1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author Keith Whitwell <keithw@vmware.com>
32 * \author Brian Paul
33 */
34
35 #include "sp_context.h"
36 #include "sp_quad.h"
37 #include "sp_quad_pipe.h"
38 #include "sp_setup.h"
39 #include "sp_state.h"
40 #include "draw/draw_context.h"
41 #include "pipe/p_shader_tokens.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44
45
46 #define DEBUG_VERTS 0
47 #define DEBUG_FRAGS 0
48
49
50 /**
51 * Triangle edge info
52 */
53 struct edge {
54 float dx; /**< X(v1) - X(v0), used only during setup */
55 float dy; /**< Y(v1) - Y(v0), used only during setup */
56 float dxdy; /**< dx/dy */
57 float sx, sy; /**< first sample point coord */
58 int lines; /**< number of lines on this edge */
59 };
60
61
62 /**
63 * Max number of quads (2x2 pixel blocks) to process per batch.
64 * This can't be arbitrarily increased since we depend on some 32-bit
65 * bitmasks (two bits per quad).
66 */
67 #define MAX_QUADS 16
68
69
70 /**
71 * Triangle setup info.
72 * Also used for line drawing (taking some liberties).
73 */
74 struct setup_context {
75 struct softpipe_context *softpipe;
76
77 /* Vertices are just an array of floats making up each attribute in
78 * turn. Currently fixed at 4 floats, but should change in time.
79 * Codegen will help cope with this.
80 */
81 const float (*vmax)[4];
82 const float (*vmid)[4];
83 const float (*vmin)[4];
84 const float (*vprovoke)[4];
85
86 struct edge ebot;
87 struct edge etop;
88 struct edge emaj;
89
90 float oneoverarea;
91 int facing;
92
93 float pixel_offset;
94 unsigned max_layer;
95
96 struct quad_header quad[MAX_QUADS];
97 struct quad_header *quad_ptrs[MAX_QUADS];
98 unsigned count;
99
100 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
101 struct tgsi_interp_coef posCoef; /* For Z, W */
102
103 struct {
104 int left[2]; /**< [0] = row0, [1] = row1 */
105 int right[2];
106 int y;
107 } span;
108
109 #if DEBUG_FRAGS
110 uint numFragsEmitted; /**< per primitive */
111 uint numFragsWritten; /**< per primitive */
112 #endif
113
114 unsigned cull_face; /* which faces cull */
115 unsigned nr_vertex_attrs;
116 };
117
118
119
120
121
122
123
124 /**
125 * Clip setup->quad against the scissor/surface bounds.
126 */
127 static inline void
quad_clip(struct setup_context * setup,struct quad_header * quad)128 quad_clip(struct setup_context *setup, struct quad_header *quad)
129 {
130 unsigned viewport_index = quad[0].input.viewport_index;
131 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
132 const int minx = (int) cliprect->minx;
133 const int maxx = (int) cliprect->maxx;
134 const int miny = (int) cliprect->miny;
135 const int maxy = (int) cliprect->maxy;
136
137 if (quad->input.x0 >= maxx ||
138 quad->input.y0 >= maxy ||
139 quad->input.x0 + 1 < minx ||
140 quad->input.y0 + 1 < miny) {
141 /* totally clipped */
142 quad->inout.mask = 0x0;
143 return;
144 }
145 if (quad->input.x0 < minx)
146 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
147 if (quad->input.y0 < miny)
148 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
149 if (quad->input.x0 == maxx - 1)
150 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
151 if (quad->input.y0 == maxy - 1)
152 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
153 }
154
155
156 /**
157 * Emit a quad (pass to next stage) with clipping.
158 */
159 static inline void
clip_emit_quad(struct setup_context * setup,struct quad_header * quad)160 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
161 {
162 quad_clip(setup, quad);
163
164 if (quad->inout.mask) {
165 struct softpipe_context *sp = setup->softpipe;
166
167 #if DEBUG_FRAGS
168 setup->numFragsEmitted += util_bitcount(quad->inout.mask);
169 #endif
170
171 sp->quad.first->run( sp->quad.first, &quad, 1 );
172 }
173 }
174
175
176
177 /**
178 * Given an X or Y coordinate, return the block/quad coordinate that it
179 * belongs to.
180 */
181 static inline int
block(int x)182 block(int x)
183 {
184 return x & ~(2-1);
185 }
186
187
188 static inline int
block_x(int x)189 block_x(int x)
190 {
191 return x & ~(16-1);
192 }
193
194
195 /**
196 * Render a horizontal span of quads
197 */
198 static void
flush_spans(struct setup_context * setup)199 flush_spans(struct setup_context *setup)
200 {
201 const int step = MAX_QUADS;
202 const int xleft0 = setup->span.left[0];
203 const int xleft1 = setup->span.left[1];
204 const int xright0 = setup->span.right[0];
205 const int xright1 = setup->span.right[1];
206 struct quad_stage *pipe = setup->softpipe->quad.first;
207
208 const int minleft = block_x(MIN2(xleft0, xleft1));
209 const int maxright = MAX2(xright0, xright1);
210 int x;
211
212 /* process quads in horizontal chunks of 16 */
213 for (x = minleft; x < maxright; x += step) {
214 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
215 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
216 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
217 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
218 unsigned lx = x;
219 unsigned q = 0;
220
221 unsigned skipmask_left0 = (1U << skip_left0) - 1U;
222 unsigned skipmask_left1 = (1U << skip_left1) - 1U;
223
224 /* These calculations fail when step == 32 and skip_right == 0.
