1 // Copyright 2018 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_TORQUE_EARLEY_PARSER_H_
6 #define V8_TORQUE_EARLEY_PARSER_H_
7
8 #include <map>
9 #include <vector>
10
11 #include "src/base/optional.h"
12 #include "src/torque/contextual.h"
13 #include "src/torque/source-positions.h"
14 #include "src/torque/utils.h"
15
16 namespace v8 {
17 namespace internal {
18 namespace torque {
19
20 class Symbol;
21 class Item;
22
23 class ParseResultHolderBase {
24 public:
25 enum class TypeId;
26 virtual ~ParseResultHolderBase() = default;
27 template <class T>
28 T& Cast();
29 template <class T>
30 const T& Cast() const;
31
32 protected:
ParseResultHolderBase(TypeId type_id)33 explicit ParseResultHolderBase(TypeId type_id) : type_id_(type_id) {
34 // MSVC wrongly complains about type_id_ being an unused private field.
35 USE(type_id_);
36 }
37
38 private:
39 const TypeId type_id_;
40 };
41
42 using ParseResultTypeId = ParseResultHolderBase::TypeId;
43
44 template <class T>
45 class ParseResultHolder : public ParseResultHolderBase {
46 public:
ParseResultHolder(T value)47 explicit ParseResultHolder(T value)
48 : ParseResultHolderBase(id), value_(std::move(value)) {}
49
50 private:
51 V8_EXPORT_PRIVATE static const TypeId id;
52 friend class ParseResultHolderBase;
53 T value_;
54 };
55
56 template <class T>
Cast()57 T& ParseResultHolderBase::Cast() {
58 CHECK_EQ(ParseResultHolder<T>::id, type_id_);
59 return static_cast<ParseResultHolder<T>*>(this)->value_;
60 }
61
62 template <class T>
Cast()63 const T& ParseResultHolderBase::Cast() const {
64 CHECK_EQ(ParseResultHolder<T>::id, type_id_);
65 return static_cast<const ParseResultHolder<T>*>(this)->value_;
66 }
67
68 class ParseResult {
69 public:
70 template <class T>
ParseResult(T x)71 explicit ParseResult(T x) : value_(new ParseResultHolder<T>(std::move(x))) {}
72
73 template <class T>
Cast()74 const T& Cast() const {
75 return value_->Cast<T>();
76 }
77 template <class T>
Cast()78 T& Cast() {
79 return value_->Cast<T>();
80 }
81
82 private:
83 std::unique_ptr<ParseResultHolderBase> value_;
84 };
85
86 using InputPosition = const char*;
87
88 struct MatchedInput {
MatchedInputMatchedInput89 MatchedInput(InputPosition begin, InputPosition end, SourcePosition pos)
90 : begin(begin), end(end), pos(pos) {}
91 InputPosition begin;
92 InputPosition end;
93 SourcePosition pos;
ToStringMatchedInput94 std::string ToString() const { return {begin, end}; }
95 };
96
97 class ParseResultIterator {
98 public:
ParseResultIterator(std::vector<ParseResult> results,MatchedInput matched_input)99 explicit ParseResultIterator(std::vector<ParseResult> results,
100 MatchedInput matched_input)
101 : results_(std::move(results)), matched_input_(matched_input) {}
~ParseResultIterator()102 ~ParseResultIterator() {
103 // Check that all parse results have been used.
