1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #ifndef AOM_AV1_COMMON_ONYXC_INT_H_
13 #define AOM_AV1_COMMON_ONYXC_INT_H_
14
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17
18 #include "aom/internal/aom_codec_internal.h"
19 #include "aom_util/aom_thread.h"
20 #include "av1/common/alloccommon.h"
21 #include "av1/common/av1_loopfilter.h"
22 #include "av1/common/entropy.h"
23 #include "av1/common/entropymode.h"
24 #include "av1/common/entropymv.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/frame_buffers.h"
27 #include "av1/common/mv.h"
28 #include "av1/common/quant_common.h"
29 #include "av1/common/restoration.h"
30 #include "av1/common/tile_common.h"
31 #include "av1/common/timing.h"
32 #include "av1/common/odintrin.h"
33 #include "av1/encoder/hash_motion.h"
34 #include "aom_dsp/grain_synthesis.h"
35 #include "aom_dsp/grain_table.h"
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39
40 #if defined(__clang__) && defined(__has_warning)
41 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
42 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
43 #endif
44 #elif defined(__GNUC__) && __GNUC__ >= 7
45 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
46 #endif
47
48 #ifndef AOM_FALLTHROUGH_INTENDED
49 #define AOM_FALLTHROUGH_INTENDED \
50 do { \
51 } while (0)
52 #endif
53
54 #define CDEF_MAX_STRENGTHS 16
55
56 /* Constant values while waiting for the sequence header */
57 #define FRAME_ID_LENGTH 15
58 #define DELTA_FRAME_ID_LENGTH 14
59
60 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
61 // Extra frame context which is always kept at default values
62 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
63 #define PRIMARY_REF_BITS 3
64 #define PRIMARY_REF_NONE 7
65
66 #define NUM_PING_PONG_BUFFERS 2
67
68 #define MAX_NUM_TEMPORAL_LAYERS 8
69 #define MAX_NUM_SPATIAL_LAYERS 4
70 /* clang-format off */
71 // clang-format seems to think this is a pointer dereference and not a
72 // multiplication.
73 #define MAX_NUM_OPERATING_POINTS \
74 MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS
75 /* clang-format on*/
76
77 // TODO(jingning): Turning this on to set up transform coefficient
78 // processing timer.
79 #define TXCOEFF_TIMER 0
80 #define TXCOEFF_COST_TIMER 0
81
82 enum {
83 SINGLE_REFERENCE = 0,
84 COMPOUND_REFERENCE = 1,
85 REFERENCE_MODE_SELECT = 2,
86 REFERENCE_MODES = 3,
87 } UENUM1BYTE(REFERENCE_MODE);
88
89 enum {
90 /**
91 * Frame context updates are disabled
92 */
93 REFRESH_FRAME_CONTEXT_DISABLED,
94 /**
95 * Update frame context to values resulting from backward probability
96 * updates based on entropy/counts in the decoded frame
97 */
98 REFRESH_FRAME_CONTEXT_BACKWARD,
99 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
100
101 #define MFMV_STACK_SIZE 3
102 typedef struct {
103 int_mv mfmv0;
104 uint8_t ref_frame_offset;
105 } TPL_MV_REF;
106
107 typedef struct {
108 int_mv mv;
109 MV_REFERENCE_FRAME ref_frame;
110 } MV_REF;
111
112
113 typedef struct RefCntBuffer {
114 // For a RefCntBuffer, the following are reference-holding variables:
115 // - cm->ref_frame_map[]
116 // - cm->cur_frame
117 // - cm->scaled_ref_buf[] (encoder only)
118 // - cm->next_ref_frame_map[] (decoder only)
119 // - pbi->output_frame_index[] (decoder only)
120 // With that definition, 'ref_count' is the number of reference-holding
121 // variables that are currently referencing this buffer.
122 // For example:
123 // - suppose this buffer is at index 'k' in the buffer pool, and
124 // - Total 'n' of the variables / array elements above have value 'k' (that
125 // is, they are pointing to buffer at index 'k').
126 // Then, pool->frame_bufs[k].ref_count = n.
127 int ref_count;
128
129 unsigned int order_hint;
130 unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
131
132 MV_REF *mvs;
133 uint8_t *seg_map;
134 struct segmentation seg;
135 int mi_rows;
136 int mi_cols;
137 // Width and height give the size of the buffer (before any upscaling, unlike
138 // the sizes that can be derived from the buf structure)
139 int width;
140 int height;
141 WarpedMotionParams global_motion[REF_FRAMES];
142 int showable_frame; // frame can be used as show existing frame in future
143 uint8_t film_grain_params_present;
144 aom_film_grain_t film_grain_params;
145 aom_codec_frame_buffer_t raw_frame_buffer;
146 YV12_BUFFER_CONFIG buf;
147 hash_table hash_table;
148 FRAME_TYPE frame_type;
149
150 // This is only used in the encoder but needs to be indexed per ref frame
151 // so it's extremely convenient to keep it here.
152 int interp_filter_selected[SWITCHABLE];
153
154 // Inter frame reference frame delta for loop filter
155 int8_t ref_deltas[REF_FRAMES];
156
157 // 0 = ZERO_MV, MV
158 int8_t mode_deltas[MAX_MODE_LF_DELTAS];
159
160 FRAME_CONTEXT frame_context;
161 } RefCntBuffer;
162
163 typedef struct BufferPool {
164 // Protect BufferPool from being accessed by several FrameWorkers at
165 // the same time during frame parallel decode.
166 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
167 // TODO(wtc): Remove this. See
168 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
169 #if CONFIG_MULTITHREAD
170 pthread_mutex_t pool_mutex;
171 #endif
172
173 // Private data associated with the frame buffer callbacks.
174 void *cb_priv;
175
176 aom_get_frame_buffer_cb_fn_t get_fb_cb;
177 aom_release_frame_buffer_cb_fn_t release_fb_cb;
178
179 RefCntBuffer frame_bufs[FRAME_BUFFERS];
180
181 // Frame buffers allocated internally by the codec.
