1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём),
7 * Frank Haverkamp
8 */
9
10 /*
11 * This file includes UBI initialization and building of UBI devices.
12 *
13 * When UBI is initialized, it attaches all the MTD devices specified as the
14 * module load parameters or the kernel boot parameters. If MTD devices were
15 * specified, UBI does not attach any MTD device, but it is possible to do
16 * later using the "UBI control device".
17 */
18
19 #ifndef __UBOOT__
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/stringify.h>
23 #include <linux/namei.h>
24 #include <linux/stat.h>
25 #include <linux/miscdevice.h>
26 #include <linux/log2.h>
27 #include <linux/kthread.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/major.h>
31 #else
32 #include <linux/bug.h>
33 #include <linux/log2.h>
34 #endif
35 #include <linux/err.h>
36 #include <ubi_uboot.h>
37 #include <linux/mtd/partitions.h>
38
39 #include "ubi.h"
40
41 /* Maximum length of the 'mtd=' parameter */
42 #define MTD_PARAM_LEN_MAX 64
43
44 /* Maximum number of comma-separated items in the 'mtd=' parameter */
45 #define MTD_PARAM_MAX_COUNT 4
46
47 /* Maximum value for the number of bad PEBs per 1024 PEBs */
48 #define MAX_MTD_UBI_BEB_LIMIT 768
49
50 #ifdef CONFIG_MTD_UBI_MODULE
51 #define ubi_is_module() 1
52 #else
53 #define ubi_is_module() 0
54 #endif
55
56 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
57 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
58 #endif
59
60 /**
61 * struct mtd_dev_param - MTD device parameter description data structure.
62 * @name: MTD character device node path, MTD device name, or MTD device number
63 * string
64 * @vid_hdr_offs: VID header offset
65 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
66 */
67 struct mtd_dev_param {
68 char name[MTD_PARAM_LEN_MAX];
69 int ubi_num;
70 int vid_hdr_offs;
71 int max_beb_per1024;
72 };
73
74 /* Numbers of elements set in the @mtd_dev_param array */
75 static int __initdata mtd_devs;
76
77 /* MTD devices specification parameters */
78 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
79 #ifndef __UBOOT__
80 #ifdef CONFIG_MTD_UBI_FASTMAP
81 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
82 static bool fm_autoconvert;
83 static bool fm_debug;
84 #endif
85 #else
86 #ifdef CONFIG_MTD_UBI_FASTMAP
87 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
88 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
89 #endif
90 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
91 #if !defined(CONFIG_MTD_UBI_FM_DEBUG)
92 #define CONFIG_MTD_UBI_FM_DEBUG 0
93 #endif
94 static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG;
95 #endif
96 #endif
97
98 /* Slab cache for wear-leveling entries */
99 struct kmem_cache *ubi_wl_entry_slab;
100
101 #ifndef __UBOOT__
102 /* UBI control character device */
103 static struct miscdevice ubi_ctrl_cdev = {
104 .minor = MISC_DYNAMIC_MINOR,
105 .name = "ubi_ctrl",
106 .fops = &ubi_ctrl_cdev_operations,
107 };
108 #endif
109
110 /* All UBI devices in system */
111 #ifndef __UBOOT__
112 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
113 #else
114 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
115 #endif
116
117 #ifndef __UBOOT__
118 /* Serializes UBI devices creations and removals */
119 DEFINE_MUTEX(ubi_devices_mutex);
120
121 /* Protects @ubi_devices and @ubi->ref_count */
122 static DEFINE_SPINLOCK(ubi_devices_lock);
123
124 /* "Show" method for files in '/<sysfs>/class/ubi/' */
ubi_version_show(struct class * class,struct class_attribute * attr,char * buf)125 static ssize_t ubi_version_show(struct class *class,
126 struct class_attribute *attr, char *buf)
127 {
128 return sprintf(buf, "%d\n", UBI_VERSION);
129 }
130
131 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
132 static struct class_attribute ubi_class_attrs[] = {
133 __ATTR(version, S_IRUGO, ubi_version_show, NULL),
134 __ATTR_NULL
135 };
136
137 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
138 struct class ubi_class = {
139 .name = UBI_NAME_STR,
140 .owner = THIS_MODULE,
141 .class_attrs = ubi_class_attrs,
142 };
143
144 static ssize_t dev_attribute_show(struct device *dev,
145 struct device_attribute *attr, char *buf);
146
147 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
148 static struct device_attribute dev_eraseblock_size =
149 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
150 static struct device_attribute dev_avail_eraseblocks =
151 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
152 static struct device_attribute dev_total_eraseblocks =
153 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
154 static struct device_attribute dev_volumes_count =
155 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
156 static struct device_attribute dev_max_ec =
157 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
158 static struct device_attribute dev_reserved_for_bad =
159 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
160 static struct device_attribute dev_bad_peb_count =
161 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
162 static struct device_attribute dev_max_vol_count =
163 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
164 static struct device_attribute dev_min_io_size =
165 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
166 static struct device_attribute dev_bgt_enabled =
167 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
168 static struct device_attribute dev_mtd_num =
169 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
170 #endif
171
172 /**
173 * ubi_volume_notify - send a volume change notification.
174 * @ubi: UBI device description object
175 * @vol: volume description object of the changed volume
176 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
177 *
178 * This is a helper function which notifies all subscribers about a volume
179 * change event (creation, removal, re-sizing, re-naming, updating). Returns
180 * zero in case of success and a negative error code in case of failure.
181 */
ubi_volume_notify(struct ubi_device * ubi,struct ubi_volume * vol,int ntype)182 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
183 {
184 int ret;
185 struct ubi_notification nt;
186
187 ubi_do_get_device_info(ubi, &nt.di);
188 ubi_do_get_volume_info(ubi, vol, &nt.vi);
189
190 switch (ntype) {
191 case UBI_VOLUME_ADDED:
192 case UBI_VOLUME_REMOVED:
193 case UBI_VOLUME_RESIZED:
194 case UBI_VOLUME_RENAMED:
195 ret = ubi_update_fastmap(ubi);
196 if (ret)
197 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
198 }
199
200 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
201 }
202
203 /**
204 * ubi_notify_all - send a notification to all volumes.
