• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007-2008 VMware, Inc.
4  * All Rights Reserved.
5  * Copyright 2009-2010 VMware, Inc.  All rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 
29 /**
30  * TGSI interpreter/executor.
31  *
32  * Flow control information:
33  *
34  * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35  * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36  * care since a condition may be true for some quad components but false
37  * for other components.
38  *
39  * We basically execute all statements (even if they're in the part of
40  * an IF/ELSE clause that's "not taken") and use a special mask to
41  * control writing to destination registers.  This is the ExecMask.
42  * See store_dest().
43  *
44  * The ExecMask is computed from three other masks (CondMask, LoopMask and
45  * ContMask) which are controlled by the flow control instructions (namely:
46  * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
47  *
48  *
49  * Authors:
50  *   Michal Krol
51  *   Brian Paul
52  */
53 
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_half.h"
62 #include "util/u_memory.h"
63 #include "util/u_math.h"
64 #include "util/rounding.h"
65 
66 
67 #define DEBUG_EXECUTION 0
68 
69 
70 #define FAST_MATH 0
71 
72 #define TILE_TOP_LEFT     0
73 #define TILE_TOP_RIGHT    1
74 #define TILE_BOTTOM_LEFT  2
75 #define TILE_BOTTOM_RIGHT 3
76 
77 union tgsi_double_channel {
78    double d[TGSI_QUAD_SIZE];
79    unsigned u[TGSI_QUAD_SIZE][2];
80    uint64_t u64[TGSI_QUAD_SIZE];
81    int64_t i64[TGSI_QUAD_SIZE];
82 };
83 
84 struct tgsi_double_vector {
85    union tgsi_double_channel xy;
86    union tgsi_double_channel zw;
87 };
88 
89 static void
micro_abs(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)90 micro_abs(union tgsi_exec_channel *dst,
91           const union tgsi_exec_channel *src)
92 {
93    dst->f[0] = fabsf(src->f[0]);
94    dst->f[1] = fabsf(src->f[1]);
95    dst->f[2] = fabsf(src->f[2]);
96    dst->f[3] = fabsf(src->f[3]);
97 }
98 
99 static void
micro_arl(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)100 micro_arl(union tgsi_exec_channel *dst,
101           const union tgsi_exec_channel *src)
102 {
103    dst->i[0] = (int)floorf(src->f[0]);
104    dst->i[1] = (int)floorf(src->f[1]);
105    dst->i[2] = (int)floorf(src->f[2]);
106    dst->i[3] = (int)floorf(src->f[3]);
107 }
108 
109 static void
micro_arr(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)110 micro_arr(union tgsi_exec_channel *dst,
111           const union tgsi_exec_channel *src)
112 {
113    dst->i[0] = (int)floorf(src->f[0] + 0.5f);
114    dst->i[1] = (int)floorf(src->f[1] + 0.5f);
115    dst->i[2] = (int)floorf(src->f[2] + 0.5f);
116    dst->i[3] = (int)floorf(src->f[3] + 0.5f);
117 }
118 
119 static void
micro_ceil(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)120 micro_ceil(union tgsi_exec_channel *dst,
121            const union tgsi_exec_channel *src)
122 {
123    dst->f[0] = ceilf(src->f[0]);
124    dst->f[1] = ceilf(src->f[1]);
125    dst->f[2] = ceilf(src->f[2]);
126    dst->f[3] = ceilf(src->f[3]);
127 }
128 
129 static void
micro_cmp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)130 micro_cmp(union tgsi_exec_channel *dst,
131           const union tgsi_exec_channel *src0,
132           const union tgsi_exec_channel *src1,
133           const union tgsi_exec_channel *src2)
134 {
135    dst->f[0] = src0->f[0] < 0.0f ? src1->f[0] : src2->f[0];
136    dst->f[1] = src0->f[1] < 0.0f ? src1->f[1] : src2->f[1];
137    dst->f[2] = src0->f[2] < 0.0f ? src1->f[2] : src2->f[2];
138    dst->f[3] = src0->f[3] < 0.0f ? src1->f[3] : src2->f[3];
139 }
140 
141 static void
micro_cos(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)142 micro_cos(union tgsi_exec_channel *dst,
143           const union tgsi_exec_channel *src)
144 {
145    dst->f[0] = cosf(src->f[0]);
146    dst->f[1] = cosf(src->f[1]);
147    dst->f[2] = cosf(src->f[2]);
148    dst->f[3] = cosf(src->f[3]);
149 }
150 
151 static void
micro_d2f(union tgsi_exec_channel * dst,const union tgsi_double_channel * src)152 micro_d2f(union tgsi_exec_channel *dst,
153           const union tgsi_double_channel *src)
154 {
155    dst->f[0] = (float)src->d[0];
156    dst->f[1] = (float)src->d[1];
157    dst->f[2] = (float)src->d[2];
158    dst->f[3] = (float)src->d[3];
159 }
160 
161 static void
micro_d2i(union tgsi_exec_channel * dst,const union tgsi_double_channel * src)162 micro_d2i(union tgsi_exec_channel *dst,
163           const union tgsi_double_channel *src)
164 {
165    dst->i[0] = (int)src->d[0];
166    dst->i[1] = (int)src->d[1];
167    dst->i[2] = (int)src->d[2];
168    dst->i[3] = (int)src->d[3];
169 }
170 
171 static void
micro_d2u(union tgsi_exec_channel * dst,const union tgsi_double_channel * src)172 micro_d2u(union tgsi_exec_channel *dst,
173           const union tgsi_double_channel *src)
174 {
175    dst->u[0] = (unsigned)src->d[0];
176    dst->u[1] = (unsigned)src->d[1];
177    dst->u[2] = (unsigned)src->d[2];
178    dst->u[3] = (unsigned)src->d[3];
179 }
180 static void
micro_dabs(union tgsi_double_channel * dst,const union tgsi_double_channel * src)181 micro_dabs(union tgsi_double_channel *dst,
182            const union tgsi_double_channel *src)
183 {
184    dst->d[0] = src->d[0] >= 0.0 ? src->d[0] : -src->d[0];
185    dst->d[1] = src->d[1] >= 0.0 ? src->d[1] : -src->d[1];
186    dst->d[2] = src->d[2] >= 0.0 ? src->d[2] : -src->d[2];
187    dst->d[3] = src->d[3] >= 0.0 ? src->d[3] : -src->d[3];
188 }
189 
190 static void
micro_dadd(union tgsi_double_channel * dst,const union tgsi_double_channel * src)191 micro_dadd(union tgsi_double_channel *dst,
192           const union tgsi_double_channel *src)
193 {
194    dst->d[0] = src[0].d[0] + src[1].d[0];
195    dst->d[1] = src[0].d[1] + src[1].d[1];
196    dst->d[2] = src[0].d[2] + src[1].d[2];
197    dst->d[3] = src[0].d[3] + src[1].d[3];
198 }
199 
200 static void
micro_ddiv(union tgsi_double_channel * dst,const union tgsi_double_channel * src)201 micro_ddiv(union tgsi_double_channel *dst,
202           const union tgsi_double_channel *src)
203 {
204    dst->d[0] = src[0].d[0] / src[1].d[0];
205    dst->d[1] = src[0].d[1] / src[1].d[1];
206    dst->d[2] = src[0].d[2] / src[1].d[2];
207    dst->d[3] = src[0].d[3] / src[1].d[3];
208 }
209 
210 static void
micro_ddx(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)211 micro_ddx(union tgsi_exec_channel *dst,
212           const union tgsi_exec_channel *src)
213 {
214    dst->f[0] =
215    dst->f[1] =
216    dst->f[2] =
217    dst->f[3] = src->f[TILE_BOTTOM_RIGHT] - src->f[TILE_BOTTOM_LEFT];
218 }
219 
220 static void
micro_ddy(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)221 micro_ddy(union tgsi_exec_channel *dst,
222           const union tgsi_exec_channel *src)
223 {
224    dst->f[0] =
225    dst->f[1] =
226    dst->f[2] =
227    dst->f[3] = src->f[TILE_BOTTOM_LEFT] - src->f[TILE_TOP_LEFT];
228 }
229 
230 static void
micro_dmul(union tgsi_double_channel * dst,const union tgsi_double_channel * src)231 micro_dmul(union tgsi_double_channel *dst,
232            const union tgsi_double_channel *src)
233 {
234    dst->d[0] = src[0].d[0] * src[1].d[0];
235    dst->d[1] = src[0].d[1] * src[1].d[1];
236    dst->d[2] = src[0].d[2] * src[1].d[2];
237    dst->d[3] = src[0].d[3] * src[1].d[3];
238 }
239 
240 static void
micro_dmax(union tgsi_double_channel * dst,const union tgsi_double_channel * src)241 micro_dmax(union tgsi_double_channel *dst,
242            const union tgsi_double_channel *src)
243 {
244    dst->d[0] = src[0].d[0] > src[1].d[0] ? src[0].d[0] : src[1].d[0];
245    dst->d[1] = src[0].d[1] > src[1].d[1] ? src[0].d[1] : src[1].d[1];
246    dst->d[2] = src[0].d[2] > src[1].d[2] ? src[0].d[2] : src[1].d[2];
247    dst->d[3] = src[0].d[3] > src[1].d[3] ? src[0].d[3] : src[1].d[3];
248 }
249 
250 static void
micro_dmin(union tgsi_double_channel * dst,const union tgsi_double_channel * src)251 micro_dmin(union tgsi_double_channel *dst,
252            const union tgsi_double_channel *src)
253 {
254    dst->d[0] = src[0].d[0] < src[1].d[0] ? src[0].d[0] : src[1].d[0];
255    dst->d[1] = src[0].d[1] < src[1].d[1] ? src[0].d[1] : src[1].d[1];
256    dst->d[2] = src[0].d[2] < src[1].d[2] ? src[0].d[2] : src[1].d[2];
257    dst->d[3] = src[0].d[3] < src[1].d[3] ? src[0].d[3] : src[1].d[3];
258 }
259 
260 static void
micro_dneg(union tgsi_double_channel * dst,const union tgsi_double_channel * src)261 micro_dneg(union tgsi_double_channel *dst,
262            const union tgsi_double_channel *src)
263 {
264    dst->d[0] = -src->d[0];
265    dst->d[1] = -src->d[1];
266    dst->d[2] = -src->d[2];
267    dst->d[3] = -src->d[3];
268 }
269 
270 static void
micro_dslt(union tgsi_double_channel * dst,const union tgsi_double_channel * src)271 micro_dslt(union tgsi_double_channel *dst,
272            const union tgsi_double_channel *src)
273 {
274    dst->u[0][0] = src[0].d[0] < src[1].d[0] ? ~0U : 0U;
275    dst->u[1][0] = src[0].d[1] < src[1].d[1] ? ~0U : 0U;
276    dst->u[2][0] = src[0].d[2] < src[1].d[2] ? ~0U : 0U;
277    dst->u[3][0] = src[0].d[3] < src[1].d[3] ? ~0U : 0U;
278 }
279 
280 static void
micro_dsne(union tgsi_double_channel * dst,const union tgsi_double_channel * src)281 micro_dsne(union tgsi_double_channel *dst,
282            const union tgsi_double_channel *src)
283 {
284    dst->u[0][0] = src[0].d[0] != src[1].d[0] ? ~0U : 0U;
285    dst->u[1][0] = src[0].d[1] != src[1].d[1] ? ~0U : 0U;
286    dst->u[2][0] = src[0].d[2] != src[1].d[2] ? ~0U : 0U;
287    dst->u[3][0] = src[0].d[3] != src[1].d[3] ? ~0U : 0U;
288 }
289 
290 static void
micro_dsge(union tgsi_double_channel * dst,const union tgsi_double_channel * src)291 micro_dsge(union tgsi_double_channel *dst,
292            const union tgsi_double_channel *src)
293 {
294    dst->u[0][0] = src[0].d[0] >= src[1].d[0] ? ~0U : 0U;
295    dst->u[1][0] = src[0].d[1] >= src[1].d[1] ? ~0U : 0U;
296    dst->u[2][0] = src[0].d[2] >= src[1].d[2] ? ~0U : 0U;
297    dst->u[3][0] = src[0].d[3] >= src[1].d[3] ? ~0U : 0U;
298 }
299 
300 static void
micro_dseq(union tgsi_double_channel * dst,const union tgsi_double_channel * src)301 micro_dseq(union tgsi_double_channel *dst,
302            const union tgsi_double_channel *src)
303 {
304    dst->u[0][0] = src[0].d[0] == src[1].d[0] ? ~0U : 0U;
305    dst->u[1][0] = src[0].d[1] == src[1].d[1] ? ~0U : 0U;
306    dst->u[2][0] = src[0].d[2] == src[1].d[2] ? ~0U : 0U;
307    dst->u[3][0] = src[0].d[3] == src[1].d[3] ? ~0U : 0U;
308 }
309 
310 static void
micro_drcp(union tgsi_double_channel * dst,const union tgsi_double_channel * src)311 micro_drcp(union tgsi_double_channel *dst,
312            const union tgsi_double_channel *src)
313 {
314    dst->d[0] = 1.0 / src->d[0];
315    dst->d[1] = 1.0 / src->d[1];
316    dst->d[2] = 1.0 / src->d[2];
317    dst->d[3] = 1.0 / src->d[3];
318 }
319 
320 static void
micro_dsqrt(union tgsi_double_channel * dst,const union tgsi_double_channel * src)321 micro_dsqrt(union tgsi_double_channel *dst,
322             const union tgsi_double_channel *src)
323 {
324    dst->d[0] = sqrt(src->d[0]);
325    dst->d[1] = sqrt(src->d[1]);
326    dst->d[2] = sqrt(src->d[2]);
327    dst->d[3] = sqrt(src->d[3]);
328 }
329 
330 static void
micro_drsq(union tgsi_double_channel * dst,const union tgsi_double_channel * src)331 micro_drsq(union tgsi_double_channel *dst,
332           const union tgsi_double_channel *src)
333 {
334    dst->d[0] = 1.0 / sqrt(src->d[0]);
335    dst->d[1] = 1.0 / sqrt(src->d[1]);
336    dst->d[2] = 1.0 / sqrt(src->d[2]);
337    dst->d[3] = 1.0 / sqrt(src->d[3]);
338 }
339 
340 static void
micro_dmad(union tgsi_double_channel * dst,const union tgsi_double_channel * src)341 micro_dmad(union tgsi_double_channel *dst,
342            const union tgsi_double_channel *src)
343 {
344    dst->d[0] = src[0].d[0] * src[1].d[0] + src[2].d[0];
345    dst->d[1] = src[0].d[1] * src[1].d[1] + src[2].d[1];
346    dst->d[2] = src[0].d[2] * src[1].d[2] + src[2].d[2];
347    dst->d[3] = src[0].d[3] * src[1].d[3] + src[2].d[3];
348 }
349 
350 static void
micro_dfrac(union tgsi_double_channel * dst,const union tgsi_double_channel * src)351 micro_dfrac(union tgsi_double_channel *dst,
352             const union tgsi_double_channel *src)
353 {
354    dst->d[0] = src->d[0] - floor(src->d[0]);
355    dst->d[1] = src->d[1] - floor(src->d[1]);
356    dst->d[2] = src->d[2] - floor(src->d[2]);
357    dst->d[3] = src->d[3] - floor(src->d[3]);
358 }
359 
360 static void
micro_dldexp(union tgsi_double_channel * dst,const union tgsi_double_channel * src0,union tgsi_exec_channel * src1)361 micro_dldexp(union tgsi_double_channel *dst,
362              const union tgsi_double_channel *src0,
363              union tgsi_exec_channel *src1)
364 {
365    dst->d[0] = ldexp(src0->d[0], src1->i[0]);
366    dst->d[1] = ldexp(src0->d[1], src1->i[1]);
367    dst->d[2] = ldexp(src0->d[2], src1->i[2]);
368    dst->d[3] = ldexp(src0->d[3], src1->i[3]);
369 }
370 
371 static void
micro_dfracexp(union tgsi_double_channel * dst,union tgsi_exec_channel * dst_exp,const union tgsi_double_channel * src)372 micro_dfracexp(union tgsi_double_channel *dst,
373                union tgsi_exec_channel *dst_exp,
374                const union tgsi_double_channel *src)
375 {
376    dst->d[0] = frexp(src->d[0], &dst_exp->i[0]);
377    dst->d[1] = frexp(src->d[1], &dst_exp->i[1]);
378    dst->d[2] = frexp(src->d[2], &dst_exp->i[2]);
379    dst->d[3] = frexp(src->d[3], &dst_exp->i[3]);
380 }
381 
382 static void
micro_exp2(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)383 micro_exp2(union tgsi_exec_channel *dst,
384            const union tgsi_exec_channel *src)
385 {
386 #if FAST_MATH
387    dst->f[0] = util_fast_exp2(src->f[0]);
388    dst->f[1] = util_fast_exp2(src->f[1]);
389    dst->f[2] = util_fast_exp2(src->f[2]);
390    dst->f[3] = util_fast_exp2(src->f[3]);
391 #else
392 #if DEBUG
393    /* Inf is okay for this instruction, so clamp it to silence assertions. */
394    uint i;
395    union tgsi_exec_channel clamped;
396 
397    for (i = 0; i < 4; i++) {
398       if (src->f[i] > 127.99999f) {
399          clamped.f[i] = 127.99999f;
400       } else if (src->f[i] < -126.99999f) {
401          clamped.f[i] = -126.99999f;
402       } else {
403          clamped.f[i] = src->f[i];
404       }
405    }
406    src = &clamped;
407 #endif /* DEBUG */
408 
409    dst->f[0] = powf(2.0f, src->f[0]);
410    dst->f[1] = powf(2.0f, src->f[1]);
411    dst->f[2] = powf(2.0f, src->f[2]);
412    dst->f[3] = powf(2.0f, src->f[3]);
413 #endif /* FAST_MATH */
414 }
415 
416 static void
micro_f2d(union tgsi_double_channel * dst,const union tgsi_exec_channel * src)417 micro_f2d(union tgsi_double_channel *dst,
418           const union tgsi_exec_channel *src)
419 {
420    dst->d[0] = (double)src->f[0];
421    dst->d[1] = (double)src->f[1];
422    dst->d[2] = (double)src->f[2];
423    dst->d[3] = (double)src->f[3];
424 }
425 
426 static void
micro_flr(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)427 micro_flr(union tgsi_exec_channel *dst,
428           const union tgsi_exec_channel *src)
429 {
430    dst->f[0] = floorf(src->f[0]);
431    dst->f[1] = floorf(src->f[1]);
432    dst->f[2] = floorf(src->f[2]);
433    dst->f[3] = floorf(src->f[3]);
434 }
435 
436 static void
micro_frc(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)437 micro_frc(union tgsi_exec_channel *dst,
438           const union tgsi_exec_channel *src)
439 {
440    dst->f[0] = src->f[0] - floorf(src->f[0]);
441    dst->f[1] = src->f[1] - floorf(src->f[1]);
442    dst->f[2] = src->f[2] - floorf(src->f[2]);
443    dst->f[3] = src->f[3] - floorf(src->f[3]);
444 }
445 
446 static void
micro_i2d(union tgsi_double_channel * dst,const union tgsi_exec_channel * src)447 micro_i2d(union tgsi_double_channel *dst,
448           const union tgsi_exec_channel *src)
449 {
450    dst->d[0] = (double)src->i[0];
451    dst->d[1] = (double)src->i[1];
452    dst->d[2] = (double)src->i[2];
453    dst->d[3] = (double)src->i[3];
454 }
455 
456 static void
micro_iabs(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)457 micro_iabs(union tgsi_exec_channel *dst,
458            const union tgsi_exec_channel *src)
459 {
460    dst->i[0] = src->i[0] >= 0 ? src->i[0] : -src->i[0];
461    dst->i[1] = src->i[1] >= 0 ? src->i[1] : -src->i[1];
462    dst->i[2] = src->i[2] >= 0 ? src->i[2] : -src->i[2];
463    dst->i[3] = src->i[3] >= 0 ? src->i[3] : -src->i[3];
464 }
465 
466 static void
micro_ineg(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)467 micro_ineg(union tgsi_exec_channel *dst,
468            const union tgsi_exec_channel *src)
469 {
470    dst->i[0] = -src->i[0];
471    dst->i[1] = -src->i[1];
472    dst->i[2] = -src->i[2];
473    dst->i[3] = -src->i[3];
474 }
475 
476 static void
micro_lg2(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)477 micro_lg2(union tgsi_exec_channel *dst,
478           const union tgsi_exec_channel *src)
479 {
480 #if FAST_MATH
481    dst->f[0] = util_fast_log2(src->f[0]);
482    dst->f[1] = util_fast_log2(src->f[1]);
483    dst->f[2] = util_fast_log2(src->f[2]);
484    dst->f[3] = util_fast_log2(src->f[3]);
485 #else
486    dst->f[0] = logf(src->f[0]) * 1.442695f;
487    dst->f[1] = logf(src->f[1]) * 1.442695f;
488    dst->f[2] = logf(src->f[2]) * 1.442695f;
489    dst->f[3] = logf(src->f[3]) * 1.442695f;
490 #endif
491 }
492 
493 static void
micro_lrp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)494 micro_lrp(union tgsi_exec_channel *dst,
495           const union tgsi_exec_channel *src0,
496           const union tgsi_exec_channel *src1,
497           const union tgsi_exec_channel *src2)
498 {
499    dst->f[0] = src0->f[0] * (src1->f[0] - src2->f[0]) + src2->f[0];
500    dst->f[1] = src0->f[1] * (src1->f[1] - src2->f[1]) + src2->f[1];
501    dst->f[2] = src0->f[2] * (src1->f[2] - src2->f[2]) + src2->f[2];
502    dst->f[3] = src0->f[3] * (src1->f[3] - src2->f[3]) + src2->f[3];
503 }
504 
505 static void
micro_mad(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)506 micro_mad(union tgsi_exec_channel *dst,
507           const union tgsi_exec_channel *src0,
508           const union tgsi_exec_channel *src1,
509           const union tgsi_exec_channel *src2)
510 {
511    dst->f[0] = src0->f[0] * src1->f[0] + src2->f[0];
512    dst->f[1] = src0->f[1] * src1->f[1] + src2->f[1];
513    dst->f[2] = src0->f[2] * src1->f[2] + src2->f[2];
514    dst->f[3] = src0->f[3] * src1->f[3] + src2->f[3];
515 }
516 
517 static void
micro_mov(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)518 micro_mov(union tgsi_exec_channel *dst,
519           const union tgsi_exec_channel *src)
520 {
521    dst->u[0] = src->u[0];
522    dst->u[1] = src->u[1];
523    dst->u[2] = src->u[2];
524    dst->u[3] = src->u[3];
525 }
526 
527 static void
micro_rcp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)528 micro_rcp(union tgsi_exec_channel *dst,
529           const union tgsi_exec_channel *src)
530 {
531 #if 0 /* for debugging */
532    assert(src->f[0] != 0.0f);
533    assert(src->f[1] != 0.0f);
534    assert(src->f[2] != 0.0f);
535    assert(src->f[3] != 0.0f);
536 #endif
537    dst->f[0] = 1.0f / src->f[0];
538    dst->f[1] = 1.0f / src->f[1];
539    dst->f[2] = 1.0f / src->f[2];
540    dst->f[3] = 1.0f / src->f[3];
541 }
542 
543 static void
micro_rnd(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)544 micro_rnd(union tgsi_exec_channel *dst,
545           const union tgsi_exec_channel *src)
546 {
547    dst->f[0] = _mesa_roundevenf(src->f[0]);
548    dst->f[1] = _mesa_roundevenf(src->f[1]);
549    dst->f[2] = _mesa_roundevenf(src->f[2]);
550    dst->f[3] = _mesa_roundevenf(src->f[3]);
551 }
552 
553 static void
micro_rsq(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)554 micro_rsq(union tgsi_exec_channel *dst,
555           const union tgsi_exec_channel *src)
556 {
557 #if 0 /* for debugging */
558    assert(src->f[0] != 0.0f);
559    assert(src->f[1] != 0.0f);
560    assert(src->f[2] != 0.0f);
561    assert(src->f[3] != 0.0f);
562 #endif
563    dst->f[0] = 1.0f / sqrtf(src->f[0]);
564    dst->f[1] = 1.0f / sqrtf(src->f[1]);
565    dst->f[2] = 1.0f / sqrtf(src->f[2]);
566    dst->f[3] = 1.0f / sqrtf(src->f[3]);
567 }
568 
569 static void
micro_sqrt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)570 micro_sqrt(union tgsi_exec_channel *dst,
571            const union tgsi_exec_channel *src)
572 {
573    dst->f[0] = sqrtf(src->f[0]);
574    dst->f[1] = sqrtf(src->f[1]);
575    dst->f[2] = sqrtf(src->f[2]);
576    dst->f[3] = sqrtf(src->f[3]);
577 }
578 
579 static void
micro_seq(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)580 micro_seq(union tgsi_exec_channel *dst,
581           const union tgsi_exec_channel *src0,
582           const union tgsi_exec_channel *src1)
583 {
584    dst->f[0] = src0->f[0] == src1->f[0] ? 1.0f : 0.0f;
585    dst->f[1] = src0->f[1] == src1->f[1] ? 1.0f : 0.0f;
586    dst->f[2] = src0->f[2] == src1->f[2] ? 1.0f : 0.0f;
587    dst->f[3] = src0->f[3] == src1->f[3] ? 1.0f : 0.0f;
588 }
589 
590 static void
micro_sge(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)591 micro_sge(union tgsi_exec_channel *dst,
592           const union tgsi_exec_channel *src0,
593           const union tgsi_exec_channel *src1)
594 {
595    dst->f[0] = src0->f[0] >= src1->f[0] ? 1.0f : 0.0f;
596    dst->f[1] = src0->f[1] >= src1->f[1] ? 1.0f : 0.0f;
597    dst->f[2] = src0->f[2] >= src1->f[2] ? 1.0f : 0.0f;
598    dst->f[3] = src0->f[3] >= src1->f[3] ? 1.0f : 0.0f;
599 }
600 
601 static void
micro_sgn(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)602 micro_sgn(union tgsi_exec_channel *dst,
603           const union tgsi_exec_channel *src)
604 {
605    dst->f[0] = src->f[0] < 0.0f ? -1.0f : src->f[0] > 0.0f ? 1.0f : 0.0f;
606    dst->f[1] = src->f[1] < 0.0f ? -1.0f : src->f[1] > 0.0f ? 1.0f : 0.0f;
607    dst->f[2] = src->f[2] < 0.0f ? -1.0f : src->f[2] > 0.0f ? 1.0f : 0.0f;
608    dst->f[3] = src->f[3] < 0.0f ? -1.0f : src->f[3] > 0.0f ? 1.0f : 0.0f;
609 }
610 
611 static void
micro_isgn(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)612 micro_isgn(union tgsi_exec_channel *dst,
613           const union tgsi_exec_channel *src)
614 {
615    dst->i[0] = src->i[0] < 0 ? -1 : src->i[0] > 0 ? 1 : 0;
616    dst->i[1] = src->i[1] < 0 ? -1 : src->i[1] > 0 ? 1 : 0;
617    dst->i[2] = src->i[2] < 0 ? -1 : src->i[2] > 0 ? 1 : 0;
618    dst->i[3] = src->i[3] < 0 ? -1 : src->i[3] > 0 ? 1 : 0;
619 }
620 
621 static void
micro_sgt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)622 micro_sgt(union tgsi_exec_channel *dst,
623           const union tgsi_exec_channel *src0,
624           const union tgsi_exec_channel *src1)
625 {
626    dst->f[0] = src0->f[0] > src1->f[0] ? 1.0f : 0.0f;
627    dst->f[1] = src0->f[1] > src1->f[1] ? 1.0f : 0.0f;
628    dst->f[2] = src0->f[2] > src1->f[2] ? 1.0f : 0.0f;
629    dst->f[3] = src0->f[3] > src1->f[3] ? 1.0f : 0.0f;
630 }
631 
632 static void
micro_sin(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)633 micro_sin(union tgsi_exec_channel *dst,
634           const union tgsi_exec_channel *src)
635 {
636    dst->f[0] = sinf(src->f[0]);
637    dst->f[1] = sinf(src->f[1]);
638    dst->f[2] = sinf(src->f[2]);
639    dst->f[3] = sinf(src->f[3]);
640 }
641 
642 static void
micro_sle(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)643 micro_sle(union tgsi_exec_channel *dst,
644           const union tgsi_exec_channel *src0,
645           const union tgsi_exec_channel *src1)
646 {
647    dst->f[0] = src0->f[0] <= src1->f[0] ? 1.0f : 0.0f;
648    dst->f[1] = src0->f[1] <= src1->f[1] ? 1.0f : 0.0f;
649    dst->f[2] = src0->f[2] <= src1->f[2] ? 1.0f : 0.0f;
650    dst->f[3] = src0->f[3] <= src1->f[3] ? 1.0f : 0.0f;
651 }
652 
653 static void
micro_slt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)654 micro_slt(union tgsi_exec_channel *dst,
655           const union tgsi_exec_channel *src0,
656           const union tgsi_exec_channel *src1)
657 {
658    dst->f[0] = src0->f[0] < src1->f[0] ? 1.0f : 0.0f;
659    dst->f[1] = src0->f[1] < src1->f[1] ? 1.0f : 0.0f;
660    dst->f[2] = src0->f[2] < src1->f[2] ? 1.0f : 0.0f;
661    dst->f[3] = src0->f[3] < src1->f[3] ? 1.0f : 0.0f;
662 }
663 
664 static void
micro_sne(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)665 micro_sne(union tgsi_exec_channel *dst,
666           const union tgsi_exec_channel *src0,
667           const union tgsi_exec_channel *src1)
668 {
669    dst->f[0] = src0->f[0] != src1->f[0] ? 1.0f : 0.0f;
670    dst->f[1] = src0->f[1] != src1->f[1] ? 1.0f : 0.0f;
671    dst->f[2] = src0->f[2] != src1->f[2] ? 1.0f : 0.0f;
672    dst->f[3] = src0->f[3] != src1->f[3] ? 1.0f : 0.0f;
673 }
674 
675 static void
micro_trunc(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)676 micro_trunc(union tgsi_exec_channel *dst,
677             const union tgsi_exec_channel *src)
678 {
679    dst->f[0] = truncf(src->f[0]);
680    dst->f[1] = truncf(src->f[1]);
681    dst->f[2] = truncf(src->f[2]);
682    dst->f[3] = truncf(src->f[3]);
683 }
684 
685 static void
micro_u2d(union tgsi_double_channel * dst,const union tgsi_exec_channel * src)686 micro_u2d(union tgsi_double_channel *dst,
687           const union tgsi_exec_channel *src)
688 {
689    dst->d[0] = (double)src->u[0];
690    dst->d[1] = (double)src->u[1];
691    dst->d[2] = (double)src->u[2];
692    dst->d[3] = (double)src->u[3];
693 }
694 
695 static void
micro_i64abs(union tgsi_double_channel * dst,const union tgsi_double_channel * src)696 micro_i64abs(union tgsi_double_channel *dst,
697              const union tgsi_double_channel *src)
698 {
699    dst->i64[0] = src->i64[0] >= 0.0 ? src->i64[0] : -src->i64[0];
700    dst->i64[1] = src->i64[1] >= 0.0 ? src->i64[1] : -src->i64[1];
701    dst->i64[2] = src->i64[2] >= 0.0 ? src->i64[2] : -src->i64[2];
702    dst->i64[3] = src->i64[3] >= 0.0 ? src->i64[3] : -src->i64[3];
703 }
704 
705 static void
micro_i64sgn(union tgsi_double_channel * dst,const union tgsi_double_channel * src)706 micro_i64sgn(union tgsi_double_channel *dst,
707              const union tgsi_double_channel *src)
708 {
709    dst->i64[0] = src->i64[0] < 0 ? -1 : src->i64[0] > 0 ? 1 : 0;
710    dst->i64[1] = src->i64[1] < 0 ? -1 : src->i64[1] > 0 ? 1 : 0;
711    dst->i64[2] = src->i64[2] < 0 ? -1 : src->i64[2] > 0 ? 1 : 0;
712    dst->i64[3] = src->i64[3] < 0 ? -1 : src->i64[3] > 0 ? 1 : 0;
713 }
714 
715 static void
micro_i64neg(union tgsi_double_channel * dst,const union tgsi_double_channel * src)716 micro_i64neg(union tgsi_double_channel *dst,
717              const union tgsi_double_channel *src)
718 {
719    dst->i64[0] = -src->i64[0];
720    dst->i64[1] = -src->i64[1];
721    dst->i64[2] = -src->i64[2];
722    dst->i64[3] = -src->i64[3];
723 }
724 
725 static void
micro_u64seq(union tgsi_double_channel * dst,const union tgsi_double_channel * src)726 micro_u64seq(union tgsi_double_channel *dst,
727            const union tgsi_double_channel *src)
728 {
729    dst->u[0][0] = src[0].u64[0] == src[1].u64[0] ? ~0U : 0U;
730    dst->u[1][0] = src[0].u64[1] == src[1].u64[1] ? ~0U : 0U;
731    dst->u[2][0] = src[0].u64[2] == src[1].u64[2] ? ~0U : 0U;
732    dst->u[3][0] = src[0].u64[3] == src[1].u64[3] ? ~0U : 0U;
733 }
734 
735 static void
micro_u64sne(union tgsi_double_channel * dst,const union tgsi_double_channel * src)736 micro_u64sne(union tgsi_double_channel *dst,
737              const union tgsi_double_channel *src)
738 {
739    dst->u[0][0] = src[0].u64[0] != src[1].u64[0] ? ~0U : 0U;
740    dst->u[1][0] = src[0].u64[1] != src[1].u64[1] ? ~0U : 0U;
741    dst->u[2][0] = src[0].u64[2] != src[1].u64[2] ? ~0U : 0U;
742    dst->u[3][0] = src[0].u64[3] != src[1].u64[3] ? ~0U : 0U;
743 }
744 
745 static void
micro_i64slt(union tgsi_double_channel * dst,const union tgsi_double_channel * src)746 micro_i64slt(union tgsi_double_channel *dst,
747              const union tgsi_double_channel *src)
748 {
749    dst->u[0][0] = src[0].i64[0] < src[1].i64[0] ? ~0U : 0U;
750    dst->u[1][0] = src[0].i64[1] < src[1].i64[1] ? ~0U : 0U;
751    dst->u[2][0] = src[0].i64[2] < src[1].i64[2] ? ~0U : 0U;
752    dst->u[3][0] = src[0].i64[3] < src[1].i64[3] ? ~0U : 0U;
753 }
754 
755 static void
micro_u64slt(union tgsi_double_channel * dst,const union tgsi_double_channel * src)756 micro_u64slt(union tgsi_double_channel *dst,
757              const union tgsi_double_channel *src)
758 {
759    dst->u[0][0] = src[0].u64[0] < src[1].u64[0] ? ~0U : 0U;
760    dst->u[1][0] = src[0].u64[1] < src[1].u64[1] ? ~0U : 0U;
761    dst->u[2][0] = src[0].u64[2] < src[1].u64[2] ? ~0U : 0U;
762    dst->u[3][0] = src[0].u64[3] < src[1].u64[3] ? ~0U : 0U;
763 }
764 
765 static void
micro_i64sge(union tgsi_double_channel * dst,const union tgsi_double_channel * src)766 micro_i64sge(union tgsi_double_channel *dst,
767            const union tgsi_double_channel *src)
768 {
769    dst->u[0][0] = src[0].i64[0] >= src[1].i64[0] ? ~0U : 0U;
770    dst->u[1][0] = src[0].i64[1] >= src[1].i64[1] ? ~0U : 0U;
771    dst->u[2][0] = src[0].i64[2] >= src[1].i64[2] ? ~0U : 0U;
772    dst->u[3][0] = src[0].i64[3] >= src[1].i64[3] ? ~0U : 0U;
773 }
774 
775 static void
micro_u64sge(union tgsi_double_channel * dst,const union tgsi_double_channel * src)776 micro_u64sge(union tgsi_double_channel *dst,
777              const union tgsi_double_channel *src)
778 {
779    dst->u[0][0] = src[0].u64[0] >= src[1].u64[0] ? ~0U : 0U;
780    dst->u[1][0] = src[0].u64[1] >= src[1].u64[1] ? ~0U : 0U;
781    dst->u[2][0] = src[0].u64[2] >= src[1].u64[2] ? ~0U : 0U;
782    dst->u[3][0] = src[0].u64[3] >= src[1].u64[3] ? ~0U : 0U;
783 }
784 
785 static void
micro_u64max(union tgsi_double_channel * dst,const union tgsi_double_channel * src)786 micro_u64max(union tgsi_double_channel *dst,
787              const union tgsi_double_channel *src)
788 {
