• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Amalgamated source file
2 /*
3 ** Defs are upb's internal representation of the constructs that can appear
4 ** in a .proto file:
5 **
6 ** - upb::MessageDef (upb_msgdef): describes a "message" construct.
7 ** - upb::FieldDef (upb_fielddef): describes a message field.
8 ** - upb::FileDef (upb_filedef): describes a .proto file and its defs.
9 ** - upb::EnumDef (upb_enumdef): describes an enum.
10 ** - upb::OneofDef (upb_oneofdef): describes a oneof.
11 ** - upb::Def (upb_def): base class of all the others.
12 **
13 ** TODO: definitions of services.
14 **
15 ** Like upb_refcounted objects, defs are mutable only until frozen, and are
16 ** only thread-safe once frozen.
17 **
18 ** This is a mixed C/C++ interface that offers a full API to both languages.
19 ** See the top-level README for more information.
20 */
21 
22 #ifndef UPB_DEF_H_
23 #define UPB_DEF_H_
24 
25 /*
26 ** upb::RefCounted (upb_refcounted)
27 **
28 ** A refcounting scheme that supports circular refs.  It accomplishes this by
29 ** partitioning the set of objects into groups such that no cycle spans groups;
30 ** we can then reference-count the group as a whole and ignore refs within the
31 ** group.  When objects are mutable, these groups are computed very
32 ** conservatively; we group any objects that have ever had a link between them.
33 ** When objects are frozen, we compute strongly-connected components which
34 ** allows us to be precise and only group objects that are actually cyclic.
35 **
36 ** This is a mixed C/C++ interface that offers a full API to both languages.
37 ** See the top-level README for more information.
38 */
39 
40 #ifndef UPB_REFCOUNTED_H_
41 #define UPB_REFCOUNTED_H_
42 
43 /*
44 ** upb_table
45 **
46 ** This header is INTERNAL-ONLY!  Its interfaces are not public or stable!
47 ** This file defines very fast int->upb_value (inttable) and string->upb_value
48 ** (strtable) hash tables.
49 **
50 ** The table uses chained scatter with Brent's variation (inspired by the Lua
51 ** implementation of hash tables).  The hash function for strings is Austin
52 ** Appleby's "MurmurHash."
53 **
54 ** The inttable uses uintptr_t as its key, which guarantees it can be used to
55 ** store pointers or integers of at least 32 bits (upb isn't really useful on
56 ** systems where sizeof(void*) < 4).
57 **
58 ** The table must be homogenous (all values of the same type).  In debug
59 ** mode, we check this on insert and lookup.
60 */
61 
62 #ifndef UPB_TABLE_H_
63 #define UPB_TABLE_H_
64 
65 #include <assert.h>
66 #include <stdint.h>
67 #include <string.h>
68 /*
69 ** This file contains shared definitions that are widely used across upb.
70 **
71 ** This is a mixed C/C++ interface that offers a full API to both languages.
72 ** See the top-level README for more information.
73 */
74 
75 #ifndef UPB_H_
76 #define UPB_H_
77 
78 #include <assert.h>
79 #include <stdarg.h>
80 #include <stdbool.h>
81 #include <stddef.h>
82 
83 #ifdef __cplusplus
84 namespace upb {
85 class Allocator;
86 class Arena;
87 class Environment;
88 class ErrorSpace;
89 class Status;
90 template <int N> class InlinedArena;
91 template <int N> class InlinedEnvironment;
92 }
93 #endif
94 
95 /* UPB_INLINE: inline if possible, emit standalone code if required. */
96 #ifdef __cplusplus
97 #define UPB_INLINE inline
98 #elif defined (__GNUC__)
99 #define UPB_INLINE static __inline__
100 #else
101 #define UPB_INLINE static
102 #endif
103 
104 /* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler
105  * doesn't provide these preprocessor symbols. */
106 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
107 #define UPB_BIG_ENDIAN
108 #endif
109 
110 /* Macros for function attributes on compilers that support them. */
111 #ifdef __GNUC__
112 #define UPB_FORCEINLINE __inline__ __attribute__((always_inline))
113 #define UPB_NOINLINE __attribute__((noinline))
114 #define UPB_NORETURN __attribute__((__noreturn__))
115 #else  /* !defined(__GNUC__) */
116 #define UPB_FORCEINLINE
117 #define UPB_NOINLINE
118 #define UPB_NORETURN
119 #endif
120 
121 /* A few hacky workarounds for functions not in C89.