205 * @ubi: UBI device description object
206 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
207 * @nb: the notifier to call
208 *
209 * This function walks all volumes of UBI device @ubi and sends the @ntype
210 * notification for each volume. If @nb is %NULL, then all registered notifiers
211 * are called, otherwise only the @nb notifier is called. Returns the number of
212 * sent notifications.
213 */
ubi_notify_all(struct ubi_device * ubi,int ntype,struct notifier_block * nb)214 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
215 {
216 struct ubi_notification nt;
217 int i, count = 0;
218 #ifndef __UBOOT__
219 int ret;
220 #endif
221
222 ubi_do_get_device_info(ubi, &nt.di);
223
224 mutex_lock(&ubi->device_mutex);
225 for (i = 0; i < ubi->vtbl_slots; i++) {
226 /*
227 * Since the @ubi->device is locked, and we are not going to
228 * change @ubi->volumes, we do not have to lock
229 * @ubi->volumes_lock.
230 */
231 if (!ubi->volumes[i])
232 continue;
233
234 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
235 #ifndef __UBOOT__
236 if (nb)
237 nb->notifier_call(nb, ntype, &nt);
238 else
239 ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
240 &nt);
241 #endif
242 count += 1;
243 }
244 mutex_unlock(&ubi->device_mutex);
245
246 return count;
247 }
248
249 /**
250 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
251 * @nb: the notifier to call
252 *
253 * This function walks all UBI devices and volumes and sends the
254 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
255 * registered notifiers are called, otherwise only the @nb notifier is called.
256 * Returns the number of sent notifications.
257 */
ubi_enumerate_volumes(struct notifier_block * nb)258 int ubi_enumerate_volumes(struct notifier_block *nb)
259 {
260 int i, count = 0;
261
262 /*
263 * Since the @ubi_devices_mutex is locked, and we are not going to
264 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
265 */
266 for (i = 0; i < UBI_MAX_DEVICES; i++) {
267 struct ubi_device *ubi = ubi_devices[i];
268
269 if (!ubi)
270 continue;
271 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
272 }
273
274 return count;
275 }
276
277 /**
278 * ubi_get_device - get UBI device.
279 * @ubi_num: UBI device number
280 *
281 * This function returns UBI device description object for UBI device number
282 * @ubi_num, or %NULL if the device does not exist. This function increases the
283 * device reference count to prevent removal of the device. In other words, the
284 * device cannot be removed if its reference count is not zero.
285 */
ubi_get_device(int ubi_num)286 struct ubi_device *ubi_get_device(int ubi_num)
287 {
288 struct ubi_device *ubi;
289
290 spin_lock(&ubi_devices_lock);
291 ubi = ubi_devices[ubi_num];
292 if (ubi) {
293 ubi_assert(ubi->ref_count >= 0);
294 ubi->ref_count += 1;
295 get_device(&ubi->dev);
296 }
297 spin_unlock(&ubi_devices_lock);
298
299 return ubi;
300 }
301
302 /**
303 * ubi_put_device - drop an UBI device reference.
304 * @ubi: UBI device description object
305 */
ubi_put_device(struct ubi_device * ubi)306 void ubi_put_device(struct ubi_device *ubi)
307 {
308 spin_lock(&ubi_devices_lock);
309 ubi->ref_count -= 1;
310 put_device(&ubi->dev);
311 spin_unlock(&ubi_devices_lock);
312 }
313
314 /**
315 * ubi_get_by_major - get UBI device by character device major number.
316 * @major: major number
317 *
318 * This function is similar to 'ubi_get_device()', but it searches the device
319 * by its major number.
320 */
ubi_get_by_major(int major)321 struct ubi_device *ubi_get_by_major(int major)
322 {
323 int i;
324 struct ubi_device *ubi;
325
326 spin_lock(&ubi_devices_lock);
327 for (i = 0; i < UBI_MAX_DEVICES; i++) {
328 ubi = ubi_devices[i];
329 if (ubi && MAJOR(ubi->cdev.dev) == major) {
330 ubi_assert(ubi->ref_count >= 0);
331 ubi->ref_count += 1;
332 get_device(&ubi->dev);
333 spin_unlock(&ubi_devices_lock);
334 return ubi;
335 }
336 }
337 spin_unlock(&ubi_devices_lock);
338
339 return NULL;
340 }
341
342 /**
343 * ubi_major2num - get UBI device number by character device major number.
344 * @major: major number
345 *
346 * This function searches UBI device number object by its major number. If UBI
347 * device was not found, this function returns -ENODEV, otherwise the UBI device
348 * number is returned.
349 */
ubi_major2num(int major)350 int ubi_major2num(int major)
351 {
352 int i, ubi_num = -ENODEV;
353
354 spin_lock(&ubi_devices_lock);
355 for (i = 0; i < UBI_MAX_DEVICES; i++) {
356 struct ubi_device *ubi = ubi_devices[i];
357
358 if (ubi && MAJOR(ubi->cdev.dev) == major) {
359 ubi_num = ubi->ubi_num;
360 break;
361 }
362 }
363 spin_unlock(&ubi_devices_lock);
364
365 return ubi_num;
366 }
367
368 #ifndef __UBOOT__
369 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)370 static ssize_t dev_attribute_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 ssize_t ret;
374 struct ubi_device *ubi;
375
376 /*
377 * The below code looks weird, but it actually makes sense. We get the
378 * UBI device reference from the contained 'struct ubi_device'. But it
379 * is unclear if the device was removed or not yet. Indeed, if the
380 * device was removed before we increased its reference count,
381 * 'ubi_get_device()' will return -ENODEV and we fail.
382 *
383 * Remember, 'struct ubi_device' is freed in the release function, so
384 * we still can use 'ubi->ubi_num'.
