1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com).
108 *
109 */
110 /* ====================================================================
111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112 *
113 * Portions of the attached software ("Contribution") are developed by
114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
115 *
116 * The Contribution is licensed pursuant to the OpenSSL open source
117 * license provided above.
118 *
119 * ECC cipher suite support in OpenSSL originally written by
120 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
121 *
122 */
123 /* ====================================================================
124 * Copyright 2005 Nokia. All rights reserved.
125 *
126 * The portions of the attached software ("Contribution") is developed by
127 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
128 * license.
129 *
130 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
131 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
132 * support (see RFC 4279) to OpenSSL.
133 *
134 * No patent licenses or other rights except those expressly stated in
135 * the OpenSSL open source license shall be deemed granted or received
136 * expressly, by implication, estoppel, or otherwise.
137 *
138 * No assurances are provided by Nokia that the Contribution does not
139 * infringe the patent or other intellectual property rights of any third
140 * party or that the license provides you with all the necessary rights
141 * to make use of the Contribution.
142 *
143 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
144 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
145 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
146 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
147 * OTHERWISE. */
148
149 #include <openssl/ssl.h>
150
151 #include <assert.h>
152 #include <string.h>
153
154 #include <openssl/bn.h>
155 #include <openssl/buf.h>
156 #include <openssl/bytestring.h>
157 #include <openssl/cipher.h>
158 #include <openssl/ec.h>
159 #include <openssl/ecdsa.h>
160 #include <openssl/err.h>
161 #include <openssl/evp.h>
162 #include <openssl/hmac.h>
163 #include <openssl/md5.h>
164 #include <openssl/mem.h>
165 #include <openssl/nid.h>
166 #include <openssl/rand.h>
167 #include <openssl/x509.h>
168
169 #include "internal.h"
170 #include "../crypto/internal.h"
171
172
173 BSSL_NAMESPACE_BEGIN
174
ssl_client_cipher_list_contains_cipher(const SSL_CLIENT_HELLO * client_hello,uint16_t id)175 bool ssl_client_cipher_list_contains_cipher(
176 const SSL_CLIENT_HELLO *client_hello, uint16_t id) {
177 CBS cipher_suites;
178 CBS_init(&cipher_suites, client_hello->cipher_suites,
179 client_hello->cipher_suites_len);
180
181 while (CBS_len(&cipher_suites) > 0) {
182 uint16_t got_id;
183 if (!CBS_get_u16(&cipher_suites, &got_id)) {
184 return false;
185 }
186
187 if (got_id == id) {
188 return true;
189 }
190 }
191
192 return false;
193 }
194
negotiate_version(SSL_HANDSHAKE * hs,uint8_t * out_alert,const SSL_CLIENT_HELLO * client_hello)195 static bool negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
196 const SSL_CLIENT_HELLO *client_hello) {
197 SSL *const ssl = hs->ssl;
198 assert(!ssl->s3->have_version);
199 CBS supported_versions, versions;
200 if (ssl_client_hello_get_extension(client_hello, &supported_versions,
201 TLSEXT_TYPE_supported_versions)) {
202 if (!CBS_get_u8_length_prefixed(&supported_versions, &versions) ||
203 CBS_len(&supported_versions) != 0 ||
204 CBS_len(&versions) == 0) {
205 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
206 *out_alert = SSL_AD_DECODE_ERROR;
207 return false;
208 }
209 } else {
210 // Convert the ClientHello version to an equivalent supported_versions
211 // extension.
212 static const uint8_t kTLSVersions[] = {
213 0x03, 0x03, // TLS 1.2
214 0x03, 0x02, // TLS 1.1
215 0x03, 0x01, // TLS 1
216 };
217
218 static const uint8_t kDTLSVersions[] = {
219 0xfe, 0xfd, // DTLS 1.2
220 0xfe, 0xff, // DTLS 1.0
221 };
222
223 size_t versions_len = 0;
224 if (SSL_is_dtls(ssl)) {
225 if (client_hello->version <= DTLS1_2_VERSION) {
226 versions_len = 4;
227 } else if (client_hello->version <= DTLS1_VERSION) {
228 versions_len = 2;
229 }
230 CBS_init(&versions, kDTLSVersions + sizeof(kDTLSVersions) - versions_len,
231 versions_len);
232 } else {
233 if (client_hello->version >= TLS1_2_VERSION) {
234 versions_len = 6;
235 } else if (client_hello->version >= TLS1_1_VERSION) {
236 versions_len = 4;
237 } else if (client_hello->version >= TLS1_VERSION) {
238 versions_len = 2;
239 }
240 CBS_init(&versions, kTLSVersions + sizeof(kTLSVersions) - versions_len,
241 versions_len);
242 }
243 }
244
245 if (!ssl_negotiate_version(hs, out_alert, &ssl->version, &versions)) {
246 return false;
247 }
248
249 // At this point, the connection's version is known and |ssl->version| is
250 // fixed. Begin enforcing the record-layer version.
251 ssl->s3->have_version = true;
252 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version);
253
254 // Handle FALLBACK_SCSV.
255 if (ssl_client_cipher_list_contains_cipher(client_hello,
256 SSL3_CK_FALLBACK_SCSV & 0xffff) &&
257 ssl_protocol_version(ssl) < hs->max_version) {
258 OPENSSL_PUT_ERROR(SSL, SSL_R_INAPPROPRIATE_FALLBACK);
259 *out_alert = SSL3_AD_INAPPROPRIATE_FALLBACK;
260 return false;
261 }
262
263 return true;
264 }
265
ssl_parse_client_cipher_list(const SSL_CLIENT_HELLO * client_hello)266 static UniquePtr<STACK_OF(SSL_CIPHER)> ssl_parse_client_cipher_list(
267 const SSL_CLIENT_HELLO *client_hello) {
268 CBS cipher_suites;
269 CBS_init(&cipher_suites, client_hello->cipher_suites,
270 client_hello->cipher_suites_len);
271
272 UniquePtr<STACK_OF(SSL_CIPHER)> sk(sk_SSL_CIPHER_new_null());
273 if (!sk) {
274 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
275 return nullptr;
276 }
277
278 while (CBS_len(&cipher_suites) > 0) {
279 uint16_t cipher_suite;
280
281 if (!CBS_get_u16(&cipher_suites, &cipher_suite)) {
282 OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
283 return nullptr;
284 }
285
286 const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite);
287 if (c != NULL && !sk_SSL_CIPHER_push(sk.get(), c)) {
288 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
289 return nullptr;
290 }
291 }
292
293 return sk;
294 }
295
296 // ssl_get_compatible_server_ciphers determines the key exchange and
297 // authentication cipher suite masks compatible with the server configuration
298 // and current ClientHello parameters of |hs|. It sets |*out_mask_k| to the key
299 // exchange mask and |*out_mask_a| to the authentication mask.
ssl_get_compatible_server_ciphers(SSL_HANDSHAKE * hs,uint32_t * out_mask_k,uint32_t * out_mask_a)300 static void ssl_get_compatible_server_ciphers(SSL_HANDSHAKE *hs,
301 uint32_t *out_mask_k,
302 uint32_t *out_mask_a) {
303 uint32_t mask_k = 0;
304 uint32_t mask_a = 0;
305
306 if (ssl_has_certificate(hs)) {
307 mask_a |= ssl_cipher_auth_mask_for_key(hs->local_pubkey.get());
308 if (EVP_PKEY_id(hs->local_pubkey.get()) == EVP_PKEY_RSA) {
309 mask_k |= SSL_kRSA;
310 }
311 }
312
313 // Check for a shared group to consider ECDHE ciphers.
314 uint16_t unused;
315 if (tls1_get_shared_group(hs, &unused)) {
316 mask_k |= SSL_kECDHE;
317 }
318
319 // PSK requires a server callback.