182 InternalFrameBufferList int_frame_buffers;
183 } BufferPool;
184
185 typedef struct {
186 int cdef_pri_damping;
187 int cdef_sec_damping;
188 int nb_cdef_strengths;
189 int cdef_strengths[CDEF_MAX_STRENGTHS];
190 int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
191 int cdef_bits;
192 } CdefInfo;
193
194 typedef struct {
195 int delta_q_present_flag;
196 // Resolution of delta quant
197 int delta_q_res;
198 int delta_lf_present_flag;
199 // Resolution of delta lf level
200 int delta_lf_res;
201 // This is a flag for number of deltas of loop filter level
202 // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
203 // 1: use separate deltas for each filter level
204 int delta_lf_multi;
205 } DeltaQInfo;
206
207 typedef struct {
208 int enable_order_hint; // 0 - disable order hint, and related tools
209 int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
210 // frame_sign_bias
211 // if 0, enable_dist_wtd_comp and
212 // enable_ref_frame_mvs must be set as 0.
213 int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
214 // 1 - enable it
215 int enable_ref_frame_mvs; // 0 - disable ref frame mvs
216 // 1 - enable it
217 } OrderHintInfo;
218
219 // Sequence header structure.
220 // Note: All syntax elements of sequence_header_obu that need to be
221 // bit-identical across multiple sequence headers must be part of this struct,
222 // so that consistency is checked by are_seq_headers_consistent() function.
223 typedef struct SequenceHeader {
224 int num_bits_width;
225 int num_bits_height;
226 int max_frame_width;
227 int max_frame_height;
228 uint8_t frame_id_numbers_present_flag;
229 int frame_id_length;
230 int delta_frame_id_length;
231 BLOCK_SIZE sb_size; // Size of the superblock used for this frame
232 int mib_size; // Size of the superblock in units of MI blocks
233 int mib_size_log2; // Log 2 of above.
234
235 OrderHintInfo order_hint_info;
236
237 uint8_t force_screen_content_tools; // 0 - force off
238 // 1 - force on
239 // 2 - adaptive
240 uint8_t still_picture; // Video is a single frame still picture
241 uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
242 uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
243 // 1 - force to integer
244 // 2 - adaptive
245 uint8_t enable_filter_intra; // enables/disables filterintra
246 uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
247 uint8_t enable_interintra_compound; // enables/disables interintra_compound
248 uint8_t enable_masked_compound; // enables/disables masked compound
249 uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
250 // 1 - enable vert/horz filter selection
251 uint8_t enable_warped_motion; // 0 - disable warp for the sequence
252 // 1 - enable warp for the sequence
253 uint8_t enable_superres; // 0 - Disable superres for the sequence
254 // and no frame level superres flag
255 // 1 - Enable superres for the sequence
256 // enable per-frame superres flag
257 uint8_t enable_cdef; // To turn on/off CDEF
258 uint8_t enable_restoration; // To turn on/off loop restoration
259 BITSTREAM_PROFILE profile;
260
261 // Operating point info.
262 int operating_points_cnt_minus_1;
263 int operating_point_idc[MAX_NUM_OPERATING_POINTS];
264 uint8_t display_model_info_present_flag;
265 uint8_t decoder_model_info_present_flag;
266 AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
267 uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in the spec. One bit: 0
268 // or 1.
269
270 // Color config.
271 aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
272 // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
273 uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
274 uint8_t monochrome; // Monochorme video
275 aom_color_primaries_t color_primaries;
276 aom_transfer_characteristics_t transfer_characteristics;
277 aom_matrix_coefficients_t matrix_coefficients;
278 int color_range;
279 int subsampling_x; // Chroma subsampling for x
280 int subsampling_y; // Chroma subsampling for y
281 aom_chroma_sample_position_t chroma_sample_position;
282 uint8_t separate_uv_delta_q;
283 uint8_t film_grain_params_present;
284 } SequenceHeader;
285
286 typedef struct {
287 int skip_mode_allowed;
288 int skip_mode_flag;
289 int ref_frame_idx_0;
290 int ref_frame_idx_1;
291 } SkipModeInfo;
292
293 typedef struct {
294 FRAME_TYPE frame_type;
295 REFERENCE_MODE reference_mode;
296
297 unsigned int order_hint;
298 unsigned int frame_number;
299 SkipModeInfo skip_mode_info;
300 int refresh_frame_flags; // Which ref frames are overwritten by this frame
301 int frame_refs_short_signaling;
302 } CurrentFrame;
303
304 typedef struct AV1Common {
305 CurrentFrame current_frame;
306 struct aom_internal_error_info error;
307 int width;
308 int height;
309 int render_width;
310 int render_height;
311 int timing_info_present;
312 aom_timing_info_t timing_info;
313 int buffer_removal_time_present;
314 aom_dec_model_info_t buffer_model;
315 aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
316 aom_op_timing_info_t op_frame_timing[MAX_NUM_OPERATING_POINTS + 1];
317 uint32_t frame_presentation_time;
318
319 int context_update_tile_id;
320
321 // Scale of the current frame with respect to itself.
322 struct scale_factors sf_identity;
323
324 RefCntBuffer *prev_frame;
325
326 // TODO(hkuang): Combine this with cur_buf in macroblockd.
327 RefCntBuffer *cur_frame;
328
329 // For encoder, we have a two-level mapping from reference frame type to the
330 // corresponding buffer in the buffer pool:
331 // * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
332 // EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
333 // * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
334 // the reference counted buffer structure RefCntBuffer, taken from the buffer
335 // pool cm->buffer_pool->frame_bufs.
336 //
337 // LAST_FRAME, ..., EXTREF_FRAME
338 // | |
339 // v v
340 // remapped_ref_idx[LAST_FRAME - 1], ..., remapped_ref_idx[EXTREF_FRAME - 1]
341 // | |
342 // v v
343 // ref_frame_map[], ..., ref_frame_map[]
344 //
345 // Note: INTRA_FRAME always refers to the current frame, so there's no need to
346 // have a remapped index for the same.
347 int remapped_ref_idx[REF_FRAMES];
348
349 struct scale_factors ref_scale_factors[REF_FRAMES];
350
351 // For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
352 // the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
353 // For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
354 // remapped reference index 'j' (that is, original reference type 'i') to
355 // a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
356 RefCntBuffer *ref_frame_map[REF_FRAMES];
357
358 // Prepare ref_frame_map for the next frame.
359 // Only used in frame parallel decode.
360 RefCntBuffer *next_ref_frame_map[REF_FRAMES];
361 FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
362
363 int show_frame;
364 int showable_frame; // frame can be used as show existing frame in future
365 int show_existing_frame;
366
367 uint8_t disable_cdf_update;
368 int allow_high_precision_mv;
369 uint8_t cur_frame_force_integer_mv; // 0 the default in AOM, 1 only integer
370
371 uint8_t allow_screen_content_tools;
372 int allow_intrabc;
373 int allow_warped_motion;
374
375 // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
376 // MB_MODE_INFO (8-pixel) units.
