1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2007-2008
4 * Stelian Pop <stelian@popies.net>
5 * Lead Tech Design <www.leadtechdesign.com>
6 *
7 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
8 *
9 * Add Programmable Multibit ECC support for various AT91 SoC
10 * (C) Copyright 2012 ATMEL, Hong Xu
11 */
12
13 #include <common.h>
14 #include <asm/gpio.h>
15 #include <asm/arch/gpio.h>
16
17 #include <malloc.h>
18 #include <nand.h>
19 #include <watchdog.h>
20 #include <linux/mtd/nand_ecc.h>
21
22 #ifdef CONFIG_ATMEL_NAND_HWECC
23
24 /* Register access macros */
25 #define ecc_readl(add, reg) \
26 readl(add + ATMEL_ECC_##reg)
27 #define ecc_writel(add, reg, value) \
28 writel((value), add + ATMEL_ECC_##reg)
29
30 #include "atmel_nand_ecc.h" /* Hardware ECC registers */
31
32 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
33
34 #ifdef CONFIG_SPL_BUILD
35 #undef CONFIG_SYS_NAND_ONFI_DETECTION
36 #endif
37
38 struct atmel_nand_host {
39 struct pmecc_regs __iomem *pmecc;
40 struct pmecc_errloc_regs __iomem *pmerrloc;
41 void __iomem *pmecc_rom_base;
42
43 u8 pmecc_corr_cap;
44 u16 pmecc_sector_size;
45 u32 pmecc_index_table_offset;
46 u32 pmecc_version;
47
48 int pmecc_bytes_per_sector;
49 int pmecc_sector_number;
50 int pmecc_degree; /* Degree of remainders */
51 int pmecc_cw_len; /* Length of codeword */
52
53 /* lookup table for alpha_to and index_of */
54 void __iomem *pmecc_alpha_to;
55 void __iomem *pmecc_index_of;
56
57 /* data for pmecc computation */
58 int16_t *pmecc_smu;
59 int16_t *pmecc_partial_syn;
60 int16_t *pmecc_si;
61 int16_t *pmecc_lmu; /* polynomal order */
62 int *pmecc_mu;
63 int *pmecc_dmu;
64 int *pmecc_delta;
65 };
66
67 static struct atmel_nand_host pmecc_host;
68 static struct nand_ecclayout atmel_pmecc_oobinfo;
69
70 /*
71 * Return number of ecc bytes per sector according to sector size and
72 * correction capability
73 *
74 * Following table shows what at91 PMECC supported:
75 * Correction Capability Sector_512_bytes Sector_1024_bytes
76 * ===================== ================ =================
77 * 2-bits 4-bytes 4-bytes
78 * 4-bits 7-bytes 7-bytes
79 * 8-bits 13-bytes 14-bytes
80 * 12-bits 20-bytes 21-bytes
81 * 24-bits 39-bytes 42-bytes
82 * 32-bits 52-bytes 56-bytes
83 */
pmecc_get_ecc_bytes(int cap,int sector_size)84 static int pmecc_get_ecc_bytes(int cap, int sector_size)
85 {
86 int m = 12 + sector_size / 512;
87 return (m * cap + 7) / 8;
88 }
89
pmecc_config_ecc_layout(struct nand_ecclayout * layout,int oobsize,int ecc_len)90 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
91 int oobsize, int ecc_len)
92 {
93 int i;
94
95 layout->eccbytes = ecc_len;
96
97 /* ECC will occupy the last ecc_len bytes continuously */
98 for (i = 0; i < ecc_len; i++)
99 layout->eccpos[i] = oobsize - ecc_len + i;
100
101 layout->oobfree[0].offset = 2;
102 layout->oobfree[0].length =
103 oobsize - ecc_len - layout->oobfree[0].offset;
104 }
105
pmecc_get_alpha_to(struct atmel_nand_host * host)106 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
107 {
108 int table_size;
109
110 table_size = host->pmecc_sector_size == 512 ?
111 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
112
113 /* the ALPHA lookup table is right behind the INDEX lookup table. */
114 return host->pmecc_rom_base + host->pmecc_index_table_offset +
115 table_size * sizeof(int16_t);
116 }
117
pmecc_data_free(struct atmel_nand_host * host)118 static void pmecc_data_free(struct atmel_nand_host *host)
119 {
120 free(host->pmecc_partial_syn);
121 free(host->pmecc_si);
122 free(host->pmecc_lmu);
123 free(host->pmecc_smu);
124 free(host->pmecc_mu);
125 free(host->pmecc_dmu);
126 free(host->pmecc_delta);
127 }
128
pmecc_data_alloc(struct atmel_nand_host * host)129 static int pmecc_data_alloc(struct atmel_nand_host *host)
130 {
131 const int cap = host->pmecc_corr_cap;
132 int size;
133
134 size = (2 * cap + 1) * sizeof(int16_t);
135 host->pmecc_partial_syn = malloc(size);
136 host->pmecc_si = malloc(size);
137 host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
138 host->pmecc_smu = malloc((cap + 2) * size);
139
140 size = (cap + 1) * sizeof(int);
141 host->pmecc_mu = malloc(size);
142 host->pmecc_dmu = malloc(size);
143 host->pmecc_delta = malloc(size);
144
145 if (host->pmecc_partial_syn &&
146 host->pmecc_si &&
147 host->pmecc_lmu &&
148 host->pmecc_smu &&
149 host->pmecc_mu &&
150 host->pmecc_dmu &&
151 host->pmecc_delta)
152 return 0;
153
154 /* error happened */
155 pmecc_data_free(host);
156 return -ENOMEM;
157
158 }
159
pmecc_gen_syndrome(struct mtd_info * mtd,int sector)160 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
161 {
162 struct nand_chip *nand_chip = mtd_to_nand(mtd);
163 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
164 int i;
165 uint32_t value;
166
167 /* Fill odd syndromes */
168 for (i = 0; i < host->pmecc_corr_cap; i++) {
169 value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
170 if (i & 1)
171 value >>= 16;
172 value &= 0xffff;
173 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
174 }
175 }
176
pmecc_substitute(struct mtd_info * mtd)177 static void pmecc_substitute(struct mtd_info *mtd)
178 {
179 struct nand_chip *nand_chip = mtd_to_nand(mtd);
180 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
181 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
182 int16_t __iomem *index_of = host->pmecc_index_of;
183 int16_t *partial_syn = host->pmecc_partial_syn;
184 const int cap = host->pmecc_corr_cap;
185 int16_t *si;
186 int i, j;
187
188 /* si[] is a table that holds the current syndrome value,
189 * an element of that table belongs to the field
190 */
191 si = host->pmecc_si;
192
193 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
194
195 /* Computation 2t syndromes based on S(x) */
196 /* Odd syndromes */
197 for (i = 1; i < 2 * cap; i += 2) {
198 for (j = 0; j < host->pmecc_degree; j++) {
199 if (partial_syn[i] & (0x1 << j))
200 si[i] = readw(alpha_to + i * j) ^ si[i];
201 }
202 }
203 /* Even syndrome = (Odd syndrome) ** 2 */
204 for (i = 2, j = 1; j <= cap; i = ++j << 1) {
205 if (si[j] == 0) {
206 si[i] = 0;
207 } else {
208 int16_t tmp;
209
210 tmp = readw(index_of + si[j]);
211 tmp = (tmp * 2) % host->pmecc_cw_len;
212 si[i] = readw(alpha_to + tmp);
213 }
214 }
215 }
216
217 /*
218 * This function defines a Berlekamp iterative procedure for
219 * finding the value of the error location polynomial.