320 if (hs->config->psk_server_callback != NULL) {
321 mask_k |= SSL_kPSK;
322 mask_a |= SSL_aPSK;
323 }
324
325 *out_mask_k = mask_k;
326 *out_mask_a = mask_a;
327 }
328
ssl3_choose_cipher(SSL_HANDSHAKE * hs,const SSL_CLIENT_HELLO * client_hello,const SSLCipherPreferenceList * server_pref)329 static const SSL_CIPHER *ssl3_choose_cipher(
330 SSL_HANDSHAKE *hs, const SSL_CLIENT_HELLO *client_hello,
331 const SSLCipherPreferenceList *server_pref) {
332 SSL *const ssl = hs->ssl;
333 const STACK_OF(SSL_CIPHER) *prio, *allow;
334 // in_group_flags will either be NULL, or will point to an array of bytes
335 // which indicate equal-preference groups in the |prio| stack. See the
336 // comment about |in_group_flags| in the |SSLCipherPreferenceList|
337 // struct.
338 const bool *in_group_flags;
339 // group_min contains the minimal index so far found in a group, or -1 if no
340 // such value exists yet.
341 int group_min = -1;
342
343 UniquePtr<STACK_OF(SSL_CIPHER)> client_pref =
344 ssl_parse_client_cipher_list(client_hello);
345 if (!client_pref) {
346 return nullptr;
347 }
348
349 if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
350 prio = server_pref->ciphers.get();
351 in_group_flags = server_pref->in_group_flags;
352 allow = client_pref.get();
353 } else {
354 prio = client_pref.get();
355 in_group_flags = NULL;
356 allow = server_pref->ciphers.get();
357 }
358
359 uint32_t mask_k, mask_a;
360 ssl_get_compatible_server_ciphers(hs, &mask_k, &mask_a);
361
362 for (size_t i = 0; i < sk_SSL_CIPHER_num(prio); i++) {
363 const SSL_CIPHER *c = sk_SSL_CIPHER_value(prio, i);
364
365 size_t cipher_index;
366 if (// Check if the cipher is supported for the current version.
367 SSL_CIPHER_get_min_version(c) <= ssl_protocol_version(ssl) &&
368 ssl_protocol_version(ssl) <= SSL_CIPHER_get_max_version(c) &&
369 // Check the cipher is supported for the server configuration.
370 (c->algorithm_mkey & mask_k) &&
371 (c->algorithm_auth & mask_a) &&
372 // Check the cipher is in the |allow| list.
373 sk_SSL_CIPHER_find(allow, &cipher_index, c)) {
374 if (in_group_flags != NULL && in_group_flags[i]) {
375 // This element of |prio| is in a group. Update the minimum index found
376 // so far and continue looking.
377 if (group_min == -1 || (size_t)group_min > cipher_index) {
378 group_min = cipher_index;
379 }
380 } else {
381 if (group_min != -1 && (size_t)group_min < cipher_index) {
382 cipher_index = group_min;
383 }
384 return sk_SSL_CIPHER_value(allow, cipher_index);
385 }
386 }
387
388 if (in_group_flags != NULL && !in_group_flags[i] && group_min != -1) {
389 // We are about to leave a group, but we found a match in it, so that's
390 // our answer.
391 return sk_SSL_CIPHER_value(allow, group_min);
392 }
393 }
394
395 return nullptr;
396 }
397
do_start_accept(SSL_HANDSHAKE * hs)398 static enum ssl_hs_wait_t do_start_accept(SSL_HANDSHAKE *hs) {
399 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_START, 1);
400 hs->state = state12_read_client_hello;
401 return ssl_hs_ok;
402 }
403
404 // is_probably_jdk11_with_tls13 returns whether |client_hello| was probably sent
405 // from a JDK 11 client with both TLS 1.3 and a prior version enabled.
is_probably_jdk11_with_tls13(const SSL_CLIENT_HELLO * client_hello)406 static bool is_probably_jdk11_with_tls13(const SSL_CLIENT_HELLO *client_hello) {
407 // JDK 11 ClientHellos contain a number of unusual properties which should
408 // limit false positives.
409
410 // JDK 11 does not support ChaCha20-Poly1305. This is unusual: many modern
411 // clients implement ChaCha20-Poly1305.
412 if (ssl_client_cipher_list_contains_cipher(
413 client_hello, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) {
414 return false;
415 }
416
417 // JDK 11 always sends extensions in a particular order.
418 constexpr uint16_t kMaxFragmentLength = 0x0001;
419 constexpr uint16_t kStatusRequestV2 = 0x0011;
420 static CONSTEXPR_ARRAY struct {
421 uint16_t id;
422 bool required;
423 } kJavaExtensions[] = {
424 {TLSEXT_TYPE_server_name, false},
425 {kMaxFragmentLength, false},
426 {TLSEXT_TYPE_status_request, false},
427 {TLSEXT_TYPE_supported_groups, true},
428 {TLSEXT_TYPE_ec_point_formats, false},
429 {TLSEXT_TYPE_signature_algorithms, true},
430 // Java always sends signature_algorithms_cert.
431 {TLSEXT_TYPE_signature_algorithms_cert, true},
432 {TLSEXT_TYPE_application_layer_protocol_negotiation, false},
433 {kStatusRequestV2, false},
434 {TLSEXT_TYPE_extended_master_secret, false},
435 {TLSEXT_TYPE_supported_versions, true},
436 {TLSEXT_TYPE_cookie, false},
437 {TLSEXT_TYPE_psk_key_exchange_modes, true},
438 {TLSEXT_TYPE_key_share, true},
439 {TLSEXT_TYPE_renegotiate, false},
440 {TLSEXT_TYPE_pre_shared_key, false},
441 };
442 Span<const uint8_t> sigalgs, sigalgs_cert;
443 bool has_status_request = false, has_status_request_v2 = false;
444 CBS extensions, supported_groups;
445 CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len);
446 for (const auto &java_extension : kJavaExtensions) {
447 CBS copy = extensions;
448 uint16_t id;
449 if (CBS_get_u16(©, &id) && id == java_extension.id) {
450 // The next extension is the one we expected.
451 extensions = copy;
452 CBS body;
453 if (!CBS_get_u16_length_prefixed(&extensions, &body)) {
454 return false;
455 }
456 switch (id) {
457 case TLSEXT_TYPE_status_request:
458 has_status_request = true;
459 break;
460 case kStatusRequestV2:
461 has_status_request_v2 = true;
462 break;
463 case TLSEXT_TYPE_signature_algorithms:
464 sigalgs = body;
465 break;
466 case TLSEXT_TYPE_signature_algorithms_cert:
467 sigalgs_cert = body;
468 break;
469 case TLSEXT_TYPE_supported_groups:
470 supported_groups = body;
471 break;
472 }
473 } else if (java_extension.required) {
474 return false;
475 }
476 }
477 if (CBS_len(&extensions) != 0) {
478 return false;
479 }
480
481 // JDK 11 never advertises X25519. It is not offered by default, and
482 // -Djdk.tls.namedGroups=x25519 does not work. This is unusual: many modern
483 // clients implement X25519.
484 while (CBS_len(&supported_groups) > 0) {
485 uint16_t group;
486 if (!CBS_get_u16(&supported_groups, &group) ||
487 group == SSL_CURVE_X25519) {
488 return false;
489 }
490 }
491
492 if (// JDK 11 always sends the same contents in signature_algorithms and
493 // signature_algorithms_cert. This is unusual: signature_algorithms_cert,
494 // if omitted, is treated as if it were signature_algorithms.
495 sigalgs != sigalgs_cert ||
496 // When TLS 1.2 or below is enabled, JDK 11 sends status_request_v2 iff it
497 // sends status_request. This is unusual: status_request_v2 is not widely
498 // implemented.
