * min,img_filter_func * mag)3011 get_filters(const struct sp_sampler_view *sp_sview,
3012             const struct sp_sampler *sp_samp,
3013             const enum tgsi_sampler_control control,
3014             const struct sp_filter_funcs **funcs,
3015             img_filter_func *min,
3016             img_filter_func *mag)
3017 {
3018    assert(funcs);
3019    if (control == TGSI_SAMPLER_GATHER) {
3020       *funcs = &funcs_nearest;
3021       if (min) {
3022          *min = get_img_filter(sp_sview, &sp_samp->base,
3023                                PIPE_TEX_FILTER_LINEAR, true);
3024       }
3025    } else if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) {
3026       *funcs = &funcs_linear_2d_linear_repeat_POT;
3027    } else {
3028       *funcs = sp_samp->filter_funcs;
3029       if (min) {
3030          assert(mag);
3031          *min = get_img_filter(sp_sview, &sp_samp->base,
3032                                sp_samp->min_img_filter, false);
3033          if (sp_samp->min_mag_equal) {
3034             *mag = *min;
3035          } else {
3036             *mag = get_img_filter(sp_sview, &sp_samp->base,
3037                                   sp_samp->base.mag_img_filter, false);
3038          }
3039       }
3040    }
3041 }
3042 
3043 static void
sample_mip(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const float lod[TGSI_QUAD_SIZE],const struct filter_args * filt_args,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])3044 sample_mip(const struct sp_sampler_view *sp_sview,
3045            const struct sp_sampler *sp_samp,
3046            const float s[TGSI_QUAD_SIZE],
3047            const float t[TGSI_QUAD_SIZE],
3048            const float p[TGSI_QUAD_SIZE],
3049            const float c0[TGSI_QUAD_SIZE],
3050            const float lod[TGSI_QUAD_SIZE],
3051            const struct filter_args *filt_args,
3052            float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3053 {
3054    const struct sp_filter_funcs *funcs = NULL;
3055    img_filter_func min_img_filter = NULL;
3056    img_filter_func mag_img_filter = NULL;
3057 
3058    get_filters(sp_sview, sp_samp, filt_args->control,
3059                &funcs, &min_img_filter, &mag_img_filter);
3060 
3061    funcs->filter(sp_sview, sp_samp, min_img_filter, mag_img_filter,
3062                  s, t, p, c0, lod, filt_args, rgba);
3063 
3064    if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) {
3065       sample_compare(sp_sview, sp_samp, s, t, p, c0,
3066                      lod, filt_args->control, rgba);
3067    }
3068 
3069    if (sp_sview->need_swizzle && filt_args->control != TGSI_SAMPLER_GATHER) {
3070       float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3071       memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3072       do_swizzling(&sp_sview->base, rgba_temp, rgba);
3073    }
3074 
3075 }
3076 
3077 
3078 /**
3079  * This function uses cube texture coordinates to choose a face of a cube and
3080  * computes the 2D cube face coordinates. Puts face info into the sampler
3081  * faces[] array.
3082  */
3083 static void
convert_cube(const struct sp_sampler_view * sp_sview,const struct sp_sampler * sp_samp,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],float ssss[TGSI_QUAD_SIZE],float tttt[TGSI_QUAD_SIZE],float pppp[TGSI_QUAD_SIZE],uint faces[TGSI_QUAD_SIZE])3084 convert_cube(const struct sp_sampler_view *sp_sview,
3085              const struct sp_sampler *sp_samp,
3086              const float s[TGSI_QUAD_SIZE],
3087              const float t[TGSI_QUAD_SIZE],
3088              const float p[TGSI_QUAD_SIZE],
3089              const float c0[TGSI_QUAD_SIZE],
3090              float ssss[TGSI_QUAD_SIZE],
3091              float tttt[TGSI_QUAD_SIZE],
3092              float pppp[TGSI_QUAD_SIZE],
3093              uint faces[TGSI_QUAD_SIZE])
3094 {
3095    unsigned j;
3096 
3097    pppp[0] = c0[0];
3098    pppp[1] = c0[1];
3099    pppp[2] = c0[2];
3100    pppp[3] = c0[3];
3101    /*
3102      major axis
3103      direction    target                             sc     tc    ma
3104      ----------   -------------------------------    ---    ---   ---
3105      +rx          TEXTURE_CUBE_MAP_POSITIVE_X_EXT    -rz    -ry   rx
3106      -rx          TEXTURE_CUBE_MAP_NEGATIVE_X_EXT    +rz    -ry   rx
3107      +ry          TEXTURE_CUBE_MAP_POSITIVE_Y_EXT    +rx    +rz   ry
3108      -ry          TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT    +rx    -rz   ry
3109      +rz          TEXTURE_CUBE_MAP_POSITIVE_Z_EXT    +rx    -ry   rz
3110      -rz          TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT    -rx    -ry   rz
3111    */
3112 
3113    /* Choose the cube face and compute new s/t coords for the 2D face.