385 */
386 ubi = container_of(dev, struct ubi_device, dev);
387 ubi = ubi_get_device(ubi->ubi_num);
388 if (!ubi)
389 return -ENODEV;
390
391 if (attr == &dev_eraseblock_size)
392 ret = sprintf(buf, "%d\n", ubi->leb_size);
393 else if (attr == &dev_avail_eraseblocks)
394 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
395 else if (attr == &dev_total_eraseblocks)
396 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
397 else if (attr == &dev_volumes_count)
398 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
399 else if (attr == &dev_max_ec)
400 ret = sprintf(buf, "%d\n", ubi->max_ec);
401 else if (attr == &dev_reserved_for_bad)
402 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
403 else if (attr == &dev_bad_peb_count)
404 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
405 else if (attr == &dev_max_vol_count)
406 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
407 else if (attr == &dev_min_io_size)
408 ret = sprintf(buf, "%d\n", ubi->min_io_size);
409 else if (attr == &dev_bgt_enabled)
410 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
411 else if (attr == &dev_mtd_num)
412 ret = sprintf(buf, "%d\n", ubi->mtd->index);
413 else
414 ret = -EINVAL;
415
416 ubi_put_device(ubi);
417 return ret;
418 }
419
420 static struct attribute *ubi_dev_attrs[] = {
421 &dev_eraseblock_size.attr,
422 &dev_avail_eraseblocks.attr,
423 &dev_total_eraseblocks.attr,
424 &dev_volumes_count.attr,
425 &dev_max_ec.attr,
426 &dev_reserved_for_bad.attr,
427 &dev_bad_peb_count.attr,
428 &dev_max_vol_count.attr,
429 &dev_min_io_size.attr,
430 &dev_bgt_enabled.attr,
431 &dev_mtd_num.attr,
432 NULL
433 };
434 ATTRIBUTE_GROUPS(ubi_dev);
435
dev_release(struct device * dev)436 static void dev_release(struct device *dev)
437 {
438 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
439
440 kfree(ubi);
441 }
442
443 /**
444 * ubi_sysfs_init - initialize sysfs for an UBI device.
445 * @ubi: UBI device description object
446 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
447 * taken
448 *
449 * This function returns zero in case of success and a negative error code in
450 * case of failure.
451 */
ubi_sysfs_init(struct ubi_device * ubi,int * ref)452 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
453 {
454 int err;
455
456 ubi->dev.release = dev_release;
457 ubi->dev.devt = ubi->cdev.dev;
458 ubi->dev.class = &ubi_class;
459 ubi->dev.groups = ubi_dev_groups;
460 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
461 err = device_register(&ubi->dev);
462 if (err)
463 return err;
464
465 *ref = 1;
466 return 0;
467 }
468
469 /**
470 * ubi_sysfs_close - close sysfs for an UBI device.
471 * @ubi: UBI device description object
472 */
ubi_sysfs_close(struct ubi_device * ubi)473 static void ubi_sysfs_close(struct ubi_device *ubi)
474 {
475 device_unregister(&ubi->dev);
476 }
477 #endif
478
479 /**
480 * kill_volumes - destroy all user volumes.
481 * @ubi: UBI device description object
482 */
kill_volumes(struct ubi_device * ubi)483 static void kill_volumes(struct ubi_device *ubi)
484 {
485 int i;
486
487 for (i = 0; i < ubi->vtbl_slots; i++)
488 if (ubi->volumes[i])
489 ubi_free_volume(ubi, ubi->volumes[i]);
490 }
491
492 /**
493 * uif_init - initialize user interfaces for an UBI device.
494 * @ubi: UBI device description object
495 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
496 * taken, otherwise set to %0
497 *
498 * This function initializes various user interfaces for an UBI device. If the
499 * initialization fails at an early stage, this function frees all the
500 * resources it allocated, returns an error, and @ref is set to %0. However,
501 * if the initialization fails after the UBI device was registered in the
502 * driver core subsystem, this function takes a reference to @ubi->dev, because
503 * otherwise the release function ('dev_release()') would free whole @ubi
504 * object. The @ref argument is set to %1 in this case. The caller has to put
505 * this reference.
506 *
507 * This function returns zero in case of success and a negative error code in
508 * case of failure.
509 */
uif_init(struct ubi_device * ubi,int * ref)510 static int uif_init(struct ubi_device *ubi, int *ref)
511 {
512 int i, err;
513 #ifndef __UBOOT__
514 dev_t dev;
515 #endif
516
517 *ref = 0;
518 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
519
520 /*
521 * Major numbers for the UBI character devices are allocated
522 * dynamically. Major numbers of volume character devices are
523 * equivalent to ones of the corresponding UBI character device. Minor
524 * numbers of UBI character devices are 0, while minor numbers of
525 * volume character devices start from 1. Thus, we allocate one major
526 * number and ubi->vtbl_slots + 1 minor numbers.
527 */
528 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
529 if (err) {
530 ubi_err(ubi, "cannot register UBI character devices");
531 return err;
532 }
533
534 ubi_assert(MINOR(dev) == 0);
535 cdev_init(&ubi->cdev, &ubi_cdev_operations);
536 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
537 ubi->cdev.owner = THIS_MODULE;
538
539 err = cdev_add(&ubi->cdev, dev, 1);
540 if (err) {
541 ubi_err(ubi, "cannot add character device");
542 goto out_unreg;
543 }
544
545 err = ubi_sysfs_init(ubi, ref);
546 if (err)
547 goto out_sysfs;
548
549 for (i = 0; i < ubi->vtbl_slots; i++)
550 if (ubi->volumes[i]) {
551 err = ubi_add_volume(ubi, ubi->volumes[i]);
552 if (err) {
553 ubi_err(ubi, "cannot add volume %d", i);
554 goto out_volumes;
555 }
556 }
557
558 return 0;
559
560 out_volumes:
561 kill_volumes(ubi);
562 out_sysfs:
563 if (*ref)
564 get_device(&ubi->dev);
565 ubi_sysfs_close(ubi);
566 cdev_del(&ubi->cdev);
567 out_unreg:
568 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
569 ubi_err(ubi, "cannot initialize UBI %s, error %d",
570 ubi->ubi_name, err);
571 return err;
572 }
573
574 /**
575 * uif_close - close user interfaces for an UBI device.