225 */
226 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
227 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
228
229 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
230 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
231
232 if (mask0 | mask1) {
233 do {
234 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
235 if (quadmask) {
236 setup->quad[q].input.x0 = lx;
237 setup->quad[q].input.y0 = setup->span.y;
238 setup->quad[q].input.facing = setup->facing;
239 setup->quad[q].inout.mask = quadmask;
240 setup->quad_ptrs[q] = &setup->quad[q];
241 q++;
242 #if DEBUG_FRAGS
243 setup->numFragsEmitted += util_bitcount(quadmask);
244 #endif
245 }
246 mask0 >>= 2;
247 mask1 >>= 2;
248 lx += 2;
249 } while (mask0 | mask1);
250
251 pipe->run( pipe, setup->quad_ptrs, q );
252 }
253 }
254
255
256 setup->span.y = 0;
257 setup->span.right[0] = 0;
258 setup->span.right[1] = 0;
259 setup->span.left[0] = 1000000; /* greater than right[0] */
260 setup->span.left[1] = 1000000; /* greater than right[1] */
261 }
262
263
264 #if DEBUG_VERTS
265 static void
print_vertex(const struct setup_context * setup,const float (* v)[4])266 print_vertex(const struct setup_context *setup,
267 const float (*v)[4])
268 {
269 int i;
270 debug_printf(" Vertex: (%p)\n", (void *) v);
271 for (i = 0; i < setup->nr_vertex_attrs; i++) {
272 debug_printf(" %d: %f %f %f %f\n", i,
273 v[i][0], v[i][1], v[i][2], v[i][3]);
274 if (util_is_inf_or_nan(v[i][0])) {
275 debug_printf(" NaN!\n");
276 }
277 }
278 }
279 #endif
280
281
282 /**
283 * Sort the vertices from top to bottom order, setting up the triangle
284 * edge fields (ebot, emaj, etop).
285 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
286 */
287 static boolean
setup_sort_vertices(struct setup_context * setup,float det,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])288 setup_sort_vertices(struct setup_context *setup,
289 float det,
290 const float (*v0)[4],
291 const float (*v1)[4],
292 const float (*v2)[4])
293 {
294 if (setup->softpipe->rasterizer->flatshade_first)
295 setup->vprovoke = v0;
296 else
297 setup->vprovoke = v2;
298
299 /* determine bottom to top order of vertices */
300 {
301 float y0 = v0[0][1];
302 float y1 = v1[0][1];
303 float y2 = v2[0][1];
304 if (y0 <= y1) {
305 if (y1 <= y2) {
306 /* y0<=y1<=y2 */
307 setup->vmin = v0;
308 setup->vmid = v1;
309 setup->vmax = v2;
310 }
311 else if (y2 <= y0) {
312 /* y2<=y0<=y1 */
313 setup->vmin = v2;
314 setup->vmid = v0;
315 setup->vmax = v1;
316 }
317 else {
318 /* y0<=y2<=y1 */
319 setup->vmin = v0;
320 setup->vmid = v2;
321 setup->vmax = v1;
322 }
323 }
324 else {
325 if (y0 <= y2) {
326 /* y1<=y0<=y2 */
327 setup->vmin = v1;
328 setup->vmid = v0;
329 setup->vmax = v2;
330 }
331 else if (y2 <= y1) {
332 /* y2<=y1<=y0 */
333 setup->vmin = v2;
334 setup->vmid = v1;
335 setup->vmax = v0;
336 }
337 else {
338 /* y1<=y2<=y0 */
339 setup->vmin = v1;
340 setup->vmid = v2;
341 setup->vmax = v0;
342 }
343 }
344 }
345
346 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
347 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
348 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
349 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
350 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
351 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
352
353 /*
354 * Compute triangle's area. Use 1/area to compute partial
355 * derivatives of attributes later.
356 *
357 * The area will be the same as prim->det, but the sign may be
358 * different depending on how the vertices get sorted above.
359 *
360 * To determine whether the primitive is front or back facing we
361 * use the prim->det value because its sign is correct.
362 */
363 {
364 const float area = (setup->emaj.dx * setup->ebot.dy -
365 setup->ebot.dx * setup->emaj.dy);
366
367 setup->oneoverarea = 1.0f / area;
368
369 /*
370 debug_printf("%s one-over-area %f area %f det %f\n",
371 __FUNCTION__, setup->oneoverarea, area, det );
372 */
373 if (util_is_inf_or_nan(setup->oneoverarea))
374 return FALSE;
375 }
376
377 /* We need to know if this is a front or back-facing triangle for:
378 * - the GLSL gl_FrontFacing fragment attribute (bool)
379 * - two-sided stencil test
380 * 0 = front-facing, 1 = back-facing
381 */
382 setup->facing =
383 ((det < 0.0) ^
384 (setup->softpipe->rasterizer->front_ccw));
385
386 {
387 unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
388
389 if (face & setup->cull_face)
390 return FALSE;
391 }
392
393
394 /* Prepare pixel offset for rasterisation:
395 * - pixel center (0.5, 0.5) for GL, or
396 * - assume (0.0, 0.0) for other APIs.
397 */
398 if (setup->softpipe->rasterizer->half_pixel_center) {
399 setup->pixel_offset = 0.5f;
400 } else {
401 setup->pixel_offset = 0.0f;
402 }
403
404 return TRUE;
405 }
406
407
408 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
409 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
410 * Some combinations of coordinates produce invalid results,
411 * but this behaviour is acceptable.
412 */
413 static void
tri_apply_cylindrical_wrap(float v0,float v1,float v2,uint cylindrical_wrap,float output[3])414 tri_apply_cylindrical_wrap(float v0,
415 float v1,
416 float v2,
417 uint cylindrical_wrap,
418 float output[3])
419 {
420 if (cylindrical_wrap) {
421 float delta;
422
423 delta = v1 - v0;
424 if (delta > 0.5f) {
425 v0 += 1.0f;
426 }
427 else if (delta < -0.5f) {
428 v1 += 1.0f;
429 }
430
431 delta = v2 - v1;
432 if (delta > 0.5f) {
433 v1 += 1.0f;
434 }
435 else if (delta < -0.5f) {
436 v2 += 1.0f;
437 }
438
439 delta = v0 - v2;
440 if (delta > 0.5f) {
441 v2 += 1.0f;
442 }
443 else if (delta < -0.5f) {
444 v0 += 1.0f;
445 }
446 }
447
448 output[0] = v0;
449 output[1] = v1;
450 output[2] = v2;
451 }
452
453
454 /**
455 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
456 * The value value comes from vertex[slot][i].