499 has_status_request != has_status_request_v2) {
500 return false;
501 }
502
503 return true;
504 }
505
do_read_client_hello(SSL_HANDSHAKE * hs)506 static enum ssl_hs_wait_t do_read_client_hello(SSL_HANDSHAKE *hs) {
507 SSL *const ssl = hs->ssl;
508
509 SSLMessage msg;
510 if (!ssl->method->get_message(ssl, &msg)) {
511 return ssl_hs_read_message;
512 }
513
514 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_HELLO)) {
515 return ssl_hs_error;
516 }
517
518 if (hs->config->handoff) {
519 return ssl_hs_handoff;
520 }
521
522 SSL_CLIENT_HELLO client_hello;
523 if (!ssl_client_hello_init(ssl, &client_hello, msg)) {
524 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
525 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
526 return ssl_hs_error;
527 }
528
529 // Run the early callback.
530 if (ssl->ctx->select_certificate_cb != NULL) {
531 switch (ssl->ctx->select_certificate_cb(&client_hello)) {
532 case ssl_select_cert_retry:
533 return ssl_hs_certificate_selection_pending;
534
535 case ssl_select_cert_error:
536 // Connection rejected.
537 OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED);
538 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
539 return ssl_hs_error;
540
541 default:
542 /* fallthrough */;
543 }
544 }
545
546 // Freeze the version range after the early callback.
547 if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) {
548 return ssl_hs_error;
549 }
550
551 if (hs->config->jdk11_workaround &&
552 is_probably_jdk11_with_tls13(&client_hello)) {
553 hs->apply_jdk11_workaround = true;
554 }
555
556 uint8_t alert = SSL_AD_DECODE_ERROR;
557 if (!negotiate_version(hs, &alert, &client_hello)) {
558 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
559 return ssl_hs_error;
560 }
561
562 hs->client_version = client_hello.version;
563 if (client_hello.random_len != SSL3_RANDOM_SIZE) {
564 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
565 return ssl_hs_error;
566 }
567 OPENSSL_memcpy(ssl->s3->client_random, client_hello.random,
568 client_hello.random_len);
569
570 // Only null compression is supported. TLS 1.3 further requires the peer
571 // advertise no other compression.
572 if (OPENSSL_memchr(client_hello.compression_methods, 0,
573 client_hello.compression_methods_len) == NULL ||
574 (ssl_protocol_version(ssl) >= TLS1_3_VERSION &&
575 client_hello.compression_methods_len != 1)) {
576 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMPRESSION_LIST);
577 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
578 return ssl_hs_error;
579 }
580
581 // TLS extensions.
582 if (!ssl_parse_clienthello_tlsext(hs, &client_hello)) {
583 OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
584 return ssl_hs_error;
585 }
586
587 hs->state = state12_select_certificate;
588 return ssl_hs_ok;
589 }
590
do_select_certificate(SSL_HANDSHAKE * hs)591 static enum ssl_hs_wait_t do_select_certificate(SSL_HANDSHAKE *hs) {
592 SSL *const ssl = hs->ssl;
593
594 SSLMessage msg;
595 if (!ssl->method->get_message(ssl, &msg)) {
596 return ssl_hs_read_message;
597 }
598
599 // Call |cert_cb| to update server certificates if required.
600 if (hs->config->cert->cert_cb != NULL) {
601 int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg);
602 if (rv == 0) {
603 OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
604 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
605 return ssl_hs_error;
606 }
607 if (rv < 0) {
608 return ssl_hs_x509_lookup;
609 }
610 }
611
612 if (!ssl_on_certificate_selected(hs)) {
613 return ssl_hs_error;
614 }
615
616 if (hs->ocsp_stapling_requested &&
617 ssl->ctx->legacy_ocsp_callback != nullptr) {
618 switch (ssl->ctx->legacy_ocsp_callback(
619 ssl, ssl->ctx->legacy_ocsp_callback_arg)) {
620 case SSL_TLSEXT_ERR_OK:
621 break;
622 case SSL_TLSEXT_ERR_NOACK:
623 hs->ocsp_stapling_requested = false;
624 break;
625 default:
626 OPENSSL_PUT_ERROR(SSL, SSL_R_OCSP_CB_ERROR);
627 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
628 return ssl_hs_error;
629 }
630 }
631
632 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
633 // Jump to the TLS 1.3 state machine.
634 hs->state = state12_tls13;
635 return ssl_hs_ok;
636 }
637
638 SSL_CLIENT_HELLO client_hello;
639 if (!ssl_client_hello_init(ssl, &client_hello, msg)) {
640 return ssl_hs_error;
641 }
642
643 // Negotiate the cipher suite. This must be done after |cert_cb| so the
644 // certificate is finalized.
645 SSLCipherPreferenceList *prefs = hs->config->cipher_list
646 ? hs->config->cipher_list.get()
647 : ssl->ctx->cipher_list.get();
648 hs->new_cipher = ssl3_choose_cipher(hs, &client_hello, prefs);
649 if (hs->new_cipher == NULL) {
650 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_CIPHER);
651 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
652 return ssl_hs_error;
653 }
654
655 hs->state = state12_select_parameters;
656 return ssl_hs_ok;
657 }
658
do_tls13(SSL_HANDSHAKE * hs)659 static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) {
660 enum ssl_hs_wait_t wait = tls13_server_handshake(hs);
661 if (wait == ssl_hs_ok) {
662 hs->state = state12_finish_server_handshake;
663 return ssl_hs_ok;
664 }
665
666 return wait;
667 }
668
do_select_parameters(SSL_HANDSHAKE * hs)669 static enum ssl_hs_wait_t do_select_parameters(SSL_HANDSHAKE *hs) {
670 SSL *const ssl = hs->ssl;
671
672 SSLMessage msg;
673 if (!ssl->method->get_message(ssl, &msg)) {
674 return ssl_hs_read_message;
675 }
676
677 SSL_CLIENT_HELLO client_hello;
678 if (!ssl_client_hello_init(ssl, &client_hello, msg)) {
679 return ssl_hs_error;
680 }
681
682 // Determine whether we are doing session resumption.
683 UniquePtr<SSL_SESSION> session;
684 bool tickets_supported = false, renew_ticket = false;
685 enum ssl_hs_wait_t wait = ssl_get_prev_session(
686 hs, &session, &tickets_supported, &renew_ticket, &client_hello);
687 if (wait != ssl_hs_ok) {
688 return wait;
689 }
690
691 if (session) {
692 if (session->extended_master_secret && !hs->extended_master_secret) {
693 // A ClientHello without EMS that attempts to resume a session with EMS
694 // is fatal to the connection.
695 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
696 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
697 return ssl_hs_error;
698 }
699
700 if (!ssl_session_is_resumable(hs, session.get()) ||
701 // If the client offers the EMS extension, but the previous session
702 // didn't use it, then negotiate a new session.
703 hs->extended_master_secret != session->extended_master_secret) {
704 session.reset();
705 }
706 }
707
708 if (session) {
709 // Use the old session.
710 hs->ticket_expected = renew_ticket;
711 ssl->session = std::move(session);
712 ssl->s3->session_reused = true;
713 } else {
714 hs->ticket_expected = tickets_supported;
715 ssl_set_session(ssl, NULL);
716 if (!ssl_get_new_session(hs, 1 /* server */)) {
717 return ssl_hs_error;
718 }
719
720 // Clear the session ID if we want the session to be single-use.
721 if (!(ssl->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)) {
722 hs->new_session->session_id_length = 0;
723 }
724 }
725
726 if (ssl->ctx->dos_protection_cb != NULL &&
727 ssl->ctx->dos_protection_cb(&client_hello) == 0) {
728 // Connection rejected for DOS reasons.
729 OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED);
730 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
731 return ssl_hs_error;
732 }
733
734 if (ssl->session == NULL) {
735 hs->new_session->cipher = hs->new_cipher;
736
737 // Determine whether to request a client certificate.
738 hs->cert_request = !!(hs->config->verify_mode & SSL_VERIFY_PEER);
739 // Only request a certificate if Channel ID isn't negotiated.
740 if ((hs->config->verify_mode & SSL_VERIFY_PEER_IF_NO_OBC) &&
741 ssl->s3->channel_id_valid) {
742 hs->cert_request = false;
743 }
744 // CertificateRequest may only be sent in certificate-based ciphers.