576 * @ubi: UBI device description object
577 *
578 * Note, since this function un-registers UBI volume device objects (@vol->dev),
579 * the memory allocated voe the volumes is freed as well (in the release
580 * function).
581 */
uif_close(struct ubi_device * ubi)582 static void uif_close(struct ubi_device *ubi)
583 {
584 kill_volumes(ubi);
585 ubi_sysfs_close(ubi);
586 cdev_del(&ubi->cdev);
587 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
588 }
589
590 /**
591 * ubi_free_internal_volumes - free internal volumes.
592 * @ubi: UBI device description object
593 */
ubi_free_internal_volumes(struct ubi_device * ubi)594 void ubi_free_internal_volumes(struct ubi_device *ubi)
595 {
596 int i;
597
598 for (i = ubi->vtbl_slots;
599 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
600 kfree(ubi->volumes[i]->eba_tbl);
601 kfree(ubi->volumes[i]);
602 }
603 }
604
get_bad_peb_limit(const struct ubi_device * ubi,int max_beb_per1024)605 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
606 {
607 int limit, device_pebs;
608 uint64_t device_size;
609
610 if (!max_beb_per1024)
611 return 0;
612
613 /*
614 * Here we are using size of the entire flash chip and
615 * not just the MTD partition size because the maximum
616 * number of bad eraseblocks is a percentage of the
617 * whole device and bad eraseblocks are not fairly
618 * distributed over the flash chip. So the worst case
619 * is that all the bad eraseblocks of the chip are in
620 * the MTD partition we are attaching (ubi->mtd).
621 */
622 device_size = mtd_get_device_size(ubi->mtd);
623 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
624 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
625
626 /* Round it up */
627 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
628 limit += 1;
629
630 return limit;
631 }
632
633 /**
634 * io_init - initialize I/O sub-system for a given UBI device.
635 * @ubi: UBI device description object
636 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
637 *
638 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
639 * assumed:
640 * o EC header is always at offset zero - this cannot be changed;
641 * o VID header starts just after the EC header at the closest address
642 * aligned to @io->hdrs_min_io_size;
643 * o data starts just after the VID header at the closest address aligned to
644 * @io->min_io_size
645 *
646 * This function returns zero in case of success and a negative error code in
647 * case of failure.
648 */
io_init(struct ubi_device * ubi,int max_beb_per1024)649 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
650 {
651 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
652 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
653
654 if (ubi->mtd->numeraseregions != 0) {
655 /*
656 * Some flashes have several erase regions. Different regions
657 * may have different eraseblock size and other
658 * characteristics. It looks like mostly multi-region flashes
659 * have one "main" region and one or more small regions to
660 * store boot loader code or boot parameters or whatever. I
661 * guess we should just pick the largest region. But this is
662 * not implemented.
663 */
664 ubi_err(ubi, "multiple regions, not implemented");
665 return -EINVAL;
666 }
667
668 if (ubi->vid_hdr_offset < 0)
669 return -EINVAL;
670
671 /*
672 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
673 * physical eraseblocks maximum.
674 */
675
676 ubi->peb_size = ubi->mtd->erasesize;
677 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
678 ubi->flash_size = ubi->mtd->size;
679
680 if (mtd_can_have_bb(ubi->mtd)) {
681 ubi->bad_allowed = 1;
682 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
683 }
684
685 if (ubi->mtd->type == MTD_NORFLASH) {
686 ubi_assert(ubi->mtd->writesize == 1);
687 ubi->nor_flash = 1;
688 }
689
690 ubi->min_io_size = ubi->mtd->writesize;
691 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
692
693 /*
694 * Make sure minimal I/O unit is power of 2. Note, there is no
695 * fundamental reason for this assumption. It is just an optimization
696 * which allows us to avoid costly division operations.
697 */
698 if (!is_power_of_2(ubi->min_io_size)) {
699 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
700 ubi->min_io_size);
701 return -EINVAL;
702 }
703
704 ubi_assert(ubi->hdrs_min_io_size > 0);
705 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
706 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
707
708 ubi->max_write_size = ubi->mtd->writebufsize;
709 /*
710 * Maximum write size has to be greater or equivalent to min. I/O
711 * size, and be multiple of min. I/O size.
712 */
713 if (ubi->max_write_size < ubi->min_io_size ||
714 ubi->max_write_size % ubi->min_io_size ||
715 !is_power_of_2(ubi->max_write_size)) {
716 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
717 ubi->max_write_size, ubi->min_io_size);
718 return -EINVAL;
719 }
720
721 /* Calculate default aligned sizes of EC and VID headers */
722 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
723 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
724
725 dbg_gen("min_io_size %d", ubi->min_io_size);
726 dbg_gen("max_write_size %d", ubi->max_write_size);
727 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
728 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
729 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
730
731 if (ubi->vid_hdr_offset == 0)
732 /* Default offset */
733 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
734 ubi->ec_hdr_alsize;
735 else {
736 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
737 ~(ubi->hdrs_min_io_size - 1);
738 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
739 ubi->vid_hdr_aloffset;
740 }
741
742 /* Similar for the data offset */
743 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
744 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
745
746 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
747 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
748 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
749 dbg_gen("leb_start %d", ubi->leb_start);
750
751 /* The shift must be aligned to 32-bit boundary */
752 if (ubi->vid_hdr_shift % 4) {
753 ubi_err(ubi, "unaligned VID header shift %d",
754 ubi->vid_hdr_shift);
755 return -EINVAL;
756 }
757
758 /* Check sanity */
759 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
760 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
761 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
762 ubi->leb_start & (ubi->min_io_size - 1)) {
763 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
764 ubi->vid_hdr_offset, ubi->leb_start);
765 return -EINVAL;
766 }
767
768 /*
769 * Set maximum amount of physical erroneous eraseblocks to be 10%.
770 * Erroneous PEB are those which have read errors.
