1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "testing/gtest/include/gtest/gtest.h"
12 extern "C" {
13 #include "webrtc/modules/audio_processing/aec/aec_core.h"
14 }
15 #include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h"
16 #include "webrtc/modules/audio_processing/aec/echo_cancellation.h"
17 #include "webrtc/typedefs.h"
18
19 namespace {
20
21 class SystemDelayTest : public ::testing::Test {
22 protected:
23 SystemDelayTest();
24 virtual void SetUp();
25 virtual void TearDown();
26
27 // Initialization of AEC handle with respect to |sample_rate_hz|. Since the
28 // device sample rate is unimportant we set that value to 48000 Hz.
29 void Init(int sample_rate_hz);
30
31 // Makes one render call and one capture call in that specific order.
32 void RenderAndCapture(int device_buffer_ms);
33
34 // Fills up the far-end buffer with respect to the default device buffer size.
35 size_t BufferFillUp();
36
37 // Runs and verifies the behavior in a stable startup procedure.
38 void RunStableStartup();
39
40 // Maps buffer size in ms into samples, taking the unprocessed frame into
41 // account.
42 int MapBufferSizeToSamples(int size_in_ms, bool extended_filter);
43
44 void* handle_;
45 Aec* self_;
46 size_t samples_per_frame_;
47 // Dummy input/output speech data.
48 static const int kSamplesPerChunk = 160;
49 float far_[kSamplesPerChunk];
50 float near_[kSamplesPerChunk];
51 float out_[kSamplesPerChunk];
52 const float* near_ptr_;
53 float* out_ptr_;
54 };
55
SystemDelayTest()56 SystemDelayTest::SystemDelayTest()
57 : handle_(NULL), self_(NULL), samples_per_frame_(0) {
58 // Dummy input data are set with more or less arbitrary non-zero values.
59 for (int i = 0; i < kSamplesPerChunk; i++) {
60 far_[i] = 257.0;
61 near_[i] = 514.0;
62 }
63 memset(out_, 0, sizeof(out_));
64 near_ptr_ = near_;
65 out_ptr_ = out_;
66 }
67
SetUp()68 void SystemDelayTest::SetUp() {
69 handle_ = WebRtcAec_Create();
70 ASSERT_TRUE(handle_);
71 self_ = reinterpret_cast<Aec*>(handle_);
72 }
73
TearDown()74 void SystemDelayTest::TearDown() {
75 // Free AEC
76 WebRtcAec_Free(handle_);
77 handle_ = NULL;
78 }
79
80 // In SWB mode nothing is added to the buffer handling with respect to
81 // functionality compared to WB. We therefore only verify behavior in NB and WB.
82 static const int kSampleRateHz[] = {8000, 16000};
83 static const size_t kNumSampleRates =
84 sizeof(kSampleRateHz) / sizeof(*kSampleRateHz);
85
86 // Default audio device buffer size used.
87 static const int kDeviceBufMs = 100;
88
89 // Requirement for a stable device convergence time in ms. Should converge in
90 // less than |kStableConvergenceMs|.
91 static const int kStableConvergenceMs = 100;
92
93 // Maximum convergence time in ms. This means that we should leave the startup
94 // phase after |kMaxConvergenceMs| independent of device buffer stability
95 // conditions.
96 static const int kMaxConvergenceMs = 500;
97
Init(int sample_rate_hz)98 void SystemDelayTest::Init(int sample_rate_hz) {
99 // Initialize AEC
100 EXPECT_EQ(0, WebRtcAec_Init(handle_, sample_rate_hz, 48000));
101 EXPECT_EQ(0, WebRtcAec_system_delay(self_->aec));
102
103 // One frame equals 10 ms of data.
104 samples_per_frame_ = static_cast<size_t>(sample_rate_hz / 100);
105 }
106
RenderAndCapture(int device_buffer_ms)107 void SystemDelayTest::RenderAndCapture(int device_buffer_ms) {
108 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
109 EXPECT_EQ(0,
110 WebRtcAec_Process(handle_,
111 &near_ptr_,
112 1,
113 &out_ptr_,
114 samples_per_frame_,
115 device_buffer_ms,
116 0));
117 }
118
BufferFillUp()119 size_t SystemDelayTest::BufferFillUp() {
120 // To make sure we have a full buffer when we verify stability we first fill
121 // up the far-end buffer with the same amount as we will report in through
122 // Process().
