1 /*
2 * semi.c: test implementations of mathlib seminumerical functions
3 *
4 * Copyright (c) 1999-2018, Arm Limited.
5 * SPDX-License-Identifier: MIT
6 */
7
8 #include <stdio.h>
9 #include "semi.h"
10
test_rint(uint32 * in,uint32 * out,int isfloor,int isceil)11 static void test_rint(uint32 *in, uint32 *out,
12 int isfloor, int isceil) {
13 int sign = in[0] & 0x80000000;
14 int roundup = (isfloor && sign) || (isceil && !sign);
15 uint32 xh, xl, roundword;
16 int ex = (in[0] >> 20) & 0x7FF; /* exponent */
17 int i;
18
19 if ((ex > 0x3ff + 52 - 1) || /* things this big can't be fractional */
20 ((in[0] & 0x7FFFFFFF) == 0 && in[1] == 0)) { /* zero */
21 /* NaN, Inf, a large integer, or zero: just return the input */
22 out[0] = in[0];
23 out[1] = in[1];
24 return;
25 }
26
27 /*
28 * Special case: ex < 0x3ff, ie our number is in (0,1). Return
29 * 1 or 0 according to roundup.
30 */
31 if (ex < 0x3ff) {
32 out[0] = sign | (roundup ? 0x3FF00000 : 0);
33 out[1] = 0;
34 return;
35 }
36
37 /*
38 * We're not short of time here, so we'll do this the hideously
39 * inefficient way. Shift bit by bit so that the units place is
40 * somewhere predictable, round, and shift back again.
41 */
42 xh = in[0];
43 xl = in[1];
44 roundword = 0;
45 for (i = ex; i < 0x3ff + 52; i++) {
46 if (roundword & 1)
47 roundword |= 2; /* preserve sticky bit */
48 roundword = (roundword >> 1) | ((xl & 1) << 31);
49 xl = (xl >> 1) | ((xh & 1) << 31);
50 xh = xh >> 1;
51 }
52 if (roundword && roundup) {
53 xl++;
54 xh += (xl==0);
55 }
56 for (i = ex; i < 0x3ff + 52; i++) {
57 xh = (xh << 1) | ((xl >> 31) & 1);
58 xl = (xl & 0x7FFFFFFF) << 1;
59 }
60 out[0] = xh;
61 out[1] = xl;
62 }
63
test_ceil(uint32 * in,uint32 * out)64 char *test_ceil(uint32 *in, uint32 *out) {
65 test_rint(in, out, 0, 1);
66 return NULL;
67 }
68
test_floor(uint32 * in,uint32 * out)69 char *test_floor(uint32 *in, uint32 *out) {
70 test_rint(in, out, 1, 0);
71 return NULL;
72 }
73
test_rintf(uint32 * in,uint32 * out,int isfloor,int isceil)74 static void test_rintf(uint32 *in, uint32 *out,
75 int isfloor, int isceil) {
76 int sign = *in & 0x80000000;
77 int roundup = (isfloor && sign) || (isceil && !sign);
78 uint32 x, roundword;
79 int ex = (*in >> 23) & 0xFF; /* exponent */
80 int i;
81
82 if ((ex > 0x7f + 23 - 1) || /* things this big can't be fractional */
83 (*in & 0x7FFFFFFF) == 0) { /* zero */
84 /* NaN, Inf, a large integer, or zero: just return the input */
85 *out = *in;
86 return;
87 }
88
89 /*
90 * Special case: ex < 0x7f, ie our number is in (0,1). Return
91 * 1 or 0 according to roundup.
92 */
93 if (ex < 0x7f) {
94 *out = sign | (roundup ? 0x3F800000 : 0);
95 return;
96 }
97
98 /*
99 * We're not short of time here, so we'll do this the hideously
100 * inefficient way. Shift bit by bit so that the units place is
101 * somewhere predictable, round, and shift back again.