104 CHECK_EQ(results_.size(), i_);
105 }
106
Next()107 ParseResult Next() {
108 CHECK_LT(i_, results_.size());
109 return std::move(results_[i_++]);
110 }
111 template <class T>
NextAs()112 T NextAs() {
113 return std::move(Next().Cast<T>());
114 }
HasNext()115 bool HasNext() const { return i_ < results_.size(); }
116
matched_input()117 const MatchedInput& matched_input() const { return matched_input_; }
118
119 private:
120 std::vector<ParseResult> results_;
121 size_t i_ = 0;
122 MatchedInput matched_input_;
123
124 DISALLOW_COPY_AND_MOVE_AND_ASSIGN(ParseResultIterator);
125 };
126
127 struct LexerResult {
128 std::vector<Symbol*> token_symbols;
129 std::vector<MatchedInput> token_contents;
130 };
131
132 using Action =
133 base::Optional<ParseResult> (*)(ParseResultIterator* child_results);
134
DefaultAction(ParseResultIterator * child_results)135 inline base::Optional<ParseResult> DefaultAction(
136 ParseResultIterator* child_results) {
137 if (!child_results->HasNext()) return base::nullopt;
138 return child_results->Next();
139 }
140
141 // A rule of the context-free grammar. Each rule can have an action attached to
142 // it, which is executed after the parsing is finished.
143 class Rule final {
144 public:
145 explicit Rule(std::vector<Symbol*> right_hand_side,
146 Action action = DefaultAction)
right_hand_side_(std::move (right_hand_side))147 : right_hand_side_(std::move(right_hand_side)), action_(action) {}
148
left()149 Symbol* left() const {
150 DCHECK_NOT_NULL(left_hand_side_);
151 return left_hand_side_;
152 }
right()153 const std::vector<Symbol*>& right() const { return right_hand_side_; }
154
SetLeftHandSide(Symbol * left_hand_side)155 void SetLeftHandSide(Symbol* left_hand_side) {
156 DCHECK_NULL(left_hand_side_);
157 left_hand_side_ = left_hand_side;
158 }
159
160 V8_EXPORT_PRIVATE base::Optional<ParseResult> RunAction(
161 const Item* completed_item, const LexerResult& tokens) const;
162
163 private:
164 Symbol* left_hand_side_ = nullptr;
165 std::vector<Symbol*> right_hand_side_;
166 Action action_;
167 };
168
169 // A Symbol represents a terminal or a non-terminal of the grammar.
170 // It stores the list of rules, which have this symbol as the
171 // left-hand side.
172 // Terminals have an empty list of rules, they are created by the Lexer
173 // instead of from rules.
174 // Symbols need to reside at stable memory addresses, because the addresses are
175 // used in the parser.
176 class Symbol {
177 public:
Symbol()178 Symbol() : Symbol({}) {}
Symbol(std::initializer_list<Rule> rules)179 Symbol(std::initializer_list<Rule> rules) { *this = rules; }
180
181 V8_EXPORT_PRIVATE Symbol& operator=(std::initializer_list<Rule> rules);
182
IsTerminal()183 bool IsTerminal() const { return rules_.empty(); }
rule(size_t index)184 Rule* rule(size_t index) const { return rules_[index].get(); }
rule_number()185 size_t rule_number() const { return rules_.size(); }
186
AddRule(const Rule & rule)187 void AddRule(const Rule& rule) {
188 rules_.push_back(base::make_unique<Rule>(rule));
189 rules_.back()->SetLeftHandSide(this);
190 }
191
192 V8_EXPORT_PRIVATE base::Optional<ParseResult> RunAction(
193 const Item* item, const LexerResult& tokens);
194
195 private:
196 std::vector<std::unique_ptr<Rule>> rules_;
197
198 // Disallow copying and moving to ensure Symbol has a stable address.
199 DISALLOW_COPY_AND_MOVE_AND_ASSIGN(Symbol);
200 };
201
202 // Items are the core datastructure of Earley's algorithm.
203 // They consist of a (partially) matched rule, a marked position inside of the
204 // right-hand side of the rule (traditionally written as a dot) and an input
205 // range from {start} to {pos} that matches the symbols of the right-hand side
206 // that are left of the mark. In addition, they store a child and a left-sibling
207 // pointer to reconstruct the AST in the end.