220 * The input is si[], initialize by pmecc_substitute().
221 * The output is smu[][].
222 *
223 * This function is written according to chip datasheet Chapter:
224 * Find the Error Location Polynomial Sigma(x) of Section:
225 * Programmable Multibit ECC Control (PMECC).
226 */
pmecc_get_sigma(struct mtd_info * mtd)227 static void pmecc_get_sigma(struct mtd_info *mtd)
228 {
229 struct nand_chip *nand_chip = mtd_to_nand(mtd);
230 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
231
232 int16_t *lmu = host->pmecc_lmu;
233 int16_t *si = host->pmecc_si;
234 int *mu = host->pmecc_mu;
235 int *dmu = host->pmecc_dmu; /* Discrepancy */
236 int *delta = host->pmecc_delta; /* Delta order */
237 int cw_len = host->pmecc_cw_len;
238 const int16_t cap = host->pmecc_corr_cap;
239 const int num = 2 * cap + 1;
240 int16_t __iomem *index_of = host->pmecc_index_of;
241 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
242 int i, j, k;
243 uint32_t dmu_0_count, tmp;
244 int16_t *smu = host->pmecc_smu;
245
246 /* index of largest delta */
247 int ro;
248 int largest;
249 int diff;
250
251 /* Init the Sigma(x) */
252 memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
253
254 dmu_0_count = 0;
255
256 /* First Row */
257
258 /* Mu */
259 mu[0] = -1;
260
261 smu[0] = 1;
262
263 /* discrepancy set to 1 */
264 dmu[0] = 1;
265 /* polynom order set to 0 */
266 lmu[0] = 0;
267 /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
268 delta[0] = -1;
269
270 /* Second Row */
271
272 /* Mu */
273 mu[1] = 0;
274 /* Sigma(x) set to 1 */
275 smu[num] = 1;
276
277 /* discrepancy set to S1 */
278 dmu[1] = si[1];
279
280 /* polynom order set to 0 */
281 lmu[1] = 0;
282
283 /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
284 delta[1] = 0;
285
286 for (i = 1; i <= cap; i++) {
287 mu[i + 1] = i << 1;
288 /* Begin Computing Sigma (Mu+1) and L(mu) */
289 /* check if discrepancy is set to 0 */
290 if (dmu[i] == 0) {
291 dmu_0_count++;
292
293 tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
294 if ((cap - (lmu[i] >> 1) - 1) & 0x1)
295 tmp += 2;
296 else
297 tmp += 1;
298
299 if (dmu_0_count == tmp) {
300 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
301 smu[(cap + 1) * num + j] =
302 smu[i * num + j];
303
304 lmu[cap + 1] = lmu[i];
305 return;
306 }
307
308 /* copy polynom */
309 for (j = 0; j <= lmu[i] >> 1; j++)
310 smu[(i + 1) * num + j] = smu[i * num + j];
311
312 /* copy previous polynom order to the next */
313 lmu[i + 1] = lmu[i];
314 } else {
315 ro = 0;
316 largest = -1;
317 /* find largest delta with dmu != 0 */
318 for (j = 0; j < i; j++) {
319 if ((dmu[j]) && (delta[j] > largest)) {
320 largest = delta[j];
321 ro = j;
322 }
323 }
324
325 /* compute difference */
326 diff = (mu[i] - mu[ro]);
327
328 /* Compute degree of the new smu polynomial */
329 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
330 lmu[i + 1] = lmu[i];
331 else
332 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
333
334 /* Init smu[i+1] with 0 */
335 for (k = 0; k < num; k++)
336 smu[(i + 1) * num + k] = 0;
337
338 /* Compute smu[i+1] */
339 for (k = 0; k <= lmu[ro] >> 1; k++) {
340 int16_t a, b, c;
341
342 if (!(smu[ro * num + k] && dmu[i]))
343 continue;
344 a = readw(index_of + dmu[i]);
345 b = readw(index_of + dmu[ro]);
346 c = readw(index_of + smu[ro * num + k]);
347 tmp = a + (cw_len - b) + c;
348 a = readw(alpha_to + tmp % cw_len);
349 smu[(i + 1) * num + (k + diff)] = a;
350 }
351
352 for (k = 0; k <= lmu[i] >> 1; k++)
353 smu[(i + 1) * num + k] ^= smu[i * num + k];
354 }
355
356 /* End Computing Sigma (Mu+1) and L(mu) */
357 /* In either case compute delta */
358 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
359
360 /* Do not compute discrepancy for the last iteration */
361 if (i >= cap)
362 continue;
363
364 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
365 tmp = 2 * (i - 1);
366 if (k == 0) {
367 dmu[i + 1] = si[tmp + 3];
368 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
369 int16_t a, b, c;
370 a = readw(index_of +
371 smu[(i + 1) * num + k]);
372 b = si[2 * (i - 1) + 3 - k];
373 c = readw(index_of + b);
374 tmp = a + c;
375 tmp %= cw_len;
376 dmu[i + 1] = readw(alpha_to + tmp) ^
377 dmu[i + 1];
378 }
379 }
380 }
381 }
382
pmecc_err_location(struct mtd_info * mtd)383 static int pmecc_err_location(struct mtd_info *mtd)
384 {
385 struct nand_chip *nand_chip = mtd_to_nand(mtd);
386 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
387 const int cap = host->pmecc_corr_cap;
388 const int num = 2 * cap + 1;
389 int sector_size = host->pmecc_sector_size;
390 int err_nbr = 0; /* number of error */
391 int roots_nbr; /* number of roots */
392 int i;
393 uint32_t val;
394 int16_t *smu = host->pmecc_smu;
395 int timeout = PMECC_MAX_TIMEOUT_US;
396
397 pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
398
399 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
400 pmecc_writel(host->pmerrloc, sigma[i],
401 smu[(cap + 1) * num + i]);
402 err_nbr++;
403 }
404
405 val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
406 if (sector_size == 1024)
407 val |= PMERRLOC_ELCFG_SECTOR_1024;
408
409 pmecc_writel(host->pmerrloc, elcfg, val);
410 pmecc_writel(host->pmerrloc, elen,
411 sector_size * 8 + host->pmecc_degree * cap);
412
413 while (--timeout) {
414 if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
415 break;
416 WATCHDOG_RESET();
417 udelay(1);
418 }
419
420 if (!timeout) {
421 dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