122  * For internal use only!
123  * TODO(haberman): fix these by including our own implementations, or finding
124  * another workaround.
125  */
126 #ifdef __GNUC__
127 #define _upb_snprintf __builtin_snprintf
128 #define _upb_vsnprintf __builtin_vsnprintf
129 #define _upb_va_copy(a, b) __va_copy(a, b)
130 #elif __STDC_VERSION__ >= 199901L
131 /* C99 versions. */
132 #define _upb_snprintf snprintf
133 #define _upb_vsnprintf vsnprintf
134 #define _upb_va_copy(a, b) va_copy(a, b)
135 #else
136 #error Need implementations of [v]snprintf and va_copy
137 #endif
138 
139 
140 #if ((defined(__cplusplus) && __cplusplus >= 201103L) || \
141       defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11)
142 #define UPB_CXX11
143 #endif
144 
145 /* UPB_DISALLOW_COPY_AND_ASSIGN()
146  * UPB_DISALLOW_POD_OPS()
147  *
148  * Declare these in the "private" section of a C++ class to forbid copy/assign
149  * or all POD ops (construct, destruct, copy, assign) on that class. */
150 #ifdef UPB_CXX11
151 #include <type_traits>
152 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
153   class_name(const class_name&) = delete; \
154   void operator=(const class_name&) = delete;
155 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
156   class_name() = delete; \
157   ~class_name() = delete; \
158   UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
159 #define UPB_ASSERT_STDLAYOUT(type) \
160   static_assert(std::is_standard_layout<type>::value, \
161                 #type " must be standard layout");
162 #define UPB_FINAL final
163 #else  /* !defined(UPB_CXX11) */
164 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
165   class_name(const class_name&); \
166   void operator=(const class_name&);
167 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
168   class_name(); \
169   ~class_name(); \
170   UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
171 #define UPB_ASSERT_STDLAYOUT(type)
172 #define UPB_FINAL
173 #endif
174 
175 /* UPB_DECLARE_TYPE()
176  * UPB_DECLARE_DERIVED_TYPE()
177  * UPB_DECLARE_DERIVED_TYPE2()
178  *
179  * Macros for declaring C and C++ types both, including inheritance.
180  * The inheritance doesn't use real C++ inheritance, to stay compatible with C.
181  *
182  * These macros also provide upcasts:
183  *  - in C: types-specific functions (ie. upb_foo_upcast(foo))
184  *  - in C++: upb::upcast(foo) along with implicit conversions
185  *
186  * Downcasts are not provided, but upb/def.h defines downcasts for upb::Def. */
187 
188 #define UPB_C_UPCASTS(ty, base)                                      \
189   UPB_INLINE base *ty ## _upcast_mutable(ty *p) { return (base*)p; } \
190   UPB_INLINE const base *ty ## _upcast(const ty *p) { return (const base*)p; }
191 
192 #define UPB_C_UPCASTS2(ty, base, base2)                                 \
193   UPB_C_UPCASTS(ty, base)                                               \
194   UPB_INLINE base2 *ty ## _upcast2_mutable(ty *p) { return (base2*)p; } \
195   UPB_INLINE const base2 *ty ## _upcast2(const ty *p) { return (const base2*)p; }
196 
197 #ifdef __cplusplus
198 
199 #define UPB_BEGIN_EXTERN_C extern "C" {
200 #define UPB_END_EXTERN_C }
201 #define UPB_PRIVATE_FOR_CPP private:
202 #define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname;
203 
204 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase)  \
205   UPB_DECLARE_TYPE(cppname, cname)                                \
206   UPB_C_UPCASTS(cname, cbase)                                     \
207   namespace upb {                                                 \
208   template <>                                                     \
209   class Pointer<cppname> : public PointerBase<cppname, cppbase> { \
210    public:                                                        \
211     explicit Pointer(cppname* ptr)                                \
212         : PointerBase<cppname, cppbase>(ptr) {}                   \
213   };                                                              \
214   template <>                                                     \
215   class Pointer<const cppname>                                    \
216       : public PointerBase<const cppname, const cppbase> {        \
217    public:                                                        \
218     explicit Pointer(const cppname* ptr)                          \
219         : PointerBase<const cppname, const cppbase>(ptr) {}       \
220   };                                                              \
221   }
222 
223 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, cname, cbase,  \