102 */
103 x = *in;
104 roundword = 0;
105 for (i = ex; i < 0x7F + 23; i++) {
106 if (roundword & 1)
107 roundword |= 2; /* preserve sticky bit */
108 roundword = (roundword >> 1) | ((x & 1) << 31);
109 x = x >> 1;
110 }
111 if (roundword && roundup) {
112 x++;
113 }
114 for (i = ex; i < 0x7F + 23; i++) {
115 x = x << 1;
116 }
117 *out = x;
118 }
119
test_ceilf(uint32 * in,uint32 * out)120 char *test_ceilf(uint32 *in, uint32 *out) {
121 test_rintf(in, out, 0, 1);
122 return NULL;
123 }
124
test_floorf(uint32 * in,uint32 * out)125 char *test_floorf(uint32 *in, uint32 *out) {
126 test_rintf(in, out, 1, 0);
127 return NULL;
128 }
129
test_fmod(uint32 * a,uint32 * b,uint32 * out)130 char *test_fmod(uint32 *a, uint32 *b, uint32 *out) {
131 int sign;
132 int32 aex, bex;
133 uint32 am[2], bm[2];
134
135 if (((a[0] & 0x7FFFFFFF) << 1) + !!a[1] > 0xFFE00000 ||
136 ((b[0] & 0x7FFFFFFF) << 1) + !!b[1] > 0xFFE00000) {
137 /* a or b is NaN: return QNaN, optionally with IVO */
138 uint32 an, bn;
139 out[0] = 0x7ff80000;
140 out[1] = 1;
141 an = ((a[0] & 0x7FFFFFFF) << 1) + !!a[1];
142 bn = ((b[0] & 0x7FFFFFFF) << 1) + !!b[1];
143 if ((an > 0xFFE00000 && an < 0xFFF00000) ||
144 (bn > 0xFFE00000 && bn < 0xFFF00000))
145 return "i"; /* at least one SNaN: IVO */
146 else
147 return NULL; /* no SNaNs, but at least 1 QNaN */
148 }
149 if ((b[0] & 0x7FFFFFFF) == 0 && b[1] == 0) { /* b==0: EDOM */
150 out[0] = 0x7ff80000;
151 out[1] = 1;
152 return "EDOM status=i";
153 }
154 if ((a[0] & 0x7FF00000) == 0x7FF00000) { /* a==Inf: EDOM */
155 out[0] = 0x7ff80000;
156 out[1] = 1;
157 return "EDOM status=i";
158 }
159 if ((b[0] & 0x7FF00000) == 0x7FF00000) { /* b==Inf: return a */
160 out[0] = a[0];
161 out[1] = a[1];
162 return NULL;
163 }
164 if ((a[0] & 0x7FFFFFFF) == 0 && a[1] == 0) { /* a==0: return a */
165 out[0] = a[0];
166 out[1] = a[1];
167 return NULL;
168 }
169
170 /*
171 * OK. That's the special cases cleared out of the way. Now we
172 * have finite (though not necessarily normal) a and b.
173 */
174 sign = a[0] & 0x80000000; /* we discard sign of b */
175 test_frexp(a, am, (uint32 *)&aex);
176 test_frexp(b, bm, (uint32 *)&bex);
177 am[0] &= 0xFFFFF, am[0] |= 0x100000;
178 bm[0] &= 0xFFFFF, bm[0] |= 0x100000;
179
180 while (aex >= bex) {
181 if (am[0] > bm[0] || (am[0] == bm[0] && am[1] >= bm[1])) {
182 am[1] -= bm[1];
183 am[0] = am[0] - bm[0] - (am[1] > ~bm[1]);
184 }
185 if (aex > bex) {
186 am[0] = (am[0] << 1) | ((am[1] & 0x80000000) >> 31);
187 am[1] <<= 1;
188 aex--;
189 } else
190 break;
191 }
192
193 /*
194 * Renormalise final result; this can be cunningly done by
195 * passing a denormal to ldexp.
196 */
197 aex += 0x3fd;
198 am[0] |= sign;
199 test_ldexp(am, (uint32 *)&aex, out);
200
201 return NULL; /* FIXME */
202 }
203
test_fmodf(uint32 * a,uint32 * b,uint32 * out)204 char *test_fmodf(uint32 *a, uint32 *b, uint32 *out) {
205 int sign;
206 int32 aex, bex;
207 uint32 am, bm;
208
209 if ((*a & 0x7FFFFFFF) > 0x7F800000 ||
210 (*b & 0x7FFFFFFF) > 0x7F800000) {
211 /* a or b is NaN: return QNaN, optionally with IVO */
212 uint32 an, bn;
213 *out = 0x7fc00001;
214 an = *a & 0x7FFFFFFF;
215 bn = *b & 0x7FFFFFFF;
216 if ((an > 0x7f800000 && an < 0x7fc00000) ||
217 (bn > 0x7f800000 && bn < 0x7fc00000))
218 return "i"; /* at least one SNaN: IVO */
219 else
220 return NULL; /* no SNaNs, but at least 1 QNaN */
221 }
222 if ((*b & 0x7FFFFFFF) == 0) { /* b==0: EDOM */
223 *out = 0x7fc00001;
224 return "EDOM status=i";
225 }
226 if ((*a & 0x7F800000) == 0x7F800000) { /* a==Inf: EDOM */
227 *out = 0x7fc00001;
228 return "EDOM status=i";
229 }
230 if ((*b & 0x7F800000) == 0x7F800000) { /* b==Inf: return a */
231 *out = *a;
232 return NULL;
233 }
234 if ((*a & 0x7FFFFFFF) == 0) { /* a==0: return a */
235 *out = *a;
236 return NULL;
237 }
238
239 /*
240 * OK. That's the special cases cleared out of the way. Now we
241 * have finite (though not necessarily normal) a and b.