123 size_t buffer_size = 0;
124 for (int i = 0; i < kDeviceBufMs / 10; i++) {
125 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
126 buffer_size += samples_per_frame_;
127 EXPECT_EQ(static_cast<int>(buffer_size),
128 WebRtcAec_system_delay(self_->aec));
129 }
130 return buffer_size;
131 }
132
RunStableStartup()133 void SystemDelayTest::RunStableStartup() {
134 // To make sure we have a full buffer when we verify stability we first fill
135 // up the far-end buffer with the same amount as we will report in through
136 // Process().
137 size_t buffer_size = BufferFillUp();
138
139 if (WebRtcAec_delay_agnostic_enabled(self_->aec) == 1) {
140 // In extended_filter mode we set the buffer size after the first processed
141 // 10 ms chunk. Hence, we don't need to wait for the reported system delay
142 // values to become stable.
143 RenderAndCapture(kDeviceBufMs);
144 buffer_size += samples_per_frame_;
145 EXPECT_EQ(0, self_->startup_phase);
146 } else {
147 // A stable device should be accepted and put in a regular process mode
148 // within |kStableConvergenceMs|.
149 int process_time_ms = 0;
150 for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
151 RenderAndCapture(kDeviceBufMs);
152 buffer_size += samples_per_frame_;
153 if (self_->startup_phase == 0) {
154 // We have left the startup phase.
155 break;
156 }
157 }
158 // Verify convergence time.
159 EXPECT_GT(kStableConvergenceMs, process_time_ms);
160 }
161 // Verify that the buffer has been flushed.
162 EXPECT_GE(static_cast<int>(buffer_size),
163 WebRtcAec_system_delay(self_->aec));
164 }
165
MapBufferSizeToSamples(int size_in_ms,bool extended_filter)166 int SystemDelayTest::MapBufferSizeToSamples(int size_in_ms,
167 bool extended_filter) {
168 // If extended_filter is disabled we add an extra 10 ms for the unprocessed
169 // frame. That is simply how the algorithm is constructed.
170 return static_cast<int>(
171 (size_in_ms + (extended_filter ? 0 : 10)) * samples_per_frame_ / 10);
172 }
173
174 // The tests should meet basic requirements and not be adjusted to what is
175 // actually implemented. If we don't get good code coverage this way we either
176 // lack in tests or have unnecessary code.
177 // General requirements:
178 // 1) If we add far-end data the system delay should be increased with the same
179 // amount we add.
180 // 2) If the far-end buffer is full we should flush the oldest data to make room
181 // for the new. In this case the system delay is unaffected.
182 // 3) There should exist a startup phase in which the buffer size is to be
183 // determined. In this phase no cancellation should be performed.
184 // 4) Under stable conditions (small variations in device buffer sizes) the AEC
185 // should determine an appropriate local buffer size within
186 // |kStableConvergenceMs| ms.
187 // 5) Under unstable conditions the AEC should make a decision within
188 // |kMaxConvergenceMs| ms.
189 // 6) If the local buffer runs out of data we should stuff the buffer with older
190 // frames.
191 // 7) The system delay should within |kMaxConvergenceMs| ms heal from
192 // disturbances like drift, data glitches, toggling events and outliers.
193 // 8) The system delay should never become negative.
194
TEST_F(SystemDelayTest,CorrectIncreaseWhenBufferFarend)195 TEST_F(SystemDelayTest, CorrectIncreaseWhenBufferFarend) {
196 // When we add data to the AEC buffer the internal system delay should be
197 // incremented with the same amount as the size of data.
198 // This process should be independent of DA-AEC and extended_filter mode.
199 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
200 WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
201 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
202 for (int da_aec = 0; da_aec <= 1; ++da_aec) {
203 WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
204 EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
205 for (size_t i = 0; i < kNumSampleRates; i++) {
206 Init(kSampleRateHz[i]);
207 // Loop through a couple of calls to make sure the system delay
208 // increments correctly.