377 int MBs;
378 int mb_rows, mi_rows;
379 int mb_cols, mi_cols;
380 int mi_stride;
381
382 /* profile settings */
383 TX_MODE tx_mode;
384
385 #if CONFIG_ENTROPY_STATS
386 int coef_cdf_category;
387 #endif
388
389 int base_qindex;
390 int y_dc_delta_q;
391 int u_dc_delta_q;
392 int v_dc_delta_q;
393 int u_ac_delta_q;
394 int v_ac_delta_q;
395
396 // The dequantizers below are true dequantizers used only in the
397 // dequantization process. They have the same coefficient
398 // shift/scale as TX.
399 int16_t y_dequant_QTX[MAX_SEGMENTS][2];
400 int16_t u_dequant_QTX[MAX_SEGMENTS][2];
401 int16_t v_dequant_QTX[MAX_SEGMENTS][2];
402
403 // Global quant matrix tables
404 const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
405 const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
406
407 // Local quant matrix tables for each frame
408 const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
409 const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
410 const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
411
412 // Encoder
413 int using_qmatrix;
414 int qm_y;
415 int qm_u;
416 int qm_v;
417 int min_qmlevel;
418 int max_qmlevel;
419 int use_quant_b_adapt;
420
421 /* We allocate a MB_MODE_INFO struct for each macroblock, together with
422 an extra row on top and column on the left to simplify prediction. */
423 int mi_alloc_size;
424 MB_MODE_INFO *mip; /* Base of allocated array */
425 MB_MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
426
427 // TODO(agrange): Move prev_mi into encoder structure.
428 // prev_mip and prev_mi will only be allocated in encoder.
429 MB_MODE_INFO *prev_mip; /* MB_MODE_INFO array 'mip' from last decoded frame */
430 MB_MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
431
432 // Separate mi functions between encoder and decoder.
433 int (*alloc_mi)(struct AV1Common *cm, int mi_size);
434 void (*free_mi)(struct AV1Common *cm);
435 void (*setup_mi)(struct AV1Common *cm);
436
437 // Grid of pointers to 8x8 MB_MODE_INFO structs. Any 8x8 not in the visible
438 // area will be NULL.
439 MB_MODE_INFO **mi_grid_base;
440 MB_MODE_INFO **mi_grid_visible;
441 MB_MODE_INFO **prev_mi_grid_base;
442 MB_MODE_INFO **prev_mi_grid_visible;
443
444 // Whether to use previous frames' motion vectors for prediction.
445 int allow_ref_frame_mvs;
446
447 uint8_t *last_frame_seg_map;
448
449 InterpFilter interp_filter;
450
451 int switchable_motion_mode;
452
453 loop_filter_info_n lf_info;
454 // The denominator of the superres scale; the numerator is fixed.
455 uint8_t superres_scale_denominator;
456 int superres_upscaled_width;
457 int superres_upscaled_height;
458 RestorationInfo rst_info[MAX_MB_PLANE];
459
460 // Pointer to a scratch buffer used by self-guided restoration
461 int32_t *rst_tmpbuf;
462 RestorationLineBuffers *rlbs;
463
464 // Output of loop restoration
465 YV12_BUFFER_CONFIG rst_frame;
466
467 // Flag signaling how frame contexts should be updated at the end of
468 // a frame decode
469 REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
470
471 int ref_frame_sign_bias[REF_FRAMES]; /* Two state 0, 1 */
472
473 struct loopfilter lf;
474 struct segmentation seg;
475 int coded_lossless; // frame is fully lossless at the coded resolution.
476 int all_lossless; // frame is fully lossless at the upscaled resolution.
477
478 int reduced_tx_set_used;
479
480 // Context probabilities for reference frame prediction
481 MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS];
482 MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS];
483
484 FRAME_CONTEXT *fc; /* this frame entropy */
485 FRAME_CONTEXT *default_frame_context;
486 int primary_ref_frame;
487
488 int error_resilient_mode;
489
490 int tile_cols, tile_rows;
491
492 int max_tile_width_sb;
493 int min_log2_tile_cols;
494 int max_log2_tile_cols;
495 int max_log2_tile_rows;
496 int min_log2_tile_rows;
497 int min_log2_tiles;
498 int max_tile_height_sb;
499 int uniform_tile_spacing_flag;
500 int log2_tile_cols; // only valid for uniform tiles
501 int log2_tile_rows; // only valid for uniform tiles
502 int tile_col_start_sb[MAX_TILE_COLS + 1]; // valid for 0 <= i <= tile_cols
503 int tile_row_start_sb[MAX_TILE_ROWS + 1]; // valid for 0 <= i <= tile_rows
504 int tile_width, tile_height; // In MI units
505 int min_inner_tile_width; // min width of non-rightmost tile
506
507 unsigned int large_scale_tile;
508 unsigned int single_tile_decoding;
509
510 int byte_alignment;
511 int skip_loop_filter;
512 int skip_film_grain;
513
514 // External BufferPool passed from outside.
515 BufferPool *buffer_pool;
516
517 PARTITION_CONTEXT **above_seg_context;
518 ENTROPY_CONTEXT **above_context[MAX_MB_PLANE];
519 TXFM_CONTEXT **above_txfm_context;
520 WarpedMotionParams global_motion[REF_FRAMES];
521 aom_film_grain_t film_grain_params;
522
523 CdefInfo cdef_info;
524 DeltaQInfo delta_q_info; // Delta Q and Delta LF parameters
525
526 int num_tg;
527 SequenceHeader seq_params;
528 int current_frame_id;
529 int ref_frame_id[REF_FRAMES];
530 int valid_for_referencing[REF_FRAMES];
531 TPL_MV_REF *tpl_mvs;
532 int tpl_mvs_mem_size;
533 // TODO(jingning): This can be combined with sign_bias later.