789    dst->u64[0] = src[0].u64[0] > src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
790    dst->u64[1] = src[0].u64[1] > src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
791    dst->u64[2] = src[0].u64[2] > src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
792    dst->u64[3] = src[0].u64[3] > src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
793 }
794 
795 static void
micro_i64max(union tgsi_double_channel * dst,const union tgsi_double_channel * src)796 micro_i64max(union tgsi_double_channel *dst,
797              const union tgsi_double_channel *src)
798 {
799    dst->i64[0] = src[0].i64[0] > src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
800    dst->i64[1] = src[0].i64[1] > src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
801    dst->i64[2] = src[0].i64[2] > src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
802    dst->i64[3] = src[0].i64[3] > src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
803 }
804 
805 static void
micro_u64min(union tgsi_double_channel * dst,const union tgsi_double_channel * src)806 micro_u64min(union tgsi_double_channel *dst,
807              const union tgsi_double_channel *src)
808 {
809    dst->u64[0] = src[0].u64[0] < src[1].u64[0] ? src[0].u64[0] : src[1].u64[0];
810    dst->u64[1] = src[0].u64[1] < src[1].u64[1] ? src[0].u64[1] : src[1].u64[1];
811    dst->u64[2] = src[0].u64[2] < src[1].u64[2] ? src[0].u64[2] : src[1].u64[2];
812    dst->u64[3] = src[0].u64[3] < src[1].u64[3] ? src[0].u64[3] : src[1].u64[3];
813 }
814 
815 static void
micro_i64min(union tgsi_double_channel * dst,const union tgsi_double_channel * src)816 micro_i64min(union tgsi_double_channel *dst,
817              const union tgsi_double_channel *src)
818 {
819    dst->i64[0] = src[0].i64[0] < src[1].i64[0] ? src[0].i64[0] : src[1].i64[0];
820    dst->i64[1] = src[0].i64[1] < src[1].i64[1] ? src[0].i64[1] : src[1].i64[1];
821    dst->i64[2] = src[0].i64[2] < src[1].i64[2] ? src[0].i64[2] : src[1].i64[2];
822    dst->i64[3] = src[0].i64[3] < src[1].i64[3] ? src[0].i64[3] : src[1].i64[3];
823 }
824 
825 static void
micro_u64add(union tgsi_double_channel * dst,const union tgsi_double_channel * src)826 micro_u64add(union tgsi_double_channel *dst,
827              const union tgsi_double_channel *src)
828 {
829    dst->u64[0] = src[0].u64[0] + src[1].u64[0];
830    dst->u64[1] = src[0].u64[1] + src[1].u64[1];
831    dst->u64[2] = src[0].u64[2] + src[1].u64[2];
832    dst->u64[3] = src[0].u64[3] + src[1].u64[3];
833 }
834 
835 static void
micro_u64mul(union tgsi_double_channel * dst,const union tgsi_double_channel * src)836 micro_u64mul(union tgsi_double_channel *dst,
837              const union tgsi_double_channel *src)
838 {
839    dst->u64[0] = src[0].u64[0] * src[1].u64[0];
840    dst->u64[1] = src[0].u64[1] * src[1].u64[1];
841    dst->u64[2] = src[0].u64[2] * src[1].u64[2];
842    dst->u64[3] = src[0].u64[3] * src[1].u64[3];
843 }
844 
845 static void
micro_u64div(union tgsi_double_channel * dst,const union tgsi_double_channel * src)846 micro_u64div(union tgsi_double_channel *dst,
847              const union tgsi_double_channel *src)
848 {
849    dst->u64[0] = src[1].u64[0] ? src[0].u64[0] / src[1].u64[0] : ~0ull;
850    dst->u64[1] = src[1].u64[1] ? src[0].u64[1] / src[1].u64[1] : ~0ull;
851    dst->u64[2] = src[1].u64[2] ? src[0].u64[2] / src[1].u64[2] : ~0ull;
852    dst->u64[3] = src[1].u64[3] ? src[0].u64[3] / src[1].u64[3] : ~0ull;
853 }
854 
855 static void
micro_i64div(union tgsi_double_channel * dst,const union tgsi_double_channel * src)856 micro_i64div(union tgsi_double_channel *dst,
857              const union tgsi_double_channel *src)
858 {
859    dst->i64[0] = src[1].i64[0] ? src[0].i64[0] / src[1].i64[0] : 0;
860    dst->i64[1] = src[1].i64[1] ? src[0].i64[1] / src[1].i64[1] : 0;
861    dst->i64[2] = src[1].i64[2] ? src[0].i64[2] / src[1].i64[2] : 0;
862    dst->i64[3] = src[1].i64[3] ? src[0].i64[3] / src[1].i64[3] : 0;
863 }
864 
865 static void
micro_u64mod(union tgsi_double_channel * dst,const union tgsi_double_channel * src)866 micro_u64mod(union tgsi_double_channel *dst,
867              const union tgsi_double_channel *src)
868 {
869    dst->u64[0] = src[1].u64[0] ? src[0].u64[0] % src[1].u64[0] : ~0ull;
870    dst->u64[1] = src[1].u64[1] ? src[0].u64[1] % src[1].u64[1] : ~0ull;
871    dst->u64[2] = src[1].u64[2] ? src[0].u64[2] % src[1].u64[2] : ~0ull;
872    dst->u64[3] = src[1].u64[3] ? src[0].u64[3] % src[1].u64[3] : ~0ull;
873 }
874 
875 static void
micro_i64mod(union tgsi_double_channel * dst,const union tgsi_double_channel * src)876 micro_i64mod(union tgsi_double_channel *dst,
877              const union tgsi_double_channel *src)
878 {
879    dst->i64[0] = src[1].i64[0] ? src[0].i64[0] % src[1].i64[0] : ~0ll;
880    dst->i64[1] = src[1].i64[1] ? src[0].i64[1] % src[1].i64[1] : ~0ll;
881    dst->i64[2] = src[1].i64[2] ? src[0].i64[2] % src[1].i64[2] : ~0ll;
882    dst->i64[3] = src[1].i64[3] ? src[0].i64[3] % src[1].i64[3] : ~0ll;
883 }
884 
885 static void
micro_u64shl(union tgsi_double_channel * dst,const union tgsi_double_channel * src0,union tgsi_exec_channel * src1)886 micro_u64shl(union tgsi_double_channel *dst,
887              const union tgsi_double_channel *src0,
888              union tgsi_exec_channel *src1)
889 {
890    unsigned masked_count;
891    masked_count = src1->u[0] & 0x3f;
892    dst->u64[0] = src0->u64[0] << masked_count;
893    masked_count = src1->u[1] & 0x3f;
894    dst->u64[1] = src0->u64[1] << masked_count;
895    masked_count = src1->u[2] & 0x3f;
896    dst->u64[2] = src0->u64[2] << masked_count;
897    masked_count = src1->u[3] & 0x3f;
898    dst->u64[3] = src0->u64[3] << masked_count;
899 }
900 
901 static void
micro_i64shr(union tgsi_double_channel * dst,const union tgsi_double_channel * src0,union tgsi_exec_channel * src1)902 micro_i64shr(union tgsi_double_channel *dst,
903              const union tgsi_double_channel *src0,
904              union tgsi_exec_channel *src1)
905 {
906    unsigned masked_count;
907    masked_count = src1->u[0] & 0x3f;
908    dst->i64[0] = src0->i64[0] >> masked_count;
909    masked_count = src1->u[1] & 0x3f;
910    dst->i64[1] = src0->i64[1] >> masked_count;
911    masked_count = src1->u[2] & 0x3f;
912    dst->i64[2] = src0->i64[2] >> masked_count;
913    masked_count = src1->u[3] & 0x3f;
914    dst->i64[3] = src0->i64[3] >> masked_count;
915 }
916 
917 static void
micro_u64shr(union tgsi_double_channel * dst,const union tgsi_double_channel * src0,union tgsi_exec_channel * src1)918 micro_u64shr(union tgsi_double_channel *dst,
919              const union tgsi_double_channel *src0,
920              union tgsi_exec_channel *src1)
921 {
922    unsigned masked_count;
923    masked_count = src1->u[0] & 0x3f;
924    dst->u64[0] = src0->u64[0] >> masked_count;
925    masked_count = src1->u[1] & 0x3f;
926    dst->u64[1] = src0->u64[1] >> masked_count;
927    masked_count = src1->u[2] & 0x3f;
928    dst->u64[2] = src0->u64[2] >> masked_count;
929    masked_count = src1->u[3] & 0x3f;
930    dst->u64[3] = src0->u64[3] >> masked_count;
931 }
932 
933 enum tgsi_exec_datatype {
934    TGSI_EXEC_DATA_FLOAT,
935    TGSI_EXEC_DATA_INT,
936    TGSI_EXEC_DATA_UINT,
937    TGSI_EXEC_DATA_DOUBLE,
938    TGSI_EXEC_DATA_INT64,
939    TGSI_EXEC_DATA_UINT64,
940 };
941 
942 /*
943  * Shorthand locations of various utility registers (_I = Index, _C = Channel)
944  */
945 #define TEMP_KILMASK_I     TGSI_EXEC_TEMP_KILMASK_I
946 #define TEMP_KILMASK_C     TGSI_EXEC_TEMP_KILMASK_C
947 #define TEMP_OUTPUT_I      TGSI_EXEC_TEMP_OUTPUT_I
948 #define TEMP_OUTPUT_C      TGSI_EXEC_TEMP_OUTPUT_C
949 #define TEMP_PRIMITIVE_I   TGSI_EXEC_TEMP_PRIMITIVE_I
950 #define TEMP_PRIMITIVE_C   TGSI_EXEC_TEMP_PRIMITIVE_C
951 
952 
953 /** The execution mask depends on the conditional mask and the loop mask */
954 #define UPDATE_EXEC_MASK(MACH) \
955       MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
956 
957 
958 static const union tgsi_exec_channel ZeroVec =
959    { { 0.0, 0.0, 0.0, 0.0 } };
960 
961 static const union tgsi_exec_channel OneVec = {
962    {1.0f, 1.0f, 1.0f, 1.0f}
963 };
964 
965 static const union tgsi_exec_channel P128Vec = {
966    {128.0f, 128.0f, 128.0f, 128.0f}
967 };
968 
969 static const union tgsi_exec_channel M128Vec = {
970    {-128.0f, -128.0f, -128.0f, -128.0f}
971 };
972 
973 
974 /**
975  * Assert that none of the float values in 'chan' are infinite or NaN.
976  * NaN and Inf may occur normally during program execution and should
977  * not lead to crashes, etc.  But when debugging, it's helpful to catch
978  * them.
979  */
980 static inline void
check_inf_or_nan(const union tgsi_exec_channel * chan)981 check_inf_or_nan(const union tgsi_exec_channel *chan)
982 {
983    assert(!util_is_inf_or_nan((chan)->f[0]));
984    assert(!util_is_inf_or_nan((chan)->f[1]));
985    assert(!util_is_inf_or_nan((chan)->f[2]));
986    assert(!util_is_inf_or_nan((chan)->f[3]));
987 }
988 
989 
990 #ifdef DEBUG
991 static void
print_chan(const char * msg,const union tgsi_exec_channel * chan)992 print_chan(const char *msg, const union tgsi_exec_channel *chan)
993 {
994    debug_printf("%s = {%f, %f, %f, %f}\n",
995                 msg, chan->f[0], chan->f[1], chan->f[2], chan->f[3]);
996 }
997 #endif
998 
999 
1000 #ifdef DEBUG
1001 static void
print_temp(const struct tgsi_exec_machine * mach,uint index)1002 print_temp(const struct tgsi_exec_machine *mach, uint index)
1003 {
1004    const struct tgsi_exec_vector *tmp = &mach->Temps[index];
1005    int i;
1006    debug_printf("Temp[%u] =\n", index);
1007    for (i = 0; i < 4; i++) {
1008       debug_printf("  %c: { %f, %f, %f, %f }\n",
1009                    "XYZW"[i],
1010                    tmp->xyzw[i].f[0],
1011                    tmp->xyzw[i].f[1],
1012                    tmp->xyzw[i].f[2],
1013                    tmp->xyzw[i].f[3]);
1014    }
1015 }
1016 #endif
1017 
1018 
1019 void
tgsi_exec_set_constant_buffers(struct tgsi_exec_machine * mach,unsigned num_bufs,const void ** bufs,const unsigned * buf_sizes)1020 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine *mach,
1021                                unsigned num_bufs,
1022                                const void **bufs,
1023                                const unsigned *buf_sizes)
1024 {
1025    unsigned i;
1026 
1027    for (i = 0; i < num_bufs; i++) {
1028       mach->Consts[i] = bufs[i];
1029       mach->ConstsSize[i] = buf_sizes[i];
1030    }
1031 }
1032 
1033 
1034 /**
1035  * Check if there's a potential src/dst register data dependency when
1036  * using SOA execution.
1037  * Example:
1038  *   MOV T, T.yxwz;
1039  * This would expand into:
1040  *   MOV t0, t1;
1041  *   MOV t1, t0;
1042  *   MOV t2, t3;
1043  *   MOV t3, t2;
1044  * The second instruction will have the wrong value for t0 if executed as-is.
1045  */
1046 boolean
tgsi_check_soa_dependencies(const struct tgsi_full_instruction * inst)1047 tgsi_check_soa_dependencies(const struct tgsi_full_instruction *inst)
1048 {
1049    uint i, chan;
1050 
1051    uint writemask = inst->Dst[0].Register.WriteMask;
1052    if (writemask == TGSI_WRITEMASK_X ||
1053        writemask == TGSI_WRITEMASK_Y ||
1054        writemask == TGSI_WRITEMASK_Z ||
1055        writemask == TGSI_WRITEMASK_W ||
1056        writemask == TGSI_WRITEMASK_NONE) {
1057       /* no chance of data dependency */
1058       return FALSE;
1059    }
1060 
1061    /* loop over src regs */
1062    for (i = 0; i < inst->Instruction.NumSrcRegs; i++) {
1063       if ((inst->Src[i].Register.File ==
1064            inst->Dst[0].Register.File) &&
1065           ((inst->Src[i].Register.Index ==
1066             inst->Dst[0].Register.Index) ||
1067            inst->Src[i].Register.Indirect ||
1068            inst->Dst[0].Register.Indirect)) {
1069          /* loop over dest channels */
1070          uint channelsWritten = 0x0;
1071          for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1072             if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
1073                /* check if we're reading a channel that's been written */
1074                uint swizzle = tgsi_util_get_full_src_register_swizzle(&inst->Src[i], chan);
1075                if (channelsWritten & (1 << swizzle)) {
1076                   return TRUE;
1077                }
1078 
1079                channelsWritten |= (1 << chan);
1080             }
1081          }
1082       }
1083    }
1084    return FALSE;
1085 }
1086 
1087 
1088 /**
1089  * Initialize machine state by expanding tokens to full instructions,
1090  * allocating temporary storage, setting up constants, etc.
1091  * After this, we can call tgsi_exec_machine_run() many times.
1092  */
1093 void
tgsi_exec_machine_bind_shader(struct tgsi_exec_machine * mach,const struct tgsi_token * tokens,struct tgsi_sampler * sampler,struct tgsi_image * image,struct tgsi_buffer * buffer)1094 tgsi_exec_machine_bind_shader(
1095    struct tgsi_exec_machine *mach,
1096    const struct tgsi_token *tokens,
1097    struct tgsi_sampler *sampler,
1098    struct tgsi_image *image,
1099    struct tgsi_buffer *buffer)
1100 {
1101    uint k;
1102    struct tgsi_parse_context parse;
1103    struct tgsi_full_instruction *instructions;
1104    struct tgsi_full_declaration *declarations;
1105    uint maxInstructions = 10, numInstructions = 0;
1106    uint maxDeclarations = 10, numDeclarations = 0;
1107 
1108 #if 0
1109    tgsi_dump(tokens, 0);
1110 #endif
1111 
1112    util_init_math();
1113 
1114 
1115    mach->Tokens = tokens;
1116    mach->Sampler = sampler;
1117    mach->Image = image;
1118    mach->Buffer = buffer;
1119 
1120    if (!tokens) {
1121       /* unbind and free all */
1122       FREE(mach->Declarations);
1123       mach->Declarations = NULL;
1124       mach->NumDeclarations = 0;
1125 
1126       FREE(mach->Instructions);
1127       mach->Instructions = NULL;
1128       mach->NumInstructions = 0;
1129 
1130       return;
1131    }
1132 
1133    k = tgsi_parse_init (&parse, mach->Tokens);
1134    if (k != TGSI_PARSE_OK) {
1135       debug_printf( "Problem parsing!\n" );
1136       return;
1137    }
1138 
1139    mach->ImmLimit = 0;
1140    mach->NumOutputs = 0;
1141 
1142    for (k = 0; k < TGSI_SEMANTIC_COUNT; k++)
1143       mach->SysSemanticToIndex[k] = -1;
1144 
1145    if (mach->ShaderType == PIPE_SHADER_GEOMETRY &&
1146        !mach->UsedGeometryShader) {
1147       struct tgsi_exec_vector *inputs;
1148       struct tgsi_exec_vector *outputs;
1149 
1150       inputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1151                             TGSI_MAX_PRIM_VERTICES * PIPE_MAX_SHADER_INPUTS,
1152                             16);
1153 
1154       if (!inputs)
1155          return;
1156 
1157       outputs = align_malloc(sizeof(struct tgsi_exec_vector) *
1158                              TGSI_MAX_TOTAL_VERTICES, 16);
1159 
1160       if (!outputs) {
1161          align_free(inputs);
1162          return;
1163       }
1164 
1165       align_free(mach->Inputs);
1166       align_free(mach->Outputs);
1167 
1168       mach->Inputs = inputs;
1169       mach->Outputs = outputs;
1170       mach->UsedGeometryShader = TRUE;
1171    }
1172 
1173    declarations = (struct tgsi_full_declaration *)
1174       MALLOC( maxDeclarations * sizeof(struct tgsi_full_declaration) );
1175 
1176    if (!declarations) {
1177       return;
1178    }
1179 
1180    instructions = (struct tgsi_full_instruction *)
1181       MALLOC( maxInstructions * sizeof(struct tgsi_full_instruction) );
1182 
1183    if (!instructions) {
1184       FREE( declarations );
1185       return;
1186    }
1187 
1188    while( !tgsi_parse_end_of_tokens( &parse ) ) {
1189       uint i;
1190 
1191       tgsi_parse_token( &parse );
1192       switch( parse.FullToken.Token.Type ) {
1193       case TGSI_TOKEN_TYPE_DECLARATION:
1194          /* save expanded declaration */
1195          if (numDeclarations == maxDeclarations) {
1196             declarations = REALLOC(declarations,
1197                                    maxDeclarations
1198                                    * sizeof(struct tgsi_full_declaration),
1199                                    (maxDeclarations + 10)
1200                                    * sizeof(struct tgsi_full_declaration));
1201             maxDeclarations += 10;
1202          }
1203          if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_OUTPUT) {
1204             unsigned reg;
1205             for (reg = parse.FullToken.FullDeclaration.Range.First;
1206                  reg <= parse.FullToken.FullDeclaration.Range.Last;
1207                  ++reg) {
1208                ++mach->NumOutputs;
1209             }
1210          }
1211          else if (parse.FullToken.FullDeclaration.Declaration.File == TGSI_FILE_SYSTEM_VALUE) {
1212             const struct tgsi_full_declaration *decl = &parse.FullToken.FullDeclaration;
1213             mach->SysSemanticToIndex[decl->Semantic.Name] = decl->Range.First;
1214          }
1215 
1216          memcpy(declarations + numDeclarations,
1217                 &parse.FullToken.FullDeclaration,
1218                 sizeof(declarations[0]));
1219          numDeclarations++;
1220          break;
1221 
1222       case TGSI_TOKEN_TYPE_IMMEDIATE:
1223          {
1224             uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1225             assert( size <= 4 );
1226             assert( mach->ImmLimit + 1 <= TGSI_EXEC_NUM_IMMEDIATES );
1227 
1228             for( i = 0; i < size; i++ ) {
1229                mach->Imms[mach->ImmLimit][i] =
1230 		  parse.FullToken.FullImmediate.u[i].Float;
1231             }
1232             mach->ImmLimit += 1;
1233          }
1234          break;
1235 
1236       case TGSI_TOKEN_TYPE_INSTRUCTION:
1237 
1238          /* save expanded instruction */
1239          if (numInstructions == maxInstructions) {
1240             instructions = REALLOC(instructions,
1241                                    maxInstructions
1242                                    * sizeof(struct tgsi_full_instruction),
1243                                    (maxInstructions + 10)
1244                                    * sizeof(struct tgsi_full_instruction));
1245             maxInstructions += 10;
1246          }
1247 
1248          memcpy(instructions + numInstructions,
1249                 &parse.FullToken.FullInstruction,
1250                 sizeof(instructions[0]));
1251 
1252          numInstructions++;
1253          break;
1254 
1255       case TGSI_TOKEN_TYPE_PROPERTY:
1256          if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
1257             if (parse.FullToken.FullProperty.Property.PropertyName == TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES) {
1258                mach->MaxOutputVertices = parse.FullToken.FullProperty.u[0].Data;
1259             }
1260          }
1261          break;
1262 
1263       default:
1264          assert( 0 );
1265       }
1266    }
1267    tgsi_parse_free (&parse);
1268 
1269    FREE(mach->Declarations);
1270    mach->Declarations = declarations;
1271    mach->NumDeclarations = numDeclarations;
1272 
1273    FREE(mach->Instructions);
1274    mach->Instructions = instructions;
1275    mach->NumInstructions = numInstructions;
1276 }
1277 
1278 
1279 struct tgsi_exec_machine *
tgsi_exec_machine_create(enum pipe_shader_type shader_type)1280 tgsi_exec_machine_create(enum pipe_shader_type shader_type)
1281 {
1282    struct tgsi_exec_machine *mach;
1283    uint i;
1284 
1285    mach = align_malloc( sizeof *mach, 16 );
1286    if (!mach)
1287       goto fail;
1288 
1289    memset(mach, 0, sizeof(*mach));
1290 
1291    mach->ShaderType = shader_type;
1292    mach->Addrs = &mach->Temps[TGSI_EXEC_TEMP_ADDR];
1293    mach->MaxGeometryShaderOutputs = TGSI_MAX_TOTAL_VERTICES;
1294 
1295    if (shader_type != PIPE_SHADER_COMPUTE) {
1296       mach->Inputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_INPUTS, 16);
1297       mach->Outputs = align_malloc(sizeof(struct tgsi_exec_vector) * PIPE_MAX_SHADER_OUTPUTS, 16);
1298       if (!mach->Inputs || !mach->Outputs)
1299          goto fail;
1300    }
1301 
1302    /* Setup constants needed by the SSE2 executor. */
1303    for( i = 0; i < 4; i++ ) {
1304       mach->Temps[TGSI_EXEC_TEMP_00000000_I].xyzw[TGSI_EXEC_TEMP_00000000_C].u[i] = 0x00000000;
1305       mach->Temps[TGSI_EXEC_TEMP_7FFFFFFF_I].xyzw[TGSI_EXEC_TEMP_7FFFFFFF_C].u[i] = 0x7FFFFFFF;
1306       mach->Temps[TGSI_EXEC_TEMP_80000000_I].xyzw[TGSI_EXEC_TEMP_80000000_C].u[i] = 0x80000000;
1307       mach->Temps[TGSI_EXEC_TEMP_FFFFFFFF_I].xyzw[TGSI_EXEC_TEMP_FFFFFFFF_C].u[i] = 0xFFFFFFFF;    /* not used */
1308       mach->Temps[TGSI_EXEC_TEMP_ONE_I].xyzw[TGSI_EXEC_TEMP_ONE_C].f[i] = 1.0f;
1309       mach->Temps[TGSI_EXEC_TEMP_TWO_I].xyzw[TGSI_EXEC_TEMP_TWO_C].f[i] = 2.0f;    /* not used */
1310       mach->Temps[TGSI_EXEC_TEMP_128_I].xyzw[TGSI_EXEC_TEMP_128_C].f[i] = 128.0f;
1311       mach->Temps[TGSI_EXEC_TEMP_MINUS_128_I].xyzw[TGSI_EXEC_TEMP_MINUS_128_C].f[i] = -128.0f;
1312       mach->Temps[TGSI_EXEC_TEMP_THREE_I].xyzw[TGSI_EXEC_TEMP_THREE_C].f[i] = 3.0f;
1313       mach->Temps[TGSI_EXEC_TEMP_HALF_I].xyzw[TGSI_EXEC_TEMP_HALF_C].f[i] = 0.5f;
1314    }
1315 
1316 #ifdef DEBUG
1317    /* silence warnings */
1318    (void) print_chan;
1319    (void) print_temp;
1320 #endif
1321 
1322    return mach;
1323 
1324 fail:
1325    if (mach) {
1326       align_free(mach->Inputs);
1327       align_free(mach->Outputs);
1328       align_free(mach);
1329    }
1330    return NULL;
1331 }
1332 
1333 
1334 void
tgsi_exec_machine_destroy(struct tgsi_exec_machine * mach)1335 tgsi_exec_machine_destroy(struct tgsi_exec_machine *mach)
1336 {
1337    if (mach) {
1338       FREE(mach->Instructions);
1339       FREE(mach->Declarations);
1340 
1341       align_free(mach->Inputs);
1342       align_free(mach->Outputs);
1343 
1344       align_free(mach);
1345    }
1346 }
1347 
1348 static void
micro_add(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1349 micro_add(union tgsi_exec_channel *dst,
1350           const union tgsi_exec_channel *src0,
1351           const union tgsi_exec_channel *src1)
1352 {
1353    dst->f[0] = src0->f[0] + src1->f[0];
1354    dst->f[1] = src0->f[1] + src1->f[1];
1355    dst->f[2] = src0->f[2] + src1->f[2];
1356    dst->f[3] = src0->f[3] + src1->f[3];
1357 }
1358 
1359 static void
micro_div(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1360 micro_div(
1361    union tgsi_exec_channel *dst,
1362    const union tgsi_exec_channel *src0,
1363    const union tgsi_exec_channel *src1 )
1364 {
1365    if (src1->f[0] != 0) {
1366       dst->f[0] = src0->f[0] / src1->f[0];
1367    }
1368    if (src1->f[1] != 0) {
1369       dst->f[1] = src0->f[1] / src1->f[1];
1370    }
1371    if (src1->f[2] != 0) {
1372       dst->f[2] = src0->f[2] / src1->f[2];
1373    }
1374    if (src1->f[3] != 0) {
1375       dst->f[3] = src0->f[3] / src1->f[3];
1376    }
1377 }
1378 
1379 static void
micro_lt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2,const union tgsi_exec_channel * src3)1380 micro_lt(
1381    union tgsi_exec_channel *dst,
1382    const union tgsi_exec_channel *src0,
1383    const union tgsi_exec_channel *src1,
1384    const union tgsi_exec_channel *src2,
1385    const union tgsi_exec_channel *src3 )
1386 {
1387    dst->f[0] = src0->f[0] < src1->f[0] ? src2->f[0] : src3->f[0];
1388    dst->f[1] = src0->f[1] < src1->f[1] ? src2->f[1] : src3->f[1];
1389    dst->f[2] = src0->f[2] < src1->f[2] ? src2->f[2] : src3->f[2];
1390    dst->f[3] = src0->f[3] < src1->f[3] ? src2->f[3] : src3->f[3];
1391 }
1392 
1393 static void
micro_max(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1394 micro_max(union tgsi_exec_channel *dst,
1395           const union tgsi_exec_channel *src0,
1396           const union tgsi_exec_channel *src1)
1397 {
1398    dst->f[0] = src0->f[0] > src1->f[0] ? src0->f[0] : src1->f[0];
1399    dst->f[1] = src0->f[1] > src1->f[1] ? src0->f[1] : src1->f[1];
1400    dst->f[2] = src0->f[2] > src1->f[2] ? src0->f[2] : src1->f[2];
1401    dst->f[3] = src0->f[3] > src1->f[3] ? src0->f[3] : src1->f[3];
1402 }
1403 
1404 static void
micro_min(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1405 micro_min(union tgsi_exec_channel *dst,
1406           const union tgsi_exec_channel *src0,
1407           const union tgsi_exec_channel *src1)
1408 {
1409    dst->f[0] = src0->f[0] < src1->f[0] ? src0->f[0] : src1->f[0];
1410    dst->f[1] = src0->f[1] < src1->f[1] ? src0->f[1] : src1->f[1];
1411    dst->f[2] = src0->f[2] < src1->f[2] ? src0->f[2] : src1->f[2];
1412    dst->f[3] = src0->f[3] < src1->f[3] ? src0->f[3] : src1->f[3];
1413 }
1414 
1415 static void
micro_mul(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1416 micro_mul(union tgsi_exec_channel *dst,
1417           const union tgsi_exec_channel *src0,
1418           const union tgsi_exec_channel *src1)
1419 {
1420    dst->f[0] = src0->f[0] * src1->f[0];
1421    dst->f[1] = src0->f[1] * src1->f[1];
1422    dst->f[2] = src0->f[2] * src1->f[2];
1423    dst->f[3] = src0->f[3] * src1->f[3];
1424 }
1425 
1426 static void
micro_neg(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)1427 micro_neg(
1428    union tgsi_exec_channel *dst,
1429    const union tgsi_exec_channel *src )
1430 {
1431    dst->f[0] = -src->f[0];
1432    dst->f[1] = -src->f[1];
1433    dst->f[2] = -src->f[2];
1434    dst->f[3] = -src->f[3];
1435 }
1436 
1437 static void
micro_pow(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1438 micro_pow(
1439    union tgsi_exec_channel *dst,
1440    const union tgsi_exec_channel *src0,
1441    const union tgsi_exec_channel *src1 )
1442 {
1443 #if FAST_MATH
1444    dst->f[0] = util_fast_pow( src0->f[0], src1->f[0] );
1445    dst->f[1] = util_fast_pow( src0->f[1], src1->f[1] );
1446    dst->f[2] = util_fast_pow( src0->f[2], src1->f[2] );
1447    dst->f[3] = util_fast_pow( src0->f[3], src1->f[3] );
1448 #else
1449    dst->f[0] = powf( src0->f[0], src1->f[0] );
1450    dst->f[1] = powf( src0->f[1], src1->f[1] );
1451    dst->f[2] = powf( src0->f[2], src1->f[2] );
1452    dst->f[3] = powf( src0->f[3], src1->f[3] );
1453 #endif
1454 }
1455 
1456 static void
micro_ldexp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1457 micro_ldexp(union tgsi_exec_channel *dst,
1458             const union tgsi_exec_channel *src0,
1459             const union tgsi_exec_channel *src1)
1460 {
1461    dst->f[0] = ldexpf(src0->f[0], src1->i[0]);
1462    dst->f[1] = ldexpf(src0->f[1], src1->i[1]);
1463    dst->f[2] = ldexpf(src0->f[2], src1->i[2]);
1464    dst->f[3] = ldexpf(src0->f[3], src1->i[3]);
1465 }
1466 
1467 static void
micro_sub(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)1468 micro_sub(union tgsi_exec_channel *dst,
1469           const union tgsi_exec_channel *src0,
1470           const union tgsi_exec_channel *src1)
1471 {
1472    dst->f[0] = src0->f[0] - src1->f[0];
1473    dst->f[1] = src0->f[1] - src1->f[1];
1474    dst->f[2] = src0->f[2] - src1->f[2];
1475    dst->f[3] = src0->f[3] - src1->f[3];
1476 }
1477 
1478 static void
fetch_src_file_channel(const struct tgsi_exec_machine * mach,const uint chan_index,const uint file,const uint swizzle,const union tgsi_exec_channel * index,const union tgsi_exec_channel * index2D,union tgsi_exec_channel * chan)1479 fetch_src_file_channel(const struct tgsi_exec_machine *mach,
1480                        const uint chan_index,
1481                        const uint file,
1482                        const uint swizzle,
1483                        const union tgsi_exec_channel *index,
1484                        const union tgsi_exec_channel *index2D,
1485                        union tgsi_exec_channel *chan)
1486 {
1487    uint i;
1488 
1489    assert(swizzle < 4);
1490 
1491    switch (file) {
1492    case TGSI_FILE_CONSTANT:
1493       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1494          assert(index2D->i[i] >= 0 && index2D->i[i] < PIPE_MAX_CONSTANT_BUFFERS);
1495          assert(mach->Consts[index2D->i[i]]);
1496 
1497          if (index->i[i] < 0) {
1498             chan->u[i] = 0;
1499          } else {
1500             /* NOTE: copying the const value as a uint instead of float */
1501             const uint constbuf = index2D->i[i];
1502             const uint *buf = (const uint *)mach->Consts[constbuf];
1503             const int pos = index->i[i] * 4 + swizzle;
1504             /* const buffer bounds check */
1505             if (pos < 0 || pos >= (int) mach->ConstsSize[constbuf]) {
1506                if (0) {
1507                   /* Debug: print warning */
1508                   static int count = 0;
1509                   if (count++ < 100)
1510                      debug_printf("TGSI Exec: const buffer index %d"
1511                                   " out of bounds\n", pos);
1512                }
1513                chan->u[i] = 0;
1514             }
1515             else
1516                chan->u[i] = buf[pos];
1517          }
1518       }
1519       break;
1520 
1521    case TGSI_FILE_INPUT:
1522       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1523          /*
1524          if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1525             debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1526                          index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1527                          index2D->i[i], index->i[i]);
1528                          }*/
1529          int pos = index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i];
1530          assert(pos >= 0);
1531          assert(pos < TGSI_MAX_PRIM_VERTICES * PIPE_MAX_ATTRIBS);
1532          chan->u[i] = mach->Inputs[pos].xyzw[swizzle].u[i];
1533       }
1534       break;
1535 
1536    case TGSI_FILE_SYSTEM_VALUE:
1537       /* XXX no swizzling at this point.  Will be needed if we put
1538        * gl_FragCoord, for example, in a sys value register.