208 class Item {
209 public:
Item(const Rule * rule,size_t mark,size_t start,size_t pos)210 Item(const Rule* rule, size_t mark, size_t start, size_t pos)
211 : rule_(rule), mark_(mark), start_(start), pos_(pos) {
212 DCHECK_LE(mark_, right().size());
213 }
214
215 // A complete item has the mark at the right end, which means the input range
216 // matches the complete rule.
IsComplete()217 bool IsComplete() const {
218 DCHECK_LE(mark_, right().size());
219 return mark_ == right().size();
220 }
221
222 // The symbol right after the mark is expected at {pos} for this item to
223 // advance.
NextSymbol()224 Symbol* NextSymbol() const {
225 DCHECK(!IsComplete());
226 DCHECK_LT(mark_, right().size());
227 return right()[mark_];
228 }
229
230 // We successfully parsed NextSymbol() between {pos} and {new_pos}.
231 // If NextSymbol() was a non-terminal, then {child} is a pointer to a
232 // completed item for this parse.
233 // We create a new item, which moves the mark one forward.
234 Item Advance(size_t new_pos, const Item* child = nullptr) const {
235 if (child) {
236 DCHECK(child->IsComplete());
237 DCHECK_EQ(pos(), child->start());
238 DCHECK_EQ(new_pos, child->pos());
239 DCHECK_EQ(NextSymbol(), child->left());
240 }
241 Item result(rule_, mark_ + 1, start_, new_pos);
242 result.prev_ = this;
243 result.child_ = child;
244 return result;
245 }
246
247 // Collect the items representing the AST children of this completed item.
248 std::vector<const Item*> Children() const;
249 // The matched input separated according to the next branching AST level.
250 std::string SplitByChildren(const LexerResult& tokens) const;
251 // Check if {other} results in the same AST as this Item.
252 void CheckAmbiguity(const Item& other, const LexerResult& tokens) const;
253
GetMatchedInput(const LexerResult & tokens)254 MatchedInput GetMatchedInput(const LexerResult& tokens) const {
255 return {tokens.token_contents[start_].begin,
256 start_ == pos_ ? tokens.token_contents[start_].begin
257 : tokens.token_contents[pos_ - 1].end,
258 tokens.token_contents[start_].pos};
259 }
260
261 // We exclude {prev_} and {child_} from equality and hash computations,
262 // because they are just globally unique data associated with an item.
263 bool operator==(const Item& other) const {
264 return rule_ == other.rule_ && mark_ == other.mark_ &&
265 start_ == other.start_ && pos_ == other.pos_;
266 }
267
hash_value(const Item & i)268 friend size_t hash_value(const Item& i) {
269 return base::hash_combine(i.rule_, i.mark_, i.start_, i.pos_);
270 }
271
rule()272 const Rule* rule() const { return rule_; }
left()273 Symbol* left() const { return rule_->left(); }
right()274 const std::vector<Symbol*>& right() const { return rule_->right(); }
pos()275 size_t pos() const { return pos_; }
start()276 size_t start() const { return start_; }
277
278 private:
279 const Rule* rule_;
280 size_t mark_;
281 size_t start_;
282 size_t pos_;
283
284 const Item* prev_ = nullptr;
285 const Item* child_ = nullptr;
286 };
287
RunAction(const Item * item,const LexerResult & tokens)288 inline base::Optional<ParseResult> Symbol::RunAction(
289 const Item* item, const LexerResult& tokens) {
290 DCHECK(item->IsComplete());
291 DCHECK_EQ(item->left(), this);
292 return item->rule()->RunAction(item, tokens);
293 }
294
295 V8_EXPORT_PRIVATE const Item* RunEarleyAlgorithm(
296 Symbol* start, const LexerResult& tokens,
297 std::unordered_set<Item, base::hash<Item>>* processed);
298
ParseTokens(Symbol * start,const LexerResult & tokens)299 inline base::Optional<ParseResult> ParseTokens(Symbol* start,
300 const LexerResult& tokens) {
301 std::unordered_set<Item, base::hash<Item>> table;
302 const Item* final_item = RunEarleyAlgorithm(start, tokens, &table);
303 return start->RunAction(final_item, tokens);
304 }
305
306 // The lexical syntax is dynamically defined while building the grammar by
307 // adding patterns and keywords to the Lexer.