242 */
243 sign = a[0] & 0x80000000; /* we discard sign of b */
244 test_frexpf(a, &am, (uint32 *)&aex);
245 test_frexpf(b, &bm, (uint32 *)&bex);
246 am &= 0x7FFFFF, am |= 0x800000;
247 bm &= 0x7FFFFF, bm |= 0x800000;
248
249 while (aex >= bex) {
250 if (am >= bm) {
251 am -= bm;
252 }
253 if (aex > bex) {
254 am <<= 1;
255 aex--;
256 } else
257 break;
258 }
259
260 /*
261 * Renormalise final result; this can be cunningly done by
262 * passing a denormal to ldexp.
263 */
264 aex += 0x7d;
265 am |= sign;
266 test_ldexpf(&am, (uint32 *)&aex, out);
267
268 return NULL; /* FIXME */
269 }
270
test_ldexp(uint32 * x,uint32 * np,uint32 * out)271 char *test_ldexp(uint32 *x, uint32 *np, uint32 *out) {
272 int n = *np;
273 int32 n2;
274 uint32 y[2];
275 int ex = (x[0] >> 20) & 0x7FF; /* exponent */
276 int sign = x[0] & 0x80000000;
277
278 if (ex == 0x7FF) { /* inf/NaN; just return x */
279 out[0] = x[0];
280 out[1] = x[1];
281 return NULL;
282 }
283 if ((x[0] & 0x7FFFFFFF) == 0 && x[1] == 0) { /* zero: return x */
284 out[0] = x[0];
285 out[1] = x[1];
286 return NULL;
287 }
288
289 test_frexp(x, y, (uint32 *)&n2);
290 ex = n + n2;
291 if (ex > 0x400) { /* overflow */
292 out[0] = sign | 0x7FF00000;
293 out[1] = 0;
294 return "overflow";
295 }
296 /*
297 * Underflow. 2^-1074 is 00000000.00000001; so if ex == -1074
298 * then we have something [2^-1075,2^-1074). Under round-to-
299 * nearest-even, this whole interval rounds up to 2^-1074,
300 * except for the bottom endpoint which rounds to even and is
301 * an underflow condition.
302 *
303 * So, ex < -1074 is definite underflow, and ex == -1074 is
304 * underflow iff all mantissa bits are zero.
305 */
306 if (ex < -1074 || (ex == -1074 && (y[0] & 0xFFFFF) == 0 && y[1] == 0)) {
307 out[0] = sign; /* underflow: correctly signed zero */
308 out[1] = 0;
309 return "underflow";
310 }
311
312 /*
313 * No overflow or underflow; should be nice and simple, unless
314 * we have to denormalise and round the result.
315 */
316 if (ex < -1021) { /* denormalise and round */
317 uint32 roundword;
318 y[0] &= 0x000FFFFF;
319 y[0] |= 0x00100000; /* set leading bit */
320 roundword = 0;
321 while (ex < -1021) {
322 if (roundword & 1)
323 roundword |= 2; /* preserve sticky bit */
324 roundword = (roundword >> 1) | ((y[1] & 1) << 31);
325 y[1] = (y[1] >> 1) | ((y[0] & 1) << 31);
326 y[0] = y[0] >> 1;
327 ex++;
328 }
329 if (roundword > 0x80000000 || /* round up */
330 (roundword == 0x80000000 && (y[1] & 1))) { /* round up to even */
331 y[1]++;
332 y[0] += (y[1] == 0);
333 }
334 out[0] = sign | y[0];
335 out[1] = y[1];
336 /* Proper ERANGE underflow was handled earlier, but we still
337 * expect an IEEE Underflow exception if this partially
338 * underflowed result is not exact. */
339 if (roundword)
340 return "u";
341 return NULL; /* underflow was handled earlier */
342 } else {
343 out[0] = y[0] + (ex << 20);
344 out[1] = y[1];
345 return NULL;
346 }
347 }
348
test_ldexpf(uint32 * x,uint32 * np,uint32 * out)349 char *test_ldexpf(uint32 *x, uint32 *np, uint32 *out) {
350 int n = *np;
351 int32 n2;
352 uint32 y;
353 int ex = (*x >> 23) & 0xFF; /* exponent */
354 int sign = *x & 0x80000000;
355
356 if (ex == 0xFF) { /* inf/NaN; just return x */
357 *out = *x;
358 return NULL;
359 }
360 if ((*x & 0x7FFFFFFF) == 0) { /* zero: return x */
361 *out = *x;
362 return NULL;
363 }
364
365 test_frexpf(x, &y, (uint32 *)&n2);
366 ex = n + n2;
367 if (ex > 0x80) { /* overflow */
368 *out = sign | 0x7F800000;
369 return "overflow";
370 }
371 /*
372 * Underflow. 2^-149 is 00000001; so if ex == -149 then we have
373 * something [2^-150,2^-149). Under round-to- nearest-even,
374 * this whole interval rounds up to 2^-149, except for the
375 * bottom endpoint which rounds to even and is an underflow
376 * condition.