1539        */
1540       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1541          chan->u[i] = mach->SystemValue[index->i[i]].xyzw[swizzle].u[i];
1542       }
1543       break;
1544 
1545    case TGSI_FILE_TEMPORARY:
1546       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1547          assert(index->i[i] < TGSI_EXEC_NUM_TEMPS);
1548          assert(index2D->i[i] == 0);
1549 
1550          chan->u[i] = mach->Temps[index->i[i]].xyzw[swizzle].u[i];
1551       }
1552       break;
1553 
1554    case TGSI_FILE_IMMEDIATE:
1555       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1556          assert(index->i[i] >= 0 && index->i[i] < (int)mach->ImmLimit);
1557          assert(index2D->i[i] == 0);
1558 
1559          chan->f[i] = mach->Imms[index->i[i]][swizzle];
1560       }
1561       break;
1562 
1563    case TGSI_FILE_ADDRESS:
1564       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1565          assert(index->i[i] >= 0);
1566          assert(index2D->i[i] == 0);
1567 
1568          chan->u[i] = mach->Addrs[index->i[i]].xyzw[swizzle].u[i];
1569       }
1570       break;
1571 
1572    case TGSI_FILE_OUTPUT:
1573       /* vertex/fragment output vars can be read too */
1574       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1575          assert(index->i[i] >= 0);
1576          assert(index2D->i[i] == 0);
1577 
1578          chan->u[i] = mach->Outputs[index->i[i]].xyzw[swizzle].u[i];
1579       }
1580       break;
1581 
1582    default:
1583       assert(0);
1584       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1585          chan->u[i] = 0;
1586       }
1587    }
1588 }
1589 
1590 static void
fetch_source_d(const struct tgsi_exec_machine * mach,union tgsi_exec_channel * chan,const struct tgsi_full_src_register * reg,const uint chan_index,enum tgsi_exec_datatype src_datatype)1591 fetch_source_d(const struct tgsi_exec_machine *mach,
1592                union tgsi_exec_channel *chan,
1593                const struct tgsi_full_src_register *reg,
1594                const uint chan_index,
1595                enum tgsi_exec_datatype src_datatype)
1596 {
1597    union tgsi_exec_channel index;
1598    union tgsi_exec_channel index2D;
1599    uint swizzle;
1600 
1601    /* We start with a direct index into a register file.
1602     *
1603     *    file[1],
1604     *    where:
1605     *       file = Register.File
1606     *       [1] = Register.Index
1607     */
1608    index.i[0] =
1609    index.i[1] =
1610    index.i[2] =
1611    index.i[3] = reg->Register.Index;
1612 
1613    /* There is an extra source register that indirectly subscripts
1614     * a register file. The direct index now becomes an offset
1615     * that is being added to the indirect register.
1616     *
1617     *    file[ind[2].x+1],
1618     *    where:
1619     *       ind = Indirect.File
1620     *       [2] = Indirect.Index
1621     *       .x = Indirect.SwizzleX
1622     */
1623    if (reg->Register.Indirect) {
1624       union tgsi_exec_channel index2;
1625       union tgsi_exec_channel indir_index;
1626       const uint execmask = mach->ExecMask;
1627       uint i;
1628 
1629       /* which address register (always zero now) */
1630       index2.i[0] =
1631       index2.i[1] =
1632       index2.i[2] =
1633       index2.i[3] = reg->Indirect.Index;
1634       /* get current value of address register[swizzle] */
1635       swizzle = reg->Indirect.Swizzle;
1636       fetch_src_file_channel(mach,
1637                              chan_index,
1638                              reg->Indirect.File,
1639                              swizzle,
1640                              &index2,
1641                              &ZeroVec,
1642                              &indir_index);
1643 
1644       /* add value of address register to the offset */
1645       index.i[0] += indir_index.i[0];
1646       index.i[1] += indir_index.i[1];
1647       index.i[2] += indir_index.i[2];
1648       index.i[3] += indir_index.i[3];
1649 
1650       /* for disabled execution channels, zero-out the index to
1651        * avoid using a potential garbage value.
1652        */
1653       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1654          if ((execmask & (1 << i)) == 0)
1655             index.i[i] = 0;
1656       }
1657    }
1658 
1659    /* There is an extra source register that is a second
1660     * subscript to a register file. Effectively it means that
1661     * the register file is actually a 2D array of registers.
1662     *
1663     *    file[3][1],
1664     *    where:
1665     *       [3] = Dimension.Index
1666     */
1667    if (reg->Register.Dimension) {
1668       index2D.i[0] =
1669       index2D.i[1] =
1670       index2D.i[2] =
1671       index2D.i[3] = reg->Dimension.Index;
1672 
1673       /* Again, the second subscript index can be addressed indirectly
1674        * identically to the first one.
1675        * Nothing stops us from indirectly addressing the indirect register,
1676        * but there is no need for that, so we won't exercise it.
1677        *
1678        *    file[ind[4].y+3][1],
1679        *    where:
1680        *       ind = DimIndirect.File
1681        *       [4] = DimIndirect.Index
1682        *       .y = DimIndirect.SwizzleX
1683        */
1684       if (reg->Dimension.Indirect) {
1685          union tgsi_exec_channel index2;
1686          union tgsi_exec_channel indir_index;
1687          const uint execmask = mach->ExecMask;
1688          uint i;
1689 
1690          index2.i[0] =
1691          index2.i[1] =
1692          index2.i[2] =
1693          index2.i[3] = reg->DimIndirect.Index;
1694 
1695          swizzle = reg->DimIndirect.Swizzle;
1696          fetch_src_file_channel(mach,
1697                                 chan_index,
1698                                 reg->DimIndirect.File,
1699                                 swizzle,
1700                                 &index2,
1701                                 &ZeroVec,
1702                                 &indir_index);
1703 
1704          index2D.i[0] += indir_index.i[0];
1705          index2D.i[1] += indir_index.i[1];
1706          index2D.i[2] += indir_index.i[2];
1707          index2D.i[3] += indir_index.i[3];
1708 
1709          /* for disabled execution channels, zero-out the index to
1710           * avoid using a potential garbage value.
1711           */
1712          for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1713             if ((execmask & (1 << i)) == 0) {
1714                index2D.i[i] = 0;
1715             }
1716          }
1717       }
1718 
1719       /* If by any chance there was a need for a 3D array of register
1720        * files, we would have to check whether Dimension is followed
1721        * by a dimension register and continue the saga.
1722        */
1723    } else {
1724       index2D.i[0] =
1725       index2D.i[1] =
1726       index2D.i[2] =
1727       index2D.i[3] = 0;
1728    }
1729 
1730    swizzle = tgsi_util_get_full_src_register_swizzle( reg, chan_index );
1731    fetch_src_file_channel(mach,
1732                           chan_index,
1733                           reg->Register.File,
1734                           swizzle,
1735                           &index,
1736                           &index2D,
1737                           chan);
1738 }
1739 
1740 static void
fetch_source(const struct tgsi_exec_machine * mach,union tgsi_exec_channel * chan,const struct tgsi_full_src_register * reg,const uint chan_index,enum tgsi_exec_datatype src_datatype)1741 fetch_source(const struct tgsi_exec_machine *mach,
1742              union tgsi_exec_channel *chan,
1743              const struct tgsi_full_src_register *reg,
1744              const uint chan_index,
1745              enum tgsi_exec_datatype src_datatype)
1746 {
1747    fetch_source_d(mach, chan, reg, chan_index, src_datatype);
1748 
1749    if (reg->Register.Absolute) {
1750       if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1751          micro_abs(chan, chan);
1752       } else {
1753          micro_iabs(chan, chan);
1754       }
1755    }
1756 
1757    if (reg->Register.Negate) {
1758       if (src_datatype == TGSI_EXEC_DATA_FLOAT) {
1759          micro_neg(chan, chan);
1760       } else {
1761          micro_ineg(chan, chan);
1762       }
1763    }
1764 }
1765 
1766 static union tgsi_exec_channel *
store_dest_dstret(struct tgsi_exec_machine * mach,const union tgsi_exec_channel * chan,const struct tgsi_full_dst_register * reg,const struct tgsi_full_instruction * inst,uint chan_index,enum tgsi_exec_datatype dst_datatype)1767 store_dest_dstret(struct tgsi_exec_machine *mach,
1768                  const union tgsi_exec_channel *chan,
1769                  const struct tgsi_full_dst_register *reg,
1770                  const struct tgsi_full_instruction *inst,
1771                  uint chan_index,
1772                  enum tgsi_exec_datatype dst_datatype)
1773 {
1774    static union tgsi_exec_channel null;
1775    union tgsi_exec_channel *dst;
1776    union tgsi_exec_channel index2D;
1777    int offset = 0;  /* indirection offset */
1778    int index;
1779 
1780    /* for debugging */
1781    if (0 && dst_datatype == TGSI_EXEC_DATA_FLOAT) {
1782       check_inf_or_nan(chan);
1783    }
1784 
1785    /* There is an extra source register that indirectly subscripts
1786     * a register file. The direct index now becomes an offset
1787     * that is being added to the indirect register.
1788     *
1789     *    file[ind[2].x+1],
1790     *    where:
1791     *       ind = Indirect.File
1792     *       [2] = Indirect.Index
1793     *       .x = Indirect.SwizzleX
1794     */
1795    if (reg->Register.Indirect) {
1796       union tgsi_exec_channel index;
1797       union tgsi_exec_channel indir_index;
1798       uint swizzle;
1799 
1800       /* which address register (always zero for now) */
1801       index.i[0] =
1802       index.i[1] =
1803       index.i[2] =
1804       index.i[3] = reg->Indirect.Index;
1805 
1806       /* get current value of address register[swizzle] */
1807       swizzle = reg->Indirect.Swizzle;
1808 
1809       /* fetch values from the address/indirection register */
1810       fetch_src_file_channel(mach,
1811                              chan_index,
1812                              reg->Indirect.File,
1813                              swizzle,
1814                              &index,
1815                              &ZeroVec,
1816                              &indir_index);
1817 
1818       /* save indirection offset */
1819       offset = indir_index.i[0];
1820    }
1821 
1822    /* There is an extra source register that is a second
1823     * subscript to a register file. Effectively it means that
1824     * the register file is actually a 2D array of registers.
1825     *
1826     *    file[3][1],
1827     *    where:
1828     *       [3] = Dimension.Index
1829     */
1830    if (reg->Register.Dimension) {
1831       index2D.i[0] =
1832       index2D.i[1] =
1833       index2D.i[2] =
1834       index2D.i[3] = reg->Dimension.Index;
1835 
1836       /* Again, the second subscript index can be addressed indirectly
1837        * identically to the first one.
1838        * Nothing stops us from indirectly addressing the indirect register,
1839        * but there is no need for that, so we won't exercise it.
1840        *
1841        *    file[ind[4].y+3][1],
1842        *    where:
1843        *       ind = DimIndirect.File
1844        *       [4] = DimIndirect.Index
1845        *       .y = DimIndirect.SwizzleX
1846        */
1847       if (reg->Dimension.Indirect) {
1848          union tgsi_exec_channel index2;
1849          union tgsi_exec_channel indir_index;
1850          const uint execmask = mach->ExecMask;
1851          unsigned swizzle;
1852          uint i;
1853 
1854          index2.i[0] =
1855          index2.i[1] =
1856          index2.i[2] =
1857          index2.i[3] = reg->DimIndirect.Index;
1858 
1859          swizzle = reg->DimIndirect.Swizzle;
1860          fetch_src_file_channel(mach,
1861                                 chan_index,
1862                                 reg->DimIndirect.File,
1863                                 swizzle,
1864                                 &index2,
1865                                 &ZeroVec,
1866                                 &indir_index);
1867 
1868          index2D.i[0] += indir_index.i[0];
1869          index2D.i[1] += indir_index.i[1];
1870          index2D.i[2] += indir_index.i[2];
1871          index2D.i[3] += indir_index.i[3];
1872 
1873          /* for disabled execution channels, zero-out the index to
1874           * avoid using a potential garbage value.
1875           */
1876          for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1877             if ((execmask & (1 << i)) == 0) {
1878                index2D.i[i] = 0;
1879             }
1880          }
1881       }
1882 
1883       /* If by any chance there was a need for a 3D array of register
1884        * files, we would have to check whether Dimension is followed
1885        * by a dimension register and continue the saga.
1886        */
1887    } else {
1888       index2D.i[0] =
1889       index2D.i[1] =
1890       index2D.i[2] =
1891       index2D.i[3] = 0;
1892    }
1893 
1894    switch (reg->Register.File) {
1895    case TGSI_FILE_NULL:
1896       dst = &null;
1897       break;
1898 
1899    case TGSI_FILE_OUTPUT:
1900       index = mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0]
1901          + reg->Register.Index;
1902       dst = &mach->Outputs[offset + index].xyzw[chan_index];
1903 #if 0
1904       debug_printf("NumOutputs = %d, TEMP_O_C/I = %d, redindex = %d\n",
1905                    mach->NumOutputs, mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0],
1906                    reg->Register.Index);
1907       if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
1908          debug_printf("STORING OUT[%d] mask(%d), = (", offset + index, execmask);
1909          for (i = 0; i < TGSI_QUAD_SIZE; i++)
1910             if (execmask & (1 << i))
1911                debug_printf("%f, ", chan->f[i]);
1912          debug_printf(")\n");
1913       }
1914 #endif
1915       break;
1916 
1917    case TGSI_FILE_TEMPORARY:
1918       index = reg->Register.Index;
1919       assert( index < TGSI_EXEC_NUM_TEMPS );
1920       dst = &mach->Temps[offset + index].xyzw[chan_index];
1921       break;
1922 
1923    case TGSI_FILE_ADDRESS:
1924       index = reg->Register.Index;
1925       dst = &mach->Addrs[index].xyzw[chan_index];
1926       break;
1927 
1928    default:
1929       assert( 0 );
1930       return NULL;
1931    }
1932 
1933    return dst;
1934 }
1935 
1936 static void
store_dest_double(struct tgsi_exec_machine * mach,const union tgsi_exec_channel * chan,const struct tgsi_full_dst_register * reg,const struct tgsi_full_instruction * inst,uint chan_index,enum tgsi_exec_datatype dst_datatype)1937 store_dest_double(struct tgsi_exec_machine *mach,
1938                  const union tgsi_exec_channel *chan,
1939                  const struct tgsi_full_dst_register *reg,
1940                  const struct tgsi_full_instruction *inst,
1941                  uint chan_index,
1942                  enum tgsi_exec_datatype dst_datatype)
1943 {
1944    union tgsi_exec_channel *dst;
1945    const uint execmask = mach->ExecMask;
1946    int i;
1947 
1948    dst = store_dest_dstret(mach, chan, reg, inst, chan_index,
1949 			   dst_datatype);
1950    if (!dst)
1951       return;
1952 
1953    /* doubles path */
1954    for (i = 0; i < TGSI_QUAD_SIZE; i++)
1955       if (execmask & (1 << i))
1956          dst->i[i] = chan->i[i];
1957 }
1958 
1959 static void
store_dest(struct tgsi_exec_machine * mach,const union tgsi_exec_channel * chan,const struct tgsi_full_dst_register * reg,const struct tgsi_full_instruction * inst,uint chan_index,enum tgsi_exec_datatype dst_datatype)1960 store_dest(struct tgsi_exec_machine *mach,
1961            const union tgsi_exec_channel *chan,
1962            const struct tgsi_full_dst_register *reg,
1963            const struct tgsi_full_instruction *inst,
1964            uint chan_index,
1965            enum tgsi_exec_datatype dst_datatype)
1966 {
1967    union tgsi_exec_channel *dst;
1968    const uint execmask = mach->ExecMask;
1969    int i;
1970 
1971    dst = store_dest_dstret(mach, chan, reg, inst, chan_index,
1972                     dst_datatype);
1973    if (!dst)
1974       return;
1975 
1976    if (!inst->Instruction.Saturate) {
1977       for (i = 0; i < TGSI_QUAD_SIZE; i++)
1978          if (execmask & (1 << i))
1979             dst->i[i] = chan->i[i];
1980    }
1981    else {
1982       for (i = 0; i < TGSI_QUAD_SIZE; i++)
1983          if (execmask & (1 << i)) {
1984             if (chan->f[i] < 0.0f)
1985                dst->f[i] = 0.0f;
1986             else if (chan->f[i] > 1.0f)
1987                dst->f[i] = 1.0f;
1988             else
1989                dst->i[i] = chan->i[i];
1990          }
1991    }
1992 }
1993 
1994 #define FETCH(VAL,INDEX,CHAN)\
1995     fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1996 
1997 #define IFETCH(VAL,INDEX,CHAN)\
1998     fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_INT)
1999 
2000 
2001 /**
2002  * Execute ARB-style KIL which is predicated by a src register.
2003  * Kill fragment if any of the four values is less than zero.
2004  */
2005 static void
exec_kill_if(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2006 exec_kill_if(struct tgsi_exec_machine *mach,
2007              const struct tgsi_full_instruction *inst)
2008 {
2009    uint uniquemask;
2010    uint chan_index;
2011    uint kilmask = 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2012    union tgsi_exec_channel r[1];
2013 
2014    /* This mask stores component bits that were already tested. */
2015    uniquemask = 0;
2016 
2017    for (chan_index = 0; chan_index < 4; chan_index++)
2018    {
2019       uint swizzle;
2020       uint i;
2021 
2022       /* unswizzle channel */
2023       swizzle = tgsi_util_get_full_src_register_swizzle (
2024                         &inst->Src[0],
2025                         chan_index);
2026 
2027       /* check if the component has not been already tested */
2028       if (uniquemask & (1 << swizzle))
2029          continue;
2030       uniquemask |= 1 << swizzle;
2031 
2032       FETCH(&r[0], 0, chan_index);
2033       for (i = 0; i < 4; i++)
2034          if (r[0].f[i] < 0.0f)
2035             kilmask |= 1 << i;
2036    }
2037 
2038    /* restrict to fragments currently executing */
2039    kilmask &= mach->ExecMask;
2040 
2041    mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2042 }
2043 
2044 /**
2045  * Unconditional fragment kill/discard.
2046  */
2047 static void
exec_kill(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2048 exec_kill(struct tgsi_exec_machine *mach,
2049           const struct tgsi_full_instruction *inst)
2050 {
2051    uint kilmask; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
2052 
2053    /* kill fragment for all fragments currently executing */
2054    kilmask = mach->ExecMask;
2055    mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] |= kilmask;
2056 }
2057 
2058 static void
emit_vertex(struct tgsi_exec_machine * mach)2059 emit_vertex(struct tgsi_exec_machine *mach)
2060 {
2061    /* FIXME: check for exec mask correctly
2062    unsigned i;
2063    for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2064          if ((mach->ExecMask & (1 << i)))
2065    */
2066    if (mach->ExecMask) {
2067       if (mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]] >= mach->MaxOutputVertices)
2068          return;
2069 
2070       mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] += mach->NumOutputs;
2071       mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]]++;
2072    }
2073 }
2074 
2075 static void
emit_primitive(struct tgsi_exec_machine * mach)2076 emit_primitive(struct tgsi_exec_machine *mach)
2077 {
2078    unsigned *prim_count = &mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0];
2079    /* FIXME: check for exec mask correctly
2080    unsigned i;
2081    for (i = 0; i < TGSI_QUAD_SIZE; ++i) {
2082          if ((mach->ExecMask & (1 << i)))
2083    */
2084    if (mach->ExecMask) {
2085       ++(*prim_count);
2086       debug_assert((*prim_count * mach->NumOutputs) < mach->MaxGeometryShaderOutputs);
2087       mach->Primitives[*prim_count] = 0;
2088    }
2089 }
2090 
2091 static void
conditional_emit_primitive(struct tgsi_exec_machine * mach)2092 conditional_emit_primitive(struct tgsi_exec_machine *mach)
2093 {
2094    if (PIPE_SHADER_GEOMETRY == mach->ShaderType) {
2095       int emitted_verts =
2096          mach->Primitives[mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0]];
2097       if (emitted_verts) {
2098          emit_primitive(mach);
2099       }
2100    }
2101 }
2102 
2103 
2104 /*
2105  * Fetch four texture samples using STR texture coordinates.
2106  */
2107 static void
fetch_texel(struct tgsi_sampler * sampler,const unsigned sview_idx,const unsigned sampler_idx,const union tgsi_exec_channel * s,const union tgsi_exec_channel * t,const union tgsi_exec_channel * p,const union tgsi_exec_channel * c0,const union tgsi_exec_channel * c1,float derivs[3][2][TGSI_QUAD_SIZE],const int8_t offset[3],enum tgsi_sampler_control control,union tgsi_exec_channel * r,union tgsi_exec_channel * g,union tgsi_exec_channel * b,union tgsi_exec_channel * a)2108 fetch_texel( struct tgsi_sampler *sampler,
2109              const unsigned sview_idx,
2110              const unsigned sampler_idx,
2111              const union tgsi_exec_channel *s,
2112              const union tgsi_exec_channel *t,
2113              const union tgsi_exec_channel *p,
2114              const union tgsi_exec_channel *c0,
2115              const union tgsi_exec_channel *c1,
2116              float derivs[3][2][TGSI_QUAD_SIZE],
2117              const int8_t offset[3],
2118              enum tgsi_sampler_control control,
2119              union tgsi_exec_channel *r,
2120              union tgsi_exec_channel *g,
2121              union tgsi_exec_channel *b,
2122              union tgsi_exec_channel *a )
2123 {
2124    uint j;
2125    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2126 
2127    /* FIXME: handle explicit derivs, offsets */
2128    sampler->get_samples(sampler, sview_idx, sampler_idx,
2129                         s->f, t->f, p->f, c0->f, c1->f, derivs, offset, control, rgba);
2130 
2131    for (j = 0; j < 4; j++) {
2132       r->f[j] = rgba[0][j];
2133       g->f[j] = rgba[1][j];
2134       b->f[j] = rgba[2][j];
2135       a->f[j] = rgba[3][j];
2136    }
2137 }
2138 
2139 
2140 #define TEX_MODIFIER_NONE           0
2141 #define TEX_MODIFIER_PROJECTED      1
2142 #define TEX_MODIFIER_LOD_BIAS       2
2143 #define TEX_MODIFIER_EXPLICIT_LOD   3
2144 #define TEX_MODIFIER_LEVEL_ZERO     4
2145 #define TEX_MODIFIER_GATHER         5
2146 
2147 /*
2148  * Fetch all 3 (for s,t,r coords) texel offsets, put them into int array.
2149  */
2150 static void
fetch_texel_offsets(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,int8_t offsets[3])2151 fetch_texel_offsets(struct tgsi_exec_machine *mach,
2152                     const struct tgsi_full_instruction *inst,
2153                     int8_t offsets[3])
2154 {
2155    if (inst->Texture.NumOffsets == 1) {
2156       union tgsi_exec_channel index;
2157       union tgsi_exec_channel offset[3];
2158       index.i[0] = index.i[1] = index.i[2] = index.i[3] = inst->TexOffsets[0].Index;
2159       fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2160                              inst->TexOffsets[0].SwizzleX, &index, &ZeroVec, &offset[0]);
2161       fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2162                              inst->TexOffsets[0].SwizzleY, &index, &ZeroVec, &offset[1]);
2163       fetch_src_file_channel(mach, 0, inst->TexOffsets[0].File,
2164                              inst->TexOffsets[0].SwizzleZ, &index, &ZeroVec, &offset[2]);
2165      offsets[0] = offset[0].i[0];
2166      offsets[1] = offset[1].i[0];
2167      offsets[2] = offset[2].i[0];
2168    } else {
2169      assert(inst->Texture.NumOffsets == 0);
2170      offsets[0] = offsets[1] = offsets[2] = 0;
2171    }
2172 }
2173 
2174 
2175 /*
2176  * Fetch dx and dy values for one channel (s, t or r).