3114     *
3115     * Use the same cube face for all four pixels in the quad.
3116     *
3117     * This isn't ideal, but if we want to use a different cube face
3118     * per pixel in the quad, we'd have to also compute the per-face
3119     * LOD here too.  That's because the four post-face-selection
3120     * texcoords are no longer related to each other (they're
3121     * per-face!)  so we can't use subtraction to compute the partial
3122     * deriviates to compute the LOD.  Doing so (near cube edges
3123     * anyway) gives us pretty much random values.
3124     */
3125    {
3126       /* use the average of the four pixel's texcoords to choose the face */
3127       const float rx = 0.25F * (s[0] + s[1] + s[2] + s[3]);
3128       const float ry = 0.25F * (t[0] + t[1] + t[2] + t[3]);
3129       const float rz = 0.25F * (p[0] + p[1] + p[2] + p[3]);
3130       const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
3131 
3132       if (arx >= ary && arx >= arz) {
3133          const float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
3134          const uint face = (rx >= 0.0F) ?
3135             PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
3136          for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3137             const float ima = -0.5F / fabsf(s[j]);
3138             ssss[j] = sign *  p[j] * ima + 0.5F;
3139             tttt[j] =         t[j] * ima + 0.5F;
3140             faces[j] = face;
3141          }
3142       }
3143       else if (ary >= arx && ary >= arz) {
3144          const float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
3145          const uint face = (ry >= 0.0F) ?
3146             PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
3147          for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3148             const float ima = -0.5F / fabsf(t[j]);
3149             ssss[j] =        -s[j] * ima + 0.5F;
3150             tttt[j] = sign * -p[j] * ima + 0.5F;
3151             faces[j] = face;
3152          }
3153       }
3154       else {
3155          const float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
3156          const uint face = (rz >= 0.0F) ?
3157             PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
3158          for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3159             const float ima = -0.5F / fabsf(p[j]);
3160             ssss[j] = sign * -s[j] * ima + 0.5F;
3161             tttt[j] =         t[j] * ima + 0.5F;
3162             faces[j] = face;
3163          }
3164       }
3165    }
3166 }
3167 
3168 
3169 static void
sp_get_dims(const struct sp_sampler_view * sp_sview,int level,int dims[4])3170 sp_get_dims(const struct sp_sampler_view *sp_sview,
3171             int level,
3172             int dims[4])
3173 {
3174    const struct pipe_sampler_view *view = &sp_sview->base;
3175    const struct pipe_resource *texture = view->texture;
3176 
3177    if (view->target == PIPE_BUFFER) {
3178       dims[0] = view->u.buf.size / util_format_get_blocksize(view->format);
3179       /* the other values are undefined, but let's avoid potential valgrind
3180        * warnings.