534 int8_t ref_frame_side[REF_FRAMES];
535
536 int is_annexb;
537
538 int temporal_layer_id;
539 int spatial_layer_id;
540 unsigned int number_temporal_layers;
541 unsigned int number_spatial_layers;
542 int num_allocated_above_context_mi_col;
543 int num_allocated_above_contexts;
544 int num_allocated_above_context_planes;
545
546 #if TXCOEFF_TIMER
547 int64_t cum_txcoeff_timer;
548 int64_t txcoeff_timer;
549 int txb_count;
550 #endif
551
552 #if TXCOEFF_COST_TIMER
553 int64_t cum_txcoeff_cost_timer;
554 int64_t txcoeff_cost_timer;
555 int64_t txcoeff_cost_count;
556 #endif
557 const cfg_options_t *options;
558 int is_decoding;
559 } AV1_COMMON;
560
561 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
562 // frame reference count.
lock_buffer_pool(BufferPool * const pool)563 static void lock_buffer_pool(BufferPool *const pool) {
564 #if CONFIG_MULTITHREAD
565 pthread_mutex_lock(&pool->pool_mutex);
566 #else
567 (void)pool;
568 #endif
569 }
570
unlock_buffer_pool(BufferPool * const pool)571 static void unlock_buffer_pool(BufferPool *const pool) {
572 #if CONFIG_MULTITHREAD
573 pthread_mutex_unlock(&pool->pool_mutex);
574 #else
575 (void)pool;
576 #endif
577 }
578
get_ref_frame(AV1_COMMON * cm,int index)579 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
580 if (index < 0 || index >= REF_FRAMES) return NULL;
581 if (cm->ref_frame_map[index] == NULL) return NULL;
582 return &cm->ref_frame_map[index]->buf;
583 }
584
get_free_fb(AV1_COMMON * cm)585 static INLINE int get_free_fb(AV1_COMMON *cm) {
586 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
587 int i;
588
589 lock_buffer_pool(cm->buffer_pool);
590 for (i = 0; i < FRAME_BUFFERS; ++i)
591 if (frame_bufs[i].ref_count == 0) break;
592
593 if (i != FRAME_BUFFERS) {
594 if (frame_bufs[i].buf.use_external_reference_buffers) {
595 // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
596 // external reference buffers. Restore the buffer pointers to point to the
597 // internally allocated memory.
598 YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
599 ybf->y_buffer = ybf->store_buf_adr[0];
600 ybf->u_buffer = ybf->store_buf_adr[1];
601 ybf->v_buffer = ybf->store_buf_adr[2];
602 ybf->use_external_reference_buffers = 0;
603 }
604
605 frame_bufs[i].ref_count = 1;
606 } else {
607 // We should never run out of free buffers. If this assertion fails, there
608 // is a reference leak.
609 assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
610 // Reset i to be INVALID_IDX to indicate no free buffer found.
611 i = INVALID_IDX;
612 }
613
614 unlock_buffer_pool(cm->buffer_pool);
615 return i;
616 }
617
assign_cur_frame_new_fb(AV1_COMMON * const cm)618 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
619 // Release the previously-used frame-buffer
620 if (cm->cur_frame != NULL) {
621 --cm->cur_frame->ref_count;
622 cm->cur_frame = NULL;
623 }
624
625 // Assign a new framebuffer
626 const int new_fb_idx = get_free_fb(cm);
627 if (new_fb_idx == INVALID_IDX) return NULL;
628
629 cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
630 cm->cur_frame->buf.buf_8bit_valid = 0;
631 av1_zero(cm->cur_frame->interp_filter_selected);
632 return cm->cur_frame;
633 }
634
635 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
636 // counts accordingly.
assign_frame_buffer_p(RefCntBuffer ** lhs_ptr,RefCntBuffer * rhs_ptr)637 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
638 RefCntBuffer *rhs_ptr) {
639 RefCntBuffer *const old_ptr = *lhs_ptr;
640 if (old_ptr != NULL) {
641 assert(old_ptr->ref_count > 0);
642 // One less reference to the buffer at 'old_ptr', so decrease ref count.
643 --old_ptr->ref_count;
644 }
645
646 *lhs_ptr = rhs_ptr;
647 // One more reference to the buffer at 'rhs_ptr', so increase ref count.
648 ++rhs_ptr->ref_count;
649 }
650
frame_is_intra_only(const AV1_COMMON * const cm)651 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
652 return cm->current_frame.frame_type == KEY_FRAME ||
653 cm->current_frame.frame_type == INTRA_ONLY_FRAME;
654 }
655
frame_is_sframe(const AV1_COMMON * cm)656 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
657 return cm->current_frame.frame_type == S_FRAME;
658 }
659
660 // These functions take a reference frame label between LAST_FRAME and
661 // EXTREF_FRAME inclusive. Note that this is different to the indexing
662 // previously used by the frame_refs[] array.
get_ref_frame_map_idx(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)663 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
664 const MV_REFERENCE_FRAME ref_frame) {
665 return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
666 ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
667 : INVALID_IDX;
668 }
669
get_ref_frame_buf(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)670 static INLINE RefCntBuffer *get_ref_frame_buf(
671 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
672 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
673 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
674 }
675
676 // Both const and non-const versions of this function are provided so that it
677 // can be used with a const AV1_COMMON if needed.
get_ref_scale_factors_const(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)678 static INLINE const struct scale_factors *get_ref_scale_factors_const(
679 const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
680 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
681 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
682 }
683
get_ref_scale_factors(AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)684 static INLINE struct scale_factors *get_ref_scale_factors(
685 AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
686 const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
687 return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
688 }
689
get_primary_ref_frame_buf(const AV1_COMMON * const cm)690 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
691 const AV1_COMMON *const cm) {
692 if (cm->primary_ref_frame == PRIMARY_REF_NONE) return NULL;
693 const int map_idx = get_ref_frame_map_idx(cm, cm->primary_ref_frame + 1);
694 return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
695 }
696
697 // Returns 1 if this frame might allow mvs from some reference frame.