2177  * Put dx values into one float array, dy values into another.
2178  */
2179 static void
fetch_assign_deriv_channel(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,unsigned regdsrcx,unsigned chan,float derivs[2][TGSI_QUAD_SIZE])2180 fetch_assign_deriv_channel(struct tgsi_exec_machine *mach,
2181                            const struct tgsi_full_instruction *inst,
2182                            unsigned regdsrcx,
2183                            unsigned chan,
2184                            float derivs[2][TGSI_QUAD_SIZE])
2185 {
2186    union tgsi_exec_channel d;
2187    FETCH(&d, regdsrcx, chan);
2188    derivs[0][0] = d.f[0];
2189    derivs[0][1] = d.f[1];
2190    derivs[0][2] = d.f[2];
2191    derivs[0][3] = d.f[3];
2192    FETCH(&d, regdsrcx + 1, chan);
2193    derivs[1][0] = d.f[0];
2194    derivs[1][1] = d.f[1];
2195    derivs[1][2] = d.f[2];
2196    derivs[1][3] = d.f[3];
2197 }
2198 
2199 static uint
fetch_sampler_unit(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,uint sampler)2200 fetch_sampler_unit(struct tgsi_exec_machine *mach,
2201                    const struct tgsi_full_instruction *inst,
2202                    uint sampler)
2203 {
2204    uint unit = 0;
2205    int i;
2206    if (inst->Src[sampler].Register.Indirect) {
2207       const struct tgsi_full_src_register *reg = &inst->Src[sampler];
2208       union tgsi_exec_channel indir_index, index2;
2209       const uint execmask = mach->ExecMask;
2210       index2.i[0] =
2211       index2.i[1] =
2212       index2.i[2] =
2213       index2.i[3] = reg->Indirect.Index;
2214 
2215       fetch_src_file_channel(mach,
2216                              0,
2217                              reg->Indirect.File,
2218                              reg->Indirect.Swizzle,
2219                              &index2,
2220                              &ZeroVec,
2221                              &indir_index);
2222       for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2223          if (execmask & (1 << i)) {
2224             unit = inst->Src[sampler].Register.Index + indir_index.i[i];
2225             break;
2226          }
2227       }
2228 
2229    } else {
2230       unit = inst->Src[sampler].Register.Index;
2231    }
2232    return unit;
2233 }
2234 
2235 /*
2236  * execute a texture instruction.
2237  *
2238  * modifier is used to control the channel routing for the
2239  * instruction variants like proj, lod, and texture with lod bias.
2240  * sampler indicates which src register the sampler is contained in.
2241  */
2242 static void
exec_tex(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,uint modifier,uint sampler)2243 exec_tex(struct tgsi_exec_machine *mach,
2244          const struct tgsi_full_instruction *inst,
2245          uint modifier, uint sampler)
2246 {
2247    const union tgsi_exec_channel *args[5], *proj = NULL;
2248    union tgsi_exec_channel r[5];
2249    enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2250    uint chan;
2251    uint unit;
2252    int8_t offsets[3];
2253    int dim, shadow_ref, i;
2254 
2255    unit = fetch_sampler_unit(mach, inst, sampler);
2256    /* always fetch all 3 offsets, overkill but keeps code simple */
2257    fetch_texel_offsets(mach, inst, offsets);
2258 
2259    assert(modifier != TEX_MODIFIER_LEVEL_ZERO);
2260    assert(inst->Texture.Texture != TGSI_TEXTURE_BUFFER);
2261 
2262    dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2263    shadow_ref = tgsi_util_get_shadow_ref_src_index(inst->Texture.Texture);
2264 
2265    assert(dim <= 4);
2266    if (shadow_ref >= 0)
2267       assert(shadow_ref >= dim && shadow_ref < ARRAY_SIZE(args));
2268 
2269    /* fetch modifier to the last argument */
2270    if (modifier != TEX_MODIFIER_NONE) {
2271       const int last = ARRAY_SIZE(args) - 1;
2272 
2273       /* fetch modifier from src0.w or src1.x */
2274       if (sampler == 1) {
2275          assert(dim <= TGSI_CHAN_W && shadow_ref != TGSI_CHAN_W);
2276          FETCH(&r[last], 0, TGSI_CHAN_W);
2277       }
2278       else {
2279          assert(shadow_ref != 4);
2280          FETCH(&r[last], 1, TGSI_CHAN_X);
2281       }
2282 
2283       if (modifier != TEX_MODIFIER_PROJECTED) {
2284          args[last] = &r[last];
2285       }
2286       else {
2287          proj = &r[last];
2288          args[last] = &ZeroVec;
2289       }
2290 
2291       /* point unused arguments to zero vector */
2292       for (i = dim; i < last; i++)
2293          args[i] = &ZeroVec;
2294 
2295       if (modifier == TEX_MODIFIER_EXPLICIT_LOD)
2296          control = TGSI_SAMPLER_LOD_EXPLICIT;
2297       else if (modifier == TEX_MODIFIER_LOD_BIAS)
2298          control = TGSI_SAMPLER_LOD_BIAS;
2299       else if (modifier == TEX_MODIFIER_GATHER)
2300          control = TGSI_SAMPLER_GATHER;
2301    }
2302    else {
2303       for (i = dim; i < ARRAY_SIZE(args); i++)
2304          args[i] = &ZeroVec;
2305    }
2306 
2307    /* fetch coordinates */
2308    for (i = 0; i < dim; i++) {
2309       FETCH(&r[i], 0, TGSI_CHAN_X + i);
2310 
2311       if (proj)
2312          micro_div(&r[i], &r[i], proj);
2313 
2314       args[i] = &r[i];
2315    }
2316 
2317    /* fetch reference value */
2318    if (shadow_ref >= 0) {
2319       FETCH(&r[shadow_ref], shadow_ref / 4, TGSI_CHAN_X + (shadow_ref % 4));
2320 
2321       if (proj)
2322          micro_div(&r[shadow_ref], &r[shadow_ref], proj);
2323 
2324       args[shadow_ref] = &r[shadow_ref];
2325    }
2326 
2327    fetch_texel(mach->Sampler, unit, unit,
2328          args[0], args[1], args[2], args[3], args[4],
2329          NULL, offsets, control,
2330          &r[0], &r[1], &r[2], &r[3]);     /* R, G, B, A */
2331 
2332 #if 0
2333    debug_printf("fetch r: %g %g %g %g\n",
2334          r[0].f[0], r[0].f[1], r[0].f[2], r[0].f[3]);
2335    debug_printf("fetch g: %g %g %g %g\n",
2336          r[1].f[0], r[1].f[1], r[1].f[2], r[1].f[3]);
2337    debug_printf("fetch b: %g %g %g %g\n",
2338          r[2].f[0], r[2].f[1], r[2].f[2], r[2].f[3]);
2339    debug_printf("fetch a: %g %g %g %g\n",
2340          r[3].f[0], r[3].f[1], r[3].f[2], r[3].f[3]);
2341 #endif
2342 
2343    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2344       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2345          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2346       }
2347    }
2348 }
2349 
2350 static void
exec_lodq(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2351 exec_lodq(struct tgsi_exec_machine *mach,
2352           const struct tgsi_full_instruction *inst)
2353 {
2354    uint resource_unit, sampler_unit;
2355    int dim;
2356    int i;
2357    union tgsi_exec_channel coords[4];
2358    const union tgsi_exec_channel *args[ARRAY_SIZE(coords)];
2359    union tgsi_exec_channel r[2];
2360 
2361    resource_unit = fetch_sampler_unit(mach, inst, 1);
2362    if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2363       uint target = mach->SamplerViews[resource_unit].Resource;
2364       dim = tgsi_util_get_texture_coord_dim(target);
2365       sampler_unit = fetch_sampler_unit(mach, inst, 2);
2366    } else {
2367       dim = tgsi_util_get_texture_coord_dim(inst->Texture.Texture);
2368       sampler_unit = resource_unit;
2369    }
2370    assert(dim <= ARRAY_SIZE(coords));
2371    /* fetch coordinates */
2372    for (i = 0; i < dim; i++) {
2373       FETCH(&coords[i], 0, TGSI_CHAN_X + i);
2374       args[i] = &coords[i];
2375    }
2376    for (i = dim; i < ARRAY_SIZE(coords); i++) {
2377       args[i] = &ZeroVec;
2378    }
2379    mach->Sampler->query_lod(mach->Sampler, resource_unit, sampler_unit,
2380                             args[0]->f,
2381                             args[1]->f,
2382                             args[2]->f,
2383                             args[3]->f,
2384                             TGSI_SAMPLER_LOD_NONE,
2385                             r[0].f,
2386                             r[1].f);
2387 
2388    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2389       store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
2390                  TGSI_EXEC_DATA_FLOAT);
2391    }
2392    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2393       store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
2394                  TGSI_EXEC_DATA_FLOAT);
2395    }
2396    if (inst->Instruction.Opcode == TGSI_OPCODE_LOD) {
2397       unsigned char swizzles[4];
2398       unsigned chan;
2399       swizzles[0] = inst->Src[1].Register.SwizzleX;
2400       swizzles[1] = inst->Src[1].Register.SwizzleY;
2401       swizzles[2] = inst->Src[1].Register.SwizzleZ;
2402       swizzles[3] = inst->Src[1].Register.SwizzleW;
2403 
2404       for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2405          if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2406             if (swizzles[chan] >= 2) {
2407                store_dest(mach, &ZeroVec,
2408                           &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2409             } else {
2410                store_dest(mach, &r[swizzles[chan]],
2411                           &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2412             }
2413          }
2414       }
2415    } else {
2416       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
2417          store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X,
2418                     TGSI_EXEC_DATA_FLOAT);
2419       }
2420       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
2421          store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Y,
2422                     TGSI_EXEC_DATA_FLOAT);
2423       }
2424    }
2425 }
2426 
2427 static void
exec_txd(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2428 exec_txd(struct tgsi_exec_machine *mach,
2429          const struct tgsi_full_instruction *inst)
2430 {
2431    union tgsi_exec_channel r[4];
2432    float derivs[3][2][TGSI_QUAD_SIZE];
2433    uint chan;
2434    uint unit;
2435    int8_t offsets[3];
2436 
2437    unit = fetch_sampler_unit(mach, inst, 3);
2438    /* always fetch all 3 offsets, overkill but keeps code simple */
2439    fetch_texel_offsets(mach, inst, offsets);
2440 
2441    switch (inst->Texture.Texture) {
2442    case TGSI_TEXTURE_1D:
2443       FETCH(&r[0], 0, TGSI_CHAN_X);
2444 
2445       fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2446 
2447       fetch_texel(mach->Sampler, unit, unit,
2448                   &r[0], &ZeroVec, &ZeroVec, &ZeroVec, &ZeroVec,   /* S, T, P, C, LOD */
2449                   derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2450                   &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
2451       break;
2452 
2453    case TGSI_TEXTURE_SHADOW1D:
2454    case TGSI_TEXTURE_1D_ARRAY:
2455    case TGSI_TEXTURE_SHADOW1D_ARRAY:
2456       /* SHADOW1D/1D_ARRAY would not need Y/Z respectively, but don't bother */
2457       FETCH(&r[0], 0, TGSI_CHAN_X);
2458       FETCH(&r[1], 0, TGSI_CHAN_Y);
2459       FETCH(&r[2], 0, TGSI_CHAN_Z);
2460 
2461       fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2462 
2463       fetch_texel(mach->Sampler, unit, unit,
2464                   &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec,   /* S, T, P, C, LOD */
2465                   derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2466                   &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
2467       break;
2468 
2469    case TGSI_TEXTURE_2D:
2470    case TGSI_TEXTURE_RECT:
2471       FETCH(&r[0], 0, TGSI_CHAN_X);
2472       FETCH(&r[1], 0, TGSI_CHAN_Y);
2473 
2474       fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2475       fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2476 
2477       fetch_texel(mach->Sampler, unit, unit,
2478                   &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec,   /* S, T, P, C, LOD */
2479                   derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2480                   &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
2481       break;
2482 
2483 
2484    case TGSI_TEXTURE_SHADOW2D:
2485    case TGSI_TEXTURE_SHADOWRECT:
2486    case TGSI_TEXTURE_2D_ARRAY:
2487    case TGSI_TEXTURE_SHADOW2D_ARRAY:
2488       /* only SHADOW2D_ARRAY actually needs W */
2489       FETCH(&r[0], 0, TGSI_CHAN_X);
2490       FETCH(&r[1], 0, TGSI_CHAN_Y);
2491       FETCH(&r[2], 0, TGSI_CHAN_Z);
2492       FETCH(&r[3], 0, TGSI_CHAN_W);
2493 
2494       fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2495       fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2496 
2497       fetch_texel(mach->Sampler, unit, unit,
2498                   &r[0], &r[1], &r[2], &r[3], &ZeroVec,   /* inputs */
2499                   derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2500                   &r[0], &r[1], &r[2], &r[3]);     /* outputs */
2501       break;
2502 
2503    case TGSI_TEXTURE_3D:
2504    case TGSI_TEXTURE_CUBE:
2505    case TGSI_TEXTURE_CUBE_ARRAY:
2506    case TGSI_TEXTURE_SHADOWCUBE:
2507       /* only TEXTURE_CUBE_ARRAY and TEXTURE_SHADOWCUBE actually need W */
2508       FETCH(&r[0], 0, TGSI_CHAN_X);
2509       FETCH(&r[1], 0, TGSI_CHAN_Y);
2510       FETCH(&r[2], 0, TGSI_CHAN_Z);
2511       FETCH(&r[3], 0, TGSI_CHAN_W);
2512 
2513       fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_X, derivs[0]);
2514       fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Y, derivs[1]);
2515       fetch_assign_deriv_channel(mach, inst, 1, TGSI_CHAN_Z, derivs[2]);
2516 
2517       fetch_texel(mach->Sampler, unit, unit,
2518                   &r[0], &r[1], &r[2], &r[3], &ZeroVec,   /* inputs */
2519                   derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2520                   &r[0], &r[1], &r[2], &r[3]);     /* outputs */
2521       break;
2522 
2523    default:
2524       assert(0);
2525    }
2526 
2527    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2528       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2529          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2530       }
2531    }
2532 }
2533 
2534 
2535 static void
exec_txf(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2536 exec_txf(struct tgsi_exec_machine *mach,
2537          const struct tgsi_full_instruction *inst)
2538 {
2539    union tgsi_exec_channel r[4];
2540    uint chan;
2541    uint unit;
2542    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2543    int j;
2544    int8_t offsets[3];
2545    unsigned target;
2546 
2547    unit = fetch_sampler_unit(mach, inst, 1);
2548    /* always fetch all 3 offsets, overkill but keeps code simple */
2549    fetch_texel_offsets(mach, inst, offsets);
2550 
2551    IFETCH(&r[3], 0, TGSI_CHAN_W);
2552 
2553    if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2554        inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2555       target = mach->SamplerViews[unit].Resource;
2556    }
2557    else {
2558       target = inst->Texture.Texture;
2559    }
2560    switch(target) {
2561    case TGSI_TEXTURE_3D:
2562    case TGSI_TEXTURE_2D_ARRAY:
2563    case TGSI_TEXTURE_SHADOW2D_ARRAY:
2564    case TGSI_TEXTURE_2D_ARRAY_MSAA:
2565       IFETCH(&r[2], 0, TGSI_CHAN_Z);
2566       /* fallthrough */
2567    case TGSI_TEXTURE_2D:
2568    case TGSI_TEXTURE_RECT:
2569    case TGSI_TEXTURE_SHADOW1D_ARRAY:
2570    case TGSI_TEXTURE_SHADOW2D:
2571    case TGSI_TEXTURE_SHADOWRECT:
2572    case TGSI_TEXTURE_1D_ARRAY:
2573    case TGSI_TEXTURE_2D_MSAA:
2574       IFETCH(&r[1], 0, TGSI_CHAN_Y);
2575       /* fallthrough */
2576    case TGSI_TEXTURE_BUFFER:
2577    case TGSI_TEXTURE_1D:
2578    case TGSI_TEXTURE_SHADOW1D:
2579       IFETCH(&r[0], 0, TGSI_CHAN_X);
2580       break;
2581    default:
2582       assert(0);
2583       break;
2584    }
2585 
2586    mach->Sampler->get_texel(mach->Sampler, unit, r[0].i, r[1].i, r[2].i, r[3].i,
2587                             offsets, rgba);
2588 
2589    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2590       r[0].f[j] = rgba[0][j];
2591       r[1].f[j] = rgba[1][j];
2592       r[2].f[j] = rgba[2][j];
2593       r[3].f[j] = rgba[3][j];
2594    }
2595 
2596    if (inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I ||
2597        inst->Instruction.Opcode == TGSI_OPCODE_SAMPLE_I_MS) {
2598       unsigned char swizzles[4];
2599       swizzles[0] = inst->Src[1].Register.SwizzleX;
2600       swizzles[1] = inst->Src[1].Register.SwizzleY;
2601       swizzles[2] = inst->Src[1].Register.SwizzleZ;
2602       swizzles[3] = inst->Src[1].Register.SwizzleW;
2603 
2604       for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2605          if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2606             store_dest(mach, &r[swizzles[chan]],
2607                        &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2608          }
2609       }
2610    }
2611    else {
2612       for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2613          if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2614             store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2615          }
2616       }
2617    }
2618 }
2619 
2620 static void
exec_txq(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2621 exec_txq(struct tgsi_exec_machine *mach,
2622          const struct tgsi_full_instruction *inst)
2623 {
2624    int result[4];
2625    union tgsi_exec_channel r[4], src;
2626    uint chan;
2627    uint unit;
2628    int i,j;
2629 
2630    unit = fetch_sampler_unit(mach, inst, 1);
2631 
2632    fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
2633 
2634    /* XXX: This interface can't return per-pixel values */
2635    mach->Sampler->get_dims(mach->Sampler, unit, src.i[0], result);
2636 
2637    for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2638       for (j = 0; j < 4; j++) {
2639          r[j].i[i] = result[j];
2640       }
2641    }
2642 
2643    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2644       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2645          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
2646                     TGSI_EXEC_DATA_INT);
2647       }
2648    }
2649 }
2650 
2651 static void
exec_sample(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,uint modifier,boolean compare)2652 exec_sample(struct tgsi_exec_machine *mach,
2653             const struct tgsi_full_instruction *inst,
2654             uint modifier, boolean compare)
2655 {
2656    const uint resource_unit = inst->Src[1].Register.Index;
2657    const uint sampler_unit = inst->Src[2].Register.Index;
2658    union tgsi_exec_channel r[5], c1;
2659    const union tgsi_exec_channel *lod = &ZeroVec;
2660    enum tgsi_sampler_control control = TGSI_SAMPLER_LOD_NONE;
2661    uint chan;
2662    unsigned char swizzles[4];
2663    int8_t offsets[3];
2664 
2665    /* always fetch all 3 offsets, overkill but keeps code simple */
2666    fetch_texel_offsets(mach, inst, offsets);
2667 
2668    assert(modifier != TEX_MODIFIER_PROJECTED);
2669 
2670    if (modifier != TEX_MODIFIER_NONE) {
2671       if (modifier == TEX_MODIFIER_LOD_BIAS) {
2672          FETCH(&c1, 3, TGSI_CHAN_X);
2673          lod = &c1;
2674          control = TGSI_SAMPLER_LOD_BIAS;
2675       }
2676       else if (modifier == TEX_MODIFIER_EXPLICIT_LOD) {
2677          FETCH(&c1, 3, TGSI_CHAN_X);
2678          lod = &c1;
2679          control = TGSI_SAMPLER_LOD_EXPLICIT;
2680       }
2681       else if (modifier == TEX_MODIFIER_GATHER) {
2682          control = TGSI_SAMPLER_GATHER;
2683       }
2684       else {
2685          assert(modifier == TEX_MODIFIER_LEVEL_ZERO);
2686          control = TGSI_SAMPLER_LOD_ZERO;
2687       }
2688    }
2689 
2690    FETCH(&r[0], 0, TGSI_CHAN_X);
2691 
2692    switch (mach->SamplerViews[resource_unit].Resource) {
2693    case TGSI_TEXTURE_1D:
2694       if (compare) {
2695          FETCH(&r[2], 3, TGSI_CHAN_X);
2696          fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2697                      &r[0], &ZeroVec, &r[2], &ZeroVec, lod, /* S, T, P, C, LOD */
2698                      NULL, offsets, control,
2699                      &r[0], &r[1], &r[2], &r[3]);     /* R, G, B, A */
2700       }
2701       else {
2702          fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2703                      &r[0], &ZeroVec, &ZeroVec, &ZeroVec, lod, /* S, T, P, C, LOD */
2704                      NULL, offsets, control,
2705                      &r[0], &r[1], &r[2], &r[3]);     /* R, G, B, A */
2706       }
2707       break;
2708 
2709    case TGSI_TEXTURE_1D_ARRAY:
2710    case TGSI_TEXTURE_2D:
2711    case TGSI_TEXTURE_RECT:
2712       FETCH(&r[1], 0, TGSI_CHAN_Y);
2713       if (compare) {
2714          FETCH(&r[2], 3, TGSI_CHAN_X);
2715          fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2716                      &r[0], &r[1], &r[2], &ZeroVec, lod,    /* S, T, P, C, LOD */
2717                      NULL, offsets, control,
2718                      &r[0], &r[1], &r[2], &r[3]);  /* outputs */
2719       }
2720       else {
2721          fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2722                      &r[0], &r[1], &ZeroVec, &ZeroVec, lod,    /* S, T, P, C, LOD */
2723                      NULL, offsets, control,
2724                      &r[0], &r[1], &r[2], &r[3]);  /* outputs */
2725       }
2726       break;
2727 
2728    case TGSI_TEXTURE_2D_ARRAY:
2729    case TGSI_TEXTURE_3D:
2730    case TGSI_TEXTURE_CUBE:
2731       FETCH(&r[1], 0, TGSI_CHAN_Y);
2732       FETCH(&r[2], 0, TGSI_CHAN_Z);
2733       if(compare) {
2734          FETCH(&r[3], 3, TGSI_CHAN_X);
2735          fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2736                      &r[0], &r[1], &r[2], &r[3], lod,
2737                      NULL, offsets, control,
2738                      &r[0], &r[1], &r[2], &r[3]);
2739       }
2740       else {
2741          fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2742                      &r[0], &r[1], &r[2], &ZeroVec, lod,
2743                      NULL, offsets, control,
2744                      &r[0], &r[1], &r[2], &r[3]);
2745       }
2746       break;
2747 
2748    case TGSI_TEXTURE_CUBE_ARRAY:
2749       FETCH(&r[1], 0, TGSI_CHAN_Y);
2750       FETCH(&r[2], 0, TGSI_CHAN_Z);
2751       FETCH(&r[3], 0, TGSI_CHAN_W);
2752       if(compare) {
2753          FETCH(&r[4], 3, TGSI_CHAN_X);
2754          fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2755                      &r[0], &r[1], &r[2], &r[3], &r[4],
2756                      NULL, offsets, control,
2757                      &r[0], &r[1], &r[2], &r[3]);
2758       }
2759       else {
2760          fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2761                      &r[0], &r[1], &r[2], &r[3], lod,
2762                      NULL, offsets, control,
2763                      &r[0], &r[1], &r[2], &r[3]);
2764       }
2765       break;
2766 
2767 
2768    default:
2769       assert(0);
2770    }
2771 
2772    swizzles[0] = inst->Src[1].Register.SwizzleX;
2773    swizzles[1] = inst->Src[1].Register.SwizzleY;
2774    swizzles[2] = inst->Src[1].Register.SwizzleZ;
2775    swizzles[3] = inst->Src[1].Register.SwizzleW;
2776 
2777    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2778       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2779          store_dest(mach, &r[swizzles[chan]],
2780                     &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2781       }
2782    }
2783 }
2784 
2785 static void
exec_sample_d(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)2786 exec_sample_d(struct tgsi_exec_machine *mach,
2787               const struct tgsi_full_instruction *inst)
2788 {
2789    const uint resource_unit = inst->Src[1].Register.Index;
2790    const uint sampler_unit = inst->Src[2].Register.Index;
2791    union tgsi_exec_channel r[4];
2792    float derivs[3][2][TGSI_QUAD_SIZE];
2793    uint chan;
2794    unsigned char swizzles[4];
2795    int8_t offsets[3];
2796 
2797    /* always fetch all 3 offsets, overkill but keeps code simple */
2798    fetch_texel_offsets(mach, inst, offsets);
2799 
2800    FETCH(&r[0], 0, TGSI_CHAN_X);
2801 
2802    switch (mach->SamplerViews[resource_unit].Resource) {
2803    case TGSI_TEXTURE_1D:
2804    case TGSI_TEXTURE_1D_ARRAY:
2805       /* only 1D array actually needs Y */
2806       FETCH(&r[1], 0, TGSI_CHAN_Y);
2807 
2808       fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2809 
2810       fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2811                   &r[0], &r[1], &ZeroVec, &ZeroVec, &ZeroVec,   /* S, T, P, C, LOD */
2812                   derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2813                   &r[0], &r[1], &r[2], &r[3]);           /* R, G, B, A */
2814       break;
2815 
2816    case TGSI_TEXTURE_2D:
2817    case TGSI_TEXTURE_RECT:
2818    case TGSI_TEXTURE_2D_ARRAY:
2819       /* only 2D array actually needs Z */
2820       FETCH(&r[1], 0, TGSI_CHAN_Y);
2821       FETCH(&r[2], 0, TGSI_CHAN_Z);
2822 
2823       fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2824       fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2825 
2826       fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2827                   &r[0], &r[1], &r[2], &ZeroVec, &ZeroVec,   /* inputs */
2828                   derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2829                   &r[0], &r[1], &r[2], &r[3]);     /* outputs */
2830       break;
2831 
2832    case TGSI_TEXTURE_3D:
2833    case TGSI_TEXTURE_CUBE:
2834    case TGSI_TEXTURE_CUBE_ARRAY:
2835       /* only cube array actually needs W */
2836       FETCH(&r[1], 0, TGSI_CHAN_Y);
2837       FETCH(&r[2], 0, TGSI_CHAN_Z);
2838       FETCH(&r[3], 0, TGSI_CHAN_W);
2839 
2840       fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_X, derivs[0]);
2841       fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Y, derivs[1]);
2842       fetch_assign_deriv_channel(mach, inst, 3, TGSI_CHAN_Z, derivs[2]);
2843 
2844       fetch_texel(mach->Sampler, resource_unit, sampler_unit,
2845                   &r[0], &r[1], &r[2], &r[3], &ZeroVec,
2846                   derivs, offsets, TGSI_SAMPLER_DERIVS_EXPLICIT,
2847                   &r[0], &r[1], &r[2], &r[3]);
2848       break;
2849 
2850    default:
2851       assert(0);
2852    }
2853 
2854    swizzles[0] = inst->Src[1].Register.SwizzleX;
2855    swizzles[1] = inst->Src[1].Register.SwizzleY;
2856    swizzles[2] = inst->Src[1].Register.SwizzleZ;
2857    swizzles[3] = inst->Src[1].Register.SwizzleW;
2858 
2859    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2860       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
2861          store_dest(mach, &r[swizzles[chan]],
2862                     &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
2863       }
2864    }
2865 }
2866 
2867 
2868 /**
2869  * Evaluate a constant-valued coefficient at the position of the
2870  * current quad.
2871  */
2872 static void
eval_constant_coef(struct tgsi_exec_machine * mach,unsigned attrib,unsigned chan)2873 eval_constant_coef(
2874    struct tgsi_exec_machine *mach,
2875    unsigned attrib,
2876    unsigned chan )
2877 {
2878    unsigned i;
2879 
2880    for( i = 0; i < TGSI_QUAD_SIZE; i++ ) {
2881       mach->Inputs[attrib].xyzw[chan].f[i] = mach->InterpCoefs[attrib].a0[chan];
2882    }
2883 }
2884 
2885 /**
2886  * Evaluate a linear-valued coefficient at the position of the
2887  * current quad.
2888  */
2889 static void
eval_linear_coef(struct tgsi_exec_machine * mach,unsigned attrib,unsigned chan)2890 eval_linear_coef(
2891    struct tgsi_exec_machine *mach,
2892    unsigned attrib,
2893    unsigned chan )
2894 {
2895    const float x = mach->QuadPos.xyzw[0].f[0];
2896    const float y = mach->QuadPos.xyzw[1].f[0];
2897    const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2898    const float dady = mach->InterpCoefs[attrib].dady[chan];
2899    const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2900    mach->Inputs[attrib].xyzw[chan].f[0] = a0;
2901    mach->Inputs[attrib].xyzw[chan].f[1] = a0 + dadx;
2902    mach->Inputs[attrib].xyzw[chan].f[2] = a0 + dady;
2903    mach->Inputs[attrib].xyzw[chan].f[3] = a0 + dadx + dady;
2904 }
2905 
2906 /**
2907  * Evaluate a perspective-valued coefficient at the position of the
2908  * current quad.
2909  */
2910 static void
eval_perspective_coef(struct tgsi_exec_machine * mach,unsigned attrib,unsigned chan)2911 eval_perspective_coef(
2912    struct tgsi_exec_machine *mach,
2913    unsigned attrib,
2914    unsigned chan )
2915 {
2916    const float x = mach->QuadPos.xyzw[0].f[0];
2917    const float y = mach->QuadPos.xyzw[1].f[0];
2918    const float dadx = mach->InterpCoefs[attrib].dadx[chan];
2919    const float dady = mach->InterpCoefs[attrib].dady[chan];
2920    const float a0 = mach->InterpCoefs[attrib].a0[chan] + dadx * x + dady * y;
2921    const float *w = mach->QuadPos.xyzw[3].f;
2922    /* divide by W here */
2923    mach->Inputs[attrib].xyzw[chan].f[0] = a0 / w[0];
2924    mach->Inputs[attrib].xyzw[chan].f[1] = (a0 + dadx) / w[1];
2925    mach->Inputs[attrib].xyzw[chan].f[2] = (a0 + dady) / w[2];
2926    mach->Inputs[attrib].xyzw[chan].f[3] = (a0 + dadx + dady) / w[3];
2927 }
2928 
2929 
2930 typedef void (* eval_coef_func)(
2931    struct tgsi_exec_machine *mach,
2932    unsigned attrib,
2933    unsigned chan );
2934 
2935 static void
exec_declaration(struct tgsi_exec_machine * mach,const struct tgsi_full_declaration * decl)2936 exec_declaration(struct tgsi_exec_machine *mach,
2937                  const struct tgsi_full_declaration *decl)
2938 {
2939    if (decl->Declaration.File == TGSI_FILE_SAMPLER_VIEW) {
2940       mach->SamplerViews[decl->Range.First] = decl->SamplerView;
2941       return;
2942    }
2943 
2944    if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
2945       if (decl->Declaration.File == TGSI_FILE_INPUT) {
2946          uint first, last, mask;
2947 
2948          first = decl->Range.First;
2949          last = decl->Range.Last;
2950          mask = decl->Declaration.UsageMask;
2951 
2952          /* XXX we could remove this special-case code since
2953           * mach->InterpCoefs[first].a0 should already have the
2954           * front/back-face value.  But we should first update the
2955           * ureg code to emit the right UsageMask value (WRITEMASK_X).
2956           * Then, we could remove the tgsi_exec_machine::Face field.