209 for (int j = 1; j <= 5; j++) {
210 EXPECT_EQ(0,
211 WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
212 EXPECT_EQ(static_cast<int>(j * samples_per_frame_),
213 WebRtcAec_system_delay(self_->aec));
214 }
215 }
216 }
217 }
218 }
219
220 // TODO(bjornv): Add a test to verify behavior if the far-end buffer is full
221 // when adding new data.
222
TEST_F(SystemDelayTest,CorrectDelayAfterStableStartup)223 TEST_F(SystemDelayTest, CorrectDelayAfterStableStartup) {
224 // We run the system in a stable startup. After that we verify that the system
225 // delay meets the requirements.
226 // This process should be independent of DA-AEC and extended_filter mode.
227 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
228 WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
229 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
230 for (int da_aec = 0; da_aec <= 1; ++da_aec) {
231 WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
232 EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
233 for (size_t i = 0; i < kNumSampleRates; i++) {
234 Init(kSampleRateHz[i]);
235 RunStableStartup();
236
237 // Verify system delay with respect to requirements, i.e., the
238 // |system_delay| is in the interval [75%, 100%] of what's reported on
239 // the average.
240 // In extended_filter mode we target 50% and measure after one processed
241 // 10 ms chunk.
242 int average_reported_delay =
243 static_cast<int>(kDeviceBufMs * samples_per_frame_ / 10);
244 EXPECT_GE(average_reported_delay, WebRtcAec_system_delay(self_->aec));
245 int lower_bound = WebRtcAec_extended_filter_enabled(self_->aec)
246 ? average_reported_delay / 2 - samples_per_frame_
247 : average_reported_delay * 3 / 4;
248 EXPECT_LE(lower_bound, WebRtcAec_system_delay(self_->aec));
249 }
250 }
251 }
252 }
253
TEST_F(SystemDelayTest,CorrectDelayAfterUnstableStartup)254 TEST_F(SystemDelayTest, CorrectDelayAfterUnstableStartup) {
255 // This test does not apply in extended_filter mode, since we only use the
256 // the first 10 ms chunk to determine a reasonable buffer size. Neither does
257 // it apply if DA-AEC is on because that overrides the startup procedure.
258 WebRtcAec_enable_extended_filter(self_->aec, 0);
259 EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(self_->aec));
260 WebRtcAec_enable_delay_agnostic(self_->aec, 0);
261 EXPECT_EQ(0, WebRtcAec_delay_agnostic_enabled(self_->aec));
262
263 // In an unstable system we would start processing after |kMaxConvergenceMs|.
264 // On the last frame the AEC buffer is adjusted to 60% of the last reported
265 // device buffer size.
266 // We construct an unstable system by altering the device buffer size between
267 // two values |kDeviceBufMs| +- 25 ms.
268 for (size_t i = 0; i < kNumSampleRates; i++) {
269 Init(kSampleRateHz[i]);
270
271 // To make sure we have a full buffer when we verify stability we first fill
272 // up the far-end buffer with the same amount as we will report in on the
273 // average through Process().
274 size_t buffer_size = BufferFillUp();
275
276 int buffer_offset_ms = 25;
277 int reported_delay_ms = 0;
278 int process_time_ms = 0;
279 for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
280 reported_delay_ms = kDeviceBufMs + buffer_offset_ms;
281 RenderAndCapture(reported_delay_ms);
282 buffer_size += samples_per_frame_;
283 buffer_offset_ms = -buffer_offset_ms;
284 if (self_->startup_phase == 0) {
285 // We have left the startup phase.
286 break;
287 }
288 }
289 // Verify convergence time.
290 EXPECT_GE(kMaxConvergenceMs, process_time_ms);
291 // Verify that the buffer has been flushed.
292 EXPECT_GE(static_cast<int>(buffer_size),
293 WebRtcAec_system_delay(self_->aec));
294
295 // Verify system delay with respect to requirements, i.e., the
296 // |system_delay| is in the interval [60%, 100%] of what's last reported.
297 EXPECT_GE(static_cast<int>(reported_delay_ms * samples_per_frame_ / 10),
298 WebRtcAec_system_delay(self_->aec));
299 EXPECT_LE(
300 static_cast<int>(reported_delay_ms * samples_per_frame_ / 10 * 3 / 5),
301 WebRtcAec_system_delay(self_->aec));
302 }
303 }
304
TEST_F(SystemDelayTest,CorrectDelayAfterStableBufferBuildUp)305 TEST_F(SystemDelayTest, CorrectDelayAfterStableBufferBuildUp) {
306 // This test does not apply in extended_filter mode, since we only use the
307 // the first 10 ms chunk to determine a reasonable buffer size. Neither does
308 // it apply if DA-AEC is on because that overrides the startup procedure.