422 return -1;
423 }
424
425 roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
426 >> 8;
427 /* Number of roots == degree of smu hence <= cap */
428 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
429 return err_nbr - 1;
430
431 /* Number of roots does not match the degree of smu
432 * unable to correct error */
433 return -1;
434 }
435
pmecc_correct_data(struct mtd_info * mtd,uint8_t * buf,uint8_t * ecc,int sector_num,int extra_bytes,int err_nbr)436 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
437 int sector_num, int extra_bytes, int err_nbr)
438 {
439 struct nand_chip *nand_chip = mtd_to_nand(mtd);
440 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
441 int i = 0;
442 int byte_pos, bit_pos, sector_size, pos;
443 uint32_t tmp;
444 uint8_t err_byte;
445
446 sector_size = host->pmecc_sector_size;
447
448 while (err_nbr) {
449 tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
450 byte_pos = tmp / 8;
451 bit_pos = tmp % 8;
452
453 if (byte_pos >= (sector_size + extra_bytes))
454 BUG(); /* should never happen */
455
456 if (byte_pos < sector_size) {
457 err_byte = *(buf + byte_pos);
458 *(buf + byte_pos) ^= (1 << bit_pos);
459
460 pos = sector_num * host->pmecc_sector_size + byte_pos;
461 dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
462 pos, bit_pos, err_byte, *(buf + byte_pos));
463 } else {
464 /* Bit flip in OOB area */
465 tmp = sector_num * host->pmecc_bytes_per_sector
466 + (byte_pos - sector_size);
467 err_byte = ecc[tmp];
468 ecc[tmp] ^= (1 << bit_pos);
469
470 pos = tmp + nand_chip->ecc.layout->eccpos[0];
471 dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
472 pos, bit_pos, err_byte, ecc[tmp]);
473 }
474
475 i++;
476 err_nbr--;
477 }
478
479 return;
480 }
481
pmecc_correction(struct mtd_info * mtd,u32 pmecc_stat,uint8_t * buf,u8 * ecc)482 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
483 u8 *ecc)
484 {
485 struct nand_chip *nand_chip = mtd_to_nand(mtd);
486 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
487 int i, err_nbr, eccbytes;
488 uint8_t *buf_pos;
489
490 /* SAMA5D4 PMECC IP can correct errors for all 0xff page */
491 if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
492 goto normal_check;
493
494 eccbytes = nand_chip->ecc.bytes;
495 for (i = 0; i < eccbytes; i++)
496 if (ecc[i] != 0xff)
497 goto normal_check;
498 /* Erased page, return OK */
499 return 0;
500
501 normal_check:
502 for (i = 0; i < host->pmecc_sector_number; i++) {
503 err_nbr = 0;
504 if (pmecc_stat & 0x1) {
505 buf_pos = buf + i * host->pmecc_sector_size;
506
507 pmecc_gen_syndrome(mtd, i);
508 pmecc_substitute(mtd);
509 pmecc_get_sigma(mtd);
510
511 err_nbr = pmecc_err_location(mtd);
512 if (err_nbr == -1) {
513 dev_err(host->dev, "PMECC: Too many errors\n");
514 mtd->ecc_stats.failed++;
515 return -EBADMSG;
516 } else {
517 pmecc_correct_data(mtd, buf_pos, ecc, i,
518 host->pmecc_bytes_per_sector, err_nbr);
519 mtd->ecc_stats.corrected += err_nbr;
520 }
521 }
522 pmecc_stat >>= 1;
523 }
524
525 return 0;
526 }
527
atmel_nand_pmecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)528 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
529 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
530 {
531 struct atmel_nand_host *host = nand_get_controller_data(chip);
532 int eccsize = chip->ecc.size;
533 uint8_t *oob = chip->oob_poi;
534 uint32_t *eccpos = chip->ecc.layout->eccpos;
535 uint32_t stat;
536 int timeout = PMECC_MAX_TIMEOUT_US;
537
538 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
539 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
540 pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
541 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
542
543 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
544 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
545
546 chip->read_buf(mtd, buf, eccsize);
547 chip->read_buf(mtd, oob, mtd->oobsize);
548
549 while (--timeout) {
550 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
551 break;
552 WATCHDOG_RESET();
553 udelay(1);
554 }
555
556 if (!timeout) {
557 dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
558 return -1;
559 }
560
561 stat = pmecc_readl(host->pmecc, isr);
562 if (stat != 0)
563 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
564 return -EBADMSG;
565
566 return 0;
567 }
568
atmel_nand_pmecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)569 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
570 struct nand_chip *chip, const uint8_t *buf,
571 int oob_required, int page)
572 {
573 struct atmel_nand_host *host = nand_get_controller_data(chip);
574 uint32_t *eccpos = chip->ecc.layout->eccpos;
575 int i, j;
576 int timeout = PMECC_MAX_TIMEOUT_US;
577
578 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
579 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
580
581 pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
582 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
583
584 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
585 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
586
587 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
588
589 while (--timeout) {
590 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
591 break;
592 WATCHDOG_RESET();
593 udelay(1);
594 }
595
596 if (!timeout) {
597 dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
598 goto out;
599 }
600
601 for (i = 0; i < host->pmecc_sector_number; i++) {