2957           */
2958          /* XXX make FACE a system value */
2959          if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
2960             uint i;
2961 
2962             assert(decl->Semantic.Index == 0);
2963             assert(first == last);
2964 
2965             for (i = 0; i < TGSI_QUAD_SIZE; i++) {
2966                mach->Inputs[first].xyzw[0].f[i] = mach->Face;
2967             }
2968          } else {
2969             eval_coef_func eval;
2970             uint i, j;
2971 
2972             switch (decl->Interp.Interpolate) {
2973             case TGSI_INTERPOLATE_CONSTANT:
2974                eval = eval_constant_coef;
2975                break;
2976 
2977             case TGSI_INTERPOLATE_LINEAR:
2978                eval = eval_linear_coef;
2979                break;
2980 
2981             case TGSI_INTERPOLATE_PERSPECTIVE:
2982                eval = eval_perspective_coef;
2983                break;
2984 
2985             case TGSI_INTERPOLATE_COLOR:
2986                eval = mach->flatshade_color ? eval_constant_coef : eval_perspective_coef;
2987                break;
2988 
2989             default:
2990                assert(0);
2991                return;
2992             }
2993 
2994             for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
2995                if (mask & (1 << j)) {
2996                   for (i = first; i <= last; i++) {
2997                      eval(mach, i, j);
2998                   }
2999                }
3000             }
3001          }
3002 
3003          if (DEBUG_EXECUTION) {
3004             uint i, j;
3005             for (i = first; i <= last; ++i) {
3006                debug_printf("IN[%2u] = ", i);
3007                for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3008                   if (j > 0) {
3009                      debug_printf("         ");
3010                   }
3011                   debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
3012                                mach->Inputs[i].xyzw[0].f[j], mach->Inputs[i].xyzw[0].u[j],
3013                                mach->Inputs[i].xyzw[1].f[j], mach->Inputs[i].xyzw[1].u[j],
3014                                mach->Inputs[i].xyzw[2].f[j], mach->Inputs[i].xyzw[2].u[j],
3015                                mach->Inputs[i].xyzw[3].f[j], mach->Inputs[i].xyzw[3].u[j]);
3016                }
3017             }
3018          }
3019       }
3020    }
3021 
3022 }
3023 
3024 typedef void (* micro_unary_op)(union tgsi_exec_channel *dst,
3025                                 const union tgsi_exec_channel *src);
3026 
3027 static void
exec_scalar_unary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_unary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)3028 exec_scalar_unary(struct tgsi_exec_machine *mach,
3029                   const struct tgsi_full_instruction *inst,
3030                   micro_unary_op op,
3031                   enum tgsi_exec_datatype dst_datatype,
3032                   enum tgsi_exec_datatype src_datatype)
3033 {
3034    unsigned int chan;
3035    union tgsi_exec_channel src;
3036    union tgsi_exec_channel dst;
3037 
3038    fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
3039    op(&dst, &src);
3040    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3041       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3042          store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
3043       }
3044    }
3045 }
3046 
3047 static void
exec_vector_unary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_unary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)3048 exec_vector_unary(struct tgsi_exec_machine *mach,
3049                   const struct tgsi_full_instruction *inst,
3050                   micro_unary_op op,
3051                   enum tgsi_exec_datatype dst_datatype,
3052                   enum tgsi_exec_datatype src_datatype)
3053 {
3054    unsigned int chan;
3055    struct tgsi_exec_vector dst;
3056 
3057    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3058       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3059          union tgsi_exec_channel src;
3060 
3061          fetch_source(mach, &src, &inst->Src[0], chan, src_datatype);
3062          op(&dst.xyzw[chan], &src);
3063       }
3064    }
3065    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3066       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3067          store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3068       }
3069    }
3070 }
3071 
3072 typedef void (* micro_binary_op)(union tgsi_exec_channel *dst,
3073                                  const union tgsi_exec_channel *src0,
3074                                  const union tgsi_exec_channel *src1);
3075 
3076 static void
exec_scalar_binary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_binary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)3077 exec_scalar_binary(struct tgsi_exec_machine *mach,
3078                    const struct tgsi_full_instruction *inst,
3079                    micro_binary_op op,
3080                    enum tgsi_exec_datatype dst_datatype,
3081                    enum tgsi_exec_datatype src_datatype)
3082 {
3083    unsigned int chan;
3084    union tgsi_exec_channel src[2];
3085    union tgsi_exec_channel dst;
3086 
3087    fetch_source(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, src_datatype);
3088    fetch_source(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, src_datatype);
3089    op(&dst, &src[0], &src[1]);
3090    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3091       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3092          store_dest(mach, &dst, &inst->Dst[0], inst, chan, dst_datatype);
3093       }
3094    }
3095 }
3096 
3097 static void
exec_vector_binary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_binary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)3098 exec_vector_binary(struct tgsi_exec_machine *mach,
3099                    const struct tgsi_full_instruction *inst,
3100                    micro_binary_op op,
3101                    enum tgsi_exec_datatype dst_datatype,
3102                    enum tgsi_exec_datatype src_datatype)
3103 {
3104    unsigned int chan;
3105    struct tgsi_exec_vector dst;
3106 
3107    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3108       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3109          union tgsi_exec_channel src[2];
3110 
3111          fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3112          fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3113          op(&dst.xyzw[chan], &src[0], &src[1]);
3114       }
3115    }
3116    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3117       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3118          store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3119       }
3120    }
3121 }
3122 
3123 typedef void (* micro_trinary_op)(union tgsi_exec_channel *dst,
3124                                   const union tgsi_exec_channel *src0,
3125                                   const union tgsi_exec_channel *src1,
3126                                   const union tgsi_exec_channel *src2);
3127 
3128 static void
exec_vector_trinary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_trinary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)3129 exec_vector_trinary(struct tgsi_exec_machine *mach,
3130                     const struct tgsi_full_instruction *inst,
3131                     micro_trinary_op op,
3132                     enum tgsi_exec_datatype dst_datatype,
3133                     enum tgsi_exec_datatype src_datatype)
3134 {
3135    unsigned int chan;
3136    struct tgsi_exec_vector dst;
3137 
3138    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3139       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3140          union tgsi_exec_channel src[3];
3141 
3142          fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3143          fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3144          fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3145          op(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3146       }
3147    }
3148    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3149       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3150          store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3151       }
3152    }
3153 }
3154 
3155 typedef void (* micro_quaternary_op)(union tgsi_exec_channel *dst,
3156                                      const union tgsi_exec_channel *src0,
3157                                      const union tgsi_exec_channel *src1,
3158                                      const union tgsi_exec_channel *src2,
3159                                      const union tgsi_exec_channel *src3);
3160 
3161 static void
exec_vector_quaternary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_quaternary_op op,enum tgsi_exec_datatype dst_datatype,enum tgsi_exec_datatype src_datatype)3162 exec_vector_quaternary(struct tgsi_exec_machine *mach,
3163                        const struct tgsi_full_instruction *inst,
3164                        micro_quaternary_op op,
3165                        enum tgsi_exec_datatype dst_datatype,
3166                        enum tgsi_exec_datatype src_datatype)
3167 {
3168    unsigned int chan;
3169    struct tgsi_exec_vector dst;
3170 
3171    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3172       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3173          union tgsi_exec_channel src[4];
3174 
3175          fetch_source(mach, &src[0], &inst->Src[0], chan, src_datatype);
3176          fetch_source(mach, &src[1], &inst->Src[1], chan, src_datatype);
3177          fetch_source(mach, &src[2], &inst->Src[2], chan, src_datatype);
3178          fetch_source(mach, &src[3], &inst->Src[3], chan, src_datatype);
3179          op(&dst.xyzw[chan], &src[0], &src[1], &src[2], &src[3]);
3180       }
3181    }
3182    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3183       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3184          store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan, dst_datatype);
3185       }
3186    }
3187 }
3188 
3189 static void
exec_dp3(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3190 exec_dp3(struct tgsi_exec_machine *mach,
3191          const struct tgsi_full_instruction *inst)
3192 {
3193    unsigned int chan;
3194    union tgsi_exec_channel arg[3];
3195 
3196    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3197    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3198    micro_mul(&arg[2], &arg[0], &arg[1]);
3199 
3200    for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_Z; chan++) {
3201       fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3202       fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3203       micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3204    }
3205 
3206    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3207       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3208          store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3209       }
3210    }
3211 }
3212 
3213 static void
exec_dp4(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3214 exec_dp4(struct tgsi_exec_machine *mach,
3215          const struct tgsi_full_instruction *inst)
3216 {
3217    unsigned int chan;
3218    union tgsi_exec_channel arg[3];
3219 
3220    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3221    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3222    micro_mul(&arg[2], &arg[0], &arg[1]);
3223 
3224    for (chan = TGSI_CHAN_Y; chan <= TGSI_CHAN_W; chan++) {
3225       fetch_source(mach, &arg[0], &inst->Src[0], chan, TGSI_EXEC_DATA_FLOAT);
3226       fetch_source(mach, &arg[1], &inst->Src[1], chan, TGSI_EXEC_DATA_FLOAT);
3227       micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3228    }
3229 
3230    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3231       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3232          store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3233       }
3234    }
3235 }
3236 
3237 static void
exec_dp2(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3238 exec_dp2(struct tgsi_exec_machine *mach,
3239          const struct tgsi_full_instruction *inst)
3240 {
3241    unsigned int chan;
3242    union tgsi_exec_channel arg[3];
3243 
3244    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3245    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3246    micro_mul(&arg[2], &arg[0], &arg[1]);
3247 
3248    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3249    fetch_source(mach, &arg[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3250    micro_mad(&arg[2], &arg[0], &arg[1], &arg[2]);
3251 
3252    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3253       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3254          store_dest(mach, &arg[2], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3255       }
3256    }
3257 }
3258 
3259 static void
exec_pk2h(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3260 exec_pk2h(struct tgsi_exec_machine *mach,
3261           const struct tgsi_full_instruction *inst)
3262 {
3263    unsigned chan;
3264    union tgsi_exec_channel arg[2], dst;
3265 
3266    fetch_source(mach, &arg[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3267    fetch_source(mach, &arg[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3268    for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3269       dst.u[chan] = util_float_to_half(arg[0].f[chan]) |
3270          (util_float_to_half(arg[1].f[chan]) << 16);
3271    }
3272    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3273       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3274          store_dest(mach, &dst, &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_UINT);
3275       }
3276    }
3277 }
3278 
3279 static void
exec_up2h(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3280 exec_up2h(struct tgsi_exec_machine *mach,
3281           const struct tgsi_full_instruction *inst)
3282 {
3283    unsigned chan;
3284    union tgsi_exec_channel arg, dst[2];
3285 
3286    fetch_source(mach, &arg, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3287    for (chan = 0; chan < TGSI_QUAD_SIZE; chan++) {
3288       dst[0].f[chan] = util_half_to_float(arg.u[chan] & 0xffff);
3289       dst[1].f[chan] = util_half_to_float(arg.u[chan] >> 16);
3290    }
3291    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3292       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3293          store_dest(mach, &dst[chan & 1], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3294       }
3295    }
3296 }
3297 
3298 static void
micro_ucmp(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)3299 micro_ucmp(union tgsi_exec_channel *dst,
3300            const union tgsi_exec_channel *src0,
3301            const union tgsi_exec_channel *src1,
3302            const union tgsi_exec_channel *src2)
3303 {
3304    dst->f[0] = src0->u[0] ? src1->f[0] : src2->f[0];
3305    dst->f[1] = src0->u[1] ? src1->f[1] : src2->f[1];
3306    dst->f[2] = src0->u[2] ? src1->f[2] : src2->f[2];
3307    dst->f[3] = src0->u[3] ? src1->f[3] : src2->f[3];
3308 }
3309 
3310 static void
exec_ucmp(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3311 exec_ucmp(struct tgsi_exec_machine *mach,
3312           const struct tgsi_full_instruction *inst)
3313 {
3314    unsigned int chan;
3315    struct tgsi_exec_vector dst;
3316 
3317    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3318       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3319          union tgsi_exec_channel src[3];
3320 
3321          fetch_source(mach, &src[0], &inst->Src[0], chan,
3322                       TGSI_EXEC_DATA_UINT);
3323          fetch_source(mach, &src[1], &inst->Src[1], chan,
3324                       TGSI_EXEC_DATA_FLOAT);
3325          fetch_source(mach, &src[2], &inst->Src[2], chan,
3326                       TGSI_EXEC_DATA_FLOAT);
3327          micro_ucmp(&dst.xyzw[chan], &src[0], &src[1], &src[2]);
3328       }
3329    }
3330    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3331       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3332          store_dest(mach, &dst.xyzw[chan], &inst->Dst[0], inst, chan,
3333                     TGSI_EXEC_DATA_FLOAT);
3334       }
3335    }
3336 }
3337 
3338 static void
exec_dst(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3339 exec_dst(struct tgsi_exec_machine *mach,
3340          const struct tgsi_full_instruction *inst)
3341 {
3342    union tgsi_exec_channel r[2];
3343    union tgsi_exec_channel d[4];
3344 
3345    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3346       fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3347       fetch_source(mach, &r[1], &inst->Src[1], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3348       micro_mul(&d[TGSI_CHAN_Y], &r[0], &r[1]);
3349    }
3350    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3351       fetch_source(mach, &d[TGSI_CHAN_Z], &inst->Src[0], TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3352    }
3353    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3354       fetch_source(mach, &d[TGSI_CHAN_W], &inst->Src[1], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3355    }
3356 
3357    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3358       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3359    }
3360    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3361       store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3362    }
3363    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3364       store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3365    }
3366    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3367       store_dest(mach, &d[TGSI_CHAN_W], &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3368    }
3369 }
3370 
3371 static void
exec_log(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3372 exec_log(struct tgsi_exec_machine *mach,
3373          const struct tgsi_full_instruction *inst)
3374 {
3375    union tgsi_exec_channel r[3];
3376 
3377    fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3378    micro_abs(&r[2], &r[0]);  /* r2 = abs(r0) */
3379    micro_lg2(&r[1], &r[2]);  /* r1 = lg2(r2) */
3380    micro_flr(&r[0], &r[1]);  /* r0 = floor(r1) */
3381    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3382       store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3383    }
3384    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3385       micro_exp2(&r[0], &r[0]);       /* r0 = 2 ^ r0 */
3386       micro_div(&r[0], &r[2], &r[0]); /* r0 = r2 / r0 */
3387       store_dest(mach, &r[0], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3388    }
3389    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3390       store_dest(mach, &r[1], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3391    }
3392    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3393       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3394    }
3395 }
3396 
3397 static void
exec_exp(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3398 exec_exp(struct tgsi_exec_machine *mach,
3399          const struct tgsi_full_instruction *inst)
3400 {
3401    union tgsi_exec_channel r[3];
3402 
3403    fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3404    micro_flr(&r[1], &r[0]);  /* r1 = floor(r0) */
3405    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3406       micro_exp2(&r[2], &r[1]);       /* r2 = 2 ^ r1 */
3407       store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3408    }
3409    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3410       micro_sub(&r[2], &r[0], &r[1]); /* r2 = r0 - r1 */
3411       store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3412    }
3413    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3414       micro_exp2(&r[2], &r[0]);       /* r2 = 2 ^ r0 */
3415       store_dest(mach, &r[2], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3416    }
3417    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3418       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3419    }
3420 }
3421 
3422 static void
exec_lit(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3423 exec_lit(struct tgsi_exec_machine *mach,
3424          const struct tgsi_full_instruction *inst)
3425 {
3426    union tgsi_exec_channel r[3];
3427    union tgsi_exec_channel d[3];
3428 
3429    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_YZ) {
3430       fetch_source(mach, &r[0], &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3431       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Z) {
3432          fetch_source(mach, &r[1], &inst->Src[0], TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3433          micro_max(&r[1], &r[1], &ZeroVec);
3434 
3435          fetch_source(mach, &r[2], &inst->Src[0], TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3436          micro_min(&r[2], &r[2], &P128Vec);
3437          micro_max(&r[2], &r[2], &M128Vec);
3438          micro_pow(&r[1], &r[1], &r[2]);
3439          micro_lt(&d[TGSI_CHAN_Z], &ZeroVec, &r[0], &r[1], &ZeroVec);
3440          store_dest(mach, &d[TGSI_CHAN_Z], &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_EXEC_DATA_FLOAT);
3441       }
3442       if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_Y) {
3443          micro_max(&d[TGSI_CHAN_Y], &r[0], &ZeroVec);
3444          store_dest(mach, &d[TGSI_CHAN_Y], &inst->Dst[0], inst, TGSI_CHAN_Y, TGSI_EXEC_DATA_FLOAT);
3445       }
3446    }
3447    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_X) {
3448       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_EXEC_DATA_FLOAT);
3449    }
3450 
3451    if (inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_W) {
3452       store_dest(mach, &OneVec, &inst->Dst[0], inst, TGSI_CHAN_W, TGSI_EXEC_DATA_FLOAT);
3453    }
3454 }
3455 
3456 static void
exec_break(struct tgsi_exec_machine * mach)3457 exec_break(struct tgsi_exec_machine *mach)
3458 {
3459    if (mach->BreakType == TGSI_EXEC_BREAK_INSIDE_LOOP) {
3460       /* turn off loop channels for each enabled exec channel */
3461       mach->LoopMask &= ~mach->ExecMask;
3462       /* Todo: if mach->LoopMask == 0, jump to end of loop */
3463       UPDATE_EXEC_MASK(mach);
3464    } else {
3465       assert(mach->BreakType == TGSI_EXEC_BREAK_INSIDE_SWITCH);
3466 
3467       mach->Switch.mask = 0x0;
3468 
3469       UPDATE_EXEC_MASK(mach);
3470    }
3471 }
3472 
3473 static void
exec_switch(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3474 exec_switch(struct tgsi_exec_machine *mach,
3475             const struct tgsi_full_instruction *inst)
3476 {
3477    assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
3478    assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
3479 
3480    mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
3481    fetch_source(mach, &mach->Switch.selector, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3482    mach->Switch.mask = 0x0;
3483    mach->Switch.defaultMask = 0x0;
3484 
3485    mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
3486    mach->BreakType = TGSI_EXEC_BREAK_INSIDE_SWITCH;
3487 
3488    UPDATE_EXEC_MASK(mach);
3489 }
3490 
3491 static void
exec_case(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3492 exec_case(struct tgsi_exec_machine *mach,
3493           const struct tgsi_full_instruction *inst)
3494 {
3495    uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3496    union tgsi_exec_channel src;
3497    uint mask = 0;
3498 
3499    fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_EXEC_DATA_UINT);
3500 
3501    if (mach->Switch.selector.u[0] == src.u[0]) {
3502       mask |= 0x1;
3503    }
3504    if (mach->Switch.selector.u[1] == src.u[1]) {
3505       mask |= 0x2;
3506    }
3507    if (mach->Switch.selector.u[2] == src.u[2]) {
3508       mask |= 0x4;
3509    }
3510    if (mach->Switch.selector.u[3] == src.u[3]) {
3511       mask |= 0x8;
3512    }
3513 
3514    mach->Switch.defaultMask |= mask;
3515 
3516    mach->Switch.mask |= mask & prevMask;
3517 
3518    UPDATE_EXEC_MASK(mach);
3519 }
3520 
3521 /* FIXME: this will only work if default is last */
3522 static void
exec_default(struct tgsi_exec_machine * mach)3523 exec_default(struct tgsi_exec_machine *mach)
3524 {
3525    uint prevMask = mach->SwitchStack[mach->SwitchStackTop - 1].mask;
3526 
3527    mach->Switch.mask |= ~mach->Switch.defaultMask & prevMask;
3528 
3529    UPDATE_EXEC_MASK(mach);
3530 }
3531 
3532 static void
exec_endswitch(struct tgsi_exec_machine * mach)3533 exec_endswitch(struct tgsi_exec_machine *mach)
3534 {
3535    mach->Switch = mach->SwitchStack[--mach->SwitchStackTop];
3536    mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
3537 
3538    UPDATE_EXEC_MASK(mach);
3539 }
3540 
3541 typedef void (* micro_dop)(union tgsi_double_channel *dst,
3542                            const union tgsi_double_channel *src);
3543 
3544 typedef void (* micro_dop_sop)(union tgsi_double_channel *dst,
3545                                const union tgsi_double_channel *src0,
3546                                union tgsi_exec_channel *src1);
3547 
3548 typedef void (* micro_dop_s)(union tgsi_double_channel *dst,
3549                              const union tgsi_exec_channel *src);
3550 
3551 typedef void (* micro_sop_d)(union tgsi_exec_channel *dst,
3552                              const union tgsi_double_channel *src);
3553 
3554 static void
fetch_double_channel(struct tgsi_exec_machine * mach,union tgsi_double_channel * chan,const struct tgsi_full_src_register * reg,uint chan_0,uint chan_1)3555 fetch_double_channel(struct tgsi_exec_machine *mach,
3556                      union tgsi_double_channel *chan,
3557                      const struct tgsi_full_src_register *reg,
3558                      uint chan_0,
3559                      uint chan_1)
3560 {
3561    union tgsi_exec_channel src[2];
3562    uint i;
3563 
3564    fetch_source_d(mach, &src[0], reg, chan_0, TGSI_EXEC_DATA_UINT);
3565    fetch_source_d(mach, &src[1], reg, chan_1, TGSI_EXEC_DATA_UINT);
3566 
3567    for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3568       chan->u[i][0] = src[0].u[i];
3569       chan->u[i][1] = src[1].u[i];
3570    }
3571    if (reg->Register.Absolute) {
3572       micro_dabs(chan, chan);
3573    }
3574    if (reg->Register.Negate) {
3575       micro_dneg(chan, chan);
3576    }
3577 }
3578 
3579 static void
store_double_channel(struct tgsi_exec_machine * mach,const union tgsi_double_channel * chan,const struct tgsi_full_dst_register * reg,const struct tgsi_full_instruction * inst,uint chan_0,uint chan_1)3580 store_double_channel(struct tgsi_exec_machine *mach,
3581                      const union tgsi_double_channel *chan,
3582                      const struct tgsi_full_dst_register *reg,
3583                      const struct tgsi_full_instruction *inst,
3584                      uint chan_0,
3585                      uint chan_1)
3586 {
3587    union tgsi_exec_channel dst[2];
3588    uint i;
3589    union tgsi_double_channel temp;
3590    const uint execmask = mach->ExecMask;
3591 
3592    if (!inst->Instruction.Saturate) {
3593       for (i = 0; i < TGSI_QUAD_SIZE; i++)
3594          if (execmask & (1 << i)) {
3595             dst[0].u[i] = chan->u[i][0];
3596             dst[1].u[i] = chan->u[i][1];
3597          }
3598    }
3599    else {
3600       for (i = 0; i < TGSI_QUAD_SIZE; i++)
3601          if (execmask & (1 << i)) {
3602             if (chan->d[i] < 0.0)
3603                temp.d[i] = 0.0;
3604             else if (chan->d[i] > 1.0)
3605                temp.d[i] = 1.0;
3606             else
3607                temp.d[i] = chan->d[i];
3608 
3609             dst[0].u[i] = temp.u[i][0];
3610             dst[1].u[i] = temp.u[i][1];
3611          }
3612    }
3613 
3614    store_dest_double(mach, &dst[0], reg, inst, chan_0, TGSI_EXEC_DATA_UINT);
3615    if (chan_1 != -1)
3616       store_dest_double(mach, &dst[1], reg, inst, chan_1, TGSI_EXEC_DATA_UINT);
3617 }
3618 
3619 static void
exec_double_unary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_dop op)3620 exec_double_unary(struct tgsi_exec_machine *mach,
3621                   const struct tgsi_full_instruction *inst,
3622                   micro_dop op)
3623 {
3624    union tgsi_double_channel src;
3625    union tgsi_double_channel dst;
3626 
3627    if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3628       fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3629       op(&dst, &src);
3630       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3631    }
3632    if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3633       fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3634       op(&dst, &src);
3635       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3636    }
3637 }
3638 
3639 static void
exec_double_binary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_dop op,enum tgsi_exec_datatype dst_datatype)3640 exec_double_binary(struct tgsi_exec_machine *mach,
3641                    const struct tgsi_full_instruction *inst,
3642                    micro_dop op,
3643                    enum tgsi_exec_datatype dst_datatype)
3644 {
3645    union tgsi_double_channel src[2];
3646    union tgsi_double_channel dst;
3647    int first_dest_chan, second_dest_chan;
3648    int wmask;
3649 
3650    wmask = inst->Dst[0].Register.WriteMask;
3651    /* these are & because of the way DSLT etc store their destinations */
3652    if (wmask & TGSI_WRITEMASK_XY) {
3653       first_dest_chan = TGSI_CHAN_X;
3654       second_dest_chan = TGSI_CHAN_Y;
3655       if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3656          first_dest_chan = (wmask & TGSI_WRITEMASK_X) ? TGSI_CHAN_X : TGSI_CHAN_Y;
3657          second_dest_chan = -1;
3658       }
3659 
3660       fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3661       fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3662       op(&dst, src);
3663       store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3664    }
3665 
3666    if (wmask & TGSI_WRITEMASK_ZW) {
3667       first_dest_chan = TGSI_CHAN_Z;
3668       second_dest_chan = TGSI_CHAN_W;
3669       if (dst_datatype == TGSI_EXEC_DATA_UINT) {
3670          first_dest_chan = (wmask & TGSI_WRITEMASK_Z) ? TGSI_CHAN_Z : TGSI_CHAN_W;
3671          second_dest_chan = -1;
3672       }
3673 
3674       fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3675       fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3676       op(&dst, src);
3677       store_double_channel(mach, &dst, &inst->Dst[0], inst, first_dest_chan, second_dest_chan);
3678    }
3679 }
3680 
3681 static void
exec_double_trinary(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_dop op)3682 exec_double_trinary(struct tgsi_exec_machine *mach,
3683                     const struct tgsi_full_instruction *inst,
3684                     micro_dop op)
3685 {
3686    union tgsi_double_channel src[3];
3687    union tgsi_double_channel dst;
3688 
3689    if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
3690       fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3691       fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_X, TGSI_CHAN_Y);
3692       fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_X, TGSI_CHAN_Y);
3693       op(&dst, src);
3694       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3695    }
3696    if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
3697       fetch_double_channel(mach, &src[0], &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3698       fetch_double_channel(mach, &src[1], &inst->Src[1], TGSI_CHAN_Z, TGSI_CHAN_W);
3699       fetch_double_channel(mach, &src[2], &inst->Src[2], TGSI_CHAN_Z, TGSI_CHAN_W);
3700       op(&dst, src);
3701       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3702    }
3703 }
3704 
3705 static void
exec_dldexp(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3706 exec_dldexp(struct tgsi_exec_machine *mach,
3707             const struct tgsi_full_instruction *inst)
3708 {
3709    union tgsi_double_channel src0;
3710    union tgsi_exec_channel src1;
3711    union tgsi_double_channel dst;
3712    int wmask;
3713 
3714    wmask = inst->Dst[0].Register.WriteMask;
3715    if (wmask & TGSI_WRITEMASK_XY) {
3716       fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3717       fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3718       micro_dldexp(&dst, &src0, &src1);
3719       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3720    }
3721 
3722    if (wmask & TGSI_WRITEMASK_ZW) {
3723       fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3724       fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3725       micro_dldexp(&dst, &src0, &src1);
3726       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3727    }
3728 }
3729 
3730 static void
exec_dfracexp(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3731 exec_dfracexp(struct tgsi_exec_machine *mach,
3732               const struct tgsi_full_instruction *inst)
3733 {
3734    union tgsi_double_channel src;
3735    union tgsi_double_channel dst;
3736    union tgsi_exec_channel dst_exp;
3737 
3738    fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3739    micro_dfracexp(&dst, &dst_exp, &src);
3740    if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY)
3741       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3742    if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW)
3743       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3744    for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3745       if (inst->Dst[1].Register.WriteMask & (1 << chan))