309 WebRtcAec_enable_extended_filter(self_->aec, 0);
310 EXPECT_EQ(0, WebRtcAec_extended_filter_enabled(self_->aec));
311 WebRtcAec_enable_delay_agnostic(self_->aec, 0);
312 EXPECT_EQ(0, WebRtcAec_delay_agnostic_enabled(self_->aec));
313
314 // In this test we start by establishing the device buffer size during stable
315 // conditions, but with an empty internal far-end buffer. Once that is done we
316 // verify that the system delay is increased correctly until we have reach an
317 // internal buffer size of 75% of what's been reported.
318 for (size_t i = 0; i < kNumSampleRates; i++) {
319 Init(kSampleRateHz[i]);
320
321 // We assume that running |kStableConvergenceMs| calls will put the
322 // algorithm in a state where the device buffer size has been determined. We
323 // can make that assumption since we have a separate stability test.
324 int process_time_ms = 0;
325 for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
326 EXPECT_EQ(0,
327 WebRtcAec_Process(handle_,
328 &near_ptr_,
329 1,
330 &out_ptr_,
331 samples_per_frame_,
332 kDeviceBufMs,
333 0));
334 }
335 // Verify that a buffer size has been established.
336 EXPECT_EQ(0, self_->checkBuffSize);
337
338 // We now have established the required buffer size. Let us verify that we
339 // fill up before leaving the startup phase for normal processing.
340 size_t buffer_size = 0;
341 size_t target_buffer_size = kDeviceBufMs * samples_per_frame_ / 10 * 3 / 4;
342 process_time_ms = 0;
343 for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
344 RenderAndCapture(kDeviceBufMs);
345 buffer_size += samples_per_frame_;
346 if (self_->startup_phase == 0) {
347 // We have left the startup phase.
348 break;
349 }
350 }
351 // Verify convergence time.
352 EXPECT_GT(kMaxConvergenceMs, process_time_ms);
353 // Verify that the buffer has reached the desired size.
354 EXPECT_LE(static_cast<int>(target_buffer_size),
355 WebRtcAec_system_delay(self_->aec));
356
357 // Verify normal behavior (system delay is kept constant) after startup by
358 // running a couple of calls to BufferFarend() and Process().
359 for (int j = 0; j < 6; j++) {
360 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
361 RenderAndCapture(kDeviceBufMs);
362 EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec));
363 }
364 }
365 }
366
TEST_F(SystemDelayTest,CorrectDelayWhenBufferUnderrun)367 TEST_F(SystemDelayTest, CorrectDelayWhenBufferUnderrun) {
368 // Here we test a buffer under run scenario. If we keep on calling
369 // WebRtcAec_Process() we will finally run out of data, but should
370 // automatically stuff the buffer. We verify this behavior by checking if the
371 // system delay goes negative.
372 // This process should be independent of DA-AEC and extended_filter mode.
373 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
374 WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
375 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
376 for (int da_aec = 0; da_aec <= 1; ++da_aec) {
377 WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
378 EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
379 for (size_t i = 0; i < kNumSampleRates; i++) {
380 Init(kSampleRateHz[i]);
381 RunStableStartup();
382
383 // The AEC has now left the Startup phase. We now have at most
384 // |kStableConvergenceMs| in the buffer. Keep on calling Process() until
385 // we run out of data and verify that the system delay is non-negative.
386 for (int j = 0; j <= kStableConvergenceMs; j += 10) {
387 EXPECT_EQ(0, WebRtcAec_Process(handle_, &near_ptr_, 1, &out_ptr_,
388 samples_per_frame_, kDeviceBufMs, 0));
389 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
390 }
391 }
392 }
393 }
394 }
395
TEST_F(SystemDelayTest,CorrectDelayDuringDrift)396 TEST_F(SystemDelayTest, CorrectDelayDuringDrift) {
397 // This drift test should verify that the system delay is never exceeding the
398 // device buffer. The drift is simulated by decreasing the reported device
399 // buffer size by 1 ms every 100 ms. If the device buffer size goes below 30
400 // ms we jump (add) 10 ms to give a repeated pattern.