457 * The result will be put into setup->coef[slot].a0[i].
458 * \param slot which attribute slot
459 * \param i which component of the slot (0..3)
460 */
461 static void
const_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint vertSlot,uint i)462 const_coeff(struct setup_context *setup,
463 struct tgsi_interp_coef *coef,
464 uint vertSlot, uint i)
465 {
466 assert(i <= 3);
467
468 coef->dadx[i] = 0;
469 coef->dady[i] = 0;
470
471 /* need provoking vertex info!
472 */
473 coef->a0[i] = setup->vprovoke[vertSlot][i];
474 }
475
476
477 /**
478 * Compute a0, dadx and dady for a linearly interpolated coefficient,
479 * for a triangle.
480 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
481 */
482 static void
tri_linear_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[3])483 tri_linear_coeff(struct setup_context *setup,
484 struct tgsi_interp_coef *coef,
485 uint i,
486 const float v[3])
487 {
488 float botda = v[1] - v[0];
489 float majda = v[2] - v[0];
490 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
491 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
492 float dadx = a * setup->oneoverarea;
493 float dady = b * setup->oneoverarea;
494
495 assert(i <= 3);
496
497 coef->dadx[i] = dadx;
498 coef->dady[i] = dady;
499
500 /* calculate a0 as the value which would be sampled for the
501 * fragment at (0,0), taking into account that we want to sample at
502 * pixel centers, in other words (pixel_offset, pixel_offset).
503 *
504 * this is neat but unfortunately not a good way to do things for
505 * triangles with very large values of dadx or dady as it will
506 * result in the subtraction and re-addition from a0 of a very
507 * large number, which means we'll end up loosing a lot of the
508 * fractional bits and precision from a0. the way to fix this is
509 * to define a0 as the sample at a pixel center somewhere near vmin
510 * instead - i'll switch to this later.
511 */
512 coef->a0[i] = (v[0] -
513 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
514 dady * (setup->vmin[0][1] - setup->pixel_offset)));
515 }
516
517
518 /**
519 * Compute a0, dadx and dady for a perspective-corrected interpolant,
520 * for a triangle.
521 * We basically multiply the vertex value by 1/w before computing
522 * the plane coefficients (a0, dadx, dady).
523 * Later, when we compute the value at a particular fragment position we'll
524 * divide the interpolated value by the interpolated W at that fragment.
525 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
526 */
527 static void
tri_persp_coeff(struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[3])528 tri_persp_coeff(struct setup_context *setup,
529 struct tgsi_interp_coef *coef,
530 uint i,
531 const float v[3])
532 {
533 /* premultiply by 1/w (v[0][3] is always W):
534 */
535 float mina = v[0] * setup->vmin[0][3];
536 float mida = v[1] * setup->vmid[0][3];
537 float maxa = v[2] * setup->vmax[0][3];
538 float botda = mida - mina;
539 float majda = maxa - mina;
540 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
541 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
542 float dadx = a * setup->oneoverarea;
543 float dady = b * setup->oneoverarea;
544
545 assert(i <= 3);
546
547 coef->dadx[i] = dadx;
548 coef->dady[i] = dady;
549 coef->a0[i] = (mina -
550 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
551 dady * (setup->vmin[0][1] - setup->pixel_offset)));
552 }
553
554
555 /**
556 * Special coefficient setup for gl_FragCoord.
557 * X and Y are trivial, though Y may have to be inverted for OpenGL.
558 * Z and W are copied from posCoef which should have already been computed.
559 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
560 */
561 static void
setup_fragcoord_coeff(struct setup_context * setup,uint slot)562 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
563 {
564 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
565 boolean origin_lower_left =
566 fsInfo->properties[TGSI_PROPERTY_FS_COORD_ORIGIN];
567 boolean pixel_center_integer =
568 fsInfo->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
569
570 /*X*/
571 setup->coef[slot].a0[0] = pixel_center_integer ? 0.0f : 0.5f;
572 setup->coef[slot].dadx[0] = 1.0f;
573 setup->coef[slot].dady[0] = 0.0f;
574 /*Y*/
575 setup->coef[slot].a0[1] =
576 (origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
577 + (pixel_center_integer ? 0.0f : 0.5f);
578 setup->coef[slot].dadx[1] = 0.0f;
579 setup->coef[slot].dady[1] = origin_lower_left ? -1.0f : 1.0f;
580 /*Z*/
581 setup->coef[slot].a0[2] = setup->posCoef.a0[2];
582 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
583 setup->coef[slot].dady[2] = setup->posCoef.dady[2];
584 /*W*/
585 setup->coef[slot].a0[3] = setup->posCoef.a0[3];
586 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
587 setup->coef[slot].dady[3] = setup->posCoef.dady[3];
588 }
589
590
591
592 /**
593 * Compute the setup->coef[] array dadx, dady, a0 values.