3181        */
3182       dims[1] = dims[2] = dims[3] = 0;
3183       return;
3184    }
3185 
3186    /* undefined according to EXT_gpu_program */
3187    level += view->u.tex.first_level;
3188    if (level > view->u.tex.last_level)
3189       return;
3190 
3191    dims[3] = view->u.tex.last_level - view->u.tex.first_level + 1;
3192    dims[0] = u_minify(texture->width0, level);
3193 
3194    switch (view->target) {
3195    case PIPE_TEXTURE_1D_ARRAY:
3196       dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3197       /* fallthrough */
3198    case PIPE_TEXTURE_1D:
3199       return;
3200    case PIPE_TEXTURE_2D_ARRAY:
3201       dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3202       /* fallthrough */
3203    case PIPE_TEXTURE_2D:
3204    case PIPE_TEXTURE_CUBE:
3205    case PIPE_TEXTURE_RECT:
3206       dims[1] = u_minify(texture->height0, level);
3207       return;
3208    case PIPE_TEXTURE_3D:
3209       dims[1] = u_minify(texture->height0, level);
3210       dims[2] = u_minify(texture->depth0, level);
3211       return;
3212    case PIPE_TEXTURE_CUBE_ARRAY:
3213       dims[1] = u_minify(texture->height0, level);
3214       dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6;
3215       break;
3216    default:
3217       assert(!"unexpected texture target in sp_get_dims()");
3218       return;
3219    }
3220 }
3221 
3222 /**
3223  * This function is only used for getting unfiltered texels via the
3224  * TXF opcode.  The GL spec says that out-of-bounds texel fetches
3225  * produce undefined results.  Instead of crashing, lets just clamp
3226  * coords to the texture image size.
3227  */
3228 static void
sp_get_texels(const struct sp_sampler_view * sp_sview,const int v_i[TGSI_QUAD_SIZE],const int v_j[TGSI_QUAD_SIZE],const int v_k[TGSI_QUAD_SIZE],const int lod[TGSI_QUAD_SIZE],const int8_t offset[3],float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])3229 sp_get_texels(const struct sp_sampler_view *sp_sview,
3230               const int v_i[TGSI_QUAD_SIZE],
3231               const int v_j[TGSI_QUAD_SIZE],
3232               const int v_k[TGSI_QUAD_SIZE],
3233               const int lod[TGSI_QUAD_SIZE],
3234               const int8_t offset[3],
3235               float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3236 {
3237    union tex_tile_address addr;
3238    const struct pipe_resource *texture = sp_sview->base.texture;
3239    int j, c;
3240    const float *tx;
3241    /* TODO write a better test for LOD */
3242    const unsigned level =
3243       sp_sview->base.target == PIPE_BUFFER ? 0 :
3244       CLAMP(lod[0] + sp_sview->base.u.tex.first_level,
3245             sp_sview->base.u.tex.first_level,
3246             sp_sview->base.u.tex.last_level);
3247    const int width = u_minify(texture->width0, level);
3248    const int height = u_minify(texture->height0, level);
3249    const int depth = u_minify(texture->depth0, level);
3250    unsigned elem_size, first_element, last_element;
3251 
3252    addr.value = 0;
3253    addr.bits.level = level;
3254 
3255    switch (sp_sview->base.target) {
3256    case PIPE_BUFFER:
3257       elem_size = util_format_get_blocksize(sp_sview->base.format);
3258       first_element = sp_sview->base.u.buf.offset / elem_size;
3259       last_element = (sp_sview->base.u.buf.offset +
3260                       sp_sview->base.u.buf.size) / elem_size - 1;
3261       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3262          const int x = CLAMP(v_i[j] + offset[0] +
3263                              first_element,
3264                              first_element,
3265                              last_element);
3266          tx = get_texel_2d_no_border(sp_sview, addr, x, 0);
3267          for (c = 0; c < 4; c++) {
3268             rgba[c][j] = tx[c];
3269          }
3270       }
3271       break;
3272    case PIPE_TEXTURE_1D:
3273       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3274          const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3275          tx = get_texel_2d_no_border(sp_sview, addr, x,
3276                                      sp_sview->base.u.tex.first_layer);
3277          for (c = 0; c < 4; c++) {
3278             rgba[c][j] = tx[c];
3279          }
3280       }
3281       break;
3282    case PIPE_TEXTURE_1D_ARRAY:
3283       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3284          const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3285          const int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer,
3286                              sp_sview->base.u.tex.last_layer);
3287          tx = get_texel_2d_no_border(sp_sview, addr, x, y);
3288          for (c = 0; c < 4; c++) {
3289             rgba[c][j] = tx[c];
3290          }
3291       }
3292       break;
3293    case PIPE_TEXTURE_2D:
3294    case PIPE_TEXTURE_RECT:
3295       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3296          const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3297          const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3298          tx = get_texel_3d_no_border(sp_sview, addr, x, y,
3299                                      sp_sview->base.u.tex.first_layer);
3300          for (c = 0; c < 4; c++) {
3301             rgba[c][j] = tx[c];
3302          }
3303       }
3304       break;
3305    case PIPE_TEXTURE_2D_ARRAY:
3306       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3307          const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3308          const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3309          const int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer,
3310                                  sp_sview->base.u.tex.last_layer);
3311          tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer);
3312          for (c = 0; c < 4; c++) {
3313             rgba[c][j] = tx[c];
3314          }
3315       }
3316       break;
3317    case PIPE_TEXTURE_3D:
3318       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3319          int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3320          int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3321          int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
3322          tx = get_texel_3d_no_border(sp_sview, addr, x, y, z);
3323          for (c = 0; c < 4; c++) {
3324             rgba[c][j] = tx[c];
3325          }
3326       }
3327       break;
3328    case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
3329    case PIPE_TEXTURE_CUBE_ARRAY:
3330    default:
3331       assert(!"Unknown or CUBE texture type in TXF processing\n");
3332       break;
3333    }
3334 
3335    if (sp_sview->need_swizzle) {
3336       float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3337       memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3338       do_swizzling(&sp_sview->base, rgba_temp, rgba);
3339    }
3340 }
3341 
3342 
3343 void *
softpipe_create_sampler_state(struct pipe_context * pipe,const struct pipe_sampler_state * sampler)3344 softpipe_create_sampler_state(struct pipe_context *pipe,
3345                               const struct pipe_sampler_state *sampler)
3346 {
3347    struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler);
3348 
3349    samp->base = *sampler;
3350 
3351    /* Note that (for instance) linear_texcoord_s and
3352     * nearest_texcoord_s may be active at the same time, if the
3353     * sampler min_img_filter differs from its mag_img_filter.
3354     */
3355    if (sampler->normalized_coords) {
3356       samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
3357       samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
3358       samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
3359 
3360       samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
3361       samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
3362       samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
3363    }
3364    else {
3365       samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
3366       samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
3367       samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
3368 
3369       samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
3370       samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
3371       samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
3372    }
3373 
3374    samp->min_img_filter = sampler->min_img_filter;
3375 
3376    switch (sampler->min_mip_filter) {
3377    case PIPE_TEX_MIPFILTER_NONE:
3378       if (sampler->min_img_filter == sampler->mag_img_filter)
3379          samp->filter_funcs = &funcs_none_no_filter_select;
3380       else
3381          samp->filter_funcs = &funcs_none;
3382       break;
3383 
3384    case PIPE_TEX_MIPFILTER_NEAREST:
3385       samp->filter_funcs = &funcs_nearest;
3386       break;
3387 
3388    case PIPE_TEX_MIPFILTER_LINEAR:
3389       if (sampler->min_img_filter == sampler->mag_img_filter &&
3390           sampler->normalized_coords &&
3391           sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
3392           sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
3393           sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR &&
3394           sampler->max_anisotropy <= 1) {
3395          samp->min_mag_equal_repeat_linear = TRUE;
3396       }
3397       samp->filter_funcs = &funcs_linear;
3398 
3399       /* Anisotropic filtering extension. */
3400       if (sampler->max_anisotropy > 1) {
3401          samp->filter_funcs = &funcs_linear_aniso;
3402 
3403          /* Override min_img_filter:
3404           * min_img_filter needs to be set to NEAREST since we need to access
3405           * each texture pixel as it is and weight it later; using linear
3406           * filters will have incorrect results.