401
402 // This process should be independent of DA-AEC and extended_filter mode.
403 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
404 WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
405 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
406 for (int da_aec = 0; da_aec <= 1; ++da_aec) {
407 WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
408 EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
409 for (size_t i = 0; i < kNumSampleRates; i++) {
410 Init(kSampleRateHz[i]);
411 RunStableStartup();
412
413 // We have left the startup phase and proceed with normal processing.
414 int jump = 0;
415 for (int j = 0; j < 1000; j++) {
416 // Drift = -1 ms per 100 ms of data.
417 int device_buf_ms = kDeviceBufMs - (j / 10) + jump;
418 int device_buf = MapBufferSizeToSamples(device_buf_ms,
419 extended_filter == 1);
420
421 if (device_buf_ms < 30) {
422 // Add 10 ms data, taking affect next frame.
423 jump += 10;
424 }
425 RenderAndCapture(device_buf_ms);
426
427 // Verify that the system delay does not exceed the device buffer.
428 EXPECT_GE(device_buf, WebRtcAec_system_delay(self_->aec));
429
430 // Verify that the system delay is non-negative.
431 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
432 }
433 }
434 }
435 }
436 }
437
TEST_F(SystemDelayTest,ShouldRecoverAfterGlitch)438 TEST_F(SystemDelayTest, ShouldRecoverAfterGlitch) {
439 // This glitch test should verify that the system delay recovers if there is
440 // a glitch in data. The data glitch is constructed as 200 ms of buffering
441 // after which the stable procedure continues. The glitch is never reported by
442 // the device.
443 // The system is said to be in a non-causal state if the difference between
444 // the device buffer and system delay is less than a block (64 samples).
445
446 // This process should be independent of DA-AEC and extended_filter mode.
447 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
448 WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
449 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
450 for (int da_aec = 0; da_aec <= 1; ++da_aec) {
451 WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
452 EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
453 for (size_t i = 0; i < kNumSampleRates; i++) {
454 Init(kSampleRateHz[i]);
455 RunStableStartup();
456 int device_buf = MapBufferSizeToSamples(kDeviceBufMs,
457 extended_filter == 1);
458 // Glitch state.
459 for (int j = 0; j < 20; j++) {
460 EXPECT_EQ(0,
461 WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
462 // No need to verify system delay, since that is done in a separate
463 // test.
464 }
465 // Verify that we are in a non-causal state, i.e.,
466 // |system_delay| > |device_buf|.
467 EXPECT_LT(device_buf, WebRtcAec_system_delay(self_->aec));
468
469 // Recover state. Should recover at least 4 ms of data per 10 ms, hence
470 // a glitch of 200 ms will take at most 200 * 10 / 4 = 500 ms to recover
471 // from.
472 bool non_causal = true; // We are currently in a non-causal state.
473 for (int j = 0; j < 50; j++) {
474 int system_delay_before = WebRtcAec_system_delay(self_->aec);
475 RenderAndCapture(kDeviceBufMs);
476 int system_delay_after = WebRtcAec_system_delay(self_->aec);
477 // We have recovered if
478 // |device_buf| - |system_delay_after| >= PART_LEN (1 block).
479 // During recovery, |system_delay_after| < |system_delay_before|,
480 // otherwise they are equal.
481 if (non_causal) {
482 EXPECT_LT(system_delay_after, system_delay_before);
483 if (device_buf - system_delay_after >= PART_LEN) {
484 non_causal = false;
485 }
486 } else {
487 EXPECT_EQ(system_delay_before, system_delay_after);
488 }
489 // Verify that the system delay is non-negative.
490 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
491 }
492 // Check that we have recovered.
493 EXPECT_FALSE(non_causal);
494 }
495 }
496 }
497 }
498
TEST_F(SystemDelayTest,UnaffectedWhenSpuriousDeviceBufferValues)499 TEST_F(SystemDelayTest, UnaffectedWhenSpuriousDeviceBufferValues) {
500 // This test does not apply in extended_filter mode, since we only use the
501 // the first 10 ms chunk to determine a reasonable buffer size.