377 *
378 * So, ex < -149 is definite underflow, and ex == -149 is
379 * underflow iff all mantissa bits are zero.
380 */
381 if (ex < -149 || (ex == -149 && (y & 0x7FFFFF) == 0)) {
382 *out = sign; /* underflow: correctly signed zero */
383 return "underflow";
384 }
385
386 /*
387 * No overflow or underflow; should be nice and simple, unless
388 * we have to denormalise and round the result.
389 */
390 if (ex < -125) { /* denormalise and round */
391 uint32 roundword;
392 y &= 0x007FFFFF;
393 y |= 0x00800000; /* set leading bit */
394 roundword = 0;
395 while (ex < -125) {
396 if (roundword & 1)
397 roundword |= 2; /* preserve sticky bit */
398 roundword = (roundword >> 1) | ((y & 1) << 31);
399 y = y >> 1;
400 ex++;
401 }
402 if (roundword > 0x80000000 || /* round up */
403 (roundword == 0x80000000 && (y & 1))) { /* round up to even */
404 y++;
405 }
406 *out = sign | y;
407 /* Proper ERANGE underflow was handled earlier, but we still
408 * expect an IEEE Underflow exception if this partially
409 * underflowed result is not exact. */
410 if (roundword)
411 return "u";
412 return NULL; /* underflow was handled earlier */
413 } else {
414 *out = y + (ex << 23);
415 return NULL;
416 }
417 }
418
test_frexp(uint32 * x,uint32 * out,uint32 * nout)419 char *test_frexp(uint32 *x, uint32 *out, uint32 *nout) {
420 int ex = (x[0] >> 20) & 0x7FF; /* exponent */
421 if (ex == 0x7FF) { /* inf/NaN; return x/0 */
422 out[0] = x[0];
423 out[1] = x[1];
424 nout[0] = 0;
425 return NULL;
426 }
427 if (ex == 0) { /* denormals/zeros */
428 int sign;
429 uint32 xh, xl;
430 if ((x[0] & 0x7FFFFFFF) == 0 && x[1] == 0) {
431 /* zero: return x/0 */
432 out[0] = x[0];
433 out[1] = x[1];
434 nout[0] = 0;
435 return NULL;
436 }
437 sign = x[0] & 0x80000000;
438 xh = x[0] & 0x7FFFFFFF;
439 xl = x[1];
440 ex = 1;
441 while (!(xh & 0x100000)) {
442 ex--;
443 xh = (xh << 1) | ((xl >> 31) & 1);
444 xl = (xl & 0x7FFFFFFF) << 1;
445 }
446 out[0] = sign | 0x3FE00000 | (xh & 0xFFFFF);
447 out[1] = xl;
448 nout[0] = ex - 0x3FE;
449 return NULL;
450 }
451 out[0] = 0x3FE00000 | (x[0] & 0x800FFFFF);
452 out[1] = x[1];
453 nout[0] = ex - 0x3FE;
454 return NULL; /* ordinary number; no error */
455 }
456
test_frexpf(uint32 * x,uint32 * out,uint32 * nout)457 char *test_frexpf(uint32 *x, uint32 *out, uint32 *nout) {
458 int ex = (*x >> 23) & 0xFF; /* exponent */
459 if (ex == 0xFF) { /* inf/NaN; return x/0 */
460 *out = *x;
461 nout[0] = 0;
462 return NULL;
463 }
464 if (ex == 0) { /* denormals/zeros */
465 int sign;
466 uint32 xv;
467 if ((*x & 0x7FFFFFFF) == 0) {
468 /* zero: return x/0 */
469 *out = *x;
470 nout[0] = 0;
471 return NULL;
472 }
473 sign = *x & 0x80000000;
474 xv = *x & 0x7FFFFFFF;
475 ex = 1;
476 while (!(xv & 0x800000)) {
477 ex--;
478 xv = xv << 1;
479 }
480 *out = sign | 0x3F000000 | (xv & 0x7FFFFF);
481 nout[0] = ex - 0x7E;
482 return NULL;
483 }
484 *out = 0x3F000000 | (*x & 0x807FFFFF);
485 nout[0] = ex - 0x7E;
486 return NULL; /* ordinary number; no error */
487 }
488
test_modf(uint32 * x,uint32 * fout,uint32 * iout)489 char *test_modf(uint32 *x, uint32 *fout, uint32 *iout) {
490 int ex = (x[0] >> 20) & 0x7FF; /* exponent */
491 int sign = x[0] & 0x80000000;
492 uint32 fh, fl;
493
494 if (((x[0] & 0x7FFFFFFF) | (!!x[1])) > 0x7FF00000) {
495 /*
496 * NaN input: return the same in _both_ outputs.