3746          store_dest(mach, &dst_exp, &inst->Dst[1], inst, chan, TGSI_EXEC_DATA_INT);
3747    }
3748 }
3749 
3750 static void
exec_arg0_64_arg1_32(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_dop_sop op)3751 exec_arg0_64_arg1_32(struct tgsi_exec_machine *mach,
3752             const struct tgsi_full_instruction *inst,
3753             micro_dop_sop op)
3754 {
3755    union tgsi_double_channel src0;
3756    union tgsi_exec_channel src1;
3757    union tgsi_double_channel dst;
3758    int wmask;
3759 
3760    wmask = inst->Dst[0].Register.WriteMask;
3761    if (wmask & TGSI_WRITEMASK_XY) {
3762       fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
3763       fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_X, TGSI_EXEC_DATA_INT);
3764       op(&dst, &src0, &src1);
3765       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
3766    }
3767 
3768    if (wmask & TGSI_WRITEMASK_ZW) {
3769       fetch_double_channel(mach, &src0, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
3770       fetch_source(mach, &src1, &inst->Src[1], TGSI_CHAN_Z, TGSI_EXEC_DATA_INT);
3771       op(&dst, &src0, &src1);
3772       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
3773    }
3774 }
3775 
3776 static int
get_image_coord_dim(unsigned tgsi_tex)3777 get_image_coord_dim(unsigned tgsi_tex)
3778 {
3779    int dim;
3780    switch (tgsi_tex) {
3781    case TGSI_TEXTURE_BUFFER:
3782    case TGSI_TEXTURE_1D:
3783       dim = 1;
3784       break;
3785    case TGSI_TEXTURE_2D:
3786    case TGSI_TEXTURE_RECT:
3787    case TGSI_TEXTURE_1D_ARRAY:
3788    case TGSI_TEXTURE_2D_MSAA:
3789       dim = 2;
3790       break;
3791    case TGSI_TEXTURE_3D:
3792    case TGSI_TEXTURE_CUBE:
3793    case TGSI_TEXTURE_2D_ARRAY:
3794    case TGSI_TEXTURE_2D_ARRAY_MSAA:
3795    case TGSI_TEXTURE_CUBE_ARRAY:
3796       dim = 3;
3797       break;
3798    default:
3799       assert(!"unknown texture target");
3800       dim = 0;
3801       break;
3802    }
3803 
3804    return dim;
3805 }
3806 
3807 static int
get_image_coord_sample(unsigned tgsi_tex)3808 get_image_coord_sample(unsigned tgsi_tex)
3809 {
3810    int sample = 0;
3811    switch (tgsi_tex) {
3812    case TGSI_TEXTURE_2D_MSAA:
3813       sample = 3;
3814       break;
3815    case TGSI_TEXTURE_2D_ARRAY_MSAA:
3816       sample = 4;
3817       break;
3818    default:
3819       break;
3820    }
3821    return sample;
3822 }
3823 
3824 static void
exec_load_img(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3825 exec_load_img(struct tgsi_exec_machine *mach,
3826               const struct tgsi_full_instruction *inst)
3827 {
3828    union tgsi_exec_channel r[4], sample_r;
3829    uint unit;
3830    int sample;
3831    int i, j;
3832    int dim;
3833    uint chan;
3834    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3835    struct tgsi_image_params params;
3836    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3837 
3838    unit = fetch_sampler_unit(mach, inst, 0);
3839    dim = get_image_coord_dim(inst->Memory.Texture);
3840    sample = get_image_coord_sample(inst->Memory.Texture);
3841    assert(dim <= 3);
3842 
3843    params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3844    params.unit = unit;
3845    params.tgsi_tex_instr = inst->Memory.Texture;
3846    params.format = inst->Memory.Format;
3847 
3848    for (i = 0; i < dim; i++) {
3849       IFETCH(&r[i], 1, TGSI_CHAN_X + i);
3850    }
3851 
3852    if (sample)
3853       IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
3854 
3855    mach->Image->load(mach->Image, &params,
3856                      r[0].i, r[1].i, r[2].i, sample_r.i,
3857                      rgba);
3858    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3859       r[0].f[j] = rgba[0][j];
3860       r[1].f[j] = rgba[1][j];
3861       r[2].f[j] = rgba[2][j];
3862       r[3].f[j] = rgba[3][j];
3863    }
3864    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3865       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3866          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3867       }
3868    }
3869 }
3870 
3871 static void
exec_load_buf(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3872 exec_load_buf(struct tgsi_exec_machine *mach,
3873               const struct tgsi_full_instruction *inst)
3874 {
3875    union tgsi_exec_channel r[4];
3876    uint unit;
3877    int j;
3878    uint chan;
3879    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3880    struct tgsi_buffer_params params;
3881    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3882 
3883    unit = fetch_sampler_unit(mach, inst, 0);
3884 
3885    params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3886    params.unit = unit;
3887    IFETCH(&r[0], 1, TGSI_CHAN_X);
3888 
3889    mach->Buffer->load(mach->Buffer, &params,
3890                       r[0].i, rgba);
3891    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3892       r[0].f[j] = rgba[0][j];
3893       r[1].f[j] = rgba[1][j];
3894       r[2].f[j] = rgba[2][j];
3895       r[3].f[j] = rgba[3][j];
3896    }
3897    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3898       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3899          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3900       }
3901    }
3902 }
3903 
3904 static void
exec_load_mem(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3905 exec_load_mem(struct tgsi_exec_machine *mach,
3906               const struct tgsi_full_instruction *inst)
3907 {
3908    union tgsi_exec_channel r[4];
3909    uint chan;
3910    char *ptr = mach->LocalMem;
3911    uint32_t offset;
3912    int j;
3913 
3914    IFETCH(&r[0], 1, TGSI_CHAN_X);
3915    if (r[0].u[0] >= mach->LocalMemSize)
3916       return;
3917 
3918    offset = r[0].u[0];
3919    ptr += offset;
3920 
3921    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3922       for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3923          if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3924             memcpy(&r[chan].u[j], ptr + (4 * chan), 4);
3925          }
3926       }
3927    }
3928 
3929    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
3930       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
3931          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
3932       }
3933    }
3934 }
3935 
3936 static void
exec_load(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3937 exec_load(struct tgsi_exec_machine *mach,
3938           const struct tgsi_full_instruction *inst)
3939 {
3940    if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
3941       exec_load_img(mach, inst);
3942    else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
3943       exec_load_buf(mach, inst);
3944    else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
3945       exec_load_mem(mach, inst);
3946 }
3947 
3948 static void
exec_store_img(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3949 exec_store_img(struct tgsi_exec_machine *mach,
3950                const struct tgsi_full_instruction *inst)
3951 {
3952    union tgsi_exec_channel r[3], sample_r;
3953    union tgsi_exec_channel value[4];
3954    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3955    struct tgsi_image_params params;
3956    int dim;
3957    int sample;
3958    int i, j;
3959    uint unit;
3960    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
3961    unit = inst->Dst[0].Register.Index;
3962    dim = get_image_coord_dim(inst->Memory.Texture);
3963    sample = get_image_coord_sample(inst->Memory.Texture);
3964    assert(dim <= 3);
3965 
3966    params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
3967    params.unit = unit;
3968    params.tgsi_tex_instr = inst->Memory.Texture;
3969    params.format = inst->Memory.Format;
3970 
3971    for (i = 0; i < dim; i++) {
3972       IFETCH(&r[i], 0, TGSI_CHAN_X + i);
3973    }
3974 
3975    for (i = 0; i < 4; i++) {
3976       FETCH(&value[i], 1, TGSI_CHAN_X + i);
3977    }
3978    if (sample)
3979       IFETCH(&sample_r, 0, TGSI_CHAN_X + sample);
3980 
3981    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3982       rgba[0][j] = value[0].f[j];
3983       rgba[1][j] = value[1].f[j];
3984       rgba[2][j] = value[2].f[j];
3985       rgba[3][j] = value[3].f[j];
3986    }
3987 
3988    mach->Image->store(mach->Image, &params,
3989                       r[0].i, r[1].i, r[2].i, sample_r.i,
3990                       rgba);
3991 }
3992 
3993 static void
exec_store_buf(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)3994 exec_store_buf(struct tgsi_exec_machine *mach,
3995                const struct tgsi_full_instruction *inst)
3996 {
3997    union tgsi_exec_channel r[3];
3998    union tgsi_exec_channel value[4];
3999    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4000    struct tgsi_buffer_params params;
4001    int i, j;
4002    uint unit;
4003    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4004 
4005    unit = inst->Dst[0].Register.Index;
4006 
4007    params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4008    params.unit = unit;
4009    params.writemask = inst->Dst[0].Register.WriteMask;
4010 
4011    IFETCH(&r[0], 0, TGSI_CHAN_X);
4012    for (i = 0; i < 4; i++) {
4013       FETCH(&value[i], 1, TGSI_CHAN_X + i);
4014    }
4015 
4016    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4017       rgba[0][j] = value[0].f[j];
4018       rgba[1][j] = value[1].f[j];
4019       rgba[2][j] = value[2].f[j];
4020       rgba[3][j] = value[3].f[j];
4021    }
4022 
4023    mach->Buffer->store(mach->Buffer, &params,
4024                       r[0].i,
4025                       rgba);
4026 }
4027 
4028 static void
exec_store_mem(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)4029 exec_store_mem(struct tgsi_exec_machine *mach,
4030                const struct tgsi_full_instruction *inst)
4031 {
4032    union tgsi_exec_channel r[3];
4033    union tgsi_exec_channel value[4];
4034    uint i, chan;
4035    char *ptr = mach->LocalMem;
4036    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4037    int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4038 
4039    IFETCH(&r[0], 0, TGSI_CHAN_X);
4040 
4041    for (i = 0; i < 4; i++) {
4042       FETCH(&value[i], 1, TGSI_CHAN_X + i);
4043    }
4044 
4045    if (r[0].u[0] >= mach->LocalMemSize)
4046       return;
4047    ptr += r[0].u[0];
4048 
4049    for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4050       if (execmask & (1 << i)) {
4051          for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4052             if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4053                memcpy(ptr + (chan * 4), &value[chan].u[0], 4);
4054             }
4055          }
4056       }
4057    }
4058 }
4059 
4060 static void
exec_store(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)4061 exec_store(struct tgsi_exec_machine *mach,
4062            const struct tgsi_full_instruction *inst)
4063 {
4064    if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE)
4065       exec_store_img(mach, inst);
4066    else if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER)
4067       exec_store_buf(mach, inst);
4068    else if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY)
4069       exec_store_mem(mach, inst);
4070 }
4071 
4072 static void
exec_atomop_img(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)4073 exec_atomop_img(struct tgsi_exec_machine *mach,
4074                 const struct tgsi_full_instruction *inst)
4075 {
4076    union tgsi_exec_channel r[4], sample_r;
4077    union tgsi_exec_channel value[4], value2[4];
4078    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4079    float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4080    struct tgsi_image_params params;
4081    int dim;
4082    int sample;
4083    int i, j;
4084    uint unit, chan;
4085    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4086    unit = fetch_sampler_unit(mach, inst, 0);
4087    dim = get_image_coord_dim(inst->Memory.Texture);
4088    sample = get_image_coord_sample(inst->Memory.Texture);
4089    assert(dim <= 3);
4090 
4091    params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4092    params.unit = unit;
4093    params.tgsi_tex_instr = inst->Memory.Texture;
4094    params.format = inst->Memory.Format;
4095 
4096    for (i = 0; i < dim; i++) {
4097       IFETCH(&r[i], 1, TGSI_CHAN_X + i);
4098    }
4099 
4100    for (i = 0; i < 4; i++) {
4101       FETCH(&value[i], 2, TGSI_CHAN_X + i);
4102       if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4103          FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4104    }
4105    if (sample)
4106       IFETCH(&sample_r, 1, TGSI_CHAN_X + sample);
4107 
4108    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4109       rgba[0][j] = value[0].f[j];
4110       rgba[1][j] = value[1].f[j];
4111       rgba[2][j] = value[2].f[j];
4112       rgba[3][j] = value[3].f[j];
4113    }
4114    if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4115       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4116          rgba2[0][j] = value2[0].f[j];
4117          rgba2[1][j] = value2[1].f[j];
4118          rgba2[2][j] = value2[2].f[j];
4119          rgba2[3][j] = value2[3].f[j];
4120       }
4121    }
4122 
4123    mach->Image->op(mach->Image, &params, inst->Instruction.Opcode,
4124                    r[0].i, r[1].i, r[2].i, sample_r.i,
4125                    rgba, rgba2);
4126 
4127    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4128       r[0].f[j] = rgba[0][j];
4129       r[1].f[j] = rgba[1][j];
4130       r[2].f[j] = rgba[2][j];
4131       r[3].f[j] = rgba[3][j];
4132    }
4133    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4134       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4135          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4136       }
4137    }
4138 }
4139 
4140 static void
exec_atomop_buf(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)4141 exec_atomop_buf(struct tgsi_exec_machine *mach,
4142                 const struct tgsi_full_instruction *inst)
4143 {
4144    union tgsi_exec_channel r[4];
4145    union tgsi_exec_channel value[4], value2[4];
4146    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4147    float rgba2[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
4148    struct tgsi_buffer_params params;
4149    int i, j;
4150    uint unit, chan;
4151    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4152 
4153    unit = fetch_sampler_unit(mach, inst, 0);
4154 
4155    params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4156    params.unit = unit;
4157    params.writemask = inst->Dst[0].Register.WriteMask;
4158 
4159    IFETCH(&r[0], 1, TGSI_CHAN_X);
4160 
4161    for (i = 0; i < 4; i++) {
4162       FETCH(&value[i], 2, TGSI_CHAN_X + i);
4163       if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4164          FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4165    }
4166 
4167    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4168       rgba[0][j] = value[0].f[j];
4169       rgba[1][j] = value[1].f[j];
4170       rgba[2][j] = value[2].f[j];
4171       rgba[3][j] = value[3].f[j];
4172    }
4173    if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
4174       for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4175          rgba2[0][j] = value2[0].f[j];
4176          rgba2[1][j] = value2[1].f[j];
4177          rgba2[2][j] = value2[2].f[j];
4178          rgba2[3][j] = value2[3].f[j];
4179       }
4180    }
4181 
4182    mach->Buffer->op(mach->Buffer, &params, inst->Instruction.Opcode,
4183                    r[0].i,
4184                    rgba, rgba2);
4185 
4186    for (j = 0; j < TGSI_QUAD_SIZE; j++) {
4187       r[0].f[j] = rgba[0][j];
4188       r[1].f[j] = rgba[1][j];
4189       r[2].f[j] = rgba[2][j];
4190       r[3].f[j] = rgba[3][j];
4191    }
4192    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4193       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4194          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4195       }
4196    }
4197 }
4198 
4199 static void
exec_atomop_mem(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)4200 exec_atomop_mem(struct tgsi_exec_machine *mach,
4201                 const struct tgsi_full_instruction *inst)
4202 {
4203    union tgsi_exec_channel r[4];
4204    union tgsi_exec_channel value[4], value2[4];
4205    char *ptr = mach->LocalMem;
4206    uint32_t val;
4207    uint chan, i;
4208    uint32_t offset;
4209    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4210    int execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4211    IFETCH(&r[0], 1, TGSI_CHAN_X);
4212 
4213    if (r[0].u[0] >= mach->LocalMemSize)
4214       return;
4215 
4216    offset = r[0].u[0];
4217    ptr += offset;
4218    for (i = 0; i < 4; i++) {
4219       FETCH(&value[i], 2, TGSI_CHAN_X + i);
4220       if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
4221          FETCH(&value2[i], 3, TGSI_CHAN_X + i);
4222    }
4223 
4224    memcpy(&r[0].u[0], ptr, 4);
4225    val = r[0].u[0];
4226    switch (inst->Instruction.Opcode) {
4227    case TGSI_OPCODE_ATOMUADD:
4228       val += value[0].u[0];
4229       break;
4230    case TGSI_OPCODE_ATOMXOR:
4231       val ^= value[0].u[0];
4232       break;
4233    case TGSI_OPCODE_ATOMOR:
4234       val |= value[0].u[0];
4235       break;
4236    case TGSI_OPCODE_ATOMAND:
4237       val &= value[0].u[0];
4238       break;
4239    case TGSI_OPCODE_ATOMUMIN:
4240       val = MIN2(val, value[0].u[0]);
4241       break;
4242    case TGSI_OPCODE_ATOMUMAX:
4243       val = MAX2(val, value[0].u[0]);
4244       break;
4245    case TGSI_OPCODE_ATOMIMIN:
4246       val = MIN2(r[0].i[0], value[0].i[0]);
4247       break;
4248    case TGSI_OPCODE_ATOMIMAX:
4249       val = MAX2(r[0].i[0], value[0].i[0]);
4250       break;
4251    case TGSI_OPCODE_ATOMXCHG:
4252       val = value[0].i[0];
4253       break;
4254    case TGSI_OPCODE_ATOMCAS:
4255       if (val == value[0].u[0])
4256          val = value2[0].u[0];
4257       break;
4258    default:
4259       break;
4260    }
4261    for (i = 0; i < TGSI_QUAD_SIZE; i++)
4262       if (execmask & (1 << i))
4263          memcpy(ptr, &val, 4);
4264 
4265    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4266       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4267          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan, TGSI_EXEC_DATA_FLOAT);
4268       }
4269    }
4270 }
4271 
4272 static void
exec_atomop(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)4273 exec_atomop(struct tgsi_exec_machine *mach,
4274             const struct tgsi_full_instruction *inst)
4275 {
4276    if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4277       exec_atomop_img(mach, inst);
4278    else if (inst->Src[0].Register.File == TGSI_FILE_BUFFER)
4279       exec_atomop_buf(mach, inst);
4280    else if (inst->Src[0].Register.File == TGSI_FILE_MEMORY)
4281       exec_atomop_mem(mach, inst);
4282 }
4283 
4284 static void
exec_resq_img(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)4285 exec_resq_img(struct tgsi_exec_machine *mach,
4286               const struct tgsi_full_instruction *inst)
4287 {
4288    int result[4];
4289    union tgsi_exec_channel r[4];
4290    uint unit;
4291    int i, chan, j;
4292    struct tgsi_image_params params;
4293    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4294 
4295    unit = fetch_sampler_unit(mach, inst, 0);
4296 
4297    params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4298    params.unit = unit;
4299    params.tgsi_tex_instr = inst->Memory.Texture;
4300    params.format = inst->Memory.Format;
4301 
4302    mach->Image->get_dims(mach->Image, &params, result);
4303 
4304    for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4305       for (j = 0; j < 4; j++) {
4306          r[j].i[i] = result[j];
4307       }
4308    }
4309 
4310    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4311       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4312          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4313                     TGSI_EXEC_DATA_INT);
4314       }
4315    }
4316 }
4317 
4318 static void
exec_resq_buf(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)4319 exec_resq_buf(struct tgsi_exec_machine *mach,
4320               const struct tgsi_full_instruction *inst)
4321 {
4322    int result;
4323    union tgsi_exec_channel r[4];
4324    uint unit;
4325    int i, chan;
4326    struct tgsi_buffer_params params;
4327    int kilmask = mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
4328 
4329    unit = fetch_sampler_unit(mach, inst, 0);
4330 
4331    params.execmask = mach->ExecMask & mach->NonHelperMask & ~kilmask;
4332    params.unit = unit;
4333 
4334    mach->Buffer->get_dims(mach->Buffer, &params, &result);
4335 
4336    for (i = 0; i < TGSI_QUAD_SIZE; i++) {
4337       r[0].i[i] = result;
4338    }
4339 
4340    for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
4341       if (inst->Dst[0].Register.WriteMask & (1 << chan)) {
4342          store_dest(mach, &r[chan], &inst->Dst[0], inst, chan,
4343                     TGSI_EXEC_DATA_INT);
4344       }
4345    }
4346 }
4347 
4348 static void
exec_resq(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst)4349 exec_resq(struct tgsi_exec_machine *mach,
4350           const struct tgsi_full_instruction *inst)
4351 {
4352    if (inst->Src[0].Register.File == TGSI_FILE_IMAGE)
4353       exec_resq_img(mach, inst);
4354    else
4355       exec_resq_buf(mach, inst);
4356 }
4357 
4358 static void
micro_f2u64(union tgsi_double_channel * dst,const union tgsi_exec_channel * src)4359 micro_f2u64(union tgsi_double_channel *dst,
4360             const union tgsi_exec_channel *src)
4361 {
4362    dst->u64[0] = (uint64_t)src->f[0];
4363    dst->u64[1] = (uint64_t)src->f[1];
4364    dst->u64[2] = (uint64_t)src->f[2];
4365    dst->u64[3] = (uint64_t)src->f[3];
4366 }
4367 
4368 static void
micro_f2i64(union tgsi_double_channel * dst,const union tgsi_exec_channel * src)4369 micro_f2i64(union tgsi_double_channel *dst,
4370             const union tgsi_exec_channel *src)
4371 {
4372    dst->i64[0] = (int64_t)src->f[0];
4373    dst->i64[1] = (int64_t)src->f[1];
4374    dst->i64[2] = (int64_t)src->f[2];
4375    dst->i64[3] = (int64_t)src->f[3];
4376 }
4377 
4378 static void
micro_u2i64(union tgsi_double_channel * dst,const union tgsi_exec_channel * src)4379 micro_u2i64(union tgsi_double_channel *dst,
4380             const union tgsi_exec_channel *src)
4381 {
4382    dst->u64[0] = (uint64_t)src->u[0];
4383    dst->u64[1] = (uint64_t)src->u[1];
4384    dst->u64[2] = (uint64_t)src->u[2];
4385    dst->u64[3] = (uint64_t)src->u[3];
4386 }
4387 
4388 static void
micro_i2i64(union tgsi_double_channel * dst,const union tgsi_exec_channel * src)4389 micro_i2i64(union tgsi_double_channel *dst,
4390             const union tgsi_exec_channel *src)
4391 {
4392    dst->i64[0] = (int64_t)src->i[0];
4393    dst->i64[1] = (int64_t)src->i[1];
4394    dst->i64[2] = (int64_t)src->i[2];
4395    dst->i64[3] = (int64_t)src->i[3];
4396 }
4397 
4398 static void
micro_d2u64(union tgsi_double_channel * dst,const union tgsi_double_channel * src)4399 micro_d2u64(union tgsi_double_channel *dst,
4400            const union tgsi_double_channel *src)
4401 {
4402    dst->u64[0] = (uint64_t)src->d[0];
4403    dst->u64[1] = (uint64_t)src->d[1];
4404    dst->u64[2] = (uint64_t)src->d[2];
4405    dst->u64[3] = (uint64_t)src->d[3];
4406 }
4407 
4408 static void
micro_d2i64(union tgsi_double_channel * dst,const union tgsi_double_channel * src)4409 micro_d2i64(union tgsi_double_channel *dst,
4410            const union tgsi_double_channel *src)
4411 {
4412    dst->i64[0] = (int64_t)src->d[0];
4413    dst->i64[1] = (int64_t)src->d[1];
4414    dst->i64[2] = (int64_t)src->d[2];
4415    dst->i64[3] = (int64_t)src->d[3];
4416 }
4417 
4418 static void
micro_u642d(union tgsi_double_channel * dst,const union tgsi_double_channel * src)4419 micro_u642d(union tgsi_double_channel *dst,
4420            const union tgsi_double_channel *src)
4421 {
4422    dst->d[0] = (double)src->u64[0];
4423    dst->d[1] = (double)src->u64[1];
4424    dst->d[2] = (double)src->u64[2];
4425    dst->d[3] = (double)src->u64[3];
4426 }
4427 
4428 static void
micro_i642d(union tgsi_double_channel * dst,const union tgsi_double_channel * src)4429 micro_i642d(union tgsi_double_channel *dst,
4430            const union tgsi_double_channel *src)
4431 {
4432    dst->d[0] = (double)src->i64[0];
4433    dst->d[1] = (double)src->i64[1];
4434    dst->d[2] = (double)src->i64[2];
4435    dst->d[3] = (double)src->i64[3];
4436 }
4437 
4438 static void
micro_u642f(union tgsi_exec_channel * dst,const union tgsi_double_channel * src)4439 micro_u642f(union tgsi_exec_channel *dst,
4440             const union tgsi_double_channel *src)
4441 {
4442    dst->f[0] = (float)src->u64[0];
4443    dst->f[1] = (float)src->u64[1];
4444    dst->f[2] = (float)src->u64[2];
4445    dst->f[3] = (float)src->u64[3];
4446 }
4447 
4448 static void
micro_i642f(union tgsi_exec_channel * dst,const union tgsi_double_channel * src)4449 micro_i642f(union tgsi_exec_channel *dst,
4450             const union tgsi_double_channel *src)
4451 {
4452    dst->f[0] = (float)src->i64[0];
4453    dst->f[1] = (float)src->i64[1];
4454    dst->f[2] = (float)src->i64[2];
4455    dst->f[3] = (float)src->i64[3];
4456 }
4457 
4458 static void
exec_t_2_64(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_dop_s op,enum tgsi_exec_datatype src_datatype)4459 exec_t_2_64(struct tgsi_exec_machine *mach,
4460           const struct tgsi_full_instruction *inst,
4461           micro_dop_s op,
4462           enum tgsi_exec_datatype src_datatype)
4463 {
4464    union tgsi_exec_channel src;
4465    union tgsi_double_channel dst;
4466 
4467    if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_XY) == TGSI_WRITEMASK_XY) {
4468       fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_X, src_datatype);
4469       op(&dst, &src);
4470       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_X, TGSI_CHAN_Y);
4471    }
4472    if ((inst->Dst[0].Register.WriteMask & TGSI_WRITEMASK_ZW) == TGSI_WRITEMASK_ZW) {
4473       fetch_source(mach, &src, &inst->Src[0], TGSI_CHAN_Y, src_datatype);
4474       op(&dst, &src);
4475       store_double_channel(mach, &dst, &inst->Dst[0], inst, TGSI_CHAN_Z, TGSI_CHAN_W);
4476    }
4477 }
4478 
4479 static void
exec_64_2_t(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,micro_sop_d op,enum tgsi_exec_datatype dst_datatype)4480 exec_64_2_t(struct tgsi_exec_machine *mach,
4481             const struct tgsi_full_instruction *inst,
4482             micro_sop_d op,
4483             enum tgsi_exec_datatype dst_datatype)
4484 {
4485    union tgsi_double_channel src;
4486    union tgsi_exec_channel dst;
4487    int wm = inst->Dst[0].Register.WriteMask;
4488    int i;
4489    int bit;
4490    for (i = 0; i < 2; i++) {
4491       bit = ffs(wm);
4492       if (bit) {
4493          wm &= ~(1 << (bit - 1));
4494          if (i == 0)
4495             fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_X, TGSI_CHAN_Y);
4496          else
4497             fetch_double_channel(mach, &src, &inst->Src[0], TGSI_CHAN_Z, TGSI_CHAN_W);
4498          op(&dst, &src);
4499          store_dest(mach, &dst, &inst->Dst[0], inst, bit - 1, dst_datatype);
4500       }
4501    }
4502 }
4503 
4504 static void
micro_i2f(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4505 micro_i2f(union tgsi_exec_channel *dst,
4506           const union tgsi_exec_channel *src)
4507 {
4508    dst->f[0] = (float)src->i[0];
4509    dst->f[1] = (float)src->i[1];
4510    dst->f[2] = (float)src->i[2];
4511    dst->f[3] = (float)src->i[3];
4512 }
4513 
4514 static void
micro_not(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4515 micro_not(union tgsi_exec_channel *dst,
4516           const union tgsi_exec_channel *src)
4517 {
4518    dst->u[0] = ~src->u[0];
4519    dst->u[1] = ~src->u[1];
4520    dst->u[2] = ~src->u[2];
4521    dst->u[3] = ~src->u[3];
4522 }
4523 
4524 static void
micro_shl(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4525 micro_shl(union tgsi_exec_channel *dst,
4526           const union tgsi_exec_channel *src0,
4527           const union tgsi_exec_channel *src1)
4528 {
4529    unsigned masked_count;
4530    masked_count = src1->u[0] & 0x1f;
4531    dst->u[0] = src0->u[0] << masked_count;
4532    masked_count = src1->u[1] & 0x1f;
4533    dst->u[1] = src0->u[1] << masked_count;
4534    masked_count = src1->u[2] & 0x1f;
4535    dst->u[2] = src0->u[2] << masked_count;
4536    masked_count = src1->u[3] & 0x1f;
4537    dst->u[3] = src0->u[3] << masked_count;
4538 }
4539 
4540 static void
micro_and(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4541 micro_and(union tgsi_exec_channel *dst,
4542           const union tgsi_exec_channel *src0,
4543           const union tgsi_exec_channel *src1)
4544 {
4545    dst->u[0] = src0->u[0] & src1->u[0];
4546    dst->u[1] = src0->u[1] & src1->u[1];
4547    dst->u[2] = src0->u[2] & src1->u[2];
4548    dst->u[3] = src0->u[3] & src1->u[3];
4549 }
4550 
4551 static void
micro_or(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4552 micro_or(union tgsi_exec_channel *dst,
4553          const union tgsi_exec_channel *src0,
4554          const union tgsi_exec_channel *src1)
4555 {
4556    dst->u[0] = src0->u[0] | src1->u[0];
4557    dst->u[1] = src0->u[1] | src1->u[1];
4558    dst->u[2] = src0->u[2] | src1->u[2];
4559    dst->u[3] = src0->u[3] | src1->u[3];
4560 }
4561 
4562 static void
micro_xor(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4563 micro_xor(union tgsi_exec_channel *dst,
4564           const union tgsi_exec_channel *src0,
4565           const union tgsi_exec_channel *src1)
4566 {
4567    dst->u[0] = src0->u[0] ^ src1->u[0];
4568    dst->u[1] = src0->u[1] ^ src1->u[1];
4569    dst->u[2] = src0->u[2] ^ src1->u[2];
4570    dst->u[3] = src0->u[3] ^ src1->u[3];
4571 }
4572 
4573 static void
micro_mod(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4574 micro_mod(union tgsi_exec_channel *dst,
4575           const union tgsi_exec_channel *src0,
4576           const union tgsi_exec_channel *src1)
4577 {
4578    dst->i[0] = src1->i[0] ? src0->i[0] % src1->i[0] : ~0;
4579    dst->i[1] = src1->i[1] ? src0->i[1] % src1->i[1] : ~0;
4580    dst->i[2] = src1->i[2] ? src0->i[2] % src1->i[2] : ~0;
4581    dst->i[3] = src1->i[3] ? src0->i[3] % src1->i[3] : ~0;
4582 }
4583 
4584 static void
micro_f2i(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4585 micro_f2i(union tgsi_exec_channel *dst,
4586           const union tgsi_exec_channel *src)
4587 {
4588    dst->i[0] = (int)src->f[0];
4589    dst->i[1] = (int)src->f[1];
4590    dst->i[2] = (int)src->f[2];
4591    dst->i[3] = (int)src->f[3];
4592 }
4593 
4594 static void
micro_fseq(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4595 micro_fseq(union tgsi_exec_channel *dst,
4596            const union tgsi_exec_channel *src0,
4597            const union tgsi_exec_channel *src1)
4598 {
4599    dst->u[0] = src0->f[0] == src1->f[0] ? ~0 : 0;
4600    dst->u[1] = src0->f[1] == src1->f[1] ? ~0 : 0;
4601    dst->u[2] = src0->f[2] == src1->f[2] ? ~0 : 0;
4602    dst->u[3] = src0->f[3] == src1->f[3] ? ~0 : 0;
4603 }
4604 
4605 static void
micro_fsge(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4606 micro_fsge(union tgsi_exec_channel *dst,
4607            const union tgsi_exec_channel *src0,
4608            const union tgsi_exec_channel *src1)
4609 {
4610    dst->u[0] = src0->f[0] >= src1->f[0] ? ~0 : 0;
4611    dst->u[1] = src0->f[1] >= src1->f[1] ? ~0 : 0;
4612    dst->u[2] = src0->f[2] >= src1->f[2] ? ~0 : 0;
4613    dst->u[3] = src0->f[3] >= src1->f[3] ? ~0 : 0;
4614 }
4615 
4616 static void
micro_fslt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4617 micro_fslt(union tgsi_exec_channel *dst,
4618            const union tgsi_exec_channel *src0,
4619            const union tgsi_exec_channel *src1)
4620 {
4621    dst->u[0] = src0->f[0] < src1->f[0] ? ~0 : 0;
4622    dst->u[1] = src0->f[1] < src1->f[1] ? ~0 : 0;
4623    dst->u[2] = src0->f[2] < src1->f[2] ? ~0 : 0;
4624    dst->u[3] = src0->f[3] < src1->f[3] ? ~0 : 0;
4625 }
4626 
4627 static void
micro_fsne(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4628 micro_fsne(union tgsi_exec_channel *dst,
4629            const union tgsi_exec_channel *src0,
4630            const union tgsi_exec_channel *src1)
4631 {
4632    dst->u[0] = src0->f[0] != src1->f[0] ? ~0 : 0;
4633    dst->u[1] = src0->f[1] != src1->f[1] ? ~0 : 0;
4634    dst->u[2] = src0->f[2] != src1->f[2] ? ~0 : 0;
4635    dst->u[3] = src0->f[3] != src1->f[3] ? ~0 : 0;
4636 }
4637 
4638 static void
micro_idiv(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4639 micro_idiv(union tgsi_exec_channel *dst,
4640            const union tgsi_exec_channel *src0,
4641            const union tgsi_exec_channel *src1)
4642 {
4643    dst->i[0] = src1->i[0] ? src0->i[0] / src1->i[0] : 0;
4644    dst->i[1] = src1->i[1] ? src0->i[1] / src1->i[1] : 0;
4645    dst->i[2] = src1->i[2] ? src0->i[2] / src1->i[2] : 0;
4646    dst->i[3] = src1->i[3] ? src0->i[3] / src1->i[3] : 0;
4647 }
4648 
4649 static void
micro_imax(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4650 micro_imax(union tgsi_exec_channel *dst,
4651            const union tgsi_exec_channel *src0,
4652            const union tgsi_exec_channel *src1)
4653 {
4654    dst->i[0] = src0->i[0] > src1->i[0] ? src0->i[0] : src1->i[0];
4655    dst->i[1] = src0->i[1] > src1->i[1] ? src0->i[1] : src1->i[1];
4656    dst->i[2] = src0->i[2] > src1->i[2] ? src0->i[2] : src1->i[2];
4657    dst->i[3] = src0->i[3] > src1->i[3] ? src0->i[3] : src1->i[3];
4658 }
4659 
4660 static void
micro_imin(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4661 micro_imin(union tgsi_exec_channel *dst,