602 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
603 int pos;
604
605 pos = i * host->pmecc_bytes_per_sector + j;
606 chip->oob_poi[eccpos[pos]] =
607 pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
608 }
609 }
610 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
611 out:
612 return 0;
613 }
614
atmel_pmecc_core_init(struct mtd_info * mtd)615 static void atmel_pmecc_core_init(struct mtd_info *mtd)
616 {
617 struct nand_chip *nand_chip = mtd_to_nand(mtd);
618 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
619 uint32_t val = 0;
620 struct nand_ecclayout *ecc_layout;
621
622 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
623 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
624
625 switch (host->pmecc_corr_cap) {
626 case 2:
627 val = PMECC_CFG_BCH_ERR2;
628 break;
629 case 4:
630 val = PMECC_CFG_BCH_ERR4;
631 break;
632 case 8:
633 val = PMECC_CFG_BCH_ERR8;
634 break;
635 case 12:
636 val = PMECC_CFG_BCH_ERR12;
637 break;
638 case 24:
639 val = PMECC_CFG_BCH_ERR24;
640 break;
641 case 32:
642 val = PMECC_CFG_BCH_ERR32;
643 break;
644 }
645
646 if (host->pmecc_sector_size == 512)
647 val |= PMECC_CFG_SECTOR512;
648 else if (host->pmecc_sector_size == 1024)
649 val |= PMECC_CFG_SECTOR1024;
650
651 switch (host->pmecc_sector_number) {
652 case 1:
653 val |= PMECC_CFG_PAGE_1SECTOR;
654 break;
655 case 2:
656 val |= PMECC_CFG_PAGE_2SECTORS;
657 break;
658 case 4:
659 val |= PMECC_CFG_PAGE_4SECTORS;
660 break;
661 case 8:
662 val |= PMECC_CFG_PAGE_8SECTORS;
663 break;
664 }
665
666 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
667 | PMECC_CFG_AUTO_DISABLE);
668 pmecc_writel(host->pmecc, cfg, val);
669
670 ecc_layout = nand_chip->ecc.layout;
671 pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
672 pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
673 pmecc_writel(host->pmecc, eaddr,
674 ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
675 /* See datasheet about PMECC Clock Control Register */
676 pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
677 pmecc_writel(host->pmecc, idr, 0xff);
678 pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
679 }
680
681 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
682 /*
683 * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
684 * pmecc_corr_cap or pmecc_sector_size is 0, then set it as
685 * ONFI ECC parameters.
686 * @host: point to an atmel_nand_host structure.
687 * if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
688 * if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
689 * @chip: point to an nand_chip structure.
690 * @cap: store the ONFI ECC correct bits capbility
691 * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
692 *
693 * Return 0 if success. otherwise return the error code.
694 */
pmecc_choose_ecc(struct atmel_nand_host * host,struct nand_chip * chip,int * cap,int * sector_size)695 static int pmecc_choose_ecc(struct atmel_nand_host *host,
696 struct nand_chip *chip,
697 int *cap, int *sector_size)
698 {
699 /* Get ECC requirement from ONFI parameters */
700 *cap = *sector_size = 0;
701 if (chip->onfi_version) {
702 *cap = chip->ecc_strength_ds;
703 *sector_size = chip->ecc_step_ds;
704 pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
705 *cap, *sector_size);
706 }
707
708 if (*cap == 0 && *sector_size == 0) {
709 /* Non-ONFI compliant */
710 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
711 *cap = 2;
712 *sector_size = 512;
713 }
714
715 /* If head file doesn't specify then use the one in ONFI parameters */
716 if (host->pmecc_corr_cap == 0) {
717 /* use the most fitable ecc bits (the near bigger one ) */
718 if (*cap <= 2)
719 host->pmecc_corr_cap = 2;
720 else if (*cap <= 4)
721 host->pmecc_corr_cap = 4;
722 else if (*cap <= 8)
723 host->pmecc_corr_cap = 8;
724 else if (*cap <= 12)
725 host->pmecc_corr_cap = 12;
726 else if (*cap <= 24)
727 host->pmecc_corr_cap = 24;
728 else
729 #ifdef CONFIG_SAMA5D2
730 host->pmecc_corr_cap = 32;
731 #else
732 host->pmecc_corr_cap = 24;
733 #endif
734 }
735 if (host->pmecc_sector_size == 0) {
736 /* use the most fitable sector size (the near smaller one ) */
737 if (*sector_size >= 1024)
738 host->pmecc_sector_size = 1024;
739 else if (*sector_size >= 512)
740 host->pmecc_sector_size = 512;
741 else
742 return -EINVAL;
743 }
744 return 0;
745 }
746 #endif
747
748 #if defined(NO_GALOIS_TABLE_IN_ROM)
749 static uint16_t *pmecc_galois_table;
deg(unsigned int poly)750 static inline int deg(unsigned int poly)
751 {
752 /* polynomial degree is the most-significant bit index */
753 return fls(poly) - 1;
754 }
755
build_gf_tables(int mm,unsigned int poly,int16_t * index_of,int16_t * alpha_to)756 static int build_gf_tables(int mm, unsigned int poly,
757 int16_t *index_of, int16_t *alpha_to)
758 {
759 unsigned int i, x = 1;
760 const unsigned int k = 1 << deg(poly);
761 unsigned int nn = (1 << mm) - 1;
762
763 /* primitive polynomial must be of degree m */
764 if (k != (1u << mm))
765 return -EINVAL;
766
767 for (i = 0; i < nn; i++) {
768 alpha_to[i] = x;
769 index_of[x] = i;
770 if (i && (x == 1))
771 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
772 return -EINVAL;
773 x <<= 1;
774 if (x & k)
775 x ^= poly;
776 }
777
778 alpha_to[nn] = 1;
779 index_of[0] = 0;
780
781 return 0;
782 }
783
create_lookup_table(int sector_size)784 static uint16_t *create_lookup_table(int sector_size)
785 {
786 int degree = (sector_size == 512) ?