771 */
772 ubi->max_erroneous = ubi->peb_count / 10;
773 if (ubi->max_erroneous < 16)
774 ubi->max_erroneous = 16;
775 dbg_gen("max_erroneous %d", ubi->max_erroneous);
776
777 /*
778 * It may happen that EC and VID headers are situated in one minimal
779 * I/O unit. In this case we can only accept this UBI image in
780 * read-only mode.
781 */
782 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
783 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
784 ubi->ro_mode = 1;
785 }
786
787 ubi->leb_size = ubi->peb_size - ubi->leb_start;
788
789 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
790 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
791 ubi->mtd->index);
792 ubi->ro_mode = 1;
793 }
794
795 /*
796 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
797 * unfortunately, MTD does not provide this information. We should loop
798 * over all physical eraseblocks and invoke mtd->block_is_bad() for
799 * each physical eraseblock. So, we leave @ubi->bad_peb_count
800 * uninitialized so far.
801 */
802
803 return 0;
804 }
805
806 /**
807 * autoresize - re-size the volume which has the "auto-resize" flag set.
808 * @ubi: UBI device description object
809 * @vol_id: ID of the volume to re-size
810 *
811 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
812 * the volume table to the largest possible size. See comments in ubi-header.h
813 * for more description of the flag. Returns zero in case of success and a
814 * negative error code in case of failure.
815 */
autoresize(struct ubi_device * ubi,int vol_id)816 static int autoresize(struct ubi_device *ubi, int vol_id)
817 {
818 struct ubi_volume_desc desc;
819 struct ubi_volume *vol = ubi->volumes[vol_id];
820 int err, old_reserved_pebs = vol->reserved_pebs;
821
822 if (ubi->ro_mode) {
823 ubi_warn(ubi, "skip auto-resize because of R/O mode");
824 return 0;
825 }
826
827 /*
828 * Clear the auto-resize flag in the volume in-memory copy of the
829 * volume table, and 'ubi_resize_volume()' will propagate this change
830 * to the flash.
831 */
832 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
833
834 if (ubi->avail_pebs == 0) {
835 struct ubi_vtbl_record vtbl_rec;
836
837 /*
838 * No available PEBs to re-size the volume, clear the flag on
839 * flash and exit.
840 */
841 vtbl_rec = ubi->vtbl[vol_id];
842 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
843 if (err)
844 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
845 vol_id);
846 } else {
847 desc.vol = vol;
848 err = ubi_resize_volume(&desc,
849 old_reserved_pebs + ubi->avail_pebs);
850 if (err)
851 ubi_err(ubi, "cannot auto-resize volume %d",
852 vol_id);
853 }
854
855 if (err)
856 return err;
857
858 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
859 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
860 return 0;
861 }
862
863 /**
864 * ubi_attach_mtd_dev - attach an MTD device.
865 * @mtd: MTD device description object
866 * @ubi_num: number to assign to the new UBI device
867 * @vid_hdr_offset: VID header offset
868 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
869 *
870 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
871 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
872 * which case this function finds a vacant device number and assigns it
873 * automatically. Returns the new UBI device number in case of success and a
874 * negative error code in case of failure.
875 *
876 * Note, the invocations of this function has to be serialized by the
877 * @ubi_devices_mutex.
878 */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset,int max_beb_per1024)879 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
880 int vid_hdr_offset, int max_beb_per1024)
881 {
882 struct ubi_device *ubi;
883 int i, err, ref = 0;
884
885 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
886 return -EINVAL;
887
888 if (!max_beb_per1024)
889 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
890
891 /*
892 * Check if we already have the same MTD device attached.
893 *
894 * Note, this function assumes that UBI devices creations and deletions
895 * are serialized, so it does not take the &ubi_devices_lock.
896 */
897 for (i = 0; i < UBI_MAX_DEVICES; i++) {
898 ubi = ubi_devices[i];
899 if (ubi && mtd->index == ubi->mtd->index) {
900 ubi_err(ubi, "mtd%d is already attached to ubi%d",
901 mtd->index, i);
902 return -EEXIST;
903 }
904 }
905
906 /*
907 * Make sure this MTD device is not emulated on top of an UBI volume
908 * already. Well, generally this recursion works fine, but there are
909 * different problems like the UBI module takes a reference to itself
910 * by attaching (and thus, opening) the emulated MTD device. This
911 * results in inability to unload the module. And in general it makes
912 * no sense to attach emulated MTD devices, so we prohibit this.