4662            const union tgsi_exec_channel *src0,
4663            const union tgsi_exec_channel *src1)
4664 {
4665    dst->i[0] = src0->i[0] < src1->i[0] ? src0->i[0] : src1->i[0];
4666    dst->i[1] = src0->i[1] < src1->i[1] ? src0->i[1] : src1->i[1];
4667    dst->i[2] = src0->i[2] < src1->i[2] ? src0->i[2] : src1->i[2];
4668    dst->i[3] = src0->i[3] < src1->i[3] ? src0->i[3] : src1->i[3];
4669 }
4670 
4671 static void
micro_isge(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4672 micro_isge(union tgsi_exec_channel *dst,
4673            const union tgsi_exec_channel *src0,
4674            const union tgsi_exec_channel *src1)
4675 {
4676    dst->i[0] = src0->i[0] >= src1->i[0] ? -1 : 0;
4677    dst->i[1] = src0->i[1] >= src1->i[1] ? -1 : 0;
4678    dst->i[2] = src0->i[2] >= src1->i[2] ? -1 : 0;
4679    dst->i[3] = src0->i[3] >= src1->i[3] ? -1 : 0;
4680 }
4681 
4682 static void
micro_ishr(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4683 micro_ishr(union tgsi_exec_channel *dst,
4684            const union tgsi_exec_channel *src0,
4685            const union tgsi_exec_channel *src1)
4686 {
4687    unsigned masked_count;
4688    masked_count = src1->i[0] & 0x1f;
4689    dst->i[0] = src0->i[0] >> masked_count;
4690    masked_count = src1->i[1] & 0x1f;
4691    dst->i[1] = src0->i[1] >> masked_count;
4692    masked_count = src1->i[2] & 0x1f;
4693    dst->i[2] = src0->i[2] >> masked_count;
4694    masked_count = src1->i[3] & 0x1f;
4695    dst->i[3] = src0->i[3] >> masked_count;
4696 }
4697 
4698 static void
micro_islt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4699 micro_islt(union tgsi_exec_channel *dst,
4700            const union tgsi_exec_channel *src0,
4701            const union tgsi_exec_channel *src1)
4702 {
4703    dst->i[0] = src0->i[0] < src1->i[0] ? -1 : 0;
4704    dst->i[1] = src0->i[1] < src1->i[1] ? -1 : 0;
4705    dst->i[2] = src0->i[2] < src1->i[2] ? -1 : 0;
4706    dst->i[3] = src0->i[3] < src1->i[3] ? -1 : 0;
4707 }
4708 
4709 static void
micro_f2u(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4710 micro_f2u(union tgsi_exec_channel *dst,
4711           const union tgsi_exec_channel *src)
4712 {
4713    dst->u[0] = (uint)src->f[0];
4714    dst->u[1] = (uint)src->f[1];
4715    dst->u[2] = (uint)src->f[2];
4716    dst->u[3] = (uint)src->f[3];
4717 }
4718 
4719 static void
micro_u2f(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4720 micro_u2f(union tgsi_exec_channel *dst,
4721           const union tgsi_exec_channel *src)
4722 {
4723    dst->f[0] = (float)src->u[0];
4724    dst->f[1] = (float)src->u[1];
4725    dst->f[2] = (float)src->u[2];
4726    dst->f[3] = (float)src->u[3];
4727 }
4728 
4729 static void
micro_uadd(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4730 micro_uadd(union tgsi_exec_channel *dst,
4731            const union tgsi_exec_channel *src0,
4732            const union tgsi_exec_channel *src1)
4733 {
4734    dst->u[0] = src0->u[0] + src1->u[0];
4735    dst->u[1] = src0->u[1] + src1->u[1];
4736    dst->u[2] = src0->u[2] + src1->u[2];
4737    dst->u[3] = src0->u[3] + src1->u[3];
4738 }
4739 
4740 static void
micro_udiv(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4741 micro_udiv(union tgsi_exec_channel *dst,
4742            const union tgsi_exec_channel *src0,
4743            const union tgsi_exec_channel *src1)
4744 {
4745    dst->u[0] = src1->u[0] ? src0->u[0] / src1->u[0] : ~0u;
4746    dst->u[1] = src1->u[1] ? src0->u[1] / src1->u[1] : ~0u;
4747    dst->u[2] = src1->u[2] ? src0->u[2] / src1->u[2] : ~0u;
4748    dst->u[3] = src1->u[3] ? src0->u[3] / src1->u[3] : ~0u;
4749 }
4750 
4751 static void
micro_umad(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)4752 micro_umad(union tgsi_exec_channel *dst,
4753            const union tgsi_exec_channel *src0,
4754            const union tgsi_exec_channel *src1,
4755            const union tgsi_exec_channel *src2)
4756 {
4757    dst->u[0] = src0->u[0] * src1->u[0] + src2->u[0];
4758    dst->u[1] = src0->u[1] * src1->u[1] + src2->u[1];
4759    dst->u[2] = src0->u[2] * src1->u[2] + src2->u[2];
4760    dst->u[3] = src0->u[3] * src1->u[3] + src2->u[3];
4761 }
4762 
4763 static void
micro_umax(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4764 micro_umax(union tgsi_exec_channel *dst,
4765            const union tgsi_exec_channel *src0,
4766            const union tgsi_exec_channel *src1)
4767 {
4768    dst->u[0] = src0->u[0] > src1->u[0] ? src0->u[0] : src1->u[0];
4769    dst->u[1] = src0->u[1] > src1->u[1] ? src0->u[1] : src1->u[1];
4770    dst->u[2] = src0->u[2] > src1->u[2] ? src0->u[2] : src1->u[2];
4771    dst->u[3] = src0->u[3] > src1->u[3] ? src0->u[3] : src1->u[3];
4772 }
4773 
4774 static void
micro_umin(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4775 micro_umin(union tgsi_exec_channel *dst,
4776            const union tgsi_exec_channel *src0,
4777            const union tgsi_exec_channel *src1)
4778 {
4779    dst->u[0] = src0->u[0] < src1->u[0] ? src0->u[0] : src1->u[0];
4780    dst->u[1] = src0->u[1] < src1->u[1] ? src0->u[1] : src1->u[1];
4781    dst->u[2] = src0->u[2] < src1->u[2] ? src0->u[2] : src1->u[2];
4782    dst->u[3] = src0->u[3] < src1->u[3] ? src0->u[3] : src1->u[3];
4783 }
4784 
4785 static void
micro_umod(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4786 micro_umod(union tgsi_exec_channel *dst,
4787            const union tgsi_exec_channel *src0,
4788            const union tgsi_exec_channel *src1)
4789 {
4790    dst->u[0] = src1->u[0] ? src0->u[0] % src1->u[0] : ~0u;
4791    dst->u[1] = src1->u[1] ? src0->u[1] % src1->u[1] : ~0u;
4792    dst->u[2] = src1->u[2] ? src0->u[2] % src1->u[2] : ~0u;
4793    dst->u[3] = src1->u[3] ? src0->u[3] % src1->u[3] : ~0u;
4794 }
4795 
4796 static void
micro_umul(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4797 micro_umul(union tgsi_exec_channel *dst,
4798            const union tgsi_exec_channel *src0,
4799            const union tgsi_exec_channel *src1)
4800 {
4801    dst->u[0] = src0->u[0] * src1->u[0];
4802    dst->u[1] = src0->u[1] * src1->u[1];
4803    dst->u[2] = src0->u[2] * src1->u[2];
4804    dst->u[3] = src0->u[3] * src1->u[3];
4805 }
4806 
4807 static void
micro_imul_hi(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4808 micro_imul_hi(union tgsi_exec_channel *dst,
4809               const union tgsi_exec_channel *src0,
4810               const union tgsi_exec_channel *src1)
4811 {
4812 #define I64M(x, y) ((((int64_t)x) * ((int64_t)y)) >> 32)
4813    dst->i[0] = I64M(src0->i[0], src1->i[0]);
4814    dst->i[1] = I64M(src0->i[1], src1->i[1]);
4815    dst->i[2] = I64M(src0->i[2], src1->i[2]);
4816    dst->i[3] = I64M(src0->i[3], src1->i[3]);
4817 #undef I64M
4818 }
4819 
4820 static void
micro_umul_hi(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4821 micro_umul_hi(union tgsi_exec_channel *dst,
4822               const union tgsi_exec_channel *src0,
4823               const union tgsi_exec_channel *src1)
4824 {
4825 #define U64M(x, y) ((((uint64_t)x) * ((uint64_t)y)) >> 32)
4826    dst->u[0] = U64M(src0->u[0], src1->u[0]);
4827    dst->u[1] = U64M(src0->u[1], src1->u[1]);
4828    dst->u[2] = U64M(src0->u[2], src1->u[2]);
4829    dst->u[3] = U64M(src0->u[3], src1->u[3]);
4830 #undef U64M
4831 }
4832 
4833 static void
micro_useq(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4834 micro_useq(union tgsi_exec_channel *dst,
4835            const union tgsi_exec_channel *src0,
4836            const union tgsi_exec_channel *src1)
4837 {
4838    dst->u[0] = src0->u[0] == src1->u[0] ? ~0 : 0;
4839    dst->u[1] = src0->u[1] == src1->u[1] ? ~0 : 0;
4840    dst->u[2] = src0->u[2] == src1->u[2] ? ~0 : 0;
4841    dst->u[3] = src0->u[3] == src1->u[3] ? ~0 : 0;
4842 }
4843 
4844 static void
micro_usge(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4845 micro_usge(union tgsi_exec_channel *dst,
4846            const union tgsi_exec_channel *src0,
4847            const union tgsi_exec_channel *src1)
4848 {
4849    dst->u[0] = src0->u[0] >= src1->u[0] ? ~0 : 0;
4850    dst->u[1] = src0->u[1] >= src1->u[1] ? ~0 : 0;
4851    dst->u[2] = src0->u[2] >= src1->u[2] ? ~0 : 0;
4852    dst->u[3] = src0->u[3] >= src1->u[3] ? ~0 : 0;
4853 }
4854 
4855 static void
micro_ushr(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4856 micro_ushr(union tgsi_exec_channel *dst,
4857            const union tgsi_exec_channel *src0,
4858            const union tgsi_exec_channel *src1)
4859 {
4860    unsigned masked_count;
4861    masked_count = src1->u[0] & 0x1f;
4862    dst->u[0] = src0->u[0] >> masked_count;
4863    masked_count = src1->u[1] & 0x1f;
4864    dst->u[1] = src0->u[1] >> masked_count;
4865    masked_count = src1->u[2] & 0x1f;
4866    dst->u[2] = src0->u[2] >> masked_count;
4867    masked_count = src1->u[3] & 0x1f;
4868    dst->u[3] = src0->u[3] >> masked_count;
4869 }
4870 
4871 static void
micro_uslt(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4872 micro_uslt(union tgsi_exec_channel *dst,
4873            const union tgsi_exec_channel *src0,
4874            const union tgsi_exec_channel *src1)
4875 {
4876    dst->u[0] = src0->u[0] < src1->u[0] ? ~0 : 0;
4877    dst->u[1] = src0->u[1] < src1->u[1] ? ~0 : 0;
4878    dst->u[2] = src0->u[2] < src1->u[2] ? ~0 : 0;
4879    dst->u[3] = src0->u[3] < src1->u[3] ? ~0 : 0;
4880 }
4881 
4882 static void
micro_usne(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1)4883 micro_usne(union tgsi_exec_channel *dst,
4884            const union tgsi_exec_channel *src0,
4885            const union tgsi_exec_channel *src1)
4886 {
4887    dst->u[0] = src0->u[0] != src1->u[0] ? ~0 : 0;
4888    dst->u[1] = src0->u[1] != src1->u[1] ? ~0 : 0;
4889    dst->u[2] = src0->u[2] != src1->u[2] ? ~0 : 0;
4890    dst->u[3] = src0->u[3] != src1->u[3] ? ~0 : 0;
4891 }
4892 
4893 static void
micro_uarl(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4894 micro_uarl(union tgsi_exec_channel *dst,
4895            const union tgsi_exec_channel *src)
4896 {
4897    dst->i[0] = src->u[0];
4898    dst->i[1] = src->u[1];
4899    dst->i[2] = src->u[2];
4900    dst->i[3] = src->u[3];
4901 }
4902 
4903 /**
4904  * Signed bitfield extract (i.e. sign-extend the extracted bits)
4905  */
4906 static void
micro_ibfe(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)4907 micro_ibfe(union tgsi_exec_channel *dst,
4908            const union tgsi_exec_channel *src0,
4909            const union tgsi_exec_channel *src1,
4910            const union tgsi_exec_channel *src2)
4911 {
4912    int i;
4913    for (i = 0; i < 4; i++) {
4914       int width = src2->i[i] & 0x1f;
4915       int offset = src1->i[i] & 0x1f;
4916       if (width == 0)
4917          dst->i[i] = 0;
4918       else if (width + offset < 32)
4919          dst->i[i] = (src0->i[i] << (32 - width - offset)) >> (32 - width);
4920       else
4921          dst->i[i] = src0->i[i] >> offset;
4922    }
4923 }
4924 
4925 /**
4926  * Unsigned bitfield extract
4927  */
4928 static void
micro_ubfe(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2)4929 micro_ubfe(union tgsi_exec_channel *dst,
4930            const union tgsi_exec_channel *src0,
4931            const union tgsi_exec_channel *src1,
4932            const union tgsi_exec_channel *src2)
4933 {
4934    int i;
4935    for (i = 0; i < 4; i++) {
4936       int width = src2->u[i] & 0x1f;
4937       int offset = src1->u[i] & 0x1f;
4938       if (width == 0)
4939          dst->u[i] = 0;
4940       else if (width + offset < 32)
4941          dst->u[i] = (src0->u[i] << (32 - width - offset)) >> (32 - width);
4942       else
4943          dst->u[i] = src0->u[i] >> offset;
4944    }
4945 }
4946 
4947 /**
4948  * Bitfield insert: copy low bits from src1 into a region of src0.
4949  */
4950 static void
micro_bfi(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src0,const union tgsi_exec_channel * src1,const union tgsi_exec_channel * src2,const union tgsi_exec_channel * src3)4951 micro_bfi(union tgsi_exec_channel *dst,
4952           const union tgsi_exec_channel *src0,
4953           const union tgsi_exec_channel *src1,
4954           const union tgsi_exec_channel *src2,
4955           const union tgsi_exec_channel *src3)
4956 {
4957    int i;
4958    for (i = 0; i < 4; i++) {
4959       int width = src3->u[i] & 0x1f;
4960       int offset = src2->u[i] & 0x1f;
4961       int bitmask = ((1 << width) - 1) << offset;
4962       dst->u[i] = ((src1->u[i] << offset) & bitmask) | (src0->u[i] & ~bitmask);
4963    }
4964 }
4965 
4966 static void
micro_brev(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4967 micro_brev(union tgsi_exec_channel *dst,
4968            const union tgsi_exec_channel *src)
4969 {
4970    dst->u[0] = util_bitreverse(src->u[0]);
4971    dst->u[1] = util_bitreverse(src->u[1]);
4972    dst->u[2] = util_bitreverse(src->u[2]);
4973    dst->u[3] = util_bitreverse(src->u[3]);
4974 }
4975 
4976 static void
micro_popc(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4977 micro_popc(union tgsi_exec_channel *dst,
4978            const union tgsi_exec_channel *src)
4979 {
4980    dst->u[0] = util_bitcount(src->u[0]);
4981    dst->u[1] = util_bitcount(src->u[1]);
4982    dst->u[2] = util_bitcount(src->u[2]);
4983    dst->u[3] = util_bitcount(src->u[3]);
4984 }
4985 
4986 static void
micro_lsb(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4987 micro_lsb(union tgsi_exec_channel *dst,
4988           const union tgsi_exec_channel *src)
4989 {
4990    dst->i[0] = ffs(src->u[0]) - 1;
4991    dst->i[1] = ffs(src->u[1]) - 1;
4992    dst->i[2] = ffs(src->u[2]) - 1;
4993    dst->i[3] = ffs(src->u[3]) - 1;
4994 }
4995 
4996 static void
micro_imsb(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)4997 micro_imsb(union tgsi_exec_channel *dst,
4998            const union tgsi_exec_channel *src)
4999 {
5000    dst->i[0] = util_last_bit_signed(src->i[0]) - 1;
5001    dst->i[1] = util_last_bit_signed(src->i[1]) - 1;
5002    dst->i[2] = util_last_bit_signed(src->i[2]) - 1;
5003    dst->i[3] = util_last_bit_signed(src->i[3]) - 1;
5004 }
5005 
5006 static void
micro_umsb(union tgsi_exec_channel * dst,const union tgsi_exec_channel * src)5007 micro_umsb(union tgsi_exec_channel *dst,
5008            const union tgsi_exec_channel *src)
5009 {
5010    dst->i[0] = util_last_bit(src->u[0]) - 1;
5011    dst->i[1] = util_last_bit(src->u[1]) - 1;
5012    dst->i[2] = util_last_bit(src->u[2]) - 1;
5013    dst->i[3] = util_last_bit(src->u[3]) - 1;
5014 }
5015 
5016 /**
5017  * Execute a TGSI instruction.
5018  * Returns TRUE if a barrier instruction is hit,
5019  * otherwise FALSE.
5020  */
5021 static boolean
exec_instruction(struct tgsi_exec_machine * mach,const struct tgsi_full_instruction * inst,int * pc)5022 exec_instruction(
5023    struct tgsi_exec_machine *mach,
5024    const struct tgsi_full_instruction *inst,
5025    int *pc )
5026 {
5027    union tgsi_exec_channel r[10];
5028 
5029    (*pc)++;
5030 
5031    switch (inst->Instruction.Opcode) {
5032    case TGSI_OPCODE_ARL:
5033       exec_vector_unary(mach, inst, micro_arl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5034       break;
5035 
5036    case TGSI_OPCODE_MOV:
5037       exec_vector_unary(mach, inst, micro_mov, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5038       break;
5039 
5040    case TGSI_OPCODE_LIT:
5041       exec_lit(mach, inst);
5042       break;
5043 
5044    case TGSI_OPCODE_RCP:
5045       exec_scalar_unary(mach, inst, micro_rcp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5046       break;
5047 
5048    case TGSI_OPCODE_RSQ:
5049       exec_scalar_unary(mach, inst, micro_rsq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5050       break;
5051 
5052    case TGSI_OPCODE_EXP:
5053       exec_exp(mach, inst);
5054       break;
5055 
5056    case TGSI_OPCODE_LOG:
5057       exec_log(mach, inst);
5058       break;
5059 
5060    case TGSI_OPCODE_MUL:
5061       exec_vector_binary(mach, inst, micro_mul, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5062       break;
5063 
5064    case TGSI_OPCODE_ADD:
5065       exec_vector_binary(mach, inst, micro_add, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5066       break;
5067 
5068    case TGSI_OPCODE_DP3:
5069       exec_dp3(mach, inst);
5070       break;
5071 
5072    case TGSI_OPCODE_DP4:
5073       exec_dp4(mach, inst);
5074       break;
5075 
5076    case TGSI_OPCODE_DST:
5077       exec_dst(mach, inst);
5078       break;
5079 
5080    case TGSI_OPCODE_MIN:
5081       exec_vector_binary(mach, inst, micro_min, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5082       break;
5083 
5084    case TGSI_OPCODE_MAX:
5085       exec_vector_binary(mach, inst, micro_max, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5086       break;
5087 
5088    case TGSI_OPCODE_SLT:
5089       exec_vector_binary(mach, inst, micro_slt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5090       break;
5091 
5092    case TGSI_OPCODE_SGE:
5093       exec_vector_binary(mach, inst, micro_sge, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5094       break;
5095 
5096    case TGSI_OPCODE_MAD:
5097       exec_vector_trinary(mach, inst, micro_mad, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5098       break;
5099 
5100    case TGSI_OPCODE_LRP:
5101       exec_vector_trinary(mach, inst, micro_lrp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5102       break;
5103 
5104    case TGSI_OPCODE_SQRT:
5105       exec_scalar_unary(mach, inst, micro_sqrt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5106       break;
5107 
5108    case TGSI_OPCODE_FRC:
5109       exec_vector_unary(mach, inst, micro_frc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5110       break;
5111 
5112    case TGSI_OPCODE_FLR:
5113       exec_vector_unary(mach, inst, micro_flr, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5114       break;
5115 
5116    case TGSI_OPCODE_ROUND:
5117       exec_vector_unary(mach, inst, micro_rnd, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5118       break;
5119 
5120    case TGSI_OPCODE_EX2:
5121       exec_scalar_unary(mach, inst, micro_exp2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5122       break;
5123 
5124    case TGSI_OPCODE_LG2:
5125       exec_scalar_unary(mach, inst, micro_lg2, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5126       break;
5127 
5128    case TGSI_OPCODE_POW:
5129       exec_scalar_binary(mach, inst, micro_pow, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5130       break;
5131 
5132    case TGSI_OPCODE_LDEXP:
5133       exec_vector_binary(mach, inst, micro_ldexp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5134       break;
5135 
5136    case TGSI_OPCODE_COS:
5137       exec_scalar_unary(mach, inst, micro_cos, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5138       break;
5139 
5140    case TGSI_OPCODE_DDX:
5141       exec_vector_unary(mach, inst, micro_ddx, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5142       break;
5143 
5144    case TGSI_OPCODE_DDY:
5145       exec_vector_unary(mach, inst, micro_ddy, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5146       break;
5147 
5148    case TGSI_OPCODE_KILL:
5149       exec_kill (mach, inst);
5150       break;
5151 
5152    case TGSI_OPCODE_KILL_IF:
5153       exec_kill_if (mach, inst);
5154       break;
5155 
5156    case TGSI_OPCODE_PK2H:
5157       exec_pk2h(mach, inst);
5158       break;
5159 
5160    case TGSI_OPCODE_PK2US:
5161       assert (0);
5162       break;
5163 
5164    case TGSI_OPCODE_PK4B:
5165       assert (0);
5166       break;
5167 
5168    case TGSI_OPCODE_PK4UB:
5169       assert (0);
5170       break;
5171 
5172    case TGSI_OPCODE_SEQ:
5173       exec_vector_binary(mach, inst, micro_seq, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5174       break;
5175 
5176    case TGSI_OPCODE_SGT:
5177       exec_vector_binary(mach, inst, micro_sgt, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5178       break;
5179 
5180    case TGSI_OPCODE_SIN:
5181       exec_scalar_unary(mach, inst, micro_sin, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5182       break;
5183 
5184    case TGSI_OPCODE_SLE:
5185       exec_vector_binary(mach, inst, micro_sle, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5186       break;
5187 
5188    case TGSI_OPCODE_SNE:
5189       exec_vector_binary(mach, inst, micro_sne, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5190       break;
5191 
5192    case TGSI_OPCODE_TEX:
5193       /* simple texture lookup */
5194       /* src[0] = texcoord */
5195       /* src[1] = sampler unit */
5196       exec_tex(mach, inst, TEX_MODIFIER_NONE, 1);
5197       break;
5198 
5199    case TGSI_OPCODE_TXB:
5200       /* Texture lookup with lod bias */
5201       /* src[0] = texcoord (src[0].w = LOD bias) */
5202       /* src[1] = sampler unit */
5203       exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 1);
5204       break;
5205 
5206    case TGSI_OPCODE_TXD:
5207       /* Texture lookup with explict partial derivatives */
5208       /* src[0] = texcoord */
5209       /* src[1] = d[strq]/dx */
5210       /* src[2] = d[strq]/dy */
5211       /* src[3] = sampler unit */
5212       exec_txd(mach, inst);
5213       break;
5214 
5215    case TGSI_OPCODE_TXL:
5216       /* Texture lookup with explit LOD */
5217       /* src[0] = texcoord (src[0].w = LOD) */
5218       /* src[1] = sampler unit */
5219       exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 1);
5220       break;
5221 
5222    case TGSI_OPCODE_TXP:
5223       /* Texture lookup with projection */
5224       /* src[0] = texcoord (src[0].w = projection) */
5225       /* src[1] = sampler unit */
5226       exec_tex(mach, inst, TEX_MODIFIER_PROJECTED, 1);
5227       break;
5228 
5229    case TGSI_OPCODE_TG4:
5230       /* src[0] = texcoord */
5231       /* src[1] = component */
5232       /* src[2] = sampler unit */
5233       exec_tex(mach, inst, TEX_MODIFIER_GATHER, 2);
5234       break;
5235 
5236    case TGSI_OPCODE_LODQ:
5237       /* src[0] = texcoord */
5238       /* src[1] = sampler unit */
5239       exec_lodq(mach, inst);
5240       break;
5241 
5242    case TGSI_OPCODE_UP2H:
5243       exec_up2h(mach, inst);
5244       break;
5245 
5246    case TGSI_OPCODE_UP2US:
5247       assert (0);
5248       break;
5249 
5250    case TGSI_OPCODE_UP4B:
5251       assert (0);
5252       break;
5253 
5254    case TGSI_OPCODE_UP4UB:
5255       assert (0);
5256       break;
5257 
5258    case TGSI_OPCODE_ARR:
5259       exec_vector_unary(mach, inst, micro_arr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5260       break;
5261 
5262    case TGSI_OPCODE_CAL:
5263       /* skip the call if no execution channels are enabled */
5264       if (mach->ExecMask) {
5265          /* do the call */
5266 
5267          /* First, record the depths of the execution stacks.
5268           * This is important for deeply nested/looped return statements.
5269           * We have to unwind the stacks by the correct amount.  For a
5270           * real code generator, we could determine the number of entries
5271           * to pop off each stack with simple static analysis and avoid
5272           * implementing this data structure at run time.
5273           */
5274          mach->CallStack[mach->CallStackTop].CondStackTop = mach->CondStackTop;
5275          mach->CallStack[mach->CallStackTop].LoopStackTop = mach->LoopStackTop;
5276          mach->CallStack[mach->CallStackTop].ContStackTop = mach->ContStackTop;
5277          mach->CallStack[mach->CallStackTop].SwitchStackTop = mach->SwitchStackTop;
5278          mach->CallStack[mach->CallStackTop].BreakStackTop = mach->BreakStackTop;
5279          /* note that PC was already incremented above */
5280          mach->CallStack[mach->CallStackTop].ReturnAddr = *pc;
5281 
5282          mach->CallStackTop++;
5283 
5284          /* Second, push the Cond, Loop, Cont, Func stacks */
5285          assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5286          assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5287          assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5288          assert(mach->SwitchStackTop < TGSI_EXEC_MAX_SWITCH_NESTING);
5289          assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5290          assert(mach->FuncStackTop < TGSI_EXEC_MAX_CALL_NESTING);
5291 
5292          mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5293          mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5294          mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5295          mach->SwitchStack[mach->SwitchStackTop++] = mach->Switch;
5296          mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5297          mach->FuncStack[mach->FuncStackTop++] = mach->FuncMask;
5298 
5299          /* Finally, jump to the subroutine.  The label is a pointer
5300           * (an instruction number) to the BGNSUB instruction.
5301           */
5302          *pc = inst->Label.Label;
5303          assert(mach->Instructions[*pc].Instruction.Opcode
5304                 == TGSI_OPCODE_BGNSUB);
5305       }
5306       break;
5307 
5308    case TGSI_OPCODE_RET:
5309       mach->FuncMask &= ~mach->ExecMask;
5310       UPDATE_EXEC_MASK(mach);
5311 
5312       if (mach->FuncMask == 0x0) {
5313          /* really return now (otherwise, keep executing */
5314 
5315          if (mach->CallStackTop == 0) {
5316             /* returning from main() */
5317             mach->CondStackTop = 0;
5318             mach->LoopStackTop = 0;
5319             mach->ContStackTop = 0;
5320             mach->LoopLabelStackTop = 0;
5321             mach->SwitchStackTop = 0;
5322             mach->BreakStackTop = 0;
5323             *pc = -1;
5324             return FALSE;
5325          }
5326 
5327          assert(mach->CallStackTop > 0);
5328          mach->CallStackTop--;
5329 
5330          mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5331          mach->CondMask = mach->CondStack[mach->CondStackTop];
5332 
5333          mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5334          mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5335 
5336          mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5337          mach->ContMask = mach->ContStack[mach->ContStackTop];
5338 
5339          mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5340          mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5341 
5342          mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5343          mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5344 
5345          assert(mach->FuncStackTop > 0);
5346          mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5347 
5348          *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5349 
5350          UPDATE_EXEC_MASK(mach);
5351       }
5352       break;
5353 
5354    case TGSI_OPCODE_SSG:
5355       exec_vector_unary(mach, inst, micro_sgn, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5356       break;
5357 
5358    case TGSI_OPCODE_CMP:
5359       exec_vector_trinary(mach, inst, micro_cmp, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5360       break;
5361 
5362    case TGSI_OPCODE_DIV:
5363       exec_vector_binary(mach, inst, micro_div, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5364       break;
5365 
5366    case TGSI_OPCODE_DP2:
5367       exec_dp2(mach, inst);
5368       break;
5369 
5370    case TGSI_OPCODE_IF:
5371       /* push CondMask */
5372       assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5373       mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5374       FETCH( &r[0], 0, TGSI_CHAN_X );
5375       /* update CondMask */
5376       if( ! r[0].f[0] ) {
5377          mach->CondMask &= ~0x1;
5378       }
5379       if( ! r[0].f[1] ) {
5380          mach->CondMask &= ~0x2;
5381       }
5382       if( ! r[0].f[2] ) {
5383          mach->CondMask &= ~0x4;
5384       }
5385       if( ! r[0].f[3] ) {
5386          mach->CondMask &= ~0x8;
5387       }
5388       UPDATE_EXEC_MASK(mach);
5389       /* Todo: If CondMask==0, jump to ELSE */
5390       break;
5391 
5392    case TGSI_OPCODE_UIF:
5393       /* push CondMask */
5394       assert(mach->CondStackTop < TGSI_EXEC_MAX_COND_NESTING);
5395       mach->CondStack[mach->CondStackTop++] = mach->CondMask;
5396       IFETCH( &r[0], 0, TGSI_CHAN_X );
5397       /* update CondMask */
5398       if( ! r[0].u[0] ) {
5399          mach->CondMask &= ~0x1;
5400       }
5401       if( ! r[0].u[1] ) {
5402          mach->CondMask &= ~0x2;
5403       }
5404       if( ! r[0].u[2] ) {
5405          mach->CondMask &= ~0x4;
5406       }
5407       if( ! r[0].u[3] ) {
5408          mach->CondMask &= ~0x8;
5409       }
5410       UPDATE_EXEC_MASK(mach);
5411       /* Todo: If CondMask==0, jump to ELSE */
5412       break;
5413 
5414    case TGSI_OPCODE_ELSE:
5415       /* invert CondMask wrt previous mask */
5416       {
5417          uint prevMask;
5418          assert(mach->CondStackTop > 0);
5419          prevMask = mach->CondStack[mach->CondStackTop - 1];
5420          mach->CondMask = ~mach->CondMask & prevMask;
5421          UPDATE_EXEC_MASK(mach);
5422          /* Todo: If CondMask==0, jump to ENDIF */
5423       }
5424       break;
5425 
5426    case TGSI_OPCODE_ENDIF:
5427       /* pop CondMask */
5428       assert(mach->CondStackTop > 0);
5429       mach->CondMask = mach->CondStack[--mach->CondStackTop];
5430       UPDATE_EXEC_MASK(mach);
5431       break;
5432 
5433    case TGSI_OPCODE_END:
5434       /* make sure we end primitives which haven't
5435        * been explicitly emitted */
5436       conditional_emit_primitive(mach);
5437       /* halt execution */
5438       *pc = -1;
5439       break;
5440 
5441    case TGSI_OPCODE_CEIL:
5442       exec_vector_unary(mach, inst, micro_ceil, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5443       break;
5444 
5445    case TGSI_OPCODE_I2F:
5446       exec_vector_unary(mach, inst, micro_i2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_INT);
5447       break;
5448 
5449    case TGSI_OPCODE_NOT:
5450       exec_vector_unary(mach, inst, micro_not, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5451       break;
5452 
5453    case TGSI_OPCODE_TRUNC:
5454       exec_vector_unary(mach, inst, micro_trunc, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_FLOAT);
5455       break;
5456 
5457    case TGSI_OPCODE_SHL:
5458       exec_vector_binary(mach, inst, micro_shl, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5459       break;
5460 
5461    case TGSI_OPCODE_AND:
5462       exec_vector_binary(mach, inst, micro_and, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5463       break;
5464 
5465    case TGSI_OPCODE_OR:
5466       exec_vector_binary(mach, inst, micro_or, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5467       break;
5468 
5469    case TGSI_OPCODE_MOD:
5470       exec_vector_binary(mach, inst, micro_mod, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5471       break;
5472 
5473    case TGSI_OPCODE_XOR:
5474       exec_vector_binary(mach, inst, micro_xor, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5475       break;
5476 
5477    case TGSI_OPCODE_TXF:
5478       exec_txf(mach, inst);
5479       break;
5480 
5481    case TGSI_OPCODE_TXQ:
5482       exec_txq(mach, inst);
5483       break;
5484 
5485    case TGSI_OPCODE_EMIT:
5486       emit_vertex(mach);
5487       break;
5488 
5489    case TGSI_OPCODE_ENDPRIM:
5490       emit_primitive(mach);
5491       break;
5492 
5493    case TGSI_OPCODE_BGNLOOP:
5494       /* push LoopMask and ContMasks */
5495       assert(mach->LoopStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5496       assert(mach->ContStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5497       assert(mach->LoopLabelStackTop < TGSI_EXEC_MAX_LOOP_NESTING);
5498       assert(mach->BreakStackTop < TGSI_EXEC_MAX_BREAK_STACK);
5499 
5500       mach->LoopStack[mach->LoopStackTop++] = mach->LoopMask;
5501       mach->ContStack[mach->ContStackTop++] = mach->ContMask;
5502       mach->LoopLabelStack[mach->LoopLabelStackTop++] = *pc - 1;
5503       mach->BreakStack[mach->BreakStackTop++] = mach->BreakType;
5504       mach->BreakType = TGSI_EXEC_BREAK_INSIDE_LOOP;
5505       break;
5506 
5507    case TGSI_OPCODE_ENDLOOP:
5508       /* Restore ContMask, but don't pop */
5509       assert(mach->ContStackTop > 0);
5510       mach->ContMask = mach->ContStack[mach->ContStackTop - 1];
5511       UPDATE_EXEC_MASK(mach);
5512       if (mach->ExecMask) {
5513          /* repeat loop: jump to instruction just past BGNLOOP */
5514          assert(mach->LoopLabelStackTop > 0);
5515          *pc = mach->LoopLabelStack[mach->LoopLabelStackTop - 1] + 1;
5516       }
5517       else {
5518          /* exit loop: pop LoopMask */
5519          assert(mach->LoopStackTop > 0);
5520          mach->LoopMask = mach->LoopStack[--mach->LoopStackTop];
5521          /* pop ContMask */
5522          assert(mach->ContStackTop > 0);
5523          mach->ContMask = mach->ContStack[--mach->ContStackTop];
5524          assert(mach->LoopLabelStackTop > 0);
5525          --mach->LoopLabelStackTop;
5526 
5527          mach->BreakType = mach->BreakStack[--mach->BreakStackTop];
5528       }
5529       UPDATE_EXEC_MASK(mach);
5530       break;
5531 
5532    case TGSI_OPCODE_BRK:
5533       exec_break(mach);
5534       break;
5535 
5536    case TGSI_OPCODE_CONT:
5537       /* turn off cont channels for each enabled exec channel */
5538       mach->ContMask &= ~mach->ExecMask;
5539       /* Todo: if mach->LoopMask == 0, jump to end of loop */
5540       UPDATE_EXEC_MASK(mach);
5541       break;
5542 
5543    case TGSI_OPCODE_BGNSUB:
5544       /* no-op */
5545       break;
5546 
5547    case TGSI_OPCODE_ENDSUB:
5548       /*
5549        * XXX: This really should be a no-op. We should never reach this opcode.