497 */
498 fout[0] = iout[0] = x[0];
499 fout[1] = iout[1] = x[1];
500 return NULL;
501 }
502
503 test_rint(x, iout, 0, 0);
504 fh = x[0] - iout[0];
505 fl = x[1] - iout[1];
506 if (!fh && !fl) { /* no fraction part */
507 fout[0] = sign;
508 fout[1] = 0;
509 return NULL;
510 }
511 if (!(iout[0] & 0x7FFFFFFF) && !iout[1]) { /* no integer part */
512 fout[0] = x[0];
513 fout[1] = x[1];
514 return NULL;
515 }
516 while (!(fh & 0x100000)) {
517 ex--;
518 fh = (fh << 1) | ((fl >> 31) & 1);
519 fl = (fl & 0x7FFFFFFF) << 1;
520 }
521 fout[0] = sign | (ex << 20) | (fh & 0xFFFFF);
522 fout[1] = fl;
523 return NULL;
524 }
525
test_modff(uint32 * x,uint32 * fout,uint32 * iout)526 char *test_modff(uint32 *x, uint32 *fout, uint32 *iout) {
527 int ex = (*x >> 23) & 0xFF; /* exponent */
528 int sign = *x & 0x80000000;
529 uint32 f;
530
531 if ((*x & 0x7FFFFFFF) > 0x7F800000) {
532 /*
533 * NaN input: return the same in _both_ outputs.
534 */
535 *fout = *iout = *x;
536 return NULL;
537 }
538
539 test_rintf(x, iout, 0, 0);
540 f = *x - *iout;
541 if (!f) { /* no fraction part */
542 *fout = sign;
543 return NULL;
544 }
545 if (!(*iout & 0x7FFFFFFF)) { /* no integer part */
546 *fout = *x;
547 return NULL;
548 }
549 while (!(f & 0x800000)) {
550 ex--;
551 f = f << 1;
552 }
553 *fout = sign | (ex << 23) | (f & 0x7FFFFF);
554 return NULL;
555 }
556
test_copysign(uint32 * x,uint32 * y,uint32 * out)557 char *test_copysign(uint32 *x, uint32 *y, uint32 *out)
558 {
559 int ysign = y[0] & 0x80000000;
560 int xhigh = x[0] & 0x7fffffff;
561
562 out[0] = ysign | xhigh;
563 out[1] = x[1];
564
565 /* There can be no error */
566 return NULL;
567 }
568
test_copysignf(uint32 * x,uint32 * y,uint32 * out)569 char *test_copysignf(uint32 *x, uint32 *y, uint32 *out)
570 {
571 int ysign = y[0] & 0x80000000;
572 int xhigh = x[0] & 0x7fffffff;
573
574 out[0] = ysign | xhigh;
575
576 /* There can be no error */
577 return NULL;
578 }
579
test_isfinite(uint32 * x,uint32 * out)580 char *test_isfinite(uint32 *x, uint32 *out)
581 {
582 int xhigh = x[0];
583 /* Being finite means that the exponent is not 0x7ff */
584 if ((xhigh & 0x7ff00000) == 0x7ff00000) out[0] = 0;
585 else out[0] = 1;
586 return NULL;
587 }
588
test_isfinitef(uint32 * x,uint32 * out)589 char *test_isfinitef(uint32 *x, uint32 *out)
590 {
591 /* Being finite means that the exponent is not 0xff */
592 if ((x[0] & 0x7f800000) == 0x7f800000) out[0] = 0;
593 else out[0] = 1;
594 return NULL;
595 }
596
test_isinff(uint32 * x,uint32 * out)597 char *test_isinff(uint32 *x, uint32 *out)
598 {
599 /* Being infinite means that our bottom 30 bits equate to 0x7f800000 */
600 if ((x[0] & 0x7fffffff) == 0x7f800000) out[0] = 1;
601 else out[0] = 0;
602 return NULL;
603 }
604
test_isinf(uint32 * x,uint32 * out)605 char *test_isinf(uint32 *x, uint32 *out)
606 {
607 int xhigh = x[0];
608 int xlow = x[1];
609 /* Being infinite means that our fraction is zero and exponent is 0x7ff */