787 PMECC_GF_DIMENSION_13 :
788 PMECC_GF_DIMENSION_14;
789 unsigned int poly = (sector_size == 512) ?
790 PMECC_GF_13_PRIMITIVE_POLY :
791 PMECC_GF_14_PRIMITIVE_POLY;
792 int table_size = (sector_size == 512) ?
793 PMECC_INDEX_TABLE_SIZE_512 :
794 PMECC_INDEX_TABLE_SIZE_1024;
795
796 int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
797 if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
798 return NULL;
799
800 return (uint16_t *)addr;
801 }
802 #endif
803
atmel_pmecc_nand_init_params(struct nand_chip * nand,struct mtd_info * mtd)804 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
805 struct mtd_info *mtd)
806 {
807 struct atmel_nand_host *host;
808 int cap, sector_size;
809
810 host = &pmecc_host;
811 nand_set_controller_data(nand, host);
812
813 nand->ecc.mode = NAND_ECC_HW;
814 nand->ecc.calculate = NULL;
815 nand->ecc.correct = NULL;
816 nand->ecc.hwctl = NULL;
817
818 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
819 host->pmecc_corr_cap = host->pmecc_sector_size = 0;
820
821 #ifdef CONFIG_PMECC_CAP
822 host->pmecc_corr_cap = CONFIG_PMECC_CAP;
823 #endif
824 #ifdef CONFIG_PMECC_SECTOR_SIZE
825 host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
826 #endif
827 /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
828 * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
829 * from ONFI.
830 */
831 if (pmecc_choose_ecc(host, nand, &cap, §or_size)) {
832 dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
833 cap, sector_size);
834 return -EINVAL;
835 }
836
837 if (cap > host->pmecc_corr_cap)
838 dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
839 host->pmecc_corr_cap, cap);
840 if (sector_size < host->pmecc_sector_size)
841 dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
842 host->pmecc_sector_size, sector_size);
843 #else /* CONFIG_SYS_NAND_ONFI_DETECTION */
844 host->pmecc_corr_cap = CONFIG_PMECC_CAP;
845 host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
846 #endif
847
848 cap = host->pmecc_corr_cap;
849 sector_size = host->pmecc_sector_size;
850
851 /* TODO: need check whether cap & sector_size is validate */
852 #if defined(NO_GALOIS_TABLE_IN_ROM)
853 /*
854 * As pmecc_rom_base is the begin of the gallois field table, So the
855 * index offset just set as 0.
856 */
857 host->pmecc_index_table_offset = 0;
858 #else
859 if (host->pmecc_sector_size == 512)
860 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
861 else
862 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
863 #endif
864
865 pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
866 cap, sector_size);
867
868 host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
869 host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
870 ATMEL_BASE_PMERRLOC;
871 #if defined(NO_GALOIS_TABLE_IN_ROM)
872 pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
873 if (!pmecc_galois_table) {
874 dev_err(host->dev, "out of memory\n");
875 return -ENOMEM;
876 }
877
878 host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
879 #else
880 host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
881 #endif
882
883 /* ECC is calculated for the whole page (1 step) */
884 nand->ecc.size = mtd->writesize;
885
886 /* set ECC page size and oob layout */
887 switch (mtd->writesize) {
888 case 2048:
889 case 4096:
890 case 8192:
891 host->pmecc_degree = (sector_size == 512) ?
892 PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
893 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
894 host->pmecc_sector_number = mtd->writesize / sector_size;
895 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
896 cap, sector_size);
897 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
898 host->pmecc_index_of = host->pmecc_rom_base +
899 host->pmecc_index_table_offset;
900
901 nand->ecc.steps = 1;
902 nand->ecc.bytes = host->pmecc_bytes_per_sector *
903 host->pmecc_sector_number;
904
905 if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
906 dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
907 MTD_MAX_ECCPOS_ENTRIES_LARGE);
908 return -EINVAL;
909 }
910
911 if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
912 dev_err(host->dev, "No room for ECC bytes\n");
913 return -EINVAL;
914 }
915 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
916 mtd->oobsize,
917 nand->ecc.bytes);
918 nand->ecc.layout = &atmel_pmecc_oobinfo;
919 break;
920 case 512:
921 case 1024:
922 /* TODO */
923 dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
924 default:
925 /* page size not handled by HW ECC */
926 /* switching back to soft ECC */
927 nand->ecc.mode = NAND_ECC_SOFT;
928 nand->ecc.read_page = NULL;
929 nand->ecc.postpad = 0;
930 nand->ecc.prepad = 0;
931 nand->ecc.bytes = 0;
932 return 0;
933 }
934
935 /* Allocate data for PMECC computation */
936 if (pmecc_data_alloc(host)) {
937 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
938 return -ENOMEM;
939 }
940
941 nand->options |= NAND_NO_SUBPAGE_WRITE;
942 nand->ecc.read_page = atmel_nand_pmecc_read_page;
943 nand->ecc.write_page = atmel_nand_pmecc_write_page;
944 nand->ecc.strength = cap;
945
946 /* Check the PMECC ip version */
947 host->pmecc_version = pmecc_readl(host->pmerrloc, version);