frame_might_allow_ref_frame_mvs(const AV1_COMMON * cm)698 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
699 return !cm->error_resilient_mode &&
700 cm->seq_params.order_hint_info.enable_ref_frame_mvs &&
701 cm->seq_params.order_hint_info.enable_order_hint &&
702 !frame_is_intra_only(cm);
703 }
704
705 // Returns 1 if this frame might use warped_motion
frame_might_allow_warped_motion(const AV1_COMMON * cm)706 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
707 return !cm->error_resilient_mode && !frame_is_intra_only(cm) &&
708 cm->seq_params.enable_warped_motion;
709 }
710
ensure_mv_buffer(RefCntBuffer * buf,AV1_COMMON * cm)711 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
712 const int buf_rows = buf->mi_rows;
713 const int buf_cols = buf->mi_cols;
714
715 if (buf->mvs == NULL || buf_rows != cm->mi_rows || buf_cols != cm->mi_cols) {
716 aom_free(buf->mvs);
717 buf->mi_rows = cm->mi_rows;
718 buf->mi_cols = cm->mi_cols;
719 CHECK_MEM_ERROR(cm, buf->mvs,
720 (MV_REF *)aom_calloc(
721 ((cm->mi_rows + 1) >> 1) * ((cm->mi_cols + 1) >> 1),
722 sizeof(*buf->mvs)));
723 aom_free(buf->seg_map);
724 CHECK_MEM_ERROR(cm, buf->seg_map,
725 (uint8_t *)aom_calloc(cm->mi_rows * cm->mi_cols,
726 sizeof(*buf->seg_map)));
727 }
728
729 const int mem_size =
730 ((cm->mi_rows + MAX_MIB_SIZE) >> 1) * (cm->mi_stride >> 1);
731 int realloc = cm->tpl_mvs == NULL;
732 if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
733
734 if (realloc) {
735 aom_free(cm->tpl_mvs);
736 CHECK_MEM_ERROR(cm, cm->tpl_mvs,
737 (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
738 cm->tpl_mvs_mem_size = mem_size;
739 }
740 }
741
742 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
743
av1_num_planes(const AV1_COMMON * cm)744 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
745 return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE;
746 }
747
av1_init_above_context(AV1_COMMON * cm,MACROBLOCKD * xd,const int tile_row)748 static INLINE void av1_init_above_context(AV1_COMMON *cm, MACROBLOCKD *xd,
749 const int tile_row) {
750 const int num_planes = av1_num_planes(cm);
751 for (int i = 0; i < num_planes; ++i) {
752 xd->above_context[i] = cm->above_context[i][tile_row];
753 }
754 xd->above_seg_context = cm->above_seg_context[tile_row];
755 xd->above_txfm_context = cm->above_txfm_context[tile_row];
756 }
757
av1_init_macroblockd(AV1_COMMON * cm,MACROBLOCKD * xd,tran_low_t * dqcoeff)758 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
759 tran_low_t *dqcoeff) {
760 const int num_planes = av1_num_planes(cm);
761 for (int i = 0; i < num_planes; ++i) {
762 xd->plane[i].dqcoeff = dqcoeff;
763
764 if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
765 memcpy(xd->plane[i].seg_dequant_QTX, cm->y_dequant_QTX,
766 sizeof(cm->y_dequant_QTX));
767 memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix));
768
769 } else {
770 if (i == AOM_PLANE_U) {
771 memcpy(xd->plane[i].seg_dequant_QTX, cm->u_dequant_QTX,
772 sizeof(cm->u_dequant_QTX));
773 memcpy(xd->plane[i].seg_iqmatrix, cm->u_iqmatrix,
774 sizeof(cm->u_iqmatrix));
775 } else {
776 memcpy(xd->plane[i].seg_dequant_QTX, cm->v_dequant_QTX,
777 sizeof(cm->v_dequant_QTX));
778 memcpy(xd->plane[i].seg_iqmatrix, cm->v_iqmatrix,
779 sizeof(cm->v_iqmatrix));
780 }
781 }
782 }
783 xd->mi_stride = cm->mi_stride;
784 xd->error_info = &cm->error;
785 cfl_init(&xd->cfl, &cm->seq_params);
786 }
787
set_skip_context(MACROBLOCKD * xd,int mi_row,int mi_col,const int num_planes)788 static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col,
789 const int num_planes) {
790 int i;
791 int row_offset = mi_row;
792 int col_offset = mi_col;
793 for (i = 0; i < num_planes; ++i) {
794 struct macroblockd_plane *const pd = &xd->plane[i];
795 // Offset the buffer pointer
796 const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
797 if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
798 row_offset = mi_row - 1;
799 if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
800 col_offset = mi_col - 1;
801 int above_idx = col_offset;
802 int left_idx = row_offset & MAX_MIB_MASK;
803 pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
804 pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
805 }
806 }
807
calc_mi_size(int len)808 static INLINE int calc_mi_size(int len) {
809 // len is in mi units. Align to a multiple of SBs.
810 return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
811 }
812
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,const int num_planes)813 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
814 const int num_planes) {
815 int i;
816 for (i = 0; i < num_planes; i++) {
817 xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
818 xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
819
820 xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
821 xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
822 }
823 }
824
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)825 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
826 int mi_row, int bh, int mi_col, int bw,
827 int mi_rows, int mi_cols) {
828 xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
829 xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
830 xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
831 xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
832
833 // Are edges available for intra prediction?
834 xd->up_available = (mi_row > tile->mi_row_start);
835
836 const int ss_x = xd->plane[1].subsampling_x;
837 const int ss_y = xd->plane[1].subsampling_y;
838
839 xd->left_available = (mi_col > tile->mi_col_start);
840 xd->chroma_up_available = xd->up_available;
841 xd->chroma_left_available = xd->left_available;
842 if (ss_x && bw < mi_size_wide[BLOCK_8X8])
843 xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
844 if (ss_y && bh < mi_size_high[BLOCK_8X8])
845 xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
846 if (xd->up_available) {
847 xd->above_mbmi = xd->mi[-xd->mi_stride];
848 } else {
849 xd->above_mbmi = NULL;
850 }
851
852 if (xd->left_available) {
853 xd->left_mbmi = xd->mi[-1];
854 } else {
855 xd->left_mbmi = NULL;
856 }
857
858 const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
859 ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
860 if (chroma_ref) {
861 // To help calculate the "above" and "left" chroma blocks, note that the
862 // current block may cover multiple luma blocks (eg, if partitioned into
863 // 4x4 luma blocks).
864 // First, find the top-left-most luma block covered by this chroma block
865 MB_MODE_INFO **base_mi =
866 &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
867
868 // Then, we consider the luma region covered by the left or above 4x4 chroma
869 // prediction. We want to point to the chroma reference block in that
870 // region, which is the bottom-right-most mi unit.
871 // This leads to the following offsets:
872 MB_MODE_INFO *chroma_above_mi =
873 xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
874 xd->chroma_above_mbmi = chroma_above_mi;
875
876 MB_MODE_INFO *chroma_left_mi =
877 xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
878 xd->chroma_left_mbmi = chroma_left_mi;
879 }
880
881 xd->n4_h = bh;
882 xd->n4_w = bw;
883 xd->is_sec_rect = 0;
884 if (xd->n4_w < xd->n4_h) {
885 // Only mark is_sec_rect as 1 for the last block.