610 if (((xhigh & 0x7fffffff) == 0x7ff00000) && (xlow == 0)) out[0] = 1;
611 else out[0] = 0;
612 return NULL;
613 }
614
test_isnanf(uint32 * x,uint32 * out)615 char *test_isnanf(uint32 *x, uint32 *out)
616 {
617 /* Being NaN means that our exponent is 0xff and non-0 fraction */
618 int exponent = x[0] & 0x7f800000;
619 int fraction = x[0] & 0x007fffff;
620 if ((exponent == 0x7f800000) && (fraction != 0)) out[0] = 1;
621 else out[0] = 0;
622 return NULL;
623 }
624
test_isnan(uint32 * x,uint32 * out)625 char *test_isnan(uint32 *x, uint32 *out)
626 {
627 /* Being NaN means that our exponent is 0x7ff and non-0 fraction */
628 int exponent = x[0] & 0x7ff00000;
629 int fractionhigh = x[0] & 0x000fffff;
630 if ((exponent == 0x7ff00000) && ((fractionhigh != 0) || x[1] != 0))
631 out[0] = 1;
632 else out[0] = 0;
633 return NULL;
634 }
635
test_isnormalf(uint32 * x,uint32 * out)636 char *test_isnormalf(uint32 *x, uint32 *out)
637 {
638 /* Being normal means exponent is not 0 and is not 0xff */
639 int exponent = x[0] & 0x7f800000;
640 if (exponent == 0x7f800000) out[0] = 0;
641 else if (exponent == 0) out[0] = 0;
642 else out[0] = 1;
643 return NULL;
644 }
645
test_isnormal(uint32 * x,uint32 * out)646 char *test_isnormal(uint32 *x, uint32 *out)
647 {
648 /* Being normal means exponent is not 0 and is not 0x7ff */
649 int exponent = x[0] & 0x7ff00000;
650 if (exponent == 0x7ff00000) out[0] = 0;
651 else if (exponent == 0) out[0] = 0;
652 else out[0] = 1;
653 return NULL;
654 }
655
test_signbitf(uint32 * x,uint32 * out)656 char *test_signbitf(uint32 *x, uint32 *out)
657 {
658 /* Sign bit is bit 31 */
659 out[0] = (x[0] >> 31) & 1;
660 return NULL;
661 }
662
test_signbit(uint32 * x,uint32 * out)663 char *test_signbit(uint32 *x, uint32 *out)
664 {
665 /* Sign bit is bit 31 */
666 out[0] = (x[0] >> 31) & 1;
667 return NULL;
668 }
669
test_fpclassify(uint32 * x,uint32 * out)670 char *test_fpclassify(uint32 *x, uint32 *out)
671 {
672 int exponent = (x[0] & 0x7ff00000) >> 20;
673 int fraction = (x[0] & 0x000fffff) | x[1];
674
675 if ((exponent == 0x00) && (fraction == 0)) out[0] = 0;
676 else if ((exponent == 0x00) && (fraction != 0)) out[0] = 4;
677 else if ((exponent == 0x7ff) && (fraction == 0)) out[0] = 3;
678 else if ((exponent == 0x7ff) && (fraction != 0)) out[0] = 7;
679 else out[0] = 5;
680 return NULL;
681 }
682
test_fpclassifyf(uint32 * x,uint32 * out)683 char *test_fpclassifyf(uint32 *x, uint32 *out)
684 {
685 int exponent = (x[0] & 0x7f800000) >> 23;
686 int fraction = x[0] & 0x007fffff;
687
688 if ((exponent == 0x000) && (fraction == 0)) out[0] = 0;
689 else if ((exponent == 0x000) && (fraction != 0)) out[0] = 4;
690 else if ((exponent == 0xff) && (fraction == 0)) out[0] = 3;
691 else if ((exponent == 0xff) && (fraction != 0)) out[0] = 7;
692 else out[0] = 5;
693 return NULL;
694 }
695
696 /*
697 * Internal function that compares doubles in x & y and returns -3, -2, -1, 0,
698 * 1 if they compare to be signaling, unordered, less than, equal or greater
699 * than.