948 dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
949
950 atmel_pmecc_core_init(mtd);
951
952 return 0;
953 }
954
955 #else
956
957 /* oob layout for large page size
958 * bad block info is on bytes 0 and 1
959 * the bytes have to be consecutives to avoid
960 * several NAND_CMD_RNDOUT during read
961 */
962 static struct nand_ecclayout atmel_oobinfo_large = {
963 .eccbytes = 4,
964 .eccpos = {60, 61, 62, 63},
965 .oobfree = {
966 {2, 58}
967 },
968 };
969
970 /* oob layout for small page size
971 * bad block info is on bytes 4 and 5
972 * the bytes have to be consecutives to avoid
973 * several NAND_CMD_RNDOUT during read
974 */
975 static struct nand_ecclayout atmel_oobinfo_small = {
976 .eccbytes = 4,
977 .eccpos = {0, 1, 2, 3},
978 .oobfree = {
979 {6, 10}
980 },
981 };
982
983 /*
984 * Calculate HW ECC
985 *
986 * function called after a write
987 *
988 * mtd: MTD block structure
989 * dat: raw data (unused)
990 * ecc_code: buffer for ECC
991 */
atmel_nand_calculate(struct mtd_info * mtd,const u_char * dat,unsigned char * ecc_code)992 static int atmel_nand_calculate(struct mtd_info *mtd,
993 const u_char *dat, unsigned char *ecc_code)
994 {
995 unsigned int ecc_value;
996
997 /* get the first 2 ECC bytes */
998 ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
999
1000 ecc_code[0] = ecc_value & 0xFF;
1001 ecc_code[1] = (ecc_value >> 8) & 0xFF;
1002
1003 /* get the last 2 ECC bytes */
1004 ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1005
1006 ecc_code[2] = ecc_value & 0xFF;
1007 ecc_code[3] = (ecc_value >> 8) & 0xFF;
1008
1009 return 0;
1010 }
1011
1012 /*
1013 * HW ECC read page function
1014 *
1015 * mtd: mtd info structure
1016 * chip: nand chip info structure
1017 * buf: buffer to store read data
1018 * oob_required: caller expects OOB data read to chip->oob_poi
1019 */
atmel_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1020 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1021 uint8_t *buf, int oob_required, int page)
1022 {
1023 int eccsize = chip->ecc.size;
1024 int eccbytes = chip->ecc.bytes;
1025 uint32_t *eccpos = chip->ecc.layout->eccpos;
1026 uint8_t *p = buf;
1027 uint8_t *oob = chip->oob_poi;
1028 uint8_t *ecc_pos;
1029 int stat;
1030
1031 /* read the page */
1032 chip->read_buf(mtd, p, eccsize);
1033
1034 /* move to ECC position if needed */
1035 if (eccpos[0] != 0) {
1036 /* This only works on large pages
1037 * because the ECC controller waits for
1038 * NAND_CMD_RNDOUTSTART after the
1039 * NAND_CMD_RNDOUT.
1040 * anyway, for small pages, the eccpos[0] == 0
1041 */
1042 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1043 mtd->writesize + eccpos[0], -1);
1044 }
1045
1046 /* the ECC controller needs to read the ECC just after the data */
1047 ecc_pos = oob + eccpos[0];
1048 chip->read_buf(mtd, ecc_pos, eccbytes);
1049
1050 /* check if there's an error */
1051 stat = chip->ecc.correct(mtd, p, oob, NULL);
1052
1053 if (stat < 0)
1054 mtd->ecc_stats.failed++;
1055 else
1056 mtd->ecc_stats.corrected += stat;
1057
1058 /* get back to oob start (end of page) */
1059 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1060
1061 /* read the oob */
1062 chip->read_buf(mtd, oob, mtd->oobsize);
1063
1064 return 0;
1065 }
1066
1067 /*
1068 * HW ECC Correction
1069 *
1070 * function called after a read
1071 *
1072 * mtd: MTD block structure
1073 * dat: raw data read from the chip
1074 * read_ecc: ECC from the chip (unused)
1075 * isnull: unused
1076 *
1077 * Detect and correct a 1 bit error for a page
1078 */
atmel_nand_correct(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * isnull)1079 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1080 u_char *read_ecc, u_char *isnull)
1081 {
1082 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1083 unsigned int ecc_status;
1084 unsigned int ecc_word, ecc_bit;
1085
1086 /* get the status from the Status Register */
1087 ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1088
1089 /* if there's no error */
1090 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1091 return 0;
1092
1093 /* get error bit offset (4 bits) */
1094 ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1095 /* get word address (12 bits) */
1096 ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1097 ecc_word >>= 4;
1098
1099 /* if there are multiple errors */
1100 if (ecc_status & ATMEL_ECC_MULERR) {
1101 /* check if it is a freshly erased block
1102 * (filled with 0xff) */
1103 if ((ecc_bit == ATMEL_ECC_BITADDR)
1104 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1105 /* the block has just been erased, return OK */
1106 return 0;
1107 }
1108 /* it doesn't seems to be a freshly
1109 * erased block.
1110 * We can't correct so many errors */
1111 dev_warn(host->dev, "atmel_nand : multiple errors detected."
1112 " Unable to correct.\n");
1113 return -EBADMSG;
1114 }
1115
1116 /* if there's a single bit error : we can correct it */
1117 if (ecc_status & ATMEL_ECC_ECCERR) {
1118 /* there's nothing much to do here.
1119 * the bit error is on the ECC itself.
1120 */
1121 dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
1122 " Nothing to correct\n");
1123 return 0;
1124 }
1125
1126 dev_warn(host->dev, "atmel_nand : one bit error on data."