224                                   cbase2)                                    \
225   UPB_DECLARE_TYPE(cppname, cname)                                           \
226   UPB_C_UPCASTS2(cname, cbase, cbase2)                                       \
227   namespace upb {                                                            \
228   template <>                                                                \
229   class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \
230    public:                                                                   \
231     explicit Pointer(cppname* ptr)                                           \
232         : PointerBase2<cppname, cppbase, cppbase2>(ptr) {}                   \
233   };                                                                         \
234   template <>                                                                \
235   class Pointer<const cppname>                                               \
236       : public PointerBase2<const cppname, const cppbase, const cppbase2> {  \
237    public:                                                                   \
238     explicit Pointer(const cppname* ptr)                                     \
239         : PointerBase2<const cppname, const cppbase, const cppbase2>(ptr) {} \
240   };                                                                         \
241   }
242 
243 #else  /* !defined(__cplusplus) */
244 
245 #define UPB_BEGIN_EXTERN_C
246 #define UPB_END_EXTERN_C
247 #define UPB_PRIVATE_FOR_CPP
248 #define UPB_DECLARE_TYPE(cppname, cname) \
249   struct cname;                          \
250   typedef struct cname cname;
251 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \
252   UPB_DECLARE_TYPE(cppname, cname)                               \
253   UPB_C_UPCASTS(cname, cbase)
254 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2,    \
255                                   cname, cbase, cbase2)          \
256   UPB_DECLARE_TYPE(cppname, cname)                               \
257   UPB_C_UPCASTS2(cname, cbase, cbase2)
258 
259 #endif  /* defined(__cplusplus) */
260 
261 #define UPB_MAX(x, y) ((x) > (y) ? (x) : (y))
262 #define UPB_MIN(x, y) ((x) < (y) ? (x) : (y))
263 
264 #define UPB_UNUSED(var) (void)var
265 
266 /* For asserting something about a variable when the variable is not used for
267  * anything else.  This prevents "unused variable" warnings when compiling in
268  * debug mode. */
269 #define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate)
270 
271 /* Generic function type. */
272 typedef void upb_func();
273 
274 
275 /* C++ Casts ******************************************************************/
276 
277 #ifdef __cplusplus
278 
279 namespace upb {
280 
281 template <class T> class Pointer;
282 
283 /* Casts to a subclass.  The caller must know that cast is correct; an
284  * incorrect cast will throw an assertion failure in debug mode.
285  *
286  * Example:
287  *   upb::Def* def = GetDef();
288  *   // Assert-fails if this was not actually a MessageDef.
289  *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
290  *
291  * Note that downcasts are only defined for some types (at the moment you can
292  * only downcast from a upb::Def to a specific Def type). */
293 template<class To, class From> To down_cast(From* f);
294 
295 /* Casts to a subclass.  If the class does not actually match the given To type,
296  * returns NULL.
297  *
298  * Example:
299  *   upb::Def* def = GetDef();
300  *   // md will be NULL if this was not actually a MessageDef.
301  *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
302  *
303  * Note that dynamic casts are only defined for some types (at the moment you
304  * can only downcast from a upb::Def to a specific Def type).. */
305 template<class To, class From> To dyn_cast(From* f);
306 
307 /* Casts to any base class, or the type itself (ie. can be a no-op).
308  *
309  * Example:
310  *   upb::MessageDef* md = GetDef();
311  *   // This will fail to compile if this wasn't actually a base class.
312  *   upb::Def* def = upb::upcast(md);
313  */
upcast(T * f)314 template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); }
315 
316 /* Attempt upcast to specific base class.
317  *
318  * Example:
319  *   upb::MessageDef* md = GetDef();
320  *   upb::upcast_to<upb::Def>(md)->MethodOnDef();
321  */
upcast_to(F * f)322 template <class T, class F> inline T* upcast_to(F *f) {
323   return static_cast<T*>(upcast(f));
324 }
325 
326 /* PointerBase<T>: implementation detail of upb::upcast().
327  * It is implicitly convertable to pointers to the Base class(es).