886 // For PARTITION_VERT_4, it would be (0, 0, 0, 1);
887 // For other partitions, it would be (0, 1).
888 if (!((mi_col + xd->n4_w) & (xd->n4_h - 1))) xd->is_sec_rect = 1;
889 }
890
891 if (xd->n4_w > xd->n4_h)
892 if (mi_row & (xd->n4_w - 1)) xd->is_sec_rect = 1;
893 }
894
get_y_mode_cdf(FRAME_CONTEXT * tile_ctx,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi)895 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
896 const MB_MODE_INFO *above_mi,
897 const MB_MODE_INFO *left_mi) {
898 const PREDICTION_MODE above = av1_above_block_mode(above_mi);
899 const PREDICTION_MODE left = av1_left_block_mode(left_mi);
900 const int above_ctx = intra_mode_context[above];
901 const int left_ctx = intra_mode_context[left];
902 return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
903 }
904
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)905 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
906 int mi_col, BLOCK_SIZE subsize,
907 BLOCK_SIZE bsize) {
908 PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
909 PARTITION_CONTEXT *const left_ctx =
910 xd->left_seg_context + (mi_row & MAX_MIB_MASK);
911
912 const int bw = mi_size_wide[bsize];
913 const int bh = mi_size_high[bsize];
914 memset(above_ctx, partition_context_lookup[subsize].above, bw);
915 memset(left_ctx, partition_context_lookup[subsize].left, bh);
916 }
917
is_chroma_reference(int mi_row,int mi_col,BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)918 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
919 int subsampling_x, int subsampling_y) {
920 const int bw = mi_size_wide[bsize];
921 const int bh = mi_size_high[bsize];
922 int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
923 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
924 return ref_pos;
925 }
926
scale_chroma_bsize(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)927 static INLINE BLOCK_SIZE scale_chroma_bsize(BLOCK_SIZE bsize, int subsampling_x,
928 int subsampling_y) {
929 BLOCK_SIZE bs = bsize;
930 switch (bsize) {
931 case BLOCK_4X4:
932 if (subsampling_x == 1 && subsampling_y == 1)
933 bs = BLOCK_8X8;
934 else if (subsampling_x == 1)
935 bs = BLOCK_8X4;
936 else if (subsampling_y == 1)
937 bs = BLOCK_4X8;
938 break;
939 case BLOCK_4X8:
940 if (subsampling_x == 1 && subsampling_y == 1)
941 bs = BLOCK_8X8;
942 else if (subsampling_x == 1)
943 bs = BLOCK_8X8;
944 else if (subsampling_y == 1)
945 bs = BLOCK_4X8;
946 break;
947 case BLOCK_8X4:
948 if (subsampling_x == 1 && subsampling_y == 1)
949 bs = BLOCK_8X8;
950 else if (subsampling_x == 1)
951 bs = BLOCK_8X4;
952 else if (subsampling_y == 1)
953 bs = BLOCK_8X8;
954 break;
955 case BLOCK_4X16:
956 if (subsampling_x == 1 && subsampling_y == 1)
957 bs = BLOCK_8X16;
958 else if (subsampling_x == 1)
959 bs = BLOCK_8X16;
960 else if (subsampling_y == 1)
961 bs = BLOCK_4X16;
962 break;
963 case BLOCK_16X4:
964 if (subsampling_x == 1 && subsampling_y == 1)
965 bs = BLOCK_16X8;
966 else if (subsampling_x == 1)
967 bs = BLOCK_16X4;
968 else if (subsampling_y == 1)
969 bs = BLOCK_16X8;
970 break;
971 default: break;
972 }
973 return bs;
974 }
975
cdf_element_prob(const aom_cdf_prob * cdf,size_t element)976 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
977 size_t element) {
978 assert(cdf != NULL);
979 return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
980 }
981
partition_gather_horz_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)982 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
983 const aom_cdf_prob *const in,
984 BLOCK_SIZE bsize) {
985 (void)bsize;
986 out[0] = CDF_PROB_TOP;
987 out[0] -= cdf_element_prob(in, PARTITION_HORZ);
988 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
989 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
990 out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
991 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
992 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
993 out[0] = AOM_ICDF(out[0]);
994 out[1] = AOM_ICDF(CDF_PROB_TOP);
995 }
996
partition_gather_vert_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)997 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
998 const aom_cdf_prob *const in,
999 BLOCK_SIZE bsize) {
1000 (void)bsize;
1001 out[0] = CDF_PROB_TOP;
1002 out[0] -= cdf_element_prob(in, PARTITION_VERT);
1003 out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1004 out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1005 out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1006 out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1007 if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1008 out[0] = AOM_ICDF(out[0]);
1009 out[1] = AOM_ICDF(CDF_PROB_TOP);
1010 }
1011
update_ext_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize,PARTITION_TYPE partition)1012 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1013 int mi_col, BLOCK_SIZE subsize,
1014 BLOCK_SIZE bsize,
1015 PARTITION_TYPE partition) {
1016 if (bsize >= BLOCK_8X8) {
1017 const int hbs = mi_size_wide[bsize] / 2;
1018 BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1019 switch (partition) {
1020 case PARTITION_SPLIT:
1021 if (bsize != BLOCK_8X8) break;
1022 AOM_FALLTHROUGH_INTENDED;
1023 case PARTITION_NONE:
1024 case PARTITION_HORZ:
1025 case PARTITION_VERT:
1026 case PARTITION_HORZ_4:
1027 case PARTITION_VERT_4:
1028 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1029 break;
1030 case PARTITION_HORZ_A:
1031 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1032 update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1033 break;
1034 case PARTITION_HORZ_B:
1035 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1036 update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1037 break;
1038 case PARTITION_VERT_A:
1039 update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1040 update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1041 break;
1042 case PARTITION_VERT_B:
1043 update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1044 update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1045 break;
1046 default: assert(0 && "Invalid partition type");
1047 }
1048 }
1049 }
1050
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)1051 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1052 int mi_col, BLOCK_SIZE bsize) {
1053 const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
1054 const PARTITION_CONTEXT *left_ctx =
1055 xd->left_seg_context + (mi_row & MAX_MIB_MASK);
1056 // Minimum partition point is 8x8. Offset the bsl accordingly.