1127 " (word offset in the page :"
1128 " 0x%x bit offset : 0x%x)\n",
1129 ecc_word, ecc_bit);
1130 /* correct the error */
1131 if (nand_chip->options & NAND_BUSWIDTH_16) {
1132 /* 16 bits words */
1133 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1134 } else {
1135 /* 8 bits words */
1136 dat[ecc_word] ^= (1 << ecc_bit);
1137 }
1138 dev_warn(host->dev, "atmel_nand : error corrected\n");
1139 return 1;
1140 }
1141
1142 /*
1143 * Enable HW ECC : unused on most chips
1144 */
atmel_nand_hwctl(struct mtd_info * mtd,int mode)1145 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1146 {
1147 }
1148
atmel_hwecc_nand_init_param(struct nand_chip * nand,struct mtd_info * mtd)1149 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1150 {
1151 nand->ecc.mode = NAND_ECC_HW;
1152 nand->ecc.calculate = atmel_nand_calculate;
1153 nand->ecc.correct = atmel_nand_correct;
1154 nand->ecc.hwctl = atmel_nand_hwctl;
1155 nand->ecc.read_page = atmel_nand_read_page;
1156 nand->ecc.bytes = 4;
1157 nand->ecc.strength = 4;
1158
1159 if (nand->ecc.mode == NAND_ECC_HW) {
1160 /* ECC is calculated for the whole page (1 step) */
1161 nand->ecc.size = mtd->writesize;
1162
1163 /* set ECC page size and oob layout */
1164 switch (mtd->writesize) {
1165 case 512:
1166 nand->ecc.layout = &atmel_oobinfo_small;
1167 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1168 ATMEL_ECC_PAGESIZE_528);
1169 break;
1170 case 1024:
1171 nand->ecc.layout = &atmel_oobinfo_large;
1172 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1173 ATMEL_ECC_PAGESIZE_1056);
1174 break;
1175 case 2048:
1176 nand->ecc.layout = &atmel_oobinfo_large;
1177 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1178 ATMEL_ECC_PAGESIZE_2112);
1179 break;
1180 case 4096:
1181 nand->ecc.layout = &atmel_oobinfo_large;
1182 ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1183 ATMEL_ECC_PAGESIZE_4224);
1184 break;
1185 default:
1186 /* page size not handled by HW ECC */
1187 /* switching back to soft ECC */
1188 nand->ecc.mode = NAND_ECC_SOFT;
1189 nand->ecc.calculate = NULL;
1190 nand->ecc.correct = NULL;
1191 nand->ecc.hwctl = NULL;
1192 nand->ecc.read_page = NULL;
1193 nand->ecc.postpad = 0;
1194 nand->ecc.prepad = 0;
1195 nand->ecc.bytes = 0;
1196 break;
1197 }
1198 }
1199
1200 return 0;
1201 }
1202
1203 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1204
1205 #endif /* CONFIG_ATMEL_NAND_HWECC */
1206
at91_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)1207 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1208 int cmd, unsigned int ctrl)
1209 {
1210 struct nand_chip *this = mtd_to_nand(mtd);
1211
1212 if (ctrl & NAND_CTRL_CHANGE) {
1213 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1214 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1215 | CONFIG_SYS_NAND_MASK_CLE);
1216
1217 if (ctrl & NAND_CLE)
1218 IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1219 if (ctrl & NAND_ALE)
1220 IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1221
1222 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1223 at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
1224 !(ctrl & NAND_NCE));
1225 #endif
1226 this->IO_ADDR_W = (void *) IO_ADDR_W;
1227 }
1228
1229 if (cmd != NAND_CMD_NONE)
1230 writeb(cmd, this->IO_ADDR_W);
1231 }
1232
1233 #ifdef CONFIG_SYS_NAND_READY_PIN
at91_nand_ready(struct mtd_info * mtd)1234 static int at91_nand_ready(struct mtd_info *mtd)
1235 {
1236 return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1237 }
1238 #endif
1239
1240 #ifdef CONFIG_SPL_BUILD
1241 /* The following code is for SPL */
1242 static struct mtd_info *mtd;
1243 static struct nand_chip nand_chip;
1244
nand_command(int block,int page,uint32_t offs,u8 cmd)1245 static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1246 {
1247 struct nand_chip *this = mtd_to_nand(mtd);
1248 int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1249 void (*hwctrl)(struct mtd_info *mtd, int cmd,
1250 unsigned int ctrl) = this->cmd_ctrl;
1251
1252 while (!this->dev_ready(mtd))
1253 ;
1254
1255 if (cmd == NAND_CMD_READOOB) {
1256 offs += CONFIG_SYS_NAND_PAGE_SIZE;
1257 cmd = NAND_CMD_READ0;
1258 }
1259
1260 hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1261
1262 if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1263 offs >>= 1;
1264
1265 hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1266 hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1267 hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1268 hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1269 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1270 hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1271 #endif
1272 hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1273
1274 hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1275 hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1276
1277 while (!this->dev_ready(mtd))
1278 ;
1279
1280 return 0;
1281 }
1282
nand_is_bad_block(int block)1283 static int nand_is_bad_block(int block)
1284 {
1285 struct nand_chip *this = mtd_to_nand(mtd);
1286
1287 nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1288
1289 if (this->options & NAND_BUSWIDTH_16) {
1290 if (readw(this->IO_ADDR_R) != 0xffff)
1291 return 1;
1292 } else {
1293 if (readb(this->IO_ADDR_R) != 0xff)
1294 return 1;
1295 }
1296
1297 return 0;
1298 }
1299
1300 #ifdef CONFIG_SPL_NAND_ECC
1301 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1302 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1303 CONFIG_SYS_NAND_ECCSIZE)
1304 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1305
nand_read_page(int block,int page,void * dst)1306 static int nand_read_page(int block, int page, void *dst)
1307 {
1308 struct nand_chip *this = mtd_to_nand(mtd);
1309 u_char ecc_calc[ECCTOTAL];
1310 u_char ecc_code[ECCTOTAL];
1311 u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1312 int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1313 int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1314 int eccsteps = ECCSTEPS;