594 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
595 */
596 static void
setup_tri_coefficients(struct setup_context * setup)597 setup_tri_coefficients(struct setup_context *setup)
598 {
599 struct softpipe_context *softpipe = setup->softpipe;
600 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
601 const struct sp_setup_info *sinfo = &softpipe->setup_info;
602 uint fragSlot;
603 float v[3];
604
605 assert(sinfo->valid);
606
607 /* z and w are done by linear interpolation:
608 */
609 v[0] = setup->vmin[0][2];
610 v[1] = setup->vmid[0][2];
611 v[2] = setup->vmax[0][2];
612 tri_linear_coeff(setup, &setup->posCoef, 2, v);
613
614 v[0] = setup->vmin[0][3];
615 v[1] = setup->vmid[0][3];
616 v[2] = setup->vmax[0][3];
617 tri_linear_coeff(setup, &setup->posCoef, 3, v);
618
619 /* setup interpolation for all the remaining attributes:
620 */
621 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
622 const uint vertSlot = sinfo->attrib[fragSlot].src_index;
623 uint j;
624
625 switch (sinfo->attrib[fragSlot].interp) {
626 case SP_INTERP_CONSTANT:
627 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
628 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
629 }
630 break;
631 case SP_INTERP_LINEAR:
632 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
633 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
634 setup->vmid[vertSlot][j],
635 setup->vmax[vertSlot][j],
636 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
637 v);
638 tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
639 }
640 break;
641 case SP_INTERP_PERSPECTIVE:
642 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
643 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
644 setup->vmid[vertSlot][j],
645 setup->vmax[vertSlot][j],
646 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
647 v);
648 tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
649 }
650 break;
651 case SP_INTERP_POS:
652 setup_fragcoord_coeff(setup, fragSlot);
653 break;
654 default:
655 assert(0);
656 }
657
658 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
659 /* convert 0 to 1.0 and 1 to -1.0 */
660 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
661 setup->coef[fragSlot].dadx[0] = 0.0;
662 setup->coef[fragSlot].dady[0] = 0.0;
663 }
664
665 if (0) {
666 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
667 debug_printf("attr[%d].%c: a0:%f dx:%f dy:%f\n",
668 fragSlot, "xyzw"[j],
669 setup->coef[fragSlot].a0[j],
670 setup->coef[fragSlot].dadx[j],
671 setup->coef[fragSlot].dady[j]);
672 }
673 }
674 }
675 }
676
677
678 static void
setup_tri_edges(struct setup_context * setup)679 setup_tri_edges(struct setup_context *setup)
680 {
681 float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
682 float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
683
684 float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
685 float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
686 float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
687
688 setup->emaj.sy = ceilf(vmin_y);
689 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
690 setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
691 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
692
693 setup->etop.sy = ceilf(vmid_y);
694 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
695 setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
696 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
697
698 setup->ebot.sy = ceilf(vmin_y);
699 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
700 setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
701 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
702 }
703
704
705 /**
706 * Render the upper or lower half of a triangle.
707 * Scissoring/cliprect is applied here too.
708 */
709 static void
subtriangle(struct setup_context * setup,struct edge * eleft,struct edge * eright,int lines,unsigned viewport_index)710 subtriangle(struct setup_context *setup,
711 struct edge *eleft,
712 struct edge *eright,
713 int lines,
714 unsigned viewport_index)
715 {
716 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
717 const int minx = (int) cliprect->minx;
718 const int maxx = (int) cliprect->maxx;
719 const int miny = (int) cliprect->miny;
720 const int maxy = (int) cliprect->maxy;
721 int y, start_y, finish_y;
722 int sy = (int)eleft->sy;
723
724 assert((int)eleft->sy == (int) eright->sy);
725 assert(lines >= 0);
726
727 /* clip top/bottom */
728 start_y = sy;
729 if (start_y < miny)
730 start_y = miny;
731
732 finish_y = sy + lines;
733 if (finish_y > maxy)
734 finish_y = maxy;
735
736 start_y -= sy;
737 finish_y -= sy;
738
739 /*
740 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
741 */
742
743 for (y = start_y; y < finish_y; y++) {
744
745 /* avoid accumulating adds as floats don't have the precision to
746 * accurately iterate large triangle edges that way. luckily we
747 * can just multiply these days.
748 *
749 * this is all drowned out by the attribute interpolation anyway.
750 */
751 int left = (int)(eleft->sx + y * eleft->dxdy);
752 int right = (int)(eright->sx + y * eright->dxdy);
753
754 /* clip left/right */
755 if (left < minx)
756 left = minx;
757 if (right > maxx)
758 right = maxx;
759
760 if (left < right) {
761 int _y = sy + y;
762 if (block(_y) != setup->span.y) {
763 flush_spans(setup);
764 setup->span.y = block(_y);
765 }
766
767 setup->span.left[_y&1] = left;
768 setup->span.right[_y&1] = right;
769 }
770 }
771
772
773 /* save the values so that emaj can be restarted:
774 */
775 eleft->sx += lines * eleft->dxdy;
776 eright->sx += lines * eright->dxdy;
777 eleft->sy += lines;
778 eright->sy += lines;
779 }
780
781
782 /**
783 * Recalculate prim's determinant. This is needed as we don't have
784 * get this information through the vbuf_render interface & we must
785 * calculate it here.
786 */
787 static float
calc_det(const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])788 calc_det(const float (*v0)[4],
789 const float (*v1)[4],
790 const float (*v2)[4])
791 {
792 /* edge vectors e = v0 - v2, f = v1 - v2 */
793 const float ex = v0[0][0] - v2[0][0];
794 const float ey = v0[0][1] - v2[0][1];
795 const float fx = v1[0][0] - v2[0][0];
796 const float fy = v1[0][1] - v2[0][1];
797
798 /* det = cross(e,f).z */
799 return ex * fy - ey * fx;
800 }
801
802
803 /**
804 * Do setup for triangle rasterization, then render the triangle.