328  */
329 template <class T, class Base>
330 class PointerBase {
331  public:
PointerBase(T * ptr)332   explicit PointerBase(T* ptr) : ptr_(ptr) {}
333   operator T*() { return ptr_; }
334   operator Base*() { return (Base*)ptr_; }
335 
336  private:
337   T* ptr_;
338 };
339 
340 template <class T, class Base, class Base2>
341 class PointerBase2 : public PointerBase<T, Base> {
342  public:
PointerBase2(T * ptr)343   explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {}
344   operator Base2*() { return Pointer<Base>(*this); }
345 };
346 
347 }
348 
349 #endif
350 
351 
352 /* upb::ErrorSpace ************************************************************/
353 
354 /* A upb::ErrorSpace represents some domain of possible error values.  This lets
355  * upb::Status attach specific error codes to operations, like POSIX/C errno,
356  * Win32 error codes, etc.  Clients who want to know the very specific error
357  * code can check the error space and then know the type of the integer code.
358  *
359  * NOTE: upb::ErrorSpace is currently not used and should be considered
360  * experimental.  It is important primarily in cases where upb is performing
361  * I/O, but upb doesn't currently have any components that do this. */
362 
UPB_DECLARE_TYPE(upb::ErrorSpace,upb_errorspace)363 UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace)
364 
365 #ifdef __cplusplus
366 class upb::ErrorSpace {
367 #else
368 struct upb_errorspace {
369 #endif
370   const char *name;
371 };
372 
373 
374 /* upb::Status ****************************************************************/
375 
376 /* upb::Status represents a success or failure status and error message.
377  * It owns no resources and allocates no memory, so it should work
378  * even in OOM situations. */
379 UPB_DECLARE_TYPE(upb::Status, upb_status)
380 
381 /* The maximum length of an error message before it will get truncated. */
382 #define UPB_STATUS_MAX_MESSAGE 128
383 
384 UPB_BEGIN_EXTERN_C
385 
386 const char *upb_status_errmsg(const upb_status *status);
387 bool upb_ok(const upb_status *status);
388 upb_errorspace *upb_status_errspace(const upb_status *status);
389 int upb_status_errcode(const upb_status *status);
390 
391 /* Any of the functions that write to a status object allow status to be NULL,
392  * to support use cases where the function's caller does not care about the
393  * status message. */
394 void upb_status_clear(upb_status *status);
395 void upb_status_seterrmsg(upb_status *status, const char *msg);
396 void upb_status_seterrf(upb_status *status, const char *fmt, ...);
397 void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args);
398 void upb_status_copy(upb_status *to, const upb_status *from);
399 
400 UPB_END_EXTERN_C
401 
402 #ifdef __cplusplus
403 
404 class upb::Status {
405  public:
406   Status() { upb_status_clear(this); }
407 
408   /* Returns true if there is no error. */
409   bool ok() const { return upb_ok(this); }
410 
411   /* Optional error space and code, useful if the caller wants to
412    * programmatically check the specific kind of error. */
413   ErrorSpace* error_space() { return upb_status_errspace(this); }
414   int error_code() const { return upb_status_errcode(this); }
415 
416   /* The returned string is invalidated by any other call into the status. */
417   const char *error_message() const { return upb_status_errmsg(this); }
418 
419   /* The error message will be truncated if it is longer than
420    * UPB_STATUS_MAX_MESSAGE-4. */
421   void SetErrorMessage(const char* msg) { upb_status_seterrmsg(this, msg); }
422   void SetFormattedErrorMessage(const char* fmt, ...) {
423     va_list args;
424     va_start(args, fmt);
425     upb_status_vseterrf(this, fmt, args);
426     va_end(args);
427   }
428 
429   /* Resets the status to a successful state with no message. */
430   void Clear() { upb_status_clear(this); }
431 
432   void CopyFrom(const Status& other) { upb_status_copy(this, &other); }
433 
434  private:
435   UPB_DISALLOW_COPY_AND_ASSIGN(Status)
436 #else
437 struct upb_status {
438 #endif
439   bool ok_;
440 
441   /* Specific status code defined by some error space (optional). */
442   int code_;
443   upb_errorspace *error_space_;
444 
445   /* TODO(haberman): add file/line of error? */
446 
447   /* Error message; NULL-terminated. */
448   char msg[UPB_STATUS_MAX_MESSAGE];
449 };
450 
451 #define UPB_STATUS_INIT {true, 0, NULL, {0}}
452 
453 
454 /** Built-in error spaces. ****************************************************/
455 
456 /* Errors raised by upb that we want to be able to detect programmatically. */
457 typedef enum {
458   UPB_NOMEM   /* Can't reuse ENOMEM because it is POSIX, not ISO C. */
459 } upb_errcode_t;
460 
461 extern upb_errorspace upb_upberr;
462 
463 void upb_upberr_setoom(upb_status *s);
464 
465 /* Since errno is defined by standard C, we define an error space for it in
466  * core upb.  Other error spaces should be defined in other, platform-specific
467  * modules. */
468 
469 extern upb_errorspace upb_errnoerr;
470 
471 
472 /** upb::Allocator ************************************************************/
473 
474 /* A upb::Allocator is a possibly-stateful allocator object.