913 */
914 if (mtd->type == MTD_UBIVOLUME) {
915 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
916 mtd->index);
917 return -EINVAL;
918 }
919
920 if (ubi_num == UBI_DEV_NUM_AUTO) {
921 /* Search for an empty slot in the @ubi_devices array */
922 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
923 if (!ubi_devices[ubi_num])
924 break;
925 if (ubi_num == UBI_MAX_DEVICES) {
926 ubi_err(ubi, "only %d UBI devices may be created",
927 UBI_MAX_DEVICES);
928 return -ENFILE;
929 }
930 } else {
931 if (ubi_num >= UBI_MAX_DEVICES)
932 return -EINVAL;
933
934 /* Make sure ubi_num is not busy */
935 if (ubi_devices[ubi_num]) {
936 ubi_err(ubi, "already exists");
937 return -EEXIST;
938 }
939 }
940
941 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
942 if (!ubi)
943 return -ENOMEM;
944
945 ubi->mtd = mtd;
946 ubi->ubi_num = ubi_num;
947 ubi->vid_hdr_offset = vid_hdr_offset;
948 ubi->autoresize_vol_id = -1;
949
950 #ifdef CONFIG_MTD_UBI_FASTMAP
951 ubi->fm_pool.used = ubi->fm_pool.size = 0;
952 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
953
954 /*
955 * fm_pool.max_size is 5% of the total number of PEBs but it's also
956 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
957 */
958 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
959 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
960 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
961 UBI_FM_MIN_POOL_SIZE);
962
963 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
964 ubi->fm_disabled = !fm_autoconvert;
965 if (fm_debug)
966 ubi_enable_dbg_chk_fastmap(ubi);
967
968 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
969 <= UBI_FM_MAX_START) {
970 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
971 UBI_FM_MAX_START);
972 ubi->fm_disabled = 1;
973 }
974
975 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
976 ubi_msg(ubi, "default fastmap WL pool size: %d",
977 ubi->fm_wl_pool.max_size);
978 #else
979 ubi->fm_disabled = 1;
980 #endif
981 mutex_init(&ubi->buf_mutex);
982 mutex_init(&ubi->ckvol_mutex);
983 mutex_init(&ubi->device_mutex);
984 spin_lock_init(&ubi->volumes_lock);
985 init_rwsem(&ubi->fm_protect);
986 init_rwsem(&ubi->fm_eba_sem);
987
988 ubi_msg(ubi, "attaching mtd%d", mtd->index);
989
990 err = io_init(ubi, max_beb_per1024);
991 if (err)
992 goto out_free;
993
994 err = -ENOMEM;
995 ubi->peb_buf = vmalloc(ubi->peb_size);
996 if (!ubi->peb_buf)
997 goto out_free;
998
999 #ifdef CONFIG_MTD_UBI_FASTMAP
1000 ubi->fm_size = ubi_calc_fm_size(ubi);
1001 ubi->fm_buf = vzalloc(ubi->fm_size);
1002 if (!ubi->fm_buf)
1003 goto out_free;
1004 #endif
1005 err = ubi_attach(ubi, 0);
1006 if (err) {
1007 ubi_err(ubi, "failed to attach mtd%d, error %d",
1008 mtd->index, err);
1009 goto out_free;
1010 }
1011
1012 if (ubi->autoresize_vol_id != -1) {
1013 err = autoresize(ubi, ubi->autoresize_vol_id);
1014 if (err)
1015 goto out_detach;
1016 }
1017
1018 err = uif_init(ubi, &ref);
1019 if (err)
1020 goto out_detach;
1021
1022 err = ubi_debugfs_init_dev(ubi);
1023 if (err)
1024 goto out_uif;
1025
1026 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1027 if (IS_ERR(ubi->bgt_thread)) {
1028 err = PTR_ERR(ubi->bgt_thread);
1029 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1030 ubi->bgt_name, err);
1031 goto out_debugfs;
1032 }
1033
1034 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1035 mtd->index, mtd->name, ubi->flash_size >> 20);
1036 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1037 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1038 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1039 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1040 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1041 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1042 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1043 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1044 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1045 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1046 ubi->vtbl_slots);
1047 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1048 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1049 ubi->image_seq);
1050 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1051 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1052
1053 /*
1054 * The below lock makes sure we do not race with 'ubi_thread()' which
1055 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1056 */
1057 spin_lock(&ubi->wl_lock);
1058 ubi->thread_enabled = 1;
1059 #ifndef __UBOOT__
1060 wake_up_process(ubi->bgt_thread);
1061 #else
1062 ubi_do_worker(ubi);
1063 #endif
1064
1065 spin_unlock(&ubi->wl_lock);
1066
1067 ubi_devices[ubi_num] = ubi;
1068 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1069 return ubi_num;
1070
1071 out_debugfs:
1072 ubi_debugfs_exit_dev(ubi);
1073 out_uif:
1074 get_device(&ubi->dev);
1075 ubi_assert(ref);
1076 uif_close(ubi);
1077 out_detach:
1078 ubi_wl_close(ubi);
1079 ubi_free_internal_volumes(ubi);
1080 vfree(ubi->vtbl);
1081 out_free:
1082 vfree(ubi->peb_buf);
1083 vfree(ubi->fm_buf);
1084 if (ref)
1085 put_device(&ubi->dev);
1086 else
1087 kfree(ubi);
1088 return err;
1089 }
1090
1091 /**
1092 * ubi_detach_mtd_dev - detach an MTD device.
1093 * @ubi_num: UBI device number to detach from
1094 * @anyway: detach MTD even if device reference count is not zero
1095 *
1096 * This function destroys an UBI device number @ubi_num and detaches the
1097 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1098 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1099 * exist.
1100 *
1101 * Note, the invocations of this function has to be serialized by the
1102 * @ubi_devices_mutex.
1103 */
ubi_detach_mtd_dev(int ubi_num,int anyway)1104 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1105 {
1106 struct ubi_device *ubi;
1107
1108 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1109 return -EINVAL;
1110
1111 ubi = ubi_get_device(ubi_num);
1112 if (!ubi)
1113 return -EINVAL;
1114
1115 spin_lock(&ubi_devices_lock);
1116 put_device(&ubi->dev);
1117 ubi->ref_count -= 1;
1118 if (ubi->ref_count) {
1119 if (!anyway) {
1120 spin_unlock(&ubi_devices_lock);
1121 return -EBUSY;
1122 }
1123 /* This may only happen if there is a bug */
1124 ubi_err(ubi, "%s reference count %d, destroy anyway",
1125 ubi->ubi_name, ubi->ref_count);
1126 }
1127 ubi_devices[ubi_num] = NULL;
1128 spin_unlock(&ubi_devices_lock);
1129
1130 ubi_assert(ubi_num == ubi->ubi_num);
1131 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1132 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1133 #ifdef CONFIG_MTD_UBI_FASTMAP
1134 /* If we don't write a new fastmap at detach time we lose all
1135 * EC updates that have been made since the last written fastmap.
1136 * In case of fastmap debugging we omit the update to simulate an
1137 * unclean shutdown. */
1138 if (!ubi_dbg_chk_fastmap(ubi))
1139 ubi_update_fastmap(ubi);
1140 #endif
1141 /*
1142 * Before freeing anything, we have to stop the background thread to
1143 * prevent it from doing anything on this device while we are freeing.
1144 */
1145 if (ubi->bgt_thread)
1146 kthread_stop(ubi->bgt_thread);
1147
1148 /*
1149 * Get a reference to the device in order to prevent 'dev_release()'
1150 * from freeing the @ubi object.