805 */
806 void
sp_setup_tri(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])807 sp_setup_tri(struct setup_context *setup,
808 const float (*v0)[4],
809 const float (*v1)[4],
810 const float (*v2)[4])
811 {
812 float det;
813 uint layer = 0;
814 unsigned viewport_index = 0;
815 #if DEBUG_VERTS
816 debug_printf("Setup triangle:\n");
817 print_vertex(setup, v0);
818 print_vertex(setup, v1);
819 print_vertex(setup, v2);
820 #endif
821
822 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
823 return;
824
825 det = calc_det(v0, v1, v2);
826 /*
827 debug_printf("%s\n", __FUNCTION__ );
828 */
829
830 #if DEBUG_FRAGS
831 setup->numFragsEmitted = 0;
832 setup->numFragsWritten = 0;
833 #endif
834
835 if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
836 return;
837
838 setup_tri_coefficients( setup );
839 setup_tri_edges( setup );
840
841 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
842
843 setup->span.y = 0;
844 setup->span.right[0] = 0;
845 setup->span.right[1] = 0;
846 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
847 if (setup->softpipe->layer_slot > 0) {
848 layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
849 layer = MIN2(layer, setup->max_layer);
850 }
851 setup->quad[0].input.layer = layer;
852
853 if (setup->softpipe->viewport_index_slot > 0) {
854 unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
855 viewport_index = sp_clamp_viewport_idx(*udata);
856 }
857 setup->quad[0].input.viewport_index = viewport_index;
858
859 /* init_constant_attribs( setup ); */
860
861 if (setup->oneoverarea < 0.0) {
862 /* emaj on left:
863 */
864 subtriangle(setup, &setup->emaj, &setup->ebot, setup->ebot.lines, viewport_index);
865 subtriangle(setup, &setup->emaj, &setup->etop, setup->etop.lines, viewport_index);
866 }
867 else {
868 /* emaj on right:
869 */
870 subtriangle(setup, &setup->ebot, &setup->emaj, setup->ebot.lines, viewport_index);
871 subtriangle(setup, &setup->etop, &setup->emaj, setup->etop.lines, viewport_index);
872 }
873
874 flush_spans( setup );
875
876 if (setup->softpipe->active_statistics_queries) {
877 setup->softpipe->pipeline_statistics.c_primitives++;
878 }
879
880 #if DEBUG_FRAGS
881 printf("Tri: %u frags emitted, %u written\n",
882 setup->numFragsEmitted,
883 setup->numFragsWritten);
884 #endif
885 }
886
887
888 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
889 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
890 */
891 static void
line_apply_cylindrical_wrap(float v0,float v1,uint cylindrical_wrap,float output[2])892 line_apply_cylindrical_wrap(float v0,
893 float v1,
894 uint cylindrical_wrap,
895 float output[2])
896 {
897 if (cylindrical_wrap) {
898 float delta;
899
900 delta = v1 - v0;
901 if (delta > 0.5f) {
902 v0 += 1.0f;
903 }
904 else if (delta < -0.5f) {
905 v1 += 1.0f;
906 }
907 }
908
909 output[0] = v0;
910 output[1] = v1;
911 }
912
913
914 /**
915 * Compute a0, dadx and dady for a linearly interpolated coefficient,
916 * for a line.
917 * v[0] and v[1] are vmin and vmax, respectively.
918 */
919 static void
line_linear_coeff(const struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[2])920 line_linear_coeff(const struct setup_context *setup,
921 struct tgsi_interp_coef *coef,
922 uint i,
923 const float v[2])
924 {
925 const float da = v[1] - v[0];
926 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
927 const float dady = da * setup->emaj.dy * setup->oneoverarea;
928 coef->dadx[i] = dadx;
929 coef->dady[i] = dady;
930 coef->a0[i] = (v[0] -
931 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
932 dady * (setup->vmin[0][1] - setup->pixel_offset)));
933 }
934
935
936 /**
937 * Compute a0, dadx and dady for a perspective-corrected interpolant,
938 * for a line.
939 * v[0] and v[1] are vmin and vmax, respectively.
940 */
941 static void
line_persp_coeff(const struct setup_context * setup,struct tgsi_interp_coef * coef,uint i,const float v[2])942 line_persp_coeff(const struct setup_context *setup,
943 struct tgsi_interp_coef *coef,
944 uint i,
945 const float v[2])
946 {
947 const float a0 = v[0] * setup->vmin[0][3];
948 const float a1 = v[1] * setup->vmax[0][3];
949 const float da = a1 - a0;
950 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
951 const float dady = da * setup->emaj.dy * setup->oneoverarea;
952 coef->dadx[i] = dadx;
953 coef->dady[i] = dady;
954 coef->a0[i] = (a0 -
955 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
956 dady * (setup->vmin[0][1] - setup->pixel_offset)));
957 }
958
959
960 /**
961 * Compute the setup->coef[] array dadx, dady, a0 values.
962 * Must be called after setup->vmin,vmax are initialized.
963 */
964 static boolean
setup_line_coefficients(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4])965 setup_line_coefficients(struct setup_context *setup,
966 const float (*v0)[4],
967 const float (*v1)[4])
968 {
969 struct softpipe_context *softpipe = setup->softpipe;
970 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
971 const struct sp_setup_info *sinfo = &softpipe->setup_info;
972 uint fragSlot;
973 float area;
974 float v[2];
975
976 assert(sinfo->valid);
977
978 /* use setup->vmin, vmax to point to vertices */
979 if (softpipe->rasterizer->flatshade_first)
980 setup->vprovoke = v0;
981 else
982 setup->vprovoke = v1;
983 setup->vmin = v0;
984 setup->vmax = v1;
985
986 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
987 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
988
989 /* NOTE: this is not really area but something proportional to it */
990 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
991 if (area == 0.0f || util_is_inf_or_nan(area))
992 return FALSE;
993 setup->oneoverarea = 1.0f / area;
994
995 /* z and w are done by linear interpolation:
996 */
997 v[0] = setup->vmin[0][2];
998 v[1] = setup->vmax[0][2];
999 line_linear_coeff(setup, &setup->posCoef, 2, v);
1000
1001 v[0] = setup->vmin[0][3];
1002 v[1] = setup->vmax[0][3];
1003 line_linear_coeff(setup, &setup->posCoef, 3, v);
1004
1005 /* setup interpolation for all the remaining attributes:
1006 */
1007 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1008 const uint vertSlot = sinfo->attrib[fragSlot].src_index;
1009 uint j;
1010
1011 switch (sinfo->attrib[fragSlot].interp) {
1012 case SP_INTERP_CONSTANT:
1013 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1014 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1015 break;
1016 case SP_INTERP_LINEAR:
1017 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1018 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1019 setup->vmax[vertSlot][j],
1020 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1021 v);
1022 line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
1023 }
1024 break;
1025 case SP_INTERP_PERSPECTIVE:
1026 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1027 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1028 setup->vmax[vertSlot][j],
1029 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1030 v);
1031 line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
1032 }
1033 break;
1034 case SP_INTERP_POS:
1035 setup_fragcoord_coeff(setup, fragSlot);
1036 break;
1037 default:
1038 assert(0);
1039 }
1040
1041 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1042 /* convert 0 to 1.0 and 1 to -1.0 */
1043 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1044 setup->coef[fragSlot].dadx[0] = 0.0;
1045 setup->coef[fragSlot].dady[0] = 0.0;
1046 }
1047 }
1048 return TRUE;
1049 }
1050
1051
1052 /**
1053 * Plot a pixel in a line segment.