745 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
746 hs->cert_request = false;
747 }
748
749 if (!hs->cert_request) {
750 // OpenSSL returns X509_V_OK when no certificates are requested. This is
751 // classed by them as a bug, but it's assumed by at least NGINX.
752 hs->new_session->verify_result = X509_V_OK;
753 }
754 }
755
756 // HTTP/2 negotiation depends on the cipher suite, so ALPN negotiation was
757 // deferred. Complete it now.
758 uint8_t alert = SSL_AD_DECODE_ERROR;
759 if (!ssl_negotiate_alpn(hs, &alert, &client_hello)) {
760 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
761 return ssl_hs_error;
762 }
763
764 // Now that all parameters are known, initialize the handshake hash and hash
765 // the ClientHello.
766 if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) ||
767 !ssl_hash_message(hs, msg)) {
768 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
769 return ssl_hs_error;
770 }
771
772 // Handback includes the whole handshake transcript, so we cannot free the
773 // transcript buffer in the handback case.
774 if (!hs->cert_request && !hs->handback) {
775 hs->transcript.FreeBuffer();
776 }
777
778 ssl->method->next_message(ssl);
779
780 hs->state = state12_send_server_hello;
781 return ssl_hs_ok;
782 }
783
copy_suffix(Span<uint8_t> out,Span<const uint8_t> in)784 static void copy_suffix(Span<uint8_t> out, Span<const uint8_t> in) {
785 out = out.subspan(out.size() - in.size());
786 assert(out.size() == in.size());
787 OPENSSL_memcpy(out.data(), in.data(), in.size());
788 }
789
do_send_server_hello(SSL_HANDSHAKE * hs)790 static enum ssl_hs_wait_t do_send_server_hello(SSL_HANDSHAKE *hs) {
791 SSL *const ssl = hs->ssl;
792
793 // We only accept ChannelIDs on connections with ECDHE in order to avoid a
794 // known attack while we fix ChannelID itself.
795 if (ssl->s3->channel_id_valid &&
796 (hs->new_cipher->algorithm_mkey & SSL_kECDHE) == 0) {
797 ssl->s3->channel_id_valid = false;
798 }
799
800 // If this is a resumption and the original handshake didn't support
801 // ChannelID then we didn't record the original handshake hashes in the
802 // session and so cannot resume with ChannelIDs.
803 if (ssl->session != NULL &&
804 ssl->session->original_handshake_hash_len == 0) {
805 ssl->s3->channel_id_valid = false;
806 }
807
808 struct OPENSSL_timeval now;
809 ssl_get_current_time(ssl, &now);
810 ssl->s3->server_random[0] = now.tv_sec >> 24;
811 ssl->s3->server_random[1] = now.tv_sec >> 16;
812 ssl->s3->server_random[2] = now.tv_sec >> 8;
813 ssl->s3->server_random[3] = now.tv_sec;
814 if (!RAND_bytes(ssl->s3->server_random + 4, SSL3_RANDOM_SIZE - 4)) {
815 return ssl_hs_error;
816 }
817
818 // Implement the TLS 1.3 anti-downgrade feature.
819 if (ssl_supports_version(hs, TLS1_3_VERSION)) {
820 if (ssl_protocol_version(ssl) == TLS1_2_VERSION) {
821 if (hs->apply_jdk11_workaround) {
822 // JDK 11 implements the TLS 1.3 downgrade signal, so we cannot send it
823 // here. However, the signal is only effective if all TLS 1.2
824 // ServerHellos produced by the server are marked. Thus we send a
825 // different non-standard signal for the time being, until JDK 11.0.2 is
826 // released and clients have updated.
827 copy_suffix(ssl->s3->server_random, kJDK11DowngradeRandom);
828 } else {
829 copy_suffix(ssl->s3->server_random, kTLS13DowngradeRandom);
830 }
831 } else {
832 copy_suffix(ssl->s3->server_random, kTLS12DowngradeRandom);
833 }
834 }
835
836 const SSL_SESSION *session = hs->new_session.get();
837 if (ssl->session != nullptr) {
838 session = ssl->session.get();
839 }
840
841 ScopedCBB cbb;
842 CBB body, session_id;
843 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_SERVER_HELLO) ||
844 !CBB_add_u16(&body, ssl->version) ||
845 !CBB_add_bytes(&body, ssl->s3->server_random, SSL3_RANDOM_SIZE) ||
846 !CBB_add_u8_length_prefixed(&body, &session_id) ||
847 !CBB_add_bytes(&session_id, session->session_id,
848 session->session_id_length) ||
849 !CBB_add_u16(&body, ssl_cipher_get_value(hs->new_cipher)) ||
850 !CBB_add_u8(&body, 0 /* no compression */) ||
851 !ssl_add_serverhello_tlsext(hs, &body) ||
852 !ssl_add_message_cbb(ssl, cbb.get())) {
853 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
854 return ssl_hs_error;
855 }
856
857 if (ssl->session != NULL) {
858 hs->state = state12_send_server_finished;
859 } else {
860 hs->state = state12_send_server_certificate;
861 }
862 return ssl_hs_ok;
863 }
864
do_send_server_certificate(SSL_HANDSHAKE * hs)865 static enum ssl_hs_wait_t do_send_server_certificate(SSL_HANDSHAKE *hs) {
866 SSL *const ssl = hs->ssl;
867 ScopedCBB cbb;
868
869 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
870 if (!ssl_has_certificate(hs)) {
871 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_SET);
872 return ssl_hs_error;
873 }
874
875 if (!ssl_output_cert_chain(hs)) {
876 return ssl_hs_error;
877 }
878
879 if (hs->certificate_status_expected) {
880 CBB body, ocsp_response;
881 if (!ssl->method->init_message(ssl, cbb.get(), &body,
882 SSL3_MT_CERTIFICATE_STATUS) ||
883 !CBB_add_u8(&body, TLSEXT_STATUSTYPE_ocsp) ||
884 !CBB_add_u24_length_prefixed(&body, &ocsp_response) ||
885 !CBB_add_bytes(
886 &ocsp_response,
887 CRYPTO_BUFFER_data(hs->config->cert->ocsp_response.get()),
888 CRYPTO_BUFFER_len(hs->config->cert->ocsp_response.get())) ||
889 !ssl_add_message_cbb(ssl, cbb.get())) {
890 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
891 return ssl_hs_error;
892 }
893 }
894 }
895
896 // Assemble ServerKeyExchange parameters if needed.
897 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
898 uint32_t alg_a = hs->new_cipher->algorithm_auth;
899 if (ssl_cipher_requires_server_key_exchange(hs->new_cipher) ||
900 ((alg_a & SSL_aPSK) && hs->config->psk_identity_hint)) {
901 // Pre-allocate enough room to comfortably fit an ECDHE public key. Prepend
902 // the client and server randoms for the signing transcript.
903 CBB child;
904 if (!CBB_init(cbb.get(), SSL3_RANDOM_SIZE * 2 + 128) ||
905 !CBB_add_bytes(cbb.get(), ssl->s3->client_random, SSL3_RANDOM_SIZE) ||
906 !CBB_add_bytes(cbb.get(), ssl->s3->server_random, SSL3_RANDOM_SIZE)) {
907 return ssl_hs_error;
908 }
909
910 // PSK ciphers begin with an identity hint.
911 if (alg_a & SSL_aPSK) {
912 size_t len = hs->config->psk_identity_hint == nullptr
913 ? 0
914 : strlen(hs->config->psk_identity_hint.get());
915 if (!CBB_add_u16_length_prefixed(cbb.get(), &child) ||
916 !CBB_add_bytes(&child,
917 (const uint8_t *)hs->config->psk_identity_hint.get(),
918 len)) {
919 return ssl_hs_error;
920 }
921 }
922
923 if (alg_k & SSL_kECDHE) {
924 // Determine the group to use.
925 uint16_t group_id;
926 if (!tls1_get_shared_group(hs, &group_id)) {
927 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
928 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
929 return ssl_hs_error;
930 }
931 hs->new_session->group_id = group_id;
932
933 // Set up ECDH, generate a key, and emit the public half.