475  *
476  * It could either be an arena allocator (which doesn't require individual
477  * free() calls) or a regular malloc() (which does).  The client must therefore
478  * free memory unless it knows that the allocator is an arena allocator. */
479 UPB_DECLARE_TYPE(upb::Allocator, upb_alloc)
480 
481 /* A malloc()/free() function.
482  * If "size" is 0 then the function acts like free(), otherwise it acts like
483  * realloc().  Only "oldsize" bytes from a previous allocation are preserved. */
484 typedef void *upb_alloc_func(upb_alloc *alloc, void *ptr, size_t oldsize,
485                              size_t size);
486 
487 #ifdef __cplusplus
488 
489 class upb::Allocator UPB_FINAL {
490  public:
491   Allocator() {}
492 
493  private:
494   UPB_DISALLOW_COPY_AND_ASSIGN(Allocator)
495 
496  public:
497 #else
498 struct upb_alloc {
499 #endif  /* __cplusplus */
500   upb_alloc_func *func;
501 };
502 
503 UPB_INLINE void *upb_malloc(upb_alloc *alloc, size_t size) {
504   assert(size > 0);
505   return alloc->func(alloc, NULL, 0, size);
506 }
507 
508 UPB_INLINE void *upb_realloc(upb_alloc *alloc, void *ptr, size_t oldsize,
509                              size_t size) {
510   assert(size > 0);
511   return alloc->func(alloc, ptr, oldsize, size);
512 }
513 
514 UPB_INLINE void upb_free(upb_alloc *alloc, void *ptr) {
515   alloc->func(alloc, ptr, 0, 0);
516 }
517 
518 /* The global allocator used by upb.  Uses the standard malloc()/free(). */
519 
520 extern upb_alloc upb_alloc_global;
521 
522 /* Functions that hard-code the global malloc.
523  *
524  * We still get benefit because we can put custom logic into our global
525  * allocator, like injecting out-of-memory faults in debug/testing builds. */
526 
527 UPB_INLINE void *upb_gmalloc(size_t size) {
528   return upb_malloc(&upb_alloc_global, size);
529 }
530 
531 UPB_INLINE void *upb_grealloc(void *ptr, size_t oldsize, size_t size) {
532   return upb_realloc(&upb_alloc_global, ptr, oldsize, size);
533 }
534 
535 UPB_INLINE void upb_gfree(void *ptr) {
536   upb_free(&upb_alloc_global, ptr);
537 }
538 
539 /* upb::Arena *****************************************************************/
540 
541 /* upb::Arena is a specific allocator implementation that uses arena allocation.
542  * The user provides an allocator that will be used to allocate the underlying
543  * arena blocks.  Arenas by nature do not require the individual allocations
544  * to be freed.  However the Arena does allow users to register cleanup
545  * functions that will run when the arena is destroyed.
546  *
547  * A upb::Arena is *not* thread-safe.
548  *
549  * You could write a thread-safe arena allocator that satisfies the
550  * upb::Allocator interface, but it would not be as efficient for the
551  * single-threaded case. */
552 UPB_DECLARE_TYPE(upb::Arena, upb_arena)
553 
554 typedef void upb_cleanup_func(void *ud);
555 
556 #define UPB_ARENA_BLOCK_OVERHEAD (sizeof(size_t)*4)
557 
558 UPB_BEGIN_EXTERN_C
559 
560 void upb_arena_init(upb_arena *a);
561 void upb_arena_init2(upb_arena *a, void *mem, size_t n, upb_alloc *alloc);
562 void upb_arena_uninit(upb_arena *a);
563 upb_alloc *upb_arena_alloc(upb_arena *a);
564 bool upb_arena_addcleanup(upb_arena *a, upb_cleanup_func *func, void *ud);
565 size_t upb_arena_bytesallocated(const upb_arena *a);
566 void upb_arena_setnextblocksize(upb_arena *a, size_t size);
567 void upb_arena_setmaxblocksize(upb_arena *a, size_t size);
568 
569 UPB_END_EXTERN_C
570 
571 #ifdef __cplusplus
572 
573 class upb::Arena {
574  public:
575   /* A simple arena with no initial memory block and the default allocator. */
576   Arena() { upb_arena_init(this); }
577 
578   /* Constructs an arena with the given initial block which allocates blocks
579    * with the given allocator.  The given allocator must outlive the Arena.