1054 */
1055 static inline void
plot(struct setup_context * setup,int x,int y)1056 plot(struct setup_context *setup, int x, int y)
1057 {
1058 const int iy = y & 1;
1059 const int ix = x & 1;
1060 const int quadX = x - ix;
1061 const int quadY = y - iy;
1062 const int mask = (1 << ix) << (2 * iy);
1063
1064 if (quadX != setup->quad[0].input.x0 ||
1065 quadY != setup->quad[0].input.y0)
1066 {
1067 /* flush prev quad, start new quad */
1068
1069 if (setup->quad[0].input.x0 != -1)
1070 clip_emit_quad(setup, &setup->quad[0]);
1071
1072 setup->quad[0].input.x0 = quadX;
1073 setup->quad[0].input.y0 = quadY;
1074 setup->quad[0].inout.mask = 0x0;
1075 }
1076
1077 setup->quad[0].inout.mask |= mask;
1078 }
1079
1080
1081 /**
1082 * Do setup for line rasterization, then render the line.
1083 * Single-pixel width, no stipple, etc. We rely on the 'draw' module
1084 * to handle stippling and wide lines.
1085 */
1086 void
sp_setup_line(struct setup_context * setup,const float (* v0)[4],const float (* v1)[4])1087 sp_setup_line(struct setup_context *setup,
1088 const float (*v0)[4],
1089 const float (*v1)[4])
1090 {
1091 int x0 = (int) v0[0][0];
1092 int x1 = (int) v1[0][0];
1093 int y0 = (int) v0[0][1];
1094 int y1 = (int) v1[0][1];
1095 int dx = x1 - x0;
1096 int dy = y1 - y0;
1097 int xstep, ystep;
1098 uint layer = 0;
1099 unsigned viewport_index = 0;
1100
1101 #if DEBUG_VERTS
1102 debug_printf("Setup line:\n");
1103 print_vertex(setup, v0);
1104 print_vertex(setup, v1);
1105 #endif
1106
1107 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1108 return;
1109
1110 if (dx == 0 && dy == 0)
1111 return;
1112
1113 if (!setup_line_coefficients(setup, v0, v1))
1114 return;
1115
1116 assert(v0[0][0] < 1.0e9);
1117 assert(v0[0][1] < 1.0e9);
1118 assert(v1[0][0] < 1.0e9);
1119 assert(v1[0][1] < 1.0e9);
1120
1121 if (dx < 0) {
1122 dx = -dx; /* make positive */
1123 xstep = -1;
1124 }
1125 else {
1126 xstep = 1;
1127 }
1128
1129 if (dy < 0) {
1130 dy = -dy; /* make positive */
1131 ystep = -1;
1132 }
1133 else {
1134 ystep = 1;
1135 }
1136
1137 assert(dx >= 0);
1138 assert(dy >= 0);
1139 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1140
1141 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1142 setup->quad[0].inout.mask = 0x0;
1143 if (setup->softpipe->layer_slot > 0) {
1144 layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
1145 layer = MIN2(layer, setup->max_layer);
1146 }
1147 setup->quad[0].input.layer = layer;
1148
1149 if (setup->softpipe->viewport_index_slot > 0) {
1150 unsigned *udata = (unsigned*)setup->vprovoke[setup->softpipe->viewport_index_slot];
1151 viewport_index = sp_clamp_viewport_idx(*udata);
1152 }
1153 setup->quad[0].input.viewport_index = viewport_index;
1154
1155 /* XXX temporary: set coverage to 1.0 so the line appears
1156 * if AA mode happens to be enabled.