308 // The term keyword here can stand for any fixed character sequence, including
309 // operators and parentheses.
310 // Each pattern or keyword automatically gets a terminal symbol associated with
311 // it. These symbols form the result of the lexing.
312 // Patterns and keywords are matched using the longest match principle. If the
313 // longest matching pattern coincides with a keyword, the keyword symbol is
314 // chosen instead of the pattern.
315 // In addition, there is a single whitespace pattern which is consumed but does
316 // not become part of the token list.
317 class Lexer {
318 public:
319 // Functions to define patterns. They try to match starting from {pos}. If
320 // successful, they return true and advance {pos}. Otherwise, {pos} stays
321 // unchanged.
322 using PatternFunction = bool (*)(InputPosition* pos);
323
SetWhitespace(PatternFunction whitespace)324 void SetWhitespace(PatternFunction whitespace) {
325 match_whitespace_ = whitespace;
326 }
327
Pattern(PatternFunction pattern)328 Symbol* Pattern(PatternFunction pattern) { return &patterns_[pattern]; }
Token(const std::string & keyword)329 Symbol* Token(const std::string& keyword) { return &keywords_[keyword]; }
330 V8_EXPORT_PRIVATE LexerResult RunLexer(const std::string& input);
331
332 private:
333 PatternFunction match_whitespace_ = [](InputPosition*) { return false; };
334 std::map<PatternFunction, Symbol> patterns_;
335 std::map<std::string, Symbol> keywords_;
336 Symbol* MatchToken(InputPosition* pos, InputPosition end);
337 };
338
339 // A grammar can have a result, which is the results of the start symbol.
340 // Grammar is intended to be subclassed, with Symbol members forming the
341 // mutually recursive rules of the grammar.
342 class Grammar {
343 public:
344 using PatternFunction = Lexer::PatternFunction;
345
Grammar(Symbol * start)346 explicit Grammar(Symbol* start) : start_(start) {}
347
Parse(const std::string & input)348 base::Optional<ParseResult> Parse(const std::string& input) {
349 LexerResult tokens = lexer().RunLexer(input);
350 return ParseTokens(start_, tokens);
351 }
352
353 protected:
Token(const std::string & s)354 Symbol* Token(const std::string& s) { return lexer_.Token(s); }
Pattern(PatternFunction pattern)355 Symbol* Pattern(PatternFunction pattern) { return lexer_.Pattern(pattern); }
SetWhitespace(PatternFunction ws)356 void SetWhitespace(PatternFunction ws) { lexer_.SetWhitespace(ws); }
357
358 // NewSymbol() allocates a fresh symbol and stores it in the current grammar.
359 // This is necessary to define helpers that create new symbols.
360 Symbol* NewSymbol(std::initializer_list<Rule> rules = {}) {
361 Symbol* result = new Symbol(rules);
362 generated_symbols_.push_back(std::unique_ptr<Symbol>(result));
363 return result;
364 }
365
366 // Helper functions to define lexer patterns. If they match, they return true
367 // and advance {pos}. Otherwise, {pos} is unchanged.
368 V8_EXPORT_PRIVATE static bool MatchChar(int (*char_class)(int),
369 InputPosition* pos);
370 V8_EXPORT_PRIVATE static bool MatchChar(bool (*char_class)(char),
371 InputPosition* pos);
372 V8_EXPORT_PRIVATE static bool MatchAnyChar(InputPosition* pos);
373 V8_EXPORT_PRIVATE static bool MatchString(const char* s, InputPosition* pos);
374
375 // The action MatchInput() produces the input matched by the rule as
376 // result.
YieldMatchedInput(ParseResultIterator * child_results)377 static base::Optional<ParseResult> YieldMatchedInput(
378 ParseResultIterator* child_results) {
379 return ParseResult{child_results->matched_input().ToString()};
380 }
381
382 // Create a new symbol to parse the given sequence of symbols.