934 hs->key_shares[0] = SSLKeyShare::Create(group_id);
935 if (!hs->key_shares[0] ||
936 !CBB_add_u8(cbb.get(), NAMED_CURVE_TYPE) ||
937 !CBB_add_u16(cbb.get(), group_id) ||
938 !CBB_add_u8_length_prefixed(cbb.get(), &child) ||
939 !hs->key_shares[0]->Offer(&child)) {
940 return ssl_hs_error;
941 }
942 } else {
943 assert(alg_k & SSL_kPSK);
944 }
945
946 if (!CBBFinishArray(cbb.get(), &hs->server_params)) {
947 return ssl_hs_error;
948 }
949 }
950
951 hs->state = state12_send_server_key_exchange;
952 return ssl_hs_ok;
953 }
954
do_send_server_key_exchange(SSL_HANDSHAKE * hs)955 static enum ssl_hs_wait_t do_send_server_key_exchange(SSL_HANDSHAKE *hs) {
956 SSL *const ssl = hs->ssl;
957
958 if (hs->server_params.size() == 0) {
959 hs->state = state12_send_server_hello_done;
960 return ssl_hs_ok;
961 }
962
963 ScopedCBB cbb;
964 CBB body, child;
965 if (!ssl->method->init_message(ssl, cbb.get(), &body,
966 SSL3_MT_SERVER_KEY_EXCHANGE) ||
967 // |hs->server_params| contains a prefix for signing.
968 hs->server_params.size() < 2 * SSL3_RANDOM_SIZE ||
969 !CBB_add_bytes(&body, hs->server_params.data() + 2 * SSL3_RANDOM_SIZE,
970 hs->server_params.size() - 2 * SSL3_RANDOM_SIZE)) {
971 return ssl_hs_error;
972 }
973
974 // Add a signature.
975 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
976 if (!ssl_has_private_key(hs)) {
977 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
978 return ssl_hs_error;
979 }
980
981 // Determine the signature algorithm.
982 uint16_t signature_algorithm;
983 if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) {
984 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
985 return ssl_hs_error;
986 }
987 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
988 if (!CBB_add_u16(&body, signature_algorithm)) {
989 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
990 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
991 return ssl_hs_error;
992 }
993 }
994
995 // Add space for the signature.
996 const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey.get());
997 uint8_t *ptr;
998 if (!CBB_add_u16_length_prefixed(&body, &child) ||
999 !CBB_reserve(&child, &ptr, max_sig_len)) {
1000 return ssl_hs_error;
1001 }
1002
1003 size_t sig_len;
1004 switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len,
1005 signature_algorithm, hs->server_params)) {
1006 case ssl_private_key_success:
1007 if (!CBB_did_write(&child, sig_len)) {
1008 return ssl_hs_error;
1009 }
1010 break;
1011 case ssl_private_key_failure:
1012 return ssl_hs_error;
1013 case ssl_private_key_retry:
1014 return ssl_hs_private_key_operation;
1015 }
1016 }
1017
1018 if (!ssl_add_message_cbb(ssl, cbb.get())) {
1019 return ssl_hs_error;
1020 }
1021
1022 hs->server_params.Reset();
1023
1024 hs->state = state12_send_server_hello_done;
1025 return ssl_hs_ok;
1026 }
1027
do_send_server_hello_done(SSL_HANDSHAKE * hs)1028 static enum ssl_hs_wait_t do_send_server_hello_done(SSL_HANDSHAKE *hs) {
1029 SSL *const ssl = hs->ssl;
1030
1031 ScopedCBB cbb;
1032 CBB body;
1033
1034 if (hs->cert_request) {
1035 CBB cert_types, sigalgs_cbb;
1036 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1037 SSL3_MT_CERTIFICATE_REQUEST) ||
1038 !CBB_add_u8_length_prefixed(&body, &cert_types) ||
1039 !CBB_add_u8(&cert_types, SSL3_CT_RSA_SIGN) ||
1040 !CBB_add_u8(&cert_types, TLS_CT_ECDSA_SIGN) ||
1041 // TLS 1.2 has no way to specify different signature algorithms for
1042 // certificates and the online signature, so emit the more restrictive
1043 // certificate list.
1044 (ssl_protocol_version(ssl) >= TLS1_2_VERSION &&
1045 (!CBB_add_u16_length_prefixed(&body, &sigalgs_cbb) ||
1046 !tls12_add_verify_sigalgs(ssl, &sigalgs_cbb, true /* certs */))) ||
1047 !ssl_add_client_CA_list(hs, &body) ||
1048 !ssl_add_message_cbb(ssl, cbb.get())) {
1049 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1050 return ssl_hs_error;
1051 }
1052 }
1053
1054 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1055 SSL3_MT_SERVER_HELLO_DONE) ||
1056 !ssl_add_message_cbb(ssl, cbb.get())) {
1057 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1058 return ssl_hs_error;
1059 }
1060
1061 hs->state = state12_read_client_certificate;
1062 return ssl_hs_flush;
1063 }
1064
do_read_client_certificate(SSL_HANDSHAKE * hs)1065 static enum ssl_hs_wait_t do_read_client_certificate(SSL_HANDSHAKE *hs) {
1066 SSL *const ssl = hs->ssl;
1067
1068 if (hs->handback && hs->new_cipher->algorithm_mkey == SSL_kECDHE) {
1069 return ssl_hs_handback;
1070 }
1071 if (!hs->cert_request) {
1072 hs->state = state12_verify_client_certificate;
1073 return ssl_hs_ok;
1074 }
1075
1076 SSLMessage msg;
1077 if (!ssl->method->get_message(ssl, &msg)) {
1078 return ssl_hs_read_message;
1079 }
1080
1081 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE)) {
1082 return ssl_hs_error;
1083 }
1084
1085 if (!ssl_hash_message(hs, msg)) {
1086 return ssl_hs_error;
1087 }
1088
1089 CBS certificate_msg = msg.body;
1090 uint8_t alert = SSL_AD_DECODE_ERROR;
1091 if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey,
1092 hs->config->retain_only_sha256_of_client_certs
1093 ? hs->new_session->peer_sha256
1094 : nullptr,
1095 &certificate_msg, ssl->ctx->pool)) {
1096 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1097 return ssl_hs_error;
1098 }
1099
1100 if (CBS_len(&certificate_msg) != 0 ||
1101 !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) {
1102 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1103 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1104 return ssl_hs_error;
1105 }
1106
1107 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0) {
1108 // No client certificate so the handshake buffer may be discarded.
1109 hs->transcript.FreeBuffer();
1110
1111 if (hs->config->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) {
1112 // Fail for TLS only if we required a certificate
1113 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE);
1114 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1115 return ssl_hs_error;
1116 }
1117
1118 // OpenSSL returns X509_V_OK when no certificates are received. This is
1119 // classed by them as a bug, but it's assumed by at least NGINX.
1120 hs->new_session->verify_result = X509_V_OK;
1121 } else if (hs->config->retain_only_sha256_of_client_certs) {
1122 // The hash will have been filled in.