1157 */
1158 setup->quad[0].input.coverage[0] =
1159 setup->quad[0].input.coverage[1] =
1160 setup->quad[0].input.coverage[2] =
1161 setup->quad[0].input.coverage[3] = 1.0;
1162
1163 if (dx > dy) {
1164 /*** X-major line ***/
1165 int i;
1166 const int errorInc = dy + dy;
1167 int error = errorInc - dx;
1168 const int errorDec = error - dx;
1169
1170 for (i = 0; i < dx; i++) {
1171 plot(setup, x0, y0);
1172
1173 x0 += xstep;
1174 if (error < 0) {
1175 error += errorInc;
1176 }
1177 else {
1178 error += errorDec;
1179 y0 += ystep;
1180 }
1181 }
1182 }
1183 else {
1184 /*** Y-major line ***/
1185 int i;
1186 const int errorInc = dx + dx;
1187 int error = errorInc - dy;
1188 const int errorDec = error - dy;
1189
1190 for (i = 0; i < dy; i++) {
1191 plot(setup, x0, y0);
1192
1193 y0 += ystep;
1194 if (error < 0) {
1195 error += errorInc;
1196 }
1197 else {
1198 error += errorDec;
1199 x0 += xstep;
1200 }
1201 }
1202 }
1203
1204 /* draw final quad */
1205 if (setup->quad[0].inout.mask) {
1206 clip_emit_quad(setup, &setup->quad[0]);
1207 }
1208 }
1209
1210
1211 static void
point_persp_coeff(const struct setup_context * setup,const float (* vert)[4],struct tgsi_interp_coef * coef,uint vertSlot,uint i)1212 point_persp_coeff(const struct setup_context *setup,
1213 const float (*vert)[4],
1214 struct tgsi_interp_coef *coef,
1215 uint vertSlot, uint i)
1216 {
1217 assert(i <= 3);
1218 coef->dadx[i] = 0.0F;
1219 coef->dady[i] = 0.0F;
1220 coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1221 }
1222
1223
1224 /**
1225 * Do setup for point rasterization, then render the point.
1226 * Round or square points...
1227 * XXX could optimize a lot for 1-pixel points.
1228 */
1229 void
sp_setup_point(struct setup_context * setup,const float (* v0)[4])1230 sp_setup_point(struct setup_context *setup,
1231 const float (*v0)[4])
1232 {
1233 struct softpipe_context *softpipe = setup->softpipe;
1234 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1235 const int sizeAttr = setup->softpipe->psize_slot;
1236 const float size
1237 = sizeAttr > 0 ? v0[sizeAttr][0]
1238 : setup->softpipe->rasterizer->point_size;
1239 const float halfSize = 0.5F * size;
1240 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1241 const float x = v0[0][0]; /* Note: data[0] is always position */
1242 const float y = v0[0][1];
1243 const struct sp_setup_info *sinfo = &softpipe->setup_info;
1244 uint fragSlot;
1245 uint layer = 0;
1246 unsigned viewport_index = 0;
1247 #if DEBUG_VERTS
1248 debug_printf("Setup point:\n");
1249 print_vertex(setup, v0);
1250 #endif
1251
1252 assert(sinfo->valid);
1253
1254 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1255 return;
1256
1257 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1258
1259 if (setup->softpipe->layer_slot > 0) {
1260 layer = *(unsigned *)v0[setup->softpipe->layer_slot];
1261 layer = MIN2(layer, setup->max_layer);
1262 }
1263 setup->quad[0].input.layer = layer;
1264
1265 if (setup->softpipe->viewport_index_slot > 0) {
1266 unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
1267 viewport_index = sp_clamp_viewport_idx(*udata);
1268 }
1269 setup->quad[0].input.viewport_index = viewport_index;
1270
1271 /* For points, all interpolants are constant-valued.
1272 * However, for point sprites, we'll need to setup texcoords appropriately.
1273 * XXX: which coefficients are the texcoords???
1274 * We may do point sprites as textured quads...
1275 *
1276 * KW: We don't know which coefficients are texcoords - ultimately
1277 * the choice of what interpolation mode to use for each attribute
1278 * should be determined by the fragment program, using
1279 * per-attribute declaration statements that include interpolation
1280 * mode as a parameter. So either the fragment program will have
1281 * to be adjusted for pointsprite vs normal point behaviour, or
1282 * otherwise a special interpolation mode will have to be defined
1283 * which matches the required behaviour for point sprites. But -
1284 * the latter is not a feature of normal hardware, and as such
1285 * probably should be ruled out on that basis.
1286 */
1287 setup->vprovoke = v0;
1288
1289 /* setup Z, W */
1290 const_coeff(setup, &setup->posCoef, 0, 2);
1291 const_coeff(setup, &setup->posCoef, 0, 3);
1292
1293 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1294 const uint vertSlot = sinfo->attrib[fragSlot].src_index;
1295 uint j;
1296
1297 switch (sinfo->attrib[fragSlot].interp) {
1298 case SP_INTERP_CONSTANT:
1299 /* fall-through */
1300 case SP_INTERP_LINEAR:
1301 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1302 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1303 break;
1304 case SP_INTERP_PERSPECTIVE:
1305 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1306 point_persp_coeff(setup, setup->vprovoke,
1307 &setup->coef[fragSlot], vertSlot, j);
1308 break;
1309 case SP_INTERP_POS:
1310 setup_fragcoord_coeff(setup, fragSlot);
1311 break;
1312 default:
1313 assert(0);
1314 }
1315
1316 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1317 /* convert 0 to 1.0 and 1 to -1.0 */
1318 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1319 setup->coef[fragSlot].dadx[0] = 0.0;
1320 setup->coef[fragSlot].dady[0] = 0.0;
1321 }
1322 }
1323
1324
1325 if (halfSize <= 0.5 && !round) {
1326 /* special case for 1-pixel points */
1327 const int ix = ((int) x) & 1;
1328 const int iy = ((int) y) & 1;
1329 setup->quad[0].input.x0 = (int) x - ix;
1330 setup->quad[0].input.y0 = (int) y - iy;
1331 setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1332 clip_emit_quad(setup, &setup->quad[0]);
1333 }
1334 else {
1335 if (round) {
1336 /* rounded points */
1337 const int ixmin = block((int) (x - halfSize));