1151 */
1152 get_device(&ubi->dev);
1153
1154 ubi_debugfs_exit_dev(ubi);
1155 uif_close(ubi);
1156
1157 ubi_wl_close(ubi);
1158 ubi_free_internal_volumes(ubi);
1159 vfree(ubi->vtbl);
1160 put_mtd_device(ubi->mtd);
1161 vfree(ubi->peb_buf);
1162 vfree(ubi->fm_buf);
1163 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1164 put_device(&ubi->dev);
1165 return 0;
1166 }
1167
1168 #ifndef __UBOOT__
1169 /**
1170 * open_mtd_by_chdev - open an MTD device by its character device node path.
1171 * @mtd_dev: MTD character device node path
1172 *
1173 * This helper function opens an MTD device by its character node device path.
1174 * Returns MTD device description object in case of success and a negative
1175 * error code in case of failure.
1176 */
open_mtd_by_chdev(const char * mtd_dev)1177 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1178 {
1179 int err, major, minor, mode;
1180 struct path path;
1181
1182 /* Probably this is an MTD character device node path */
1183 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1184 if (err)
1185 return ERR_PTR(err);
1186
1187 /* MTD device number is defined by the major / minor numbers */
1188 major = imajor(d_backing_inode(path.dentry));
1189 minor = iminor(d_backing_inode(path.dentry));
1190 mode = d_backing_inode(path.dentry)->i_mode;
1191 path_put(&path);
1192 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1193 return ERR_PTR(-EINVAL);
1194
1195 if (minor & 1)
1196 /*
1197 * Just do not think the "/dev/mtdrX" devices support is need,
1198 * so do not support them to avoid doing extra work.
1199 */
1200 return ERR_PTR(-EINVAL);
1201
1202 return get_mtd_device(NULL, minor / 2);
1203 }
1204 #endif
1205
1206 /**
1207 * open_mtd_device - open MTD device by name, character device path, or number.
1208 * @mtd_dev: name, character device node path, or MTD device device number
1209 *
1210 * This function tries to open and MTD device described by @mtd_dev string,
1211 * which is first treated as ASCII MTD device number, and if it is not true, it
1212 * is treated as MTD device name, and if that is also not true, it is treated
1213 * as MTD character device node path. Returns MTD device description object in
1214 * case of success and a negative error code in case of failure.
1215 */
open_mtd_device(const char * mtd_dev)1216 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1217 {
1218 struct mtd_info *mtd;
1219 int mtd_num;
1220 char *endp;
1221
1222 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1223 if (*endp != '\0' || mtd_dev == endp) {
1224 /*
1225 * This does not look like an ASCII integer, probably this is
1226 * MTD device name.
1227 */
1228 mtd = get_mtd_device_nm(mtd_dev);
1229 #ifndef __UBOOT__
1230 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1231 /* Probably this is an MTD character device node path */
1232 mtd = open_mtd_by_chdev(mtd_dev);
1233 #endif
1234 } else
1235 mtd = get_mtd_device(NULL, mtd_num);
1236
1237 return mtd;
1238 }
1239
1240 #ifndef __UBOOT__
ubi_init(void)1241 static int __init ubi_init(void)
1242 #else
1243 int ubi_init(void)
1244 #endif
1245 {
1246 int err, i, k;
1247
1248 /* Ensure that EC and VID headers have correct size */
1249 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1250 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1251
1252 if (mtd_devs > UBI_MAX_DEVICES) {
1253 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1254 UBI_MAX_DEVICES);
1255 return -EINVAL;
1256 }
1257
1258 /* Create base sysfs directory and sysfs files */
1259 err = class_register(&ubi_class);
1260 if (err < 0)
1261 return err;
1262
1263 err = misc_register(&ubi_ctrl_cdev);
1264 if (err) {
1265 pr_err("UBI error: cannot register device\n");
1266 goto out;
1267 }
1268
1269 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1270 sizeof(struct ubi_wl_entry),
1271 0, 0, NULL);
1272 if (!ubi_wl_entry_slab) {
1273 err = -ENOMEM;
1274 goto out_dev_unreg;
1275 }
1276
1277 err = ubi_debugfs_init();
1278 if (err)
1279 goto out_slab;
1280
1281
1282 /* Attach MTD devices */
1283 for (i = 0; i < mtd_devs; i++) {
1284 struct mtd_dev_param *p = &mtd_dev_param[i];
1285 struct mtd_info *mtd;
1286
1287 cond_resched();
1288
1289 mtd = open_mtd_device(p->name);
1290 if (IS_ERR(mtd)) {
1291 err = PTR_ERR(mtd);
1292 pr_err("UBI error: cannot open mtd %s, error %d\n",
1293 p->name, err);
1294 /* See comment below re-ubi_is_module(). */
1295 if (ubi_is_module())
1296 goto out_detach;
1297 continue;
1298 }
1299
1300 mutex_lock(&ubi_devices_mutex);
1301 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1302 p->vid_hdr_offs, p->max_beb_per1024);
1303 mutex_unlock(&ubi_devices_mutex);
1304 if (err < 0) {
1305 pr_err("UBI error: cannot attach mtd%d\n",
1306 mtd->index);
1307 put_mtd_device(mtd);
1308
1309 /*
1310 * Originally UBI stopped initializing on any error.
1311 * However, later on it was found out that this
1312 * behavior is not very good when UBI is compiled into
1313 * the kernel and the MTD devices to attach are passed
1314 * through the command line. Indeed, UBI failure
1315 * stopped whole boot sequence.
1316 *
1317 * To fix this, we changed the behavior for the
1318 * non-module case, but preserved the old behavior for
1319 * the module case, just for compatibility. This is a
1320 * little inconsistent, though.