3407           * By setting the filter to NEAREST here, we can avoid calling the
3408           * generic img_filter_2d_nearest in the anisotropic filter function,
3409           * making it possible to use one of the accelerated implementations
3410           */
3411          samp->min_img_filter = PIPE_TEX_FILTER_NEAREST;
3412 
3413          /* on first access create the lookup table containing the filter weights. */
3414         if (!weightLut) {
3415            create_filter_table();
3416         }
3417       }
3418       break;
3419    }
3420    if (samp->min_img_filter == sampler->mag_img_filter) {
3421       samp->min_mag_equal = TRUE;
3422    }
3423 
3424    return (void *)samp;
3425 }
3426 
3427 
3428 compute_lambda_func
softpipe_get_lambda_func(const struct pipe_sampler_view * view,enum pipe_shader_type shader)3429 softpipe_get_lambda_func(const struct pipe_sampler_view *view,
3430                          enum pipe_shader_type shader)
3431 {
3432    if (shader != PIPE_SHADER_FRAGMENT)
3433       return compute_lambda_vert;
3434 
3435    switch (view->target) {
3436    case PIPE_BUFFER:
3437    case PIPE_TEXTURE_1D:
3438    case PIPE_TEXTURE_1D_ARRAY:
3439       return compute_lambda_1d;
3440    case PIPE_TEXTURE_2D:
3441    case PIPE_TEXTURE_2D_ARRAY:
3442    case PIPE_TEXTURE_RECT:
3443    case PIPE_TEXTURE_CUBE:
3444    case PIPE_TEXTURE_CUBE_ARRAY:
3445       return compute_lambda_2d;
3446    case PIPE_TEXTURE_3D:
3447       return compute_lambda_3d;
3448    default:
3449       assert(0);
3450       return compute_lambda_1d;
3451    }
3452 }
3453 
3454 
3455 struct pipe_sampler_view *
softpipe_create_sampler_view(struct pipe_context * pipe,struct pipe_resource * resource,const struct pipe_sampler_view * templ)3456 softpipe_create_sampler_view(struct pipe_context *pipe,
3457                              struct pipe_resource *resource,
3458                              const struct pipe_sampler_view *templ)
3459 {
3460    struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view);
3461    const struct softpipe_resource *spr = (struct softpipe_resource *)resource;
3462 
3463    if (sview) {
3464       struct pipe_sampler_view *view = &sview->base;
3465       *view = *templ;
3466       view->reference.count = 1;
3467       view->texture = NULL;
3468       pipe_resource_reference(&view->texture, resource);
3469       view->context = pipe;
3470 
3471 #ifdef DEBUG
3472      /*
3473       * This is possibly too lenient, but the primary reason is just
3474       * to catch state trackers which forget to initialize this, so
3475       * it only catches clearly impossible view targets.
3476       */
3477       if (view->target != resource->target) {
3478          if (view->target == PIPE_TEXTURE_1D)
3479             assert(resource->target == PIPE_TEXTURE_1D_ARRAY);
3480          else if (view->target == PIPE_TEXTURE_1D_ARRAY)
3481             assert(resource->target == PIPE_TEXTURE_1D);
3482          else if (view->target == PIPE_TEXTURE_2D)
3483             assert(resource->target == PIPE_TEXTURE_2D_ARRAY ||
3484                    resource->target == PIPE_TEXTURE_CUBE ||
3485                    resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3486          else if (view->target == PIPE_TEXTURE_2D_ARRAY)
3487             assert(resource->target == PIPE_TEXTURE_2D ||
3488                    resource->target == PIPE_TEXTURE_CUBE ||
3489                    resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3490          else if (view->target == PIPE_TEXTURE_CUBE)
3491             assert(resource->target == PIPE_TEXTURE_CUBE_ARRAY ||
3492                    resource->target == PIPE_TEXTURE_2D_ARRAY);
3493          else if (view->target == PIPE_TEXTURE_CUBE_ARRAY)
3494             assert(resource->target == PIPE_TEXTURE_CUBE ||
3495                    resource->target == PIPE_TEXTURE_2D_ARRAY);
3496          else
3497             assert(0);
3498       }
3499 #endif
3500 
3501       if (any_swizzle(view)) {
3502          sview->need_swizzle = TRUE;
3503       }
3504 
3505       sview->need_cube_convert = (view->target == PIPE_TEXTURE_CUBE ||
3506                                   view->target == PIPE_TEXTURE_CUBE_ARRAY);
3507       sview->pot2d = spr->pot &&