502 const int extended_filter = 0;
503 WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
504 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
505
506 // Should be DA-AEC independent.
507 for (int da_aec = 0; da_aec <= 1; ++da_aec) {
508 WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
509 EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
510 // This spurious device buffer data test aims at verifying that the system
511 // delay is unaffected by large outliers.
512 // The system is said to be in a non-causal state if the difference between
513 // the device buffer and system delay is less than a block (64 samples).
514 for (size_t i = 0; i < kNumSampleRates; i++) {
515 Init(kSampleRateHz[i]);
516 RunStableStartup();
517 int device_buf = MapBufferSizeToSamples(kDeviceBufMs,
518 extended_filter == 1);
519
520 // Normal state. We are currently not in a non-causal state.
521 bool non_causal = false;
522
523 // Run 1 s and replace device buffer size with 500 ms every 100 ms.
524 for (int j = 0; j < 100; j++) {
525 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
526 int device_buf_ms = j % 10 == 0 ? 500 : kDeviceBufMs;
527 RenderAndCapture(device_buf_ms);
528
529 // Check for non-causality.
530 if (device_buf - WebRtcAec_system_delay(self_->aec) < PART_LEN) {
531 non_causal = true;
532 }
533 EXPECT_FALSE(non_causal);
534 EXPECT_EQ(system_delay_before_calls,
535 WebRtcAec_system_delay(self_->aec));
536
537 // Verify that the system delay is non-negative.
538 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
539 }
540 }
541 }
542 }
543
TEST_F(SystemDelayTest,CorrectImpactWhenTogglingDeviceBufferValues)544 TEST_F(SystemDelayTest, CorrectImpactWhenTogglingDeviceBufferValues) {
545 // This test aims at verifying that the system delay is "unaffected" by
546 // toggling values reported by the device.
547 // The test is constructed such that every other device buffer value is zero
548 // and then 2 * |kDeviceBufMs|, hence the size is constant on the average. The
549 // zero values will force us into a non-causal state and thereby lowering the
550 // system delay until we basically run out of data. Once that happens the
551 // buffer will be stuffed.
552 // TODO(bjornv): This test will have a better impact if we verified that the
553 // delay estimate goes up when the system delay goes down to meet the average
554 // device buffer size.
555
556 // This test does not apply if DA-AEC is enabled and extended_filter mode
557 // disabled.
558 for (int extended_filter = 0; extended_filter <= 1; ++extended_filter) {
559 WebRtcAec_enable_extended_filter(self_->aec, extended_filter);
560 EXPECT_EQ(extended_filter, WebRtcAec_extended_filter_enabled(self_->aec));
561 for (int da_aec = 0; da_aec <= 1; ++da_aec) {
562 WebRtcAec_enable_delay_agnostic(self_->aec, da_aec);
563 EXPECT_EQ(da_aec, WebRtcAec_delay_agnostic_enabled(self_->aec));
564 if (extended_filter == 0 && da_aec == 1) {
565 continue;
566 }
567 for (size_t i = 0; i < kNumSampleRates; i++) {
568 Init(kSampleRateHz[i]);
569 RunStableStartup();
570 const int device_buf = MapBufferSizeToSamples(kDeviceBufMs,
571 extended_filter == 1);
572
573 // Normal state. We are currently not in a non-causal state.
574 bool non_causal = false;
575
576 // Loop through 100 frames (both render and capture), which equals 1 s
577 // of data. Every odd frame we set the device buffer size to
578 // 2 * |kDeviceBufMs| and even frames we set the device buffer size to
579 // zero.
580 for (int j = 0; j < 100; j++) {
581 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
582 int device_buf_ms = 2 * (j % 2) * kDeviceBufMs;
583 RenderAndCapture(device_buf_ms);
584
585 // Check for non-causality, compared with the average device buffer
586 // size.
587 non_causal |= (device_buf - WebRtcAec_system_delay(self_->aec) < 64);
588 EXPECT_GE(system_delay_before_calls,
589 WebRtcAec_system_delay(self_->aec));
590
591 // Verify that the system delay is non-negative.
592 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
593 }
594 // Verify we are not in a non-causal state.
595 EXPECT_FALSE(non_causal);
596 }
597 }
598 }
599 }
600
601 } // namespace
602