1321 */
1322 if (ubi_is_module())
1323 goto out_detach;
1324 }
1325 }
1326
1327 err = ubiblock_init();
1328 if (err) {
1329 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1330
1331 /* See comment above re-ubi_is_module(). */
1332 if (ubi_is_module())
1333 goto out_detach;
1334 }
1335
1336 return 0;
1337
1338 out_detach:
1339 for (k = 0; k < i; k++)
1340 if (ubi_devices[k]) {
1341 mutex_lock(&ubi_devices_mutex);
1342 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1343 mutex_unlock(&ubi_devices_mutex);
1344 }
1345 ubi_debugfs_exit();
1346 out_slab:
1347 kmem_cache_destroy(ubi_wl_entry_slab);
1348 out_dev_unreg:
1349 misc_deregister(&ubi_ctrl_cdev);
1350 out:
1351 #ifdef __UBOOT__
1352 /* Reset any globals that the driver depends on being zeroed */
1353 mtd_devs = 0;
1354 #endif
1355 class_unregister(&ubi_class);
1356 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1357 return err;
1358 }
1359 late_initcall(ubi_init);
1360
1361 #ifndef __UBOOT__
ubi_exit(void)1362 static void __exit ubi_exit(void)
1363 #else
1364 void ubi_exit(void)
1365 #endif
1366 {
1367 int i;
1368
1369 ubiblock_exit();
1370
1371 for (i = 0; i < UBI_MAX_DEVICES; i++)
1372 if (ubi_devices[i]) {
1373 mutex_lock(&ubi_devices_mutex);
1374 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1375 mutex_unlock(&ubi_devices_mutex);
1376 }
1377 ubi_debugfs_exit();
1378 kmem_cache_destroy(ubi_wl_entry_slab);
1379 misc_deregister(&ubi_ctrl_cdev);
1380 class_unregister(&ubi_class);
1381 #ifdef __UBOOT__
1382 /* Reset any globals that the driver depends on being zeroed */
1383 mtd_devs = 0;
1384 #endif
1385 }
1386 module_exit(ubi_exit);
1387
1388 /**
1389 * bytes_str_to_int - convert a number of bytes string into an integer.
1390 * @str: the string to convert
1391 *
1392 * This function returns positive resulting integer in case of success and a
1393 * negative error code in case of failure.
1394 */
bytes_str_to_int(const char * str)1395 static int __init bytes_str_to_int(const char *str)
1396 {
1397 char *endp;
1398 unsigned long result;
1399
1400 result = simple_strtoul(str, &endp, 0);
1401 if (str == endp || result >= INT_MAX) {
1402 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1403 return -EINVAL;
1404 }
1405
1406 switch (*endp) {
1407 case 'G':
1408 result *= 1024;
1409 case 'M':
1410 result *= 1024;
1411 case 'K':
1412 result *= 1024;
1413 if (endp[1] == 'i' && endp[2] == 'B')
1414 endp += 2;
1415 case '\0':
1416 break;
1417 default:
1418 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1419 return -EINVAL;
1420 }
1421
1422 return result;
1423 }
1424
kstrtoint(const char * s,unsigned int base,int * res)1425 int kstrtoint(const char *s, unsigned int base, int *res)
1426 {
1427 unsigned long long tmp;
1428
1429 tmp = simple_strtoull(s, NULL, base);
1430 if (tmp != (unsigned long long)(int)tmp)
1431 return -ERANGE;
1432
1433 return (int)tmp;
1434 }
1435
1436 /**
1437 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1438 * @val: the parameter value to parse
1439 * @kp: not used
1440 *
1441 * This function returns zero in case of success and a negative error code in
1442 * case of error.
1443 */
1444 #ifndef __UBOOT__
ubi_mtd_param_parse(const char * val,struct kernel_param * kp)1445 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1446 #else
1447 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1448 #endif
1449 {
1450 int i, len;
1451 struct mtd_dev_param *p;
1452 char buf[MTD_PARAM_LEN_MAX];
1453 char *pbuf = &buf[0];
1454 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1455
1456 if (!val)
1457 return -EINVAL;
1458
1459 if (mtd_devs == UBI_MAX_DEVICES) {
1460 pr_err("UBI error: too many parameters, max. is %d\n",
1461 UBI_MAX_DEVICES);
1462 return -EINVAL;
1463 }
1464
1465 len = strnlen(val, MTD_PARAM_LEN_MAX);
1466 if (len == MTD_PARAM_LEN_MAX) {
1467 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1468 val, MTD_PARAM_LEN_MAX);
1469 return -EINVAL;
1470 }
1471
1472 if (len == 0) {
1473 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1474 return 0;
1475 }
1476
1477 strcpy(buf, val);
1478
1479 /* Get rid of the final newline */
1480 if (buf[len - 1] == '\n')
1481 buf[len - 1] = '\0';
1482
1483 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1484 tokens[i] = strsep(&pbuf, ",");
1485
1486 if (pbuf) {
1487 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1488 return -EINVAL;
1489 }
1490
1491 p = &mtd_dev_param[mtd_devs];
1492 strcpy(&p->name[0], tokens[0]);
1493
1494 token = tokens[1];
1495 if (token) {
1496 p->vid_hdr_offs = bytes_str_to_int(token);
1497
1498 if (p->vid_hdr_offs < 0)
1499 return p->vid_hdr_offs;
1500 }
1501
1502 token = tokens[2];
1503 if (token) {
1504 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1505
1506 if (err) {
1507 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1508 token);
1509 return -EINVAL;
1510 }
1511 }
1512
1513 token = tokens[3];
1514 if (token) {
1515 int err = kstrtoint(token, 10, &p->ubi_num);
1516
1517 if (err) {
1518 pr_err("UBI error: bad value for ubi_num parameter: %s",
1519 token);
1520 return -EINVAL;
1521 }
1522 } else
1523 p->ubi_num = UBI_DEV_NUM_AUTO;
1524
1525 mtd_devs += 1;
1526 return 0;
1527 }
1528
1529 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1530 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1531 "Multiple \"mtd\" parameters may be specified.\n"
1532 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1533 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1534 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1535 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1536 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1537 "\n"
1538 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1539 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1540 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1541 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1542 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1543 #ifdef CONFIG_MTD_UBI_FASTMAP
1544 module_param(fm_autoconvert, bool, 0644);
1545 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1546 module_param(fm_debug, bool, 0);
1547 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1548 #endif
1549 MODULE_VERSION(__stringify(UBI_VERSION));
1550 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1551 MODULE_AUTHOR("Artem Bityutskiy");
1552 MODULE_LICENSE("GPL");
1553