1123 hs->new_session->peer_sha256_valid = 1;
1124 }
1125
1126 ssl->method->next_message(ssl);
1127 hs->state = state12_verify_client_certificate;
1128 return ssl_hs_ok;
1129 }
1130
do_verify_client_certificate(SSL_HANDSHAKE * hs)1131 static enum ssl_hs_wait_t do_verify_client_certificate(SSL_HANDSHAKE *hs) {
1132 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) > 0) {
1133 switch (ssl_verify_peer_cert(hs)) {
1134 case ssl_verify_ok:
1135 break;
1136 case ssl_verify_invalid:
1137 return ssl_hs_error;
1138 case ssl_verify_retry:
1139 return ssl_hs_certificate_verify;
1140 }
1141 }
1142
1143 hs->state = state12_read_client_key_exchange;
1144 return ssl_hs_ok;
1145 }
1146
do_read_client_key_exchange(SSL_HANDSHAKE * hs)1147 static enum ssl_hs_wait_t do_read_client_key_exchange(SSL_HANDSHAKE *hs) {
1148 SSL *const ssl = hs->ssl;
1149 SSLMessage msg;
1150 if (!ssl->method->get_message(ssl, &msg)) {
1151 return ssl_hs_read_message;
1152 }
1153
1154 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_KEY_EXCHANGE)) {
1155 return ssl_hs_error;
1156 }
1157
1158 CBS client_key_exchange = msg.body;
1159 uint32_t alg_k = hs->new_cipher->algorithm_mkey;
1160 uint32_t alg_a = hs->new_cipher->algorithm_auth;
1161
1162 // If using a PSK key exchange, parse the PSK identity.
1163 if (alg_a & SSL_aPSK) {
1164 CBS psk_identity;
1165
1166 // If using PSK, the ClientKeyExchange contains a psk_identity. If PSK,
1167 // then this is the only field in the message.
1168 if (!CBS_get_u16_length_prefixed(&client_key_exchange, &psk_identity) ||
1169 ((alg_k & SSL_kPSK) && CBS_len(&client_key_exchange) != 0)) {
1170 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1171 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1172 return ssl_hs_error;
1173 }
1174
1175 if (CBS_len(&psk_identity) > PSK_MAX_IDENTITY_LEN ||
1176 CBS_contains_zero_byte(&psk_identity)) {
1177 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
1178 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
1179 return ssl_hs_error;
1180 }
1181 char *raw = nullptr;
1182 if (!CBS_strdup(&psk_identity, &raw)) {
1183 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
1184 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1185 return ssl_hs_error;
1186 }
1187 hs->new_session->psk_identity.reset(raw);
1188 }
1189
1190 // Depending on the key exchange method, compute |premaster_secret|.
1191 Array<uint8_t> premaster_secret;
1192 if (alg_k & SSL_kRSA) {
1193 CBS encrypted_premaster_secret;
1194 if (!CBS_get_u16_length_prefixed(&client_key_exchange,
1195 &encrypted_premaster_secret) ||
1196 CBS_len(&client_key_exchange) != 0) {
1197 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1198 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1199 return ssl_hs_error;
1200 }
1201
1202 // Allocate a buffer large enough for an RSA decryption.
1203 Array<uint8_t> decrypt_buf;
1204 if (!decrypt_buf.Init(EVP_PKEY_size(hs->local_pubkey.get()))) {
1205 return ssl_hs_error;
1206 }
1207
1208 // Decrypt with no padding. PKCS#1 padding will be removed as part of the
1209 // timing-sensitive code below.
1210 size_t decrypt_len;
1211 switch (ssl_private_key_decrypt(hs, decrypt_buf.data(), &decrypt_len,
1212 decrypt_buf.size(),
1213 encrypted_premaster_secret)) {
1214 case ssl_private_key_success:
1215 break;
1216 case ssl_private_key_failure:
1217 return ssl_hs_error;
1218 case ssl_private_key_retry:
1219 return ssl_hs_private_key_operation;
1220 }
1221
1222 if (decrypt_len != decrypt_buf.size()) {
1223 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED);
1224 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1225 return ssl_hs_error;
1226 }
1227
1228 CONSTTIME_SECRET(decrypt_buf.data(), decrypt_len);
1229
1230 // Prepare a random premaster, to be used on invalid padding. See RFC 5246,
1231 // section 7.4.7.1.
1232 if (!premaster_secret.Init(SSL_MAX_MASTER_KEY_LENGTH) ||
1233 !RAND_bytes(premaster_secret.data(), premaster_secret.size())) {
1234 return ssl_hs_error;
1235 }
1236
1237 // The smallest padded premaster is 11 bytes of overhead. Small keys are
1238 // publicly invalid.
1239 if (decrypt_len < 11 + premaster_secret.size()) {
1240 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED);
1241 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1242 return ssl_hs_error;
1243 }
1244
1245 // Check the padding. See RFC 3447, section 7.2.2.
1246 size_t padding_len = decrypt_len - premaster_secret.size();
1247 uint8_t good = constant_time_eq_int_8(decrypt_buf[0], 0) &
1248 constant_time_eq_int_8(decrypt_buf[1], 2);
1249 for (size_t i = 2; i < padding_len - 1; i++) {
1250 good &= ~constant_time_is_zero_8(decrypt_buf[i]);
1251 }
1252 good &= constant_time_is_zero_8(decrypt_buf[padding_len - 1]);
1253
1254 // The premaster secret must begin with |client_version|. This too must be
1255 // checked in constant time (http://eprint.iacr.org/2003/052/).
1256 good &= constant_time_eq_8(decrypt_buf[padding_len],
1257 (unsigned)(hs->client_version >> 8));
1258 good &= constant_time_eq_8(decrypt_buf[padding_len + 1],
1259 (unsigned)(hs->client_version & 0xff));
1260
1261 // Select, in constant time, either the decrypted premaster or the random
1262 // premaster based on |good|.
1263 for (size_t i = 0; i < premaster_secret.size(); i++) {
1264 premaster_secret[i] = constant_time_select_8(
1265 good, decrypt_buf[padding_len + i], premaster_secret[i]);
1266 }
1267 } else if (alg_k & SSL_kECDHE) {
1268 // Parse the ClientKeyExchange.
1269 CBS peer_key;
1270 if (!CBS_get_u8_length_prefixed(&client_key_exchange, &peer_key) ||
1271 CBS_len(&client_key_exchange) != 0) {
1272 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1273 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1274 return ssl_hs_error;
1275 }
1276
1277 // Compute the premaster.
1278 uint8_t alert = SSL_AD_DECODE_ERROR;
1279 if (!hs->key_shares[0]->Finish(&premaster_secret, &alert, peer_key)) {
1280 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1281 return ssl_hs_error;
1282 }
1283
1284 // The key exchange state may now be discarded.
1285 hs->key_shares[0].reset();
1286 hs->key_shares[1].reset();
1287 } else if (!(alg_k & SSL_kPSK)) {
1288 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1289 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
1290 return ssl_hs_error;
1291 }
1292
1293 // For a PSK cipher suite, the actual pre-master secret is combined with the
1294 // pre-shared key.
1295 if (alg_a & SSL_aPSK) {
1296 if (hs->config->psk_server_callback == NULL) {
1297 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1298 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1299 return ssl_hs_error;
1300 }
1301
1302 // Look up the key for the identity.
1303 uint8_t psk[PSK_MAX_PSK_LEN];
1304 unsigned psk_len = hs->config->psk_server_callback(
1305 ssl, hs->new_session->psk_identity.get(), psk, sizeof(psk));
1306 if (psk_len > PSK_MAX_PSK_LEN) {
1307 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
1308 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
1309 return ssl_hs_error;
1310 } else if (psk_len == 0) {
1311 // PSK related to the given identity not found.
1312 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
1313 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNKNOWN_PSK_IDENTITY);
1314 return ssl_hs_error;
1315 }
1316
1317 if (alg_k & SSL_kPSK) {
1318 // In plain PSK, other_secret is a block of 0s with the same length as the
1319 // pre-shared key.
1320 if (!premaster_secret.Init(psk_len)) {
1321 return ssl_hs_error;
1322 }
1323 OPENSSL_memset(premaster_secret.data(), 0, premaster_secret.size());
1324 }
1325
1326 ScopedCBB new_premaster;
1327 CBB child;
1328 if (!CBB_init(new_premaster.get(),
1329 2 + psk_len + 2 + premaster_secret.size()) ||
1330 !CBB_add_u16_length_prefixed(new_premaster.get(), &child) ||
1331 !CBB_add_bytes(&child, premaster_secret.data(),
1332 premaster_secret.size()) ||
1333 !CBB_add_u16_length_prefixed(new_premaster.get(), &child) ||
1334 !CBB_add_bytes(&child, psk, psk_len) ||
1335 !CBBFinishArray(new_premaster.get(), &premaster_secret)) {
1336 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
1337 return ssl_hs_error;
1338 }
1339 }
1340
1341 if (!ssl_hash_message(hs, msg)) {
1342 return ssl_hs_error;
1343 }
1344
1345 // Compute the master secret.