3508                      (view->target == PIPE_TEXTURE_2D ||
3509                       view->target == PIPE_TEXTURE_RECT);
3510 
3511       sview->xpot = util_logbase2( resource->width0 );
3512       sview->ypot = util_logbase2( resource->height0 );
3513    }
3514 
3515    return (struct pipe_sampler_view *) sview;
3516 }
3517 
3518 
3519 static inline const struct sp_tgsi_sampler *
sp_tgsi_sampler_cast_c(const struct tgsi_sampler * sampler)3520 sp_tgsi_sampler_cast_c(const struct tgsi_sampler *sampler)
3521 {
3522    return (const struct sp_tgsi_sampler *)sampler;
3523 }
3524 
3525 
3526 static void
sp_tgsi_get_dims(struct tgsi_sampler * tgsi_sampler,const unsigned sview_index,int level,int dims[4])3527 sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler,
3528                  const unsigned sview_index,
3529                  int level, int dims[4])
3530 {
3531    const struct sp_tgsi_sampler *sp_samp =
3532       sp_tgsi_sampler_cast_c(tgsi_sampler);
3533 
3534    assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3535    /* always have a view here but texture is NULL if no sampler view was set. */
3536    if (!sp_samp->sp_sview[sview_index].base.texture) {
3537       dims[0] = dims[1] = dims[2] = dims[3] = 0;
3538       return;
3539    }
3540    sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims);
3541 }
3542 
3543 
3544 static void
sp_tgsi_get_samples(struct tgsi_sampler * tgsi_sampler,const unsigned sview_index,const unsigned sampler_index,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const float lod[TGSI_QUAD_SIZE],float derivs[3][2][TGSI_QUAD_SIZE],const int8_t offset[3],enum tgsi_sampler_control control,float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])3545 sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler,
3546                     const unsigned sview_index,
3547                     const unsigned sampler_index,
3548                     const float s[TGSI_QUAD_SIZE],
3549                     const float t[TGSI_QUAD_SIZE],
3550                     const float p[TGSI_QUAD_SIZE],
3551                     const float c0[TGSI_QUAD_SIZE],
3552                     const float lod[TGSI_QUAD_SIZE],
3553                     float derivs[3][2][TGSI_QUAD_SIZE],
3554                     const int8_t offset[3],
3555                     enum tgsi_sampler_control control,
3556                     float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3557 {
3558    const struct sp_tgsi_sampler *sp_tgsi_samp =
3559       sp_tgsi_sampler_cast_c(tgsi_sampler);
3560    const struct sp_sampler_view *sp_sview;
3561    const struct sp_sampler *sp_samp;
3562    struct filter_args filt_args;
3563 
3564    assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3565    assert(sampler_index < PIPE_MAX_SAMPLERS);
3566    assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3567 
3568    sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3569    sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3570    /* always have a view here but texture is NULL if no sampler view was set. */
3571    if (!sp_sview->base.texture) {
3572       int i, j;
3573       for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3574          for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3575             rgba[j][i] = 0.0f;
3576          }
3577       }
3578       return;
3579    }
3580 
3581    filt_args.control = control;
3582    filt_args.offset = offset;
3583 
3584    if (sp_sview->need_cube_convert) {
3585       float cs[TGSI_QUAD_SIZE];
3586       float ct[TGSI_QUAD_SIZE];
3587       float cp[TGSI_QUAD_SIZE];
3588       uint faces[TGSI_QUAD_SIZE];
3589 
3590       convert_cube(sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, faces);
3591 
3592       filt_args.faces = faces;
3593       sample_mip(sp_sview, sp_samp, cs, ct, cp, c0, lod, &filt_args, rgba);
3594    } else {
3595       static const uint zero_faces[TGSI_QUAD_SIZE] = {0, 0, 0, 0};
3596 
3597       filt_args.faces = zero_faces;
3598       sample_mip(sp_sview, sp_samp, s, t, p, c0, lod, &filt_args, rgba);
3599    }
3600 }
3601 
3602 static void