1057 const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1058 int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1059
1060 assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1061 assert(bsl >= 0);
1062
1063 return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1064 }
1065
1066 // Return the number of elements in the partition CDF when
1067 // partitioning the (square) block with luma block size of bsize.
partition_cdf_length(BLOCK_SIZE bsize)1068 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1069 if (bsize <= BLOCK_8X8)
1070 return PARTITION_TYPES;
1071 else if (bsize == BLOCK_128X128)
1072 return EXT_PARTITION_TYPES - 2;
1073 else
1074 return EXT_PARTITION_TYPES;
1075 }
1076
max_block_wide(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1077 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1078 int plane) {
1079 int max_blocks_wide = block_size_wide[bsize];
1080 const struct macroblockd_plane *const pd = &xd->plane[plane];
1081
1082 if (xd->mb_to_right_edge < 0)
1083 max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1084
1085 // Scale the width in the transform block unit.
1086 return max_blocks_wide >> tx_size_wide_log2[0];
1087 }
1088
max_block_high(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1089 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1090 int plane) {
1091 int max_blocks_high = block_size_high[bsize];
1092 const struct macroblockd_plane *const pd = &xd->plane[plane];
1093
1094 if (xd->mb_to_bottom_edge < 0)
1095 max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1096
1097 // Scale the height in the transform block unit.
1098 return max_blocks_high >> tx_size_high_log2[0];
1099 }
1100
max_intra_block_width(const MACROBLOCKD * xd,BLOCK_SIZE plane_bsize,int plane,TX_SIZE tx_size)1101 static INLINE int max_intra_block_width(const MACROBLOCKD *xd,
1102 BLOCK_SIZE plane_bsize, int plane,
1103 TX_SIZE tx_size) {
1104 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane)
1105 << tx_size_wide_log2[0];
1106 return ALIGN_POWER_OF_TWO(max_blocks_wide, tx_size_wide_log2[tx_size]);
1107 }
1108
max_intra_block_height(const MACROBLOCKD * xd,BLOCK_SIZE plane_bsize,int plane,TX_SIZE tx_size)1109 static INLINE int max_intra_block_height(const MACROBLOCKD *xd,
1110 BLOCK_SIZE plane_bsize, int plane,
1111 TX_SIZE tx_size) {
1112 const int max_blocks_high = max_block_high(xd, plane_bsize, plane)
1113 << tx_size_high_log2[0];
1114 return ALIGN_POWER_OF_TWO(max_blocks_high, tx_size_high_log2[tx_size]);
1115 }
1116
av1_zero_above_context(AV1_COMMON * const cm,const MACROBLOCKD * xd,int mi_col_start,int mi_col_end,const int tile_row)1117 static INLINE void av1_zero_above_context(AV1_COMMON *const cm, const MACROBLOCKD *xd,
1118 int mi_col_start, int mi_col_end, const int tile_row) {
1119 const SequenceHeader *const seq_params = &cm->seq_params;
1120 const int num_planes = av1_num_planes(cm);
1121 const int width = mi_col_end - mi_col_start;
1122 const int aligned_width =
1123 ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1124
1125 const int offset_y = mi_col_start;
1126 const int width_y = aligned_width;
1127 const int offset_uv = offset_y >> seq_params->subsampling_x;
1128 const int width_uv = width_y >> seq_params->subsampling_x;
1129
1130 av1_zero_array(cm->above_context[0][tile_row] + offset_y, width_y);
1131 if (num_planes > 1) {
1132 if (cm->above_context[1][tile_row] && cm->above_context[2][tile_row]) {
1133 av1_zero_array(cm->above_context[1][tile_row] + offset_uv, width_uv);
1134 av1_zero_array(cm->above_context[2][tile_row] + offset_uv, width_uv);
1135 } else {
1136 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1137 "Invalid value of planes");
1138 }
1139 }
1140
1141 av1_zero_array(cm->above_seg_context[tile_row] + mi_col_start, aligned_width);
1142
1143 memset(cm->above_txfm_context[tile_row] + mi_col_start,
1144 tx_size_wide[TX_SIZES_LARGEST],
1145 aligned_width * sizeof(TXFM_CONTEXT));
1146 }
1147
av1_zero_left_context(MACROBLOCKD * const xd)1148 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1149 av1_zero(xd->left_context);
1150 av1_zero(xd->left_seg_context);
1151
1152 memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1153 sizeof(xd->left_txfm_context_buffer));
1154 }
1155
1156 // Disable array-bounds checks as the TX_SIZE enum contains values larger than
1157 // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
1158 // infeasible. The assert is enough for static analysis and this or other tools
1159 // asan, valgrind would catch oob access at runtime.
1160 #if defined(__GNUC__) && __GNUC__ >= 4
1161 #pragma GCC diagnostic ignored "-Warray-bounds"
1162 #endif
1163
1164 #if defined(__GNUC__) && __GNUC__ >= 4
1165 #pragma GCC diagnostic warning "-Warray-bounds"
1166 #endif
1167
set_txfm_ctx(TXFM_CONTEXT * txfm_ctx,uint8_t txs,int len)1168 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1169 int i;
1170 for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1171 }
1172
set_txfm_ctxs(TX_SIZE tx_size,int n4_w,int n4_h,int skip,const MACROBLOCKD * xd)1173 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1174 const MACROBLOCKD *xd) {
1175 uint8_t bw = tx_size_wide[tx_size];
1176 uint8_t bh = tx_size_high[tx_size];
1177
1178 if (skip) {
1179 bw = n4_w * MI_SIZE;
1180 bh = n4_h * MI_SIZE;
1181 }
1182
1183 set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1184 set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1185 }
1186
txfm_partition_update(TXFM_CONTEXT * above_ctx,TXFM_CONTEXT * left_ctx,TX_SIZE tx_size,TX_SIZE txb_size)1187 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1188 TXFM_CONTEXT *left_ctx,
1189 TX_SIZE tx_size, TX_SIZE txb_size) {
1190 BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1191 int bh = mi_size_high[bsize];
1192 int bw = mi_size_wide[bsize];
1193 uint8_t txw = tx_size_wide[tx_size];
1194 uint8_t txh = tx_size_high[tx_size];
1195 int i;
1196 for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1197 for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1198 }
1199
get_sqr_tx_size(int tx_dim)1200 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1201 switch (tx_dim) {
1202 case 128:
1203 case 64: return TX_64X64; break;
1204 case 32: return TX_32X32; break;
1205 case 16: return TX_16X16; break;
1206 case 8: return TX_8X8; break;
1207 default: return TX_4X4;
1208 }
1209 }
1210
get_tx_size(int width,int height)1211 static INLINE TX_SIZE get_tx_size(int width, int height) {
1212 if (width == height) {
1213 return get_sqr_tx_size(width);
1214 }
1215 if (width < height) {
1216 if (width + width == height) {
1217 switch (width) {
1218 case 4: return TX_4X8; break;
1219 case 8: return TX_8X16; break;
1220 case 16: return TX_16X32; break;
1221 case 32: return TX_32X64; break;
1222 }
1223 } else {
1224 switch (width) {
1225 case 4: return TX_4X16; break;
1226 case 8: return TX_8X32; break;
1227 case 16: return TX_16X64; break;
1228 }
1229 }
1230 } else {
1231 if (height + height == width) {
1232 switch (height) {
1233 case 4: return TX_8X4; break;
1234 case 8: return TX_16X8; break;
1235 case 16: return TX_32X16; break;
1236 case 32: return TX_64X32; break;
1237 }
1238 } else {
1239 switch (height) {
1240 case 4: return TX_16X4; break;
1241 case 8: return TX_32X8; break;
1242 case 16: return TX_64X16; break;
1243 }
1244 }
1245 }
1246 assert(0);
1247 return TX_4X4;
1248 }
1249
txfm_partition_context(const TXFM_CONTEXT * const above_ctx,const TXFM_CONTEXT * const left_ctx,BLOCK_SIZE bsize,TX_SIZE tx_size)1250 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1251 const TXFM_CONTEXT *const left_ctx,
1252 BLOCK_SIZE bsize, TX_SIZE tx_size) {
1253 const uint8_t txw = tx_size_wide[tx_size];
1254 const uint8_t txh = tx_size_high[tx_size];
1255 const int above = *above_ctx < txw;
1256 const int left = *left_ctx < txh;
1257 int category = TXFM_PARTITION_CONTEXTS;
1258
1259 // dummy return, not used by others.