383 // At most one of the symbols can return a result.
Sequence(std::vector<Symbol * > symbols)384 Symbol* Sequence(std::vector<Symbol*> symbols) {
385 return NewSymbol({Rule(std::move(symbols))});
386 }
387
388 template <class T, T value>
YieldIntegralConstant(ParseResultIterator * child_results)389 static base::Optional<ParseResult> YieldIntegralConstant(
390 ParseResultIterator* child_results) {
391 return ParseResult{value};
392 }
393
394 template <class T>
YieldDefaultValue(ParseResultIterator * child_results)395 static base::Optional<ParseResult> YieldDefaultValue(
396 ParseResultIterator* child_results) {
397 return ParseResult{T{}};
398 }
399
400 template <class From, class To>
CastParseResult(ParseResultIterator * child_results)401 static base::Optional<ParseResult> CastParseResult(
402 ParseResultIterator* child_results) {
403 To result = std::move(child_results->NextAs<From>());
404 return ParseResult{std::move(result)};
405 }
406
407 // Try to parse {s} and return the result of type {Result} casted to {T}.
408 // Otherwise, the result is a default-constructed {T}.
409 template <class T, class Result = T>
TryOrDefault(Symbol * s)410 Symbol* TryOrDefault(Symbol* s) {
411 return NewSymbol({Rule({s}, CastParseResult<Result, T>),
412 Rule({}, YieldDefaultValue<T>)});
413 }
414
415 template <class T>
MakeSingletonVector(ParseResultIterator * child_results)416 static base::Optional<ParseResult> MakeSingletonVector(
417 ParseResultIterator* child_results) {
418 T x = child_results->NextAs<T>();
419 std::vector<T> result;
420 result.push_back(std::move(x));
421 return ParseResult{std::move(result)};
422 }
423
424 template <class T>
MakeExtendedVector(ParseResultIterator * child_results)425 static base::Optional<ParseResult> MakeExtendedVector(
426 ParseResultIterator* child_results) {
427 std::vector<T> l = child_results->NextAs<std::vector<T>>();
428 T x = child_results->NextAs<T>();
429 l.push_back(std::move(x));
430 return ParseResult{std::move(l)};
431 }
432
433 // For example, NonemptyList(Token("A"), Token(",")) parses any of
434 // A or A,A or A,A,A and so on.
435 template <class T>
436 Symbol* NonemptyList(Symbol* element,
437 base::Optional<Symbol*> separator = {}) {
438 Symbol* list = NewSymbol();
439 *list = {Rule({element}, MakeSingletonVector<T>),
440 separator
441 ? Rule({list, *separator, element}, MakeExtendedVector<T>)
442 : Rule({list, element}, MakeExtendedVector<T>)};
443 return list;
444 }
445
446 template <class T>
447 Symbol* List(Symbol* element, base::Optional<Symbol*> separator = {}) {
448 return TryOrDefault<std::vector<T>>(NonemptyList<T>(element, separator));
449 }
450
451 template <class T>
Optional(Symbol * x)452 Symbol* Optional(Symbol* x) {
453 return TryOrDefault<base::Optional<T>, T>(x);
454 }
455
CheckIf(Symbol * x)456 Symbol* CheckIf(Symbol* x) {
457 return NewSymbol({Rule({x}, YieldIntegralConstant<bool, true>),
458 Rule({}, YieldIntegralConstant<bool, false>)});
459 }
460
lexer()461 Lexer& lexer() { return lexer_; }
462
463 private:
464 Lexer lexer_;
465 std::vector<std::unique_ptr<Symbol>> generated_symbols_;
466 Symbol* start_;
467 };
468
469 } // namespace torque
470 } // namespace internal
471 } // namespace v8
472
473 #endif // V8_TORQUE_EARLEY_PARSER_H_
474