1346 hs->new_session->master_key_length = tls1_generate_master_secret(
1347 hs, hs->new_session->master_key, premaster_secret);
1348 if (hs->new_session->master_key_length == 0) {
1349 return ssl_hs_error;
1350 }
1351 hs->new_session->extended_master_secret = hs->extended_master_secret;
1352 CONSTTIME_DECLASSIFY(hs->new_session->master_key,
1353 hs->new_session->master_key_length);
1354
1355 ssl->method->next_message(ssl);
1356 hs->state = state12_read_client_certificate_verify;
1357 return ssl_hs_ok;
1358 }
1359
do_read_client_certificate_verify(SSL_HANDSHAKE * hs)1360 static enum ssl_hs_wait_t do_read_client_certificate_verify(SSL_HANDSHAKE *hs) {
1361 SSL *const ssl = hs->ssl;
1362
1363 // Only RSA and ECDSA client certificates are supported, so a
1364 // CertificateVerify is required if and only if there's a client certificate.
1365 if (!hs->peer_pubkey) {
1366 hs->transcript.FreeBuffer();
1367 hs->state = state12_read_change_cipher_spec;
1368 return ssl_hs_ok;
1369 }
1370
1371 SSLMessage msg;
1372 if (!ssl->method->get_message(ssl, &msg)) {
1373 return ssl_hs_read_message;
1374 }
1375
1376 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_VERIFY)) {
1377 return ssl_hs_error;
1378 }
1379
1380 CBS certificate_verify = msg.body, signature;
1381
1382 // Determine the signature algorithm.
1383 uint16_t signature_algorithm = 0;
1384 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) {
1385 if (!CBS_get_u16(&certificate_verify, &signature_algorithm)) {
1386 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1387 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1388 return ssl_hs_error;
1389 }
1390 uint8_t alert = SSL_AD_DECODE_ERROR;
1391 if (!tls12_check_peer_sigalg(ssl, &alert, signature_algorithm)) {
1392 ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
1393 return ssl_hs_error;
1394 }
1395 hs->new_session->peer_signature_algorithm = signature_algorithm;
1396 } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm,
1397 hs->peer_pubkey.get())) {
1398 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
1399 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE);
1400 return ssl_hs_error;
1401 }
1402
1403 // Parse and verify the signature.
1404 if (!CBS_get_u16_length_prefixed(&certificate_verify, &signature) ||
1405 CBS_len(&certificate_verify) != 0) {
1406 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1407 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1408 return ssl_hs_error;
1409 }
1410
1411 bool sig_ok =
1412 ssl_public_key_verify(ssl, signature, signature_algorithm,
1413 hs->peer_pubkey.get(), hs->transcript.buffer());
1414 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
1415 sig_ok = true;
1416 ERR_clear_error();
1417 #endif
1418 if (!sig_ok) {
1419 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
1420 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
1421 return ssl_hs_error;
1422 }
1423
1424 // The handshake buffer is no longer necessary, and we may hash the current
1425 // message.
1426 hs->transcript.FreeBuffer();
1427 if (!ssl_hash_message(hs, msg)) {
1428 return ssl_hs_error;
1429 }
1430
1431 ssl->method->next_message(ssl);
1432 hs->state = state12_read_change_cipher_spec;
1433 return ssl_hs_ok;
1434 }
1435
do_read_change_cipher_spec(SSL_HANDSHAKE * hs)1436 static enum ssl_hs_wait_t do_read_change_cipher_spec(SSL_HANDSHAKE *hs) {
1437 if (hs->handback && hs->ssl->session != NULL) {
1438 return ssl_hs_handback;
1439 }
1440 hs->state = state12_process_change_cipher_spec;
1441 return ssl_hs_read_change_cipher_spec;
1442 }
1443
do_process_change_cipher_spec(SSL_HANDSHAKE * hs)1444 static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) {
1445 if (!tls1_change_cipher_state(hs, evp_aead_open)) {
1446 return ssl_hs_error;
1447 }
1448
1449 hs->state = state12_read_next_proto;
1450 return ssl_hs_ok;
1451 }
1452
do_read_next_proto(SSL_HANDSHAKE * hs)1453 static enum ssl_hs_wait_t do_read_next_proto(SSL_HANDSHAKE *hs) {
1454 SSL *const ssl = hs->ssl;
1455
1456 if (!hs->next_proto_neg_seen) {
1457 hs->state = state12_read_channel_id;
1458 return ssl_hs_ok;
1459 }
1460
1461 SSLMessage msg;
1462 if (!ssl->method->get_message(ssl, &msg)) {
1463 return ssl_hs_read_message;
1464 }
1465
1466 if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEXT_PROTO) ||
1467 !ssl_hash_message(hs, msg)) {
1468 return ssl_hs_error;
1469 }
1470
1471 CBS next_protocol = msg.body, selected_protocol, padding;
1472 if (!CBS_get_u8_length_prefixed(&next_protocol, &selected_protocol) ||
1473 !CBS_get_u8_length_prefixed(&next_protocol, &padding) ||
1474 CBS_len(&next_protocol) != 0) {
1475 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
1476 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
1477 return ssl_hs_error;
1478 }
1479
1480 if (!ssl->s3->next_proto_negotiated.CopyFrom(selected_protocol)) {
1481 return ssl_hs_error;
1482 }
1483
1484 ssl->method->next_message(ssl);
1485 hs->state = state12_read_channel_id;
1486 return ssl_hs_ok;
1487 }
1488
do_read_channel_id(SSL_HANDSHAKE * hs)1489 static enum ssl_hs_wait_t do_read_channel_id(SSL_HANDSHAKE *hs) {
1490 SSL *const ssl = hs->ssl;
1491
1492 if (!ssl->s3->channel_id_valid) {
1493 hs->state = state12_read_client_finished;
1494 return ssl_hs_ok;
1495 }
1496
1497 SSLMessage msg;
1498 if (!ssl->method->get_message(ssl, &msg)) {
1499 return ssl_hs_read_message;
1500 }
1501
1502 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CHANNEL_ID) ||
1503 !tls1_verify_channel_id(hs, msg) ||
1504 !ssl_hash_message(hs, msg)) {
1505 return ssl_hs_error;
1506 }
1507
1508 ssl->method->next_message(ssl);
1509 hs->state = state12_read_client_finished;
1510 return ssl_hs_ok;
1511 }
1512
do_read_client_finished(SSL_HANDSHAKE * hs)1513 static enum ssl_hs_wait_t do_read_client_finished(SSL_HANDSHAKE *hs) {
1514 SSL *const ssl = hs->ssl;
1515 enum ssl_hs_wait_t wait = ssl_get_finished(hs);
1516 if (wait != ssl_hs_ok) {
1517 return wait;
1518 }
1519
1520 if (ssl->session != NULL) {
1521 hs->state = state12_finish_server_handshake;
1522 } else {
1523 hs->state = state12_send_server_finished;
1524 }
1525
1526 // If this is a full handshake with ChannelID then record the handshake
1527 // hashes in |hs->new_session| in case we need them to verify a
1528 // ChannelID signature on a resumption of this session in the future.
1529 if (ssl->session == NULL && ssl->s3->channel_id_valid &&
1530 !tls1_record_handshake_hashes_for_channel_id(hs)) {
1531 return ssl_hs_error;
1532 }
1533
1534 return ssl_hs_ok;
1535 }
1536
do_send_server_finished(SSL_HANDSHAKE * hs)1537 static enum ssl_hs_wait_t do_send_server_finished(SSL_HANDSHAKE *hs) {
1538 SSL *const ssl = hs->ssl;
1539
1540 if (hs->ticket_expected) {
1541 const SSL_SESSION *session;
1542 UniquePtr<SSL_SESSION> session_copy;
1543 if (ssl->session == NULL) {
1544 // Fix the timeout to measure from the ticket issuance time.