1315 int i;
1316 uint8_t *p = dst;
1317 nand_command(block, page, 0, NAND_CMD_READ0);
1318
1319 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1320 if (this->ecc.mode != NAND_ECC_SOFT)
1321 this->ecc.hwctl(mtd, NAND_ECC_READ);
1322 this->read_buf(mtd, p, eccsize);
1323 this->ecc.calculate(mtd, p, &ecc_calc[i]);
1324 }
1325 this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1326
1327 for (i = 0; i < ECCTOTAL; i++)
1328 ecc_code[i] = oob_data[nand_ecc_pos[i]];
1329
1330 eccsteps = ECCSTEPS;
1331 p = dst;
1332
1333 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1334 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1335
1336 return 0;
1337 }
1338
spl_nand_erase_one(int block,int page)1339 int spl_nand_erase_one(int block, int page)
1340 {
1341 struct nand_chip *this = mtd_to_nand(mtd);
1342 void (*hwctrl)(struct mtd_info *mtd, int cmd,
1343 unsigned int ctrl) = this->cmd_ctrl;
1344 int page_addr;
1345
1346 if (nand_chip.select_chip)
1347 nand_chip.select_chip(mtd, 0);
1348
1349 page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1350 hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1351 /* Row address */
1352 hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1353 hwctrl(mtd, ((page_addr >> 8) & 0xff),
1354 NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1355 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1356 /* One more address cycle for devices > 128MiB */
1357 hwctrl(mtd, (page_addr >> 16) & 0x0f,
1358 NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1359 #endif
1360 hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1361
1362 while (!this->dev_ready(mtd))
1363 ;
1364
1365 nand_deselect();
1366
1367 return 0;
1368 }
1369 #else
nand_read_page(int block,int page,void * dst)1370 static int nand_read_page(int block, int page, void *dst)
1371 {
1372 struct nand_chip *this = mtd_to_nand(mtd);
1373
1374 nand_command(block, page, 0, NAND_CMD_READ0);
1375 atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
1376
1377 return 0;
1378 }
1379 #endif /* CONFIG_SPL_NAND_ECC */
1380
at91_nand_wait_ready(struct mtd_info * mtd)1381 int at91_nand_wait_ready(struct mtd_info *mtd)
1382 {
1383 struct nand_chip *this = mtd_to_nand(mtd);
1384
1385 udelay(this->chip_delay);
1386
1387 return 1;
1388 }
1389
board_nand_init(struct nand_chip * nand)1390 int board_nand_init(struct nand_chip *nand)
1391 {
1392 int ret = 0;
1393
1394 nand->ecc.mode = NAND_ECC_SOFT;
1395 #ifdef CONFIG_SYS_NAND_DBW_16
1396 nand->options = NAND_BUSWIDTH_16;
1397 nand->read_buf = nand_read_buf16;
1398 #else
1399 nand->read_buf = nand_read_buf;
1400 #endif
1401 nand->cmd_ctrl = at91_nand_hwcontrol;
1402 #ifdef CONFIG_SYS_NAND_READY_PIN
1403 nand->dev_ready = at91_nand_ready;
1404 #else
1405 nand->dev_ready = at91_nand_wait_ready;
1406 #endif
1407 nand->chip_delay = 20;
1408 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1409 nand->bbt_options |= NAND_BBT_USE_FLASH;
1410 #endif
1411
1412 #ifdef CONFIG_ATMEL_NAND_HWECC
1413 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1414 ret = atmel_pmecc_nand_init_params(nand, mtd);
1415 #endif
1416 #endif
1417
1418 return ret;
1419 }
1420
nand_init(void)1421 void nand_init(void)
1422 {
1423 mtd = nand_to_mtd(&nand_chip);
1424 mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1425 mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
1426 nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1427 nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1428 board_nand_init(&nand_chip);
1429
1430 #ifdef CONFIG_SPL_NAND_ECC
1431 if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1432 nand_chip.ecc.calculate = nand_calculate_ecc;
1433 nand_chip.ecc.correct = nand_correct_data;
1434 }
1435 #endif
1436
1437 if (nand_chip.select_chip)
1438 nand_chip.select_chip(mtd, 0);
1439 }
1440
nand_deselect(void)1441 void nand_deselect(void)
1442 {
1443 if (nand_chip.select_chip)
1444 nand_chip.select_chip(mtd, -1);
1445 }
1446
1447 #include "nand_spl_loaders.c"
1448
1449 #else
1450
1451 #ifndef CONFIG_SYS_NAND_BASE_LIST
1452 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1453 #endif
1454 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1455 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1456
atmel_nand_chip_init(int devnum,ulong base_addr)1457 int atmel_nand_chip_init(int devnum, ulong base_addr)
1458 {
1459 int ret;
1460 struct nand_chip *nand = &nand_chip[devnum];
1461 struct mtd_info *mtd = nand_to_mtd(nand);
1462
1463 nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr;
1464
1465 #ifdef CONFIG_NAND_ECC_BCH
1466 nand->ecc.mode = NAND_ECC_SOFT_BCH;
1467 #else
1468 nand->ecc.mode = NAND_ECC_SOFT;
1469 #endif
1470 #ifdef CONFIG_SYS_NAND_DBW_16
1471 nand->options = NAND_BUSWIDTH_16;
1472 #endif
1473 nand->cmd_ctrl = at91_nand_hwcontrol;
1474 #ifdef CONFIG_SYS_NAND_READY_PIN
1475 nand->dev_ready = at91_nand_ready;
1476 #endif
1477 nand->chip_delay = 75;
1478 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1479 nand->bbt_options |= NAND_BBT_USE_FLASH;
1480 #endif
1481
1482 ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1483 if (ret)
1484 return ret;
1485
1486 #ifdef CONFIG_ATMEL_NAND_HWECC
1487 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1488 ret = atmel_pmecc_nand_init_params(nand, mtd);
1489 #else
1490 ret = atmel_hwecc_nand_init_param(nand, mtd);
1491 #endif
1492 if (ret)
1493 return ret;
1494 #endif
1495
1496 ret = nand_scan_tail(mtd);
1497 if (!ret)
1498 nand_register(devnum, mtd);
1499
1500 return ret;
1501 }
1502
board_nand_init(void)1503 void board_nand_init(void)
1504 {
1505 int i;
1506 for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1507 if (atmel_nand_chip_init(i, base_addr[i]))
1508 dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
1509 i);
1510 }
1511 #endif /* CONFIG_SPL_BUILD */
1512