700 */
fpcmp4(uint32 * x,uint32 * y)701 static int fpcmp4(uint32 *x, uint32 *y)
702 {
703 int result = 0;
704
705 /*
706 * Sort out whether results are ordered or not to begin with
707 * NaNs have exponent 0x7ff, and non-zero fraction. Signaling NaNs take
708 * higher priority than quiet ones.
709 */
710 if ((x[0] & 0x7fffffff) >= 0x7ff80000) result = -2;
711 else if ((x[0] & 0x7fffffff) > 0x7ff00000) result = -3;
712 else if (((x[0] & 0x7fffffff) == 0x7ff00000) && (x[1] != 0)) result = -3;
713 if ((y[0] & 0x7fffffff) >= 0x7ff80000 && result != -3) result = -2;
714 else if ((y[0] & 0x7fffffff) > 0x7ff00000) result = -3;
715 else if (((y[0] & 0x7fffffff) == 0x7ff00000) && (y[1] != 0)) result = -3;
716 if (result != 0) return result;
717
718 /*
719 * The two forms of zero are equal
720 */
721 if (((x[0] & 0x7fffffff) == 0) && x[1] == 0 &&
722 ((y[0] & 0x7fffffff) == 0) && y[1] == 0)
723 return 0;
724
725 /*
726 * If x and y have different signs we can tell that they're not equal
727 * If x is +ve we have x > y return 1 - otherwise y is +ve return -1
728 */
729 if ((x[0] >> 31) != (y[0] >> 31))
730 return ((x[0] >> 31) == 0) - ((y[0] >> 31) == 0);
731
732 /*
733 * Now we have both signs the same, let's do an initial compare of the
734 * values.
735 *
736 * Whoever designed IEEE754's floating point formats is very clever and
737 * earns my undying admiration. Once you remove the sign-bit, the
738 * floating point numbers can be ordered using the standard <, ==, >
739 * operators will treating the fp-numbers as integers with that bit-
740 * pattern.
741 */
742 if ((x[0] & 0x7fffffff) < (y[0] & 0x7fffffff)) result = -1;
743 else if ((x[0] & 0x7fffffff) > (y[0] & 0x7fffffff)) result = 1;
744 else if (x[1] < y[1]) result = -1;
745 else if (x[1] > y[1]) result = 1;
746 else result = 0;
747
748 /*
749 * Now we return the result - is x is positive (and therefore so is y) we
750 * return the plain result - otherwise we negate it and return.
751 */
752 if ((x[0] >> 31) == 0) return result;
753 else return -result;
754 }
755
756 /*
757 * Internal function that compares floats in x & y and returns -3, -2, -1, 0,
758 * 1 if they compare to be signaling, unordered, less than, equal or greater
759 * than.
760 */
fpcmp4f(uint32 * x,uint32 * y)761 static int fpcmp4f(uint32 *x, uint32 *y)
762 {
763 int result = 0;
764
765 /*
766 * Sort out whether results are ordered or not to begin with
767 * NaNs have exponent 0xff, and non-zero fraction - we have to handle all
768 * signaling cases over the quiet ones
769 */
770 if ((x[0] & 0x7fffffff) >= 0x7fc00000) result = -2;
771 else if ((x[0] & 0x7fffffff) > 0x7f800000) result = -3;
772 if ((y[0] & 0x7fffffff) >= 0x7fc00000 && result != -3) result = -2;
773 else if ((y[0] & 0x7fffffff) > 0x7f800000) result = -3;
774 if (result != 0) return result;
775
776 /*
777 * The two forms of zero are equal
778 */
779 if (((x[0] & 0x7fffffff) == 0) && ((y[0] & 0x7fffffff) == 0))
780 return 0;
781
782 /*
783 * If x and y have different signs we can tell that they're not equal
784 * If x is +ve we have x > y return 1 - otherwise y is +ve return -1
785 */
786 if ((x[0] >> 31) != (y[0] >> 31))
787 return ((x[0] >> 31) == 0) - ((y[0] >> 31) == 0);
788
789 /*
790 * Now we have both signs the same, let's do an initial compare of the
791 * values.
792 *
793 * Whoever designed IEEE754's floating point formats is very clever and
794 * earns my undying admiration. Once you remove the sign-bit, the
795 * floating point numbers can be ordered using the standard <, ==, >
796 * operators will treating the fp-numbers as integers with that bit-
797 * pattern.