sp_tgsi_query_lod(const struct tgsi_sampler * tgsi_sampler,const unsigned sview_index,const unsigned sampler_index,const float s[TGSI_QUAD_SIZE],const float t[TGSI_QUAD_SIZE],const float p[TGSI_QUAD_SIZE],const float c0[TGSI_QUAD_SIZE],const enum tgsi_sampler_control control,float mipmap[TGSI_QUAD_SIZE],float lod[TGSI_QUAD_SIZE])3603 sp_tgsi_query_lod(const struct tgsi_sampler *tgsi_sampler,
3604                   const unsigned sview_index,
3605                   const unsigned sampler_index,
3606                   const float s[TGSI_QUAD_SIZE],
3607                   const float t[TGSI_QUAD_SIZE],
3608                   const float p[TGSI_QUAD_SIZE],
3609                   const float c0[TGSI_QUAD_SIZE],
3610                   const enum tgsi_sampler_control control,
3611                   float mipmap[TGSI_QUAD_SIZE],
3612                   float lod[TGSI_QUAD_SIZE])
3613 {
3614    static const float lod_in[TGSI_QUAD_SIZE] = { 0.0, 0.0, 0.0, 0.0 };
3615 
3616    const struct sp_tgsi_sampler *sp_tgsi_samp =
3617       sp_tgsi_sampler_cast_c(tgsi_sampler);
3618    const struct sp_sampler_view *sp_sview;
3619    const struct sp_sampler *sp_samp;
3620    const struct sp_filter_funcs *funcs;
3621    int i;
3622 
3623    assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3624    assert(sampler_index < PIPE_MAX_SAMPLERS);
3625    assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3626 
3627    sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3628    sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3629    /* always have a view here but texture is NULL if no sampler view was
3630     * set. */
3631    if (!sp_sview->base.texture) {
3632       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3633          mipmap[i] = 0.0f;
3634          lod[i] = 0.0f;
3635       }
3636       return;
3637    }
3638 
3639    if (sp_sview->need_cube_convert) {
3640       float cs[TGSI_QUAD_SIZE];
3641       float ct[TGSI_QUAD_SIZE];
3642       float cp[TGSI_QUAD_SIZE];
3643       uint unused_faces[TGSI_QUAD_SIZE];
3644 
3645       convert_cube(sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, unused_faces);
3646       compute_lambda_lod_unclamped(sp_sview, sp_samp,
3647                                    cs, ct, cp, lod_in, control, lod);
3648    } else {
3649       compute_lambda_lod_unclamped(sp_sview, sp_samp,
3650                                    s, t, p, lod_in, control, lod);
3651    }
3652 
3653    get_filters(sp_sview, sp_samp, control, &funcs, NULL, NULL);
3654    funcs->relative_level(sp_sview, sp_samp, lod, mipmap);
3655 }
3656 
3657 static void
sp_tgsi_get_texel(struct tgsi_sampler * tgsi_sampler,const unsigned sview_index,const int i[TGSI_QUAD_SIZE],const int j[TGSI_QUAD_SIZE],const int k[TGSI_QUAD_SIZE],const int lod[TGSI_QUAD_SIZE],const int8_t offset[3],float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])3658 sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler,
3659                   const unsigned sview_index,
3660                   const int i[TGSI_QUAD_SIZE],
3661                   const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE],
3662                   const int lod[TGSI_QUAD_SIZE], const int8_t offset[3],
3663                   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3664 {
3665    const struct sp_tgsi_sampler *sp_samp =
3666       sp_tgsi_sampler_cast_c(tgsi_sampler);
3667 
3668    assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3669    /* always have a view here but texture is NULL if no sampler view was set. */
3670    if (!sp_samp->sp_sview[sview_index].base.texture) {
3671       int i, j;
3672       for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3673          for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3674             rgba[j][i] = 0.0f;
3675          }
3676       }
3677       return;
3678    }
3679    sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba);
3680 }
3681 
3682 
3683 struct sp_tgsi_sampler *
sp_create_tgsi_sampler(void)3684 sp_create_tgsi_sampler(void)
3685 {
3686    struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler);
3687    if (!samp)
3688       return NULL;
3689 
3690    samp->base.get_dims = sp_tgsi_get_dims;
3691    samp->base.get_samples = sp_tgsi_get_samples;
3692    samp->base.get_texel = sp_tgsi_get_texel;
3693    samp->base.query_lod = sp_tgsi_query_lod;
3694 
3695    return samp;
3696 }
3697