1260 if (tx_size <= TX_4X4) return 0;
1261
1262 TX_SIZE max_tx_size =
1263 get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1264
1265 if (max_tx_size >= TX_8X8) {
1266 category =
1267 (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1268 (TX_SIZES - 1 - max_tx_size) * 2;
1269 }
1270 assert(category != TXFM_PARTITION_CONTEXTS);
1271 return category * 3 + above + left;
1272 }
1273
1274 // Compute the next partition in the direction of the sb_type stored in the mi
1275 // array, starting with bsize.
get_partition(const AV1_COMMON * const cm,int mi_row,int mi_col,BLOCK_SIZE bsize)1276 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1277 int mi_row, int mi_col,
1278 BLOCK_SIZE bsize) {
1279 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return PARTITION_INVALID;
1280
1281 const int offset = mi_row * cm->mi_stride + mi_col;
1282 MB_MODE_INFO **mi = cm->mi_grid_visible + offset;
1283 const BLOCK_SIZE subsize = mi[0]->sb_type;
1284
1285 if (subsize == bsize) return PARTITION_NONE;
1286
1287 const int bhigh = mi_size_high[bsize];
1288 const int bwide = mi_size_wide[bsize];
1289 const int sshigh = mi_size_high[subsize];
1290 const int sswide = mi_size_wide[subsize];
1291
1292 if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < cm->mi_rows &&
1293 mi_col + bhigh / 2 < cm->mi_cols) {
1294 // In this case, the block might be using an extended partition
1295 // type.
1296 const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1297 const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * cm->mi_stride];
1298
1299 if (sswide == bwide) {
1300 // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1301 // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1302 // half was split.
1303 if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1304 assert(sshigh * 2 == bhigh);
1305
1306 if (mbmi_below->sb_type == subsize)
1307 return PARTITION_HORZ;
1308 else
1309 return PARTITION_HORZ_B;
1310 } else if (sshigh == bhigh) {
1311 // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1312 // PARTITION_VERT_B. To distinguish the latter two, check if the right
1313 // half was split.
1314 if (sswide * 4 == bwide) return PARTITION_VERT_4;
1315 assert(sswide * 2 == bhigh);
1316
1317 if (mbmi_right->sb_type == subsize)
1318 return PARTITION_VERT;
1319 else
1320 return PARTITION_VERT_B;
1321 } else {
1322 // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1323 // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1324 // dimensions, we immediately know this is a split (which will recurse to
1325 // get to subsize). Otherwise look down and to the right. With
1326 // PARTITION_VERT_A, the right block will have height bhigh; with
1327 // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1328 // it's PARTITION_SPLIT.
1329 if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1330
1331 if (mi_size_wide[mbmi_below->sb_type] == bwide) return PARTITION_HORZ_A;
1332 if (mi_size_high[mbmi_right->sb_type] == bhigh) return PARTITION_VERT_A;
1333
1334 return PARTITION_SPLIT;
1335 }
1336 }
1337 const int vert_split = sswide < bwide;
1338 const int horz_split = sshigh < bhigh;
1339 const int split_idx = (vert_split << 1) | horz_split;
1340 assert(split_idx != 0);
1341
1342 static const PARTITION_TYPE base_partitions[4] = {
1343 PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1344 };
1345
1346 return base_partitions[split_idx];
1347 }
1348
set_sb_size(SequenceHeader * const seq_params,BLOCK_SIZE sb_size)1349 static INLINE void set_sb_size(SequenceHeader *const seq_params,
1350 BLOCK_SIZE sb_size) {
1351 seq_params->sb_size = sb_size;
1352 seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1353 seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1354 }
1355
1356 // Returns true if the frame is fully lossless at the coded resolution.
1357 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1358 // the upscaled resolution.
is_coded_lossless(const AV1_COMMON * cm,const MACROBLOCKD * xd)1359 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1360 const MACROBLOCKD *xd) {
1361 int coded_lossless = 1;
1362 if (cm->seg.enabled) {
1363 for (int i = 0; i < MAX_SEGMENTS; ++i) {
1364 if (!xd->lossless[i]) {
1365 coded_lossless = 0;
1366 break;
1367 }
1368 }
1369 } else {
1370 coded_lossless = xd->lossless[0];
1371 }
1372 return coded_lossless;
1373 }
1374
is_valid_seq_level_idx(AV1_LEVEL seq_level_idx)1375 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1376 return seq_level_idx < SEQ_LEVELS || seq_level_idx == SEQ_LEVEL_MAX;
1377 }
1378
1379 #ifdef __cplusplus
1380 } // extern "C"
1381 #endif
1382
1383 #endif // AOM_AV1_COMMON_ONYXC_INT_H_
1384