798 */
799 if ((x[0] & 0x7fffffff) < (y[0] & 0x7fffffff)) result = -1;
800 else if ((x[0] & 0x7fffffff) > (y[0] & 0x7fffffff)) result = 1;
801 else result = 0;
802
803 /*
804 * Now we return the result - is x is positive (and therefore so is y) we
805 * return the plain result - otherwise we negate it and return.
806 */
807 if ((x[0] >> 31) == 0) return result;
808 else return -result;
809 }
810
test_isgreater(uint32 * x,uint32 * y,uint32 * out)811 char *test_isgreater(uint32 *x, uint32 *y, uint32 *out)
812 {
813 int result = fpcmp4(x, y);
814 *out = (result == 1);
815 return result == -3 ? "i" : NULL;
816 }
817
test_isgreaterequal(uint32 * x,uint32 * y,uint32 * out)818 char *test_isgreaterequal(uint32 *x, uint32 *y, uint32 *out)
819 {
820 int result = fpcmp4(x, y);
821 *out = (result >= 0);
822 return result == -3 ? "i" : NULL;
823 }
824
test_isless(uint32 * x,uint32 * y,uint32 * out)825 char *test_isless(uint32 *x, uint32 *y, uint32 *out)
826 {
827 int result = fpcmp4(x, y);
828 *out = (result == -1);
829 return result == -3 ? "i" : NULL;
830 }
831
test_islessequal(uint32 * x,uint32 * y,uint32 * out)832 char *test_islessequal(uint32 *x, uint32 *y, uint32 *out)
833 {
834 int result = fpcmp4(x, y);
835 *out = (result == -1) || (result == 0);
836 return result == -3 ? "i" : NULL;
837 }
838
test_islessgreater(uint32 * x,uint32 * y,uint32 * out)839 char *test_islessgreater(uint32 *x, uint32 *y, uint32 *out)
840 {
841 int result = fpcmp4(x, y);
842 *out = (result == -1) || (result == 1);
843 return result == -3 ? "i" : NULL;
844 }
845
test_isunordered(uint32 * x,uint32 * y,uint32 * out)846 char *test_isunordered(uint32 *x, uint32 *y, uint32 *out)
847 {
848 int normal = 0;
849 int result = fpcmp4(x, y);
850
851 test_isnormal(x, out);
852 normal |= *out;
853 test_isnormal(y, out);
854 normal |= *out;
855 *out = (result == -2) || (result == -3);
856 return result == -3 ? "i" : NULL;
857 }
858
test_isgreaterf(uint32 * x,uint32 * y,uint32 * out)859 char *test_isgreaterf(uint32 *x, uint32 *y, uint32 *out)
860 {
861 int result = fpcmp4f(x, y);
862 *out = (result == 1);
863 return result == -3 ? "i" : NULL;
864 }
865
test_isgreaterequalf(uint32 * x,uint32 * y,uint32 * out)866 char *test_isgreaterequalf(uint32 *x, uint32 *y, uint32 *out)
867 {
868 int result = fpcmp4f(x, y);
869 *out = (result >= 0);
870 return result == -3 ? "i" : NULL;
871 }
872
test_islessf(uint32 * x,uint32 * y,uint32 * out)873 char *test_islessf(uint32 *x, uint32 *y, uint32 *out)
874 {
875 int result = fpcmp4f(x, y);
876 *out = (result == -1);
877 return result == -3 ? "i" : NULL;
878 }
879
test_islessequalf(uint32 * x,uint32 * y,uint32 * out)880 char *test_islessequalf(uint32 *x, uint32 *y, uint32 *out)
881 {
882 int result = fpcmp4f(x, y);
883 *out = (result == -1) || (result == 0);
884 return result == -3 ? "i" : NULL;
885 }
886
test_islessgreaterf(uint32 * x,uint32 * y,uint32 * out)887 char *test_islessgreaterf(uint32 *x, uint32 *y, uint32 *out)
888 {
889 int result = fpcmp4f(x, y);
890 *out = (result == -1) || (result == 1);
891 return result == -3 ? "i" : NULL;
892 }
893
test_isunorderedf(uint32 * x,uint32 * y,uint32 * out)894 char *test_isunorderedf(uint32 *x, uint32 *y, uint32 *out)
895 {
896 int normal = 0;
897 int result = fpcmp4f(x, y);
898
899 test_isnormalf(x, out);
900 normal |= *out;
901 test_isnormalf(y, out);
902 normal |= *out;
903 *out = (result == -2) || (result == -3);
904 return result == -3 ? "i" : NULL;
905 }
906