1338 const int ixmax = block((int) (x + halfSize));
1339 const int iymin = block((int) (y - halfSize));
1340 const int iymax = block((int) (y + halfSize));
1341 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
1342 const float rmax = halfSize + 0.7071F;
1343 const float rmin2 = MAX2(0.0F, rmin * rmin);
1344 const float rmax2 = rmax * rmax;
1345 const float cscale = 1.0F / (rmax2 - rmin2);
1346 int ix, iy;
1347
1348 for (iy = iymin; iy <= iymax; iy += 2) {
1349 for (ix = ixmin; ix <= ixmax; ix += 2) {
1350 float dx, dy, dist2, cover;
1351
1352 setup->quad[0].inout.mask = 0x0;
1353
1354 dx = (ix + 0.5f) - x;
1355 dy = (iy + 0.5f) - y;
1356 dist2 = dx * dx + dy * dy;
1357 if (dist2 <= rmax2) {
1358 cover = 1.0F - (dist2 - rmin2) * cscale;
1359 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1360 setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1361 }
1362
1363 dx = (ix + 1.5f) - x;
1364 dy = (iy + 0.5f) - y;
1365 dist2 = dx * dx + dy * dy;
1366 if (dist2 <= rmax2) {
1367 cover = 1.0F - (dist2 - rmin2) * cscale;
1368 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1369 setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1370 }
1371
1372 dx = (ix + 0.5f) - x;
1373 dy = (iy + 1.5f) - y;
1374 dist2 = dx * dx + dy * dy;
1375 if (dist2 <= rmax2) {
1376 cover = 1.0F - (dist2 - rmin2) * cscale;
1377 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1378 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1379 }
1380
1381 dx = (ix + 1.5f) - x;
1382 dy = (iy + 1.5f) - y;
1383 dist2 = dx * dx + dy * dy;
1384 if (dist2 <= rmax2) {
1385 cover = 1.0F - (dist2 - rmin2) * cscale;
1386 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1387 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1388 }
1389
1390 if (setup->quad[0].inout.mask) {
1391 setup->quad[0].input.x0 = ix;
1392 setup->quad[0].input.y0 = iy;
1393 clip_emit_quad(setup, &setup->quad[0]);
1394 }
1395 }
1396 }
1397 }
1398 else {
1399 /* square points */
1400 const int xmin = (int) (x + 0.75 - halfSize);
1401 const int ymin = (int) (y + 0.25 - halfSize);
1402 const int xmax = xmin + (int) size;
1403 const int ymax = ymin + (int) size;
1404 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1405 const int ixmin = block(xmin);
1406 const int ixmax = block(xmax - 1);
1407 const int iymin = block(ymin);
1408 const int iymax = block(ymax - 1);
1409 int ix, iy;
1410
1411 /*
1412 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1413 */
1414 for (iy = iymin; iy <= iymax; iy += 2) {
1415 uint rowMask = 0xf;
1416 if (iy < ymin) {
1417 /* above the top edge */
1418 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1419 }
1420 if (iy + 1 >= ymax) {
1421 /* below the bottom edge */
1422 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1423 }
1424
1425 for (ix = ixmin; ix <= ixmax; ix += 2) {
1426 uint mask = rowMask;
1427
1428 if (ix < xmin) {
1429 /* fragment is past left edge of point, turn off left bits */
1430 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1431 }
1432 if (ix + 1 >= xmax) {
1433 /* past the right edge */
1434 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1435 }
1436
1437 setup->quad[0].inout.mask = mask;
1438 setup->quad[0].input.x0 = ix;
1439 setup->quad[0].input.y0 = iy;
1440 clip_emit_quad(setup, &setup->quad[0]);
1441 }
1442 }
1443 }
1444 }
1445 }
1446
1447
1448 /**
1449 * Called by vbuf code just before we start buffering primitives.
1450 */
1451 void
sp_setup_prepare(struct setup_context * setup)1452 sp_setup_prepare(struct setup_context *setup)
1453 {
1454 struct softpipe_context *sp = setup->softpipe;
1455 int i;
1456 unsigned max_layer = ~0;
1457 if (sp->dirty) {
1458 softpipe_update_derived(sp, sp->reduced_api_prim);
1459 }
1460
1461 /* Note: nr_attrs is only used for debugging (vertex printing) */
1462 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1463
1464 /*
1465 * Determine how many layers the fb has (used for clamping layer value).
1466 * OpenGL (but not d3d10) permits different amount of layers per rt, however
1467 * results are undefined if layer exceeds the amount of layers of ANY
1468 * attachment hence don't need separate per cbuf and zsbuf max.
1469 */
1470 for (i = 0; i < setup->softpipe->framebuffer.nr_cbufs; i++) {
1471 struct pipe_surface *cbuf = setup->softpipe->framebuffer.cbufs[i];
1472 if (cbuf) {
1473 max_layer = MIN2(max_layer,
1474 cbuf->u.tex.last_layer - cbuf->u.tex.first_layer);
1475
1476 }
1477 }
1478
1479 setup->max_layer = max_layer;
1480
1481 sp->quad.first->begin( sp->quad.first );
1482
1483 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1484 sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1485 sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1486 /* we'll do culling */
1487 setup->cull_face = sp->rasterizer->cull_face;
1488 }
1489 else {
1490 /* 'draw' will do culling */
1491 setup->cull_face = PIPE_FACE_NONE;
1492 }
1493 }
1494
1495
1496 void
sp_setup_destroy_context(struct setup_context * setup)1497 sp_setup_destroy_context(struct setup_context *setup)
1498 {
1499 FREE( setup );
1500 }
1501
1502
1503 /**
1504 * Create a new primitive setup/render stage.
1505 */
1506 struct setup_context *
sp_setup_create_context(struct softpipe_context * softpipe)1507 sp_setup_create_context(struct softpipe_context *softpipe)
1508 {
1509 struct setup_context *setup = CALLOC_STRUCT(setup_context);
1510 unsigned i;
1511
1512 setup->softpipe = softpipe;
1513
1514 for (i = 0; i < MAX_QUADS; i++) {
1515 setup->quad[i].coef = setup->coef;
1516 setup->quad[i].posCoef = &setup->posCoef;
1517 }
1518
1519 setup->span.left[0] = 1000000; /* greater than right[0] */
1520 setup->span.left[1] = 1000000; /* greater than right[1] */
1521
1522 return setup;
1523 }
1524