5550        */
5551 
5552       assert(mach->CallStackTop > 0);
5553       mach->CallStackTop--;
5554 
5555       mach->CondStackTop = mach->CallStack[mach->CallStackTop].CondStackTop;
5556       mach->CondMask = mach->CondStack[mach->CondStackTop];
5557 
5558       mach->LoopStackTop = mach->CallStack[mach->CallStackTop].LoopStackTop;
5559       mach->LoopMask = mach->LoopStack[mach->LoopStackTop];
5560 
5561       mach->ContStackTop = mach->CallStack[mach->CallStackTop].ContStackTop;
5562       mach->ContMask = mach->ContStack[mach->ContStackTop];
5563 
5564       mach->SwitchStackTop = mach->CallStack[mach->CallStackTop].SwitchStackTop;
5565       mach->Switch = mach->SwitchStack[mach->SwitchStackTop];
5566 
5567       mach->BreakStackTop = mach->CallStack[mach->CallStackTop].BreakStackTop;
5568       mach->BreakType = mach->BreakStack[mach->BreakStackTop];
5569 
5570       assert(mach->FuncStackTop > 0);
5571       mach->FuncMask = mach->FuncStack[--mach->FuncStackTop];
5572 
5573       *pc = mach->CallStack[mach->CallStackTop].ReturnAddr;
5574 
5575       UPDATE_EXEC_MASK(mach);
5576       break;
5577 
5578    case TGSI_OPCODE_NOP:
5579       break;
5580 
5581    case TGSI_OPCODE_F2I:
5582       exec_vector_unary(mach, inst, micro_f2i, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_FLOAT);
5583       break;
5584 
5585    case TGSI_OPCODE_FSEQ:
5586       exec_vector_binary(mach, inst, micro_fseq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5587       break;
5588 
5589    case TGSI_OPCODE_FSGE:
5590       exec_vector_binary(mach, inst, micro_fsge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5591       break;
5592 
5593    case TGSI_OPCODE_FSLT:
5594       exec_vector_binary(mach, inst, micro_fslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5595       break;
5596 
5597    case TGSI_OPCODE_FSNE:
5598       exec_vector_binary(mach, inst, micro_fsne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5599       break;
5600 
5601    case TGSI_OPCODE_IDIV:
5602       exec_vector_binary(mach, inst, micro_idiv, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5603       break;
5604 
5605    case TGSI_OPCODE_IMAX:
5606       exec_vector_binary(mach, inst, micro_imax, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5607       break;
5608 
5609    case TGSI_OPCODE_IMIN:
5610       exec_vector_binary(mach, inst, micro_imin, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5611       break;
5612 
5613    case TGSI_OPCODE_INEG:
5614       exec_vector_unary(mach, inst, micro_ineg, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5615       break;
5616 
5617    case TGSI_OPCODE_ISGE:
5618       exec_vector_binary(mach, inst, micro_isge, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5619       break;
5620 
5621    case TGSI_OPCODE_ISHR:
5622       exec_vector_binary(mach, inst, micro_ishr, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5623       break;
5624 
5625    case TGSI_OPCODE_ISLT:
5626       exec_vector_binary(mach, inst, micro_islt, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5627       break;
5628 
5629    case TGSI_OPCODE_F2U:
5630       exec_vector_unary(mach, inst, micro_f2u, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_FLOAT);
5631       break;
5632 
5633    case TGSI_OPCODE_U2F:
5634       exec_vector_unary(mach, inst, micro_u2f, TGSI_EXEC_DATA_FLOAT, TGSI_EXEC_DATA_UINT);
5635       break;
5636 
5637    case TGSI_OPCODE_UADD:
5638       exec_vector_binary(mach, inst, micro_uadd, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5639       break;
5640 
5641    case TGSI_OPCODE_UDIV:
5642       exec_vector_binary(mach, inst, micro_udiv, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5643       break;
5644 
5645    case TGSI_OPCODE_UMAD:
5646       exec_vector_trinary(mach, inst, micro_umad, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5647       break;
5648 
5649    case TGSI_OPCODE_UMAX:
5650       exec_vector_binary(mach, inst, micro_umax, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5651       break;
5652 
5653    case TGSI_OPCODE_UMIN:
5654       exec_vector_binary(mach, inst, micro_umin, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5655       break;
5656 
5657    case TGSI_OPCODE_UMOD:
5658       exec_vector_binary(mach, inst, micro_umod, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5659       break;
5660 
5661    case TGSI_OPCODE_UMUL:
5662       exec_vector_binary(mach, inst, micro_umul, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5663       break;
5664 
5665    case TGSI_OPCODE_IMUL_HI:
5666       exec_vector_binary(mach, inst, micro_imul_hi, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5667       break;
5668 
5669    case TGSI_OPCODE_UMUL_HI:
5670       exec_vector_binary(mach, inst, micro_umul_hi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5671       break;
5672 
5673    case TGSI_OPCODE_USEQ:
5674       exec_vector_binary(mach, inst, micro_useq, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5675       break;
5676 
5677    case TGSI_OPCODE_USGE:
5678       exec_vector_binary(mach, inst, micro_usge, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5679       break;
5680 
5681    case TGSI_OPCODE_USHR:
5682       exec_vector_binary(mach, inst, micro_ushr, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5683       break;
5684 
5685    case TGSI_OPCODE_USLT:
5686       exec_vector_binary(mach, inst, micro_uslt, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5687       break;
5688 
5689    case TGSI_OPCODE_USNE:
5690       exec_vector_binary(mach, inst, micro_usne, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5691       break;
5692 
5693    case TGSI_OPCODE_SWITCH:
5694       exec_switch(mach, inst);
5695       break;
5696 
5697    case TGSI_OPCODE_CASE:
5698       exec_case(mach, inst);
5699       break;
5700 
5701    case TGSI_OPCODE_DEFAULT:
5702       exec_default(mach);
5703       break;
5704 
5705    case TGSI_OPCODE_ENDSWITCH:
5706       exec_endswitch(mach);
5707       break;
5708 
5709    case TGSI_OPCODE_SAMPLE_I:
5710       exec_txf(mach, inst);
5711       break;
5712 
5713    case TGSI_OPCODE_SAMPLE_I_MS:
5714       exec_txf(mach, inst);
5715       break;
5716 
5717    case TGSI_OPCODE_SAMPLE:
5718       exec_sample(mach, inst, TEX_MODIFIER_NONE, FALSE);
5719       break;
5720 
5721    case TGSI_OPCODE_SAMPLE_B:
5722       exec_sample(mach, inst, TEX_MODIFIER_LOD_BIAS, FALSE);
5723       break;
5724 
5725    case TGSI_OPCODE_SAMPLE_C:
5726       exec_sample(mach, inst, TEX_MODIFIER_NONE, TRUE);
5727       break;
5728 
5729    case TGSI_OPCODE_SAMPLE_C_LZ:
5730       exec_sample(mach, inst, TEX_MODIFIER_LEVEL_ZERO, TRUE);
5731       break;
5732 
5733    case TGSI_OPCODE_SAMPLE_D:
5734       exec_sample_d(mach, inst);
5735       break;
5736 
5737    case TGSI_OPCODE_SAMPLE_L:
5738       exec_sample(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, FALSE);
5739       break;
5740 
5741    case TGSI_OPCODE_GATHER4:
5742       exec_sample(mach, inst, TEX_MODIFIER_GATHER, FALSE);
5743       break;
5744 
5745    case TGSI_OPCODE_SVIEWINFO:
5746       exec_txq(mach, inst);
5747       break;
5748 
5749    case TGSI_OPCODE_SAMPLE_POS:
5750       assert(0);
5751       break;
5752 
5753    case TGSI_OPCODE_SAMPLE_INFO:
5754       assert(0);
5755       break;
5756 
5757    case TGSI_OPCODE_LOD:
5758       exec_lodq(mach, inst);
5759       break;
5760 
5761    case TGSI_OPCODE_UARL:
5762       exec_vector_unary(mach, inst, micro_uarl, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5763       break;
5764 
5765    case TGSI_OPCODE_UCMP:
5766       exec_ucmp(mach, inst);
5767       break;
5768 
5769    case TGSI_OPCODE_IABS:
5770       exec_vector_unary(mach, inst, micro_iabs, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5771       break;
5772 
5773    case TGSI_OPCODE_ISSG:
5774       exec_vector_unary(mach, inst, micro_isgn, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5775       break;
5776 
5777    case TGSI_OPCODE_TEX2:
5778       /* simple texture lookup */
5779       /* src[0] = texcoord */
5780       /* src[1] = compare */
5781       /* src[2] = sampler unit */
5782       exec_tex(mach, inst, TEX_MODIFIER_NONE, 2);
5783       break;
5784    case TGSI_OPCODE_TXB2:
5785       /* simple texture lookup */
5786       /* src[0] = texcoord */
5787       /* src[1] = bias */
5788       /* src[2] = sampler unit */
5789       exec_tex(mach, inst, TEX_MODIFIER_LOD_BIAS, 2);
5790       break;
5791    case TGSI_OPCODE_TXL2:
5792       /* simple texture lookup */
5793       /* src[0] = texcoord */
5794       /* src[1] = lod */
5795       /* src[2] = sampler unit */
5796       exec_tex(mach, inst, TEX_MODIFIER_EXPLICIT_LOD, 2);
5797       break;
5798 
5799    case TGSI_OPCODE_IBFE:
5800       exec_vector_trinary(mach, inst, micro_ibfe, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5801       break;
5802    case TGSI_OPCODE_UBFE:
5803       exec_vector_trinary(mach, inst, micro_ubfe, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5804       break;
5805    case TGSI_OPCODE_BFI:
5806       exec_vector_quaternary(mach, inst, micro_bfi, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5807       break;
5808    case TGSI_OPCODE_BREV:
5809       exec_vector_unary(mach, inst, micro_brev, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5810       break;
5811    case TGSI_OPCODE_POPC:
5812       exec_vector_unary(mach, inst, micro_popc, TGSI_EXEC_DATA_UINT, TGSI_EXEC_DATA_UINT);
5813       break;
5814    case TGSI_OPCODE_LSB:
5815       exec_vector_unary(mach, inst, micro_lsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5816       break;
5817    case TGSI_OPCODE_IMSB:
5818       exec_vector_unary(mach, inst, micro_imsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_INT);
5819       break;
5820    case TGSI_OPCODE_UMSB:
5821       exec_vector_unary(mach, inst, micro_umsb, TGSI_EXEC_DATA_INT, TGSI_EXEC_DATA_UINT);
5822       break;
5823 
5824    case TGSI_OPCODE_F2D:
5825       exec_t_2_64(mach, inst, micro_f2d, TGSI_EXEC_DATA_FLOAT);
5826       break;
5827 
5828    case TGSI_OPCODE_D2F:
5829       exec_64_2_t(mach, inst, micro_d2f, TGSI_EXEC_DATA_FLOAT);
5830       break;
5831 
5832    case TGSI_OPCODE_DABS:
5833       exec_double_unary(mach, inst, micro_dabs);
5834       break;
5835 
5836    case TGSI_OPCODE_DNEG:
5837       exec_double_unary(mach, inst, micro_dneg);
5838       break;
5839 
5840    case TGSI_OPCODE_DADD:
5841       exec_double_binary(mach, inst, micro_dadd, TGSI_EXEC_DATA_DOUBLE);
5842       break;
5843 
5844    case TGSI_OPCODE_DDIV:
5845       exec_double_binary(mach, inst, micro_ddiv, TGSI_EXEC_DATA_DOUBLE);
5846       break;
5847 
5848    case TGSI_OPCODE_DMUL:
5849       exec_double_binary(mach, inst, micro_dmul, TGSI_EXEC_DATA_DOUBLE);
5850       break;
5851 
5852    case TGSI_OPCODE_DMAX:
5853       exec_double_binary(mach, inst, micro_dmax, TGSI_EXEC_DATA_DOUBLE);
5854       break;
5855 
5856    case TGSI_OPCODE_DMIN:
5857       exec_double_binary(mach, inst, micro_dmin, TGSI_EXEC_DATA_DOUBLE);
5858       break;
5859 
5860    case TGSI_OPCODE_DSLT:
5861       exec_double_binary(mach, inst, micro_dslt, TGSI_EXEC_DATA_UINT);
5862       break;
5863 
5864    case TGSI_OPCODE_DSGE:
5865       exec_double_binary(mach, inst, micro_dsge, TGSI_EXEC_DATA_UINT);
5866       break;
5867 
5868    case TGSI_OPCODE_DSEQ:
5869       exec_double_binary(mach, inst, micro_dseq, TGSI_EXEC_DATA_UINT);
5870       break;
5871 
5872    case TGSI_OPCODE_DSNE:
5873       exec_double_binary(mach, inst, micro_dsne, TGSI_EXEC_DATA_UINT);
5874       break;
5875 
5876    case TGSI_OPCODE_DRCP:
5877       exec_double_unary(mach, inst, micro_drcp);
5878       break;
5879 
5880    case TGSI_OPCODE_DSQRT:
5881       exec_double_unary(mach, inst, micro_dsqrt);
5882       break;
5883 
5884    case TGSI_OPCODE_DRSQ:
5885       exec_double_unary(mach, inst, micro_drsq);
5886       break;
5887 
5888    case TGSI_OPCODE_DMAD:
5889       exec_double_trinary(mach, inst, micro_dmad);
5890       break;
5891 
5892    case TGSI_OPCODE_DFRAC:
5893       exec_double_unary(mach, inst, micro_dfrac);
5894       break;
5895 
5896    case TGSI_OPCODE_DLDEXP:
5897       exec_dldexp(mach, inst);
5898       break;
5899 
5900    case TGSI_OPCODE_DFRACEXP:
5901       exec_dfracexp(mach, inst);
5902       break;
5903 
5904    case TGSI_OPCODE_I2D:
5905       exec_t_2_64(mach, inst, micro_i2d, TGSI_EXEC_DATA_INT);
5906       break;
5907 
5908    case TGSI_OPCODE_D2I:
5909       exec_64_2_t(mach, inst, micro_d2i, TGSI_EXEC_DATA_INT);
5910       break;
5911 
5912    case TGSI_OPCODE_U2D:
5913       exec_t_2_64(mach, inst, micro_u2d, TGSI_EXEC_DATA_UINT);
5914       break;
5915 
5916    case TGSI_OPCODE_D2U:
5917       exec_64_2_t(mach, inst, micro_d2u, TGSI_EXEC_DATA_INT);
5918       break;
5919 
5920    case TGSI_OPCODE_LOAD:
5921       exec_load(mach, inst);
5922       break;
5923 
5924    case TGSI_OPCODE_STORE:
5925       exec_store(mach, inst);
5926       break;
5927 
5928    case TGSI_OPCODE_ATOMUADD:
5929    case TGSI_OPCODE_ATOMXCHG:
5930    case TGSI_OPCODE_ATOMCAS:
5931    case TGSI_OPCODE_ATOMAND:
5932    case TGSI_OPCODE_ATOMOR:
5933    case TGSI_OPCODE_ATOMXOR:
5934    case TGSI_OPCODE_ATOMUMIN:
5935    case TGSI_OPCODE_ATOMUMAX:
5936    case TGSI_OPCODE_ATOMIMIN:
5937    case TGSI_OPCODE_ATOMIMAX:
5938       exec_atomop(mach, inst);
5939       break;
5940 
5941    case TGSI_OPCODE_RESQ:
5942       exec_resq(mach, inst);
5943       break;
5944    case TGSI_OPCODE_BARRIER:
5945    case TGSI_OPCODE_MEMBAR:
5946       return TRUE;
5947       break;
5948 
5949    case TGSI_OPCODE_I64ABS:
5950       exec_double_unary(mach, inst, micro_i64abs);
5951       break;
5952 
5953    case TGSI_OPCODE_I64SSG:
5954       exec_double_unary(mach, inst, micro_i64sgn);
5955       break;
5956 
5957    case TGSI_OPCODE_I64NEG:
5958       exec_double_unary(mach, inst, micro_i64neg);
5959       break;
5960 
5961    case TGSI_OPCODE_U64SEQ:
5962       exec_double_binary(mach, inst, micro_u64seq, TGSI_EXEC_DATA_UINT);
5963       break;
5964 
5965    case TGSI_OPCODE_U64SNE:
5966       exec_double_binary(mach, inst, micro_u64sne, TGSI_EXEC_DATA_UINT);
5967       break;
5968 
5969    case TGSI_OPCODE_I64SLT:
5970       exec_double_binary(mach, inst, micro_i64slt, TGSI_EXEC_DATA_UINT);
5971       break;
5972    case TGSI_OPCODE_U64SLT:
5973       exec_double_binary(mach, inst, micro_u64slt, TGSI_EXEC_DATA_UINT);
5974       break;
5975 
5976    case TGSI_OPCODE_I64SGE:
5977       exec_double_binary(mach, inst, micro_i64sge, TGSI_EXEC_DATA_UINT);
5978       break;
5979    case TGSI_OPCODE_U64SGE:
5980       exec_double_binary(mach, inst, micro_u64sge, TGSI_EXEC_DATA_UINT);
5981       break;
5982 
5983    case TGSI_OPCODE_I64MIN:
5984       exec_double_binary(mach, inst, micro_i64min, TGSI_EXEC_DATA_INT64);
5985       break;
5986    case TGSI_OPCODE_U64MIN:
5987       exec_double_binary(mach, inst, micro_u64min, TGSI_EXEC_DATA_UINT64);
5988       break;
5989    case TGSI_OPCODE_I64MAX:
5990       exec_double_binary(mach, inst, micro_i64max, TGSI_EXEC_DATA_INT64);
5991       break;
5992    case TGSI_OPCODE_U64MAX:
5993       exec_double_binary(mach, inst, micro_u64max, TGSI_EXEC_DATA_UINT64);
5994       break;
5995    case TGSI_OPCODE_U64ADD:
5996       exec_double_binary(mach, inst, micro_u64add, TGSI_EXEC_DATA_UINT64);
5997       break;
5998    case TGSI_OPCODE_U64MUL:
5999       exec_double_binary(mach, inst, micro_u64mul, TGSI_EXEC_DATA_UINT64);
6000       break;
6001    case TGSI_OPCODE_U64SHL:
6002       exec_arg0_64_arg1_32(mach, inst, micro_u64shl);
6003       break;
6004    case TGSI_OPCODE_I64SHR:
6005       exec_arg0_64_arg1_32(mach, inst, micro_i64shr);
6006       break;
6007    case TGSI_OPCODE_U64SHR:
6008       exec_arg0_64_arg1_32(mach, inst, micro_u64shr);
6009       break;
6010    case TGSI_OPCODE_U64DIV:
6011       exec_double_binary(mach, inst, micro_u64div, TGSI_EXEC_DATA_UINT64);
6012       break;
6013    case TGSI_OPCODE_I64DIV:
6014       exec_double_binary(mach, inst, micro_i64div, TGSI_EXEC_DATA_INT64);
6015       break;
6016    case TGSI_OPCODE_U64MOD:
6017       exec_double_binary(mach, inst, micro_u64mod, TGSI_EXEC_DATA_UINT64);
6018       break;
6019    case TGSI_OPCODE_I64MOD:
6020       exec_double_binary(mach, inst, micro_i64mod, TGSI_EXEC_DATA_INT64);
6021       break;
6022 
6023    case TGSI_OPCODE_F2U64:
6024       exec_t_2_64(mach, inst, micro_f2u64, TGSI_EXEC_DATA_FLOAT);
6025       break;
6026 
6027    case TGSI_OPCODE_F2I64:
6028       exec_t_2_64(mach, inst, micro_f2i64, TGSI_EXEC_DATA_FLOAT);
6029       break;
6030 
6031    case TGSI_OPCODE_U2I64:
6032       exec_t_2_64(mach, inst, micro_u2i64, TGSI_EXEC_DATA_INT);
6033       break;
6034    case TGSI_OPCODE_I2I64:
6035       exec_t_2_64(mach, inst, micro_i2i64, TGSI_EXEC_DATA_INT);
6036       break;
6037 
6038    case TGSI_OPCODE_D2U64:
6039       exec_double_unary(mach, inst, micro_d2u64);
6040       break;
6041 
6042    case TGSI_OPCODE_D2I64:
6043       exec_double_unary(mach, inst, micro_d2i64);
6044       break;
6045 
6046    case TGSI_OPCODE_U642F:
6047       exec_64_2_t(mach, inst, micro_u642f, TGSI_EXEC_DATA_FLOAT);
6048       break;
6049    case TGSI_OPCODE_I642F:
6050       exec_64_2_t(mach, inst, micro_i642f, TGSI_EXEC_DATA_FLOAT);
6051       break;
6052 
6053    case TGSI_OPCODE_U642D:
6054       exec_double_unary(mach, inst, micro_u642d);
6055       break;
6056    case TGSI_OPCODE_I642D:
6057       exec_double_unary(mach, inst, micro_i642d);
6058       break;
6059 
6060    default:
6061       assert( 0 );
6062    }
6063    return FALSE;
6064 }
6065 
6066 static void
tgsi_exec_machine_setup_masks(struct tgsi_exec_machine * mach)6067 tgsi_exec_machine_setup_masks(struct tgsi_exec_machine *mach)
6068 {
6069    uint default_mask = 0xf;
6070 
6071    mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0] = 0;
6072    mach->Temps[TEMP_OUTPUT_I].xyzw[TEMP_OUTPUT_C].u[0] = 0;
6073 
6074    if (mach->ShaderType == PIPE_SHADER_GEOMETRY) {
6075       mach->Temps[TEMP_PRIMITIVE_I].xyzw[TEMP_PRIMITIVE_C].u[0] = 0;
6076       mach->Primitives[0] = 0;
6077       /* GS runs on a single primitive for now */
6078       default_mask = 0x1;
6079    }
6080 
6081    if (mach->NonHelperMask == 0)
6082       mach->NonHelperMask = default_mask;
6083    mach->CondMask = default_mask;
6084    mach->LoopMask = default_mask;
6085    mach->ContMask = default_mask;
6086    mach->FuncMask = default_mask;
6087    mach->ExecMask = default_mask;
6088 
6089    mach->Switch.mask = default_mask;
6090 
6091    assert(mach->CondStackTop == 0);
6092    assert(mach->LoopStackTop == 0);
6093    assert(mach->ContStackTop == 0);
6094    assert(mach->SwitchStackTop == 0);
6095    assert(mach->BreakStackTop == 0);
6096    assert(mach->CallStackTop == 0);
6097 }
6098 
6099 /**
6100  * Run TGSI interpreter.
6101  * \return bitmask of "alive" quad components
6102  */
6103 uint
tgsi_exec_machine_run(struct tgsi_exec_machine * mach,int start_pc)6104 tgsi_exec_machine_run( struct tgsi_exec_machine *mach, int start_pc )
6105 {
6106    uint i;
6107 
6108    mach->pc = start_pc;
6109 
6110    if (!start_pc) {
6111       tgsi_exec_machine_setup_masks(mach);
6112 
6113       /* execute declarations (interpolants) */
6114       for (i = 0; i < mach->NumDeclarations; i++) {
6115          exec_declaration( mach, mach->Declarations+i );
6116       }
6117    }
6118 
6119    {
6120 #if DEBUG_EXECUTION
6121       struct tgsi_exec_vector temps[TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS];
6122       struct tgsi_exec_vector outputs[PIPE_MAX_ATTRIBS];
6123       uint inst = 1;
6124 
6125       if (!start_pc) {
6126          memset(mach->Temps, 0, sizeof(temps));
6127          if (mach->Outputs)
6128             memset(mach->Outputs, 0, sizeof(outputs));
6129          memset(temps, 0, sizeof(temps));
6130          memset(outputs, 0, sizeof(outputs));
6131       }
6132 #endif
6133 
6134       /* execute instructions, until pc is set to -1 */
6135       while (mach->pc != -1) {
6136          boolean barrier_hit;
6137 #if DEBUG_EXECUTION
6138          uint i;
6139 
6140          tgsi_dump_instruction(&mach->Instructions[mach->pc], inst++);
6141 #endif
6142 
6143          assert(mach->pc < (int) mach->NumInstructions);
6144          barrier_hit = exec_instruction(mach, mach->Instructions + mach->pc, &mach->pc);
6145 
6146          /* for compute shaders if we hit a barrier return now for later rescheduling */
6147          if (barrier_hit && mach->ShaderType == PIPE_SHADER_COMPUTE)
6148             return 0;
6149 
6150 #if DEBUG_EXECUTION
6151          for (i = 0; i < TGSI_EXEC_NUM_TEMPS + TGSI_EXEC_NUM_TEMP_EXTRAS; i++) {
6152             if (memcmp(&temps[i], &mach->Temps[i], sizeof(temps[i]))) {
6153                uint j;
6154 
6155                memcpy(&temps[i], &mach->Temps[i], sizeof(temps[i]));
6156                debug_printf("TEMP[%2u] = ", i);
6157                for (j = 0; j < 4; j++) {
6158                   if (j > 0) {
6159                      debug_printf("           ");
6160                   }
6161                   debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6162                                temps[i].xyzw[0].f[j], temps[i].xyzw[0].u[j],
6163                                temps[i].xyzw[1].f[j], temps[i].xyzw[1].u[j],
6164                                temps[i].xyzw[2].f[j], temps[i].xyzw[2].u[j],
6165                                temps[i].xyzw[3].f[j], temps[i].xyzw[3].u[j]);
6166                }
6167             }
6168          }
6169          if (mach->Outputs) {
6170             for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
6171                if (memcmp(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]))) {
6172                   uint j;
6173 
6174                   memcpy(&outputs[i], &mach->Outputs[i], sizeof(outputs[i]));
6175                   debug_printf("OUT[%2u] =  ", i);
6176                   for (j = 0; j < 4; j++) {
6177                      if (j > 0) {
6178                         debug_printf("           ");
6179                      }
6180                      debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
6181                                   outputs[i].xyzw[0].f[j], outputs[i].xyzw[0].u[j],
6182                                   outputs[i].xyzw[1].f[j], outputs[i].xyzw[1].u[j],
6183                                   outputs[i].xyzw[2].f[j], outputs[i].xyzw[2].u[j],
6184                                   outputs[i].xyzw[3].f[j], outputs[i].xyzw[3].u[j]);
6185                   }
6186                }
6187             }
6188          }
6189 #endif
6190       }
6191    }
6192 
6193 #if 0
6194    /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
6195    if (mach->ShaderType == PIPE_SHADER_FRAGMENT) {
6196       /*
6197        * Scale back depth component.
6198        */
6199       for (i = 0; i < 4; i++)
6200          mach->Outputs[0].xyzw[2].f[i] *= ctx->DrawBuffer->_DepthMaxF;
6201    }
6202 #endif
6203 
6204    /* Strictly speaking, these assertions aren't really needed but they
6205     * can potentially catch some bugs in the control flow code.
6206     */
6207    assert(mach->CondStackTop == 0);
6208    assert(mach->LoopStackTop == 0);
6209    assert(mach->ContStackTop == 0);
6210    assert(mach->SwitchStackTop == 0);
6211    assert(mach->BreakStackTop == 0);
6212    assert(mach->CallStackTop == 0);
6213 
6214    return ~mach->Temps[TEMP_KILMASK_I].xyzw[TEMP_KILMASK_C].u[0];
6215 }
6216