1545 ssl_session_rebase_time(ssl, hs->new_session.get());
1546 session = hs->new_session.get();
1547 } else {
1548 // We are renewing an existing session. Duplicate the session to adjust
1549 // the timeout.
1550 session_copy =
1551 SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH);
1552 if (!session_copy) {
1553 return ssl_hs_error;
1554 }
1555
1556 ssl_session_rebase_time(ssl, session_copy.get());
1557 session = session_copy.get();
1558 }
1559
1560 ScopedCBB cbb;
1561 CBB body, ticket;
1562 if (!ssl->method->init_message(ssl, cbb.get(), &body,
1563 SSL3_MT_NEW_SESSION_TICKET) ||
1564 !CBB_add_u32(&body, session->timeout) ||
1565 !CBB_add_u16_length_prefixed(&body, &ticket) ||
1566 !ssl_encrypt_ticket(hs, &ticket, session) ||
1567 !ssl_add_message_cbb(ssl, cbb.get())) {
1568 return ssl_hs_error;
1569 }
1570 }
1571
1572 if (!ssl->method->add_change_cipher_spec(ssl) ||
1573 !tls1_change_cipher_state(hs, evp_aead_seal) ||
1574 !ssl_send_finished(hs)) {
1575 return ssl_hs_error;
1576 }
1577
1578 if (ssl->session != NULL) {
1579 hs->state = state12_read_change_cipher_spec;
1580 } else {
1581 hs->state = state12_finish_server_handshake;
1582 }
1583 return ssl_hs_flush;
1584 }
1585
do_finish_server_handshake(SSL_HANDSHAKE * hs)1586 static enum ssl_hs_wait_t do_finish_server_handshake(SSL_HANDSHAKE *hs) {
1587 SSL *const ssl = hs->ssl;
1588
1589 if (hs->handback) {
1590 return ssl_hs_handback;
1591 }
1592
1593 ssl->method->on_handshake_complete(ssl);
1594
1595 // If we aren't retaining peer certificates then we can discard it now.
1596 if (hs->new_session != NULL &&
1597 hs->config->retain_only_sha256_of_client_certs) {
1598 hs->new_session->certs.reset();
1599 ssl->ctx->x509_method->session_clear(hs->new_session.get());
1600 }
1601
1602 if (ssl->session != NULL) {
1603 ssl->s3->established_session = UpRef(ssl->session);
1604 } else {
1605 ssl->s3->established_session = std::move(hs->new_session);
1606 ssl->s3->established_session->not_resumable = false;
1607 }
1608
1609 hs->handshake_finalized = true;
1610 ssl->s3->initial_handshake_complete = true;
1611 ssl_update_cache(hs, SSL_SESS_CACHE_SERVER);
1612
1613 hs->state = state12_done;
1614 return ssl_hs_ok;
1615 }
1616
ssl_server_handshake(SSL_HANDSHAKE * hs)1617 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs) {
1618 while (hs->state != state12_done) {
1619 enum ssl_hs_wait_t ret = ssl_hs_error;
1620 enum tls12_server_hs_state_t state =
1621 static_cast<enum tls12_server_hs_state_t>(hs->state);
1622 switch (state) {
1623 case state12_start_accept:
1624 ret = do_start_accept(hs);
1625 break;
1626 case state12_read_client_hello:
1627 ret = do_read_client_hello(hs);
1628 break;
1629 case state12_select_certificate:
1630 ret = do_select_certificate(hs);
1631 break;
1632 case state12_tls13:
1633 ret = do_tls13(hs);
1634 break;
1635 case state12_select_parameters:
1636 ret = do_select_parameters(hs);
1637 break;
1638 case state12_send_server_hello:
1639 ret = do_send_server_hello(hs);
1640 break;
1641 case state12_send_server_certificate:
1642 ret = do_send_server_certificate(hs);
1643 break;
1644 case state12_send_server_key_exchange:
1645 ret = do_send_server_key_exchange(hs);
1646 break;
1647 case state12_send_server_hello_done:
1648 ret = do_send_server_hello_done(hs);
1649 break;
1650 case state12_read_client_certificate:
1651 ret = do_read_client_certificate(hs);
1652 break;
1653 case state12_verify_client_certificate:
1654 ret = do_verify_client_certificate(hs);
1655 break;
1656 case state12_read_client_key_exchange:
1657 ret = do_read_client_key_exchange(hs);
1658 break;
1659 case state12_read_client_certificate_verify:
1660 ret = do_read_client_certificate_verify(hs);
1661 break;
1662 case state12_read_change_cipher_spec:
1663 ret = do_read_change_cipher_spec(hs);
1664 break;
1665 case state12_process_change_cipher_spec:
1666 ret = do_process_change_cipher_spec(hs);
1667 break;
1668 case state12_read_next_proto:
1669 ret = do_read_next_proto(hs);
1670 break;
1671 case state12_read_channel_id:
1672 ret = do_read_channel_id(hs);
1673 break;
1674 case state12_read_client_finished:
1675 ret = do_read_client_finished(hs);
1676 break;
1677 case state12_send_server_finished:
1678 ret = do_send_server_finished(hs);
1679 break;
1680 case state12_finish_server_handshake:
1681 ret = do_finish_server_handshake(hs);
1682 break;
1683 case state12_done:
1684 ret = ssl_hs_ok;
1685 break;
1686 }
1687
1688 if (hs->state != state) {
1689 ssl_do_info_callback(hs->ssl, SSL_CB_ACCEPT_LOOP, 1);
1690 }
1691
1692 if (ret != ssl_hs_ok) {
1693 return ret;
1694 }
1695 }
1696
1697 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1);
1698 return ssl_hs_ok;
1699 }
1700
ssl_server_handshake_state(SSL_HANDSHAKE * hs)1701 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs) {
1702 enum tls12_server_hs_state_t state =
1703 static_cast<enum tls12_server_hs_state_t>(hs->state);
1704 switch (state) {
1705 case state12_start_accept:
1706 return "TLS server start_accept";
1707 case state12_read_client_hello:
1708 return "TLS server read_client_hello";
1709 case state12_select_certificate:
1710 return "TLS server select_certificate";
1711 case state12_tls13:
1712 return tls13_server_handshake_state(hs);
1713 case state12_select_parameters:
1714 return "TLS server select_parameters";
1715 case state12_send_server_hello:
1716 return "TLS server send_server_hello";
1717 case state12_send_server_certificate:
1718 return "TLS server send_server_certificate";
1719 case state12_send_server_key_exchange:
1720 return "TLS server send_server_key_exchange";
1721 case state12_send_server_hello_done:
1722 return "TLS server send_server_hello_done";
1723 case state12_read_client_certificate:
1724 return "TLS server read_client_certificate";
1725 case state12_verify_client_certificate:
1726 return "TLS server verify_client_certificate";
1727 case state12_read_client_key_exchange:
1728 return "TLS server read_client_key_exchange";
1729 case state12_read_client_certificate_verify:
1730 return "TLS server read_client_certificate_verify";
1731 case state12_read_change_cipher_spec:
1732 return "TLS server read_change_cipher_spec";
1733 case state12_process_change_cipher_spec:
1734 return "TLS server process_change_cipher_spec";
1735 case state12_read_next_proto:
1736 return "TLS server read_next_proto";
1737 case state12_read_channel_id:
1738 return "TLS server read_channel_id";
1739 case state12_read_client_finished:
1740 return "TLS server read_client_finished";
1741 case state12_send_server_finished:
1742 return "TLS server send_server_finished";
1743 case state12_finish_server_handshake:
1744 return "TLS server finish_server_handshake";
1745 case state12_done:
1746 return "TLS server done";
1747 }
1748
1749 return "TLS server unknown";
1750 }
1751
1752 BSSL_NAMESPACE_END
1753