580    *
581    * If you pass NULL for the allocator it will default to the global allocator
582    * upb_alloc_global, and NULL/0 for the initial block will cause there to be
583    * no initial block. */
584   Arena(void *mem, size_t len, Allocator* a) {
585     upb_arena_init2(this, mem, len, a);
586   }
587 
588   ~Arena() { upb_arena_uninit(this); }
589 
590   /* Sets the size of the next block the Arena will request (unless the
591    * requested allocation is larger).  Each block will double in size until the
592    * max limit is reached. */
593   void SetNextBlockSize(size_t size) { upb_arena_setnextblocksize(this, size); }
594 
595   /* Sets the maximum block size.  No blocks larger than this will be requested
596    * from the underlying allocator unless individual arena allocations are
597    * larger. */
598   void SetMaxBlockSize(size_t size) { upb_arena_setmaxblocksize(this, size); }
599 
600   /* Allows this arena to be used as a generic allocator.
601    *
602    * The arena does not need free() calls so when using Arena as an allocator
603    * it is safe to skip them.  However they are no-ops so there is no harm in
604    * calling free() either. */
605   Allocator* allocator() { return upb_arena_alloc(this); }
606 
607   /* Add a cleanup function to run when the arena is destroyed.
608    * Returns false on out-of-memory. */
609   bool AddCleanup(upb_cleanup_func* func, void* ud) {
610     return upb_arena_addcleanup(this, func, ud);
611   }
612 
613   /* Total number of bytes that have been allocated.  It is undefined what
614    * Realloc() does to this counter. */
615   size_t BytesAllocated() const {
616     return upb_arena_bytesallocated(this);
617   }
618 
619  private:
620   UPB_DISALLOW_COPY_AND_ASSIGN(Arena)
621 
622 #else
623 struct upb_arena {
624 #endif  /* __cplusplus */
625   /* We implement the allocator interface.
626    * This must be the first member of upb_arena! */
627   upb_alloc alloc;
628 
629   /* Allocator to allocate arena blocks.  We are responsible for freeing these
630    * when we are destroyed. */
631   upb_alloc *block_alloc;
632 
633   size_t bytes_allocated;
634   size_t next_block_size;
635   size_t max_block_size;
636 
637   /* Linked list of blocks.  Points to an arena_block, defined in env.c */
638   void *block_head;
639 
640   /* Cleanup entries.  Pointer to a cleanup_ent, defined in env.c */
641   void *cleanup_head;
642 
643   /* For future expansion, since the size of this struct is exposed to users. */
644   void *future1;
645   void *future2;
646 };
647 
648 
649 /* upb::Environment ***********************************************************/
650 
651 /* A upb::Environment provides a means for injecting malloc and an
652  * error-reporting callback into encoders/decoders.  This allows them to be
653  * independent of nearly all assumptions about their actual environment.
654  *
655  * It is also a container for allocating the encoders/decoders themselves that
656  * insulates clients from knowing their actual size.  This provides ABI
657  * compatibility even if the size of the objects change.  And this allows the
658  * structure definitions to be in the .c files instead of the .h files, making
659  * the .h files smaller and more readable.
660  *
661  * We might want to consider renaming this to "Pipeline" if/when the concept of
662  * a pipeline element becomes more formalized. */
663 UPB_DECLARE_TYPE(upb::Environment, upb_env)
664 
665 /* A function that receives an error report from an encoder or decoder.  The
666  * callback can return true to request that the error should be recovered, but
667  * if the error is not recoverable this has no effect. */
668 typedef bool upb_error_func(void *ud, const upb_status *status);
669 
670 UPB_BEGIN_EXTERN_C
671 
672 void upb_env_init(upb_env *e);
673 void upb_env_init2(upb_env *e, void *mem, size_t n, upb_alloc *alloc);
674 void upb_env_uninit(upb_env *e);
675 
676 void upb_env_initonly(upb_env *e);
677 
678 upb_arena *upb_env_arena(upb_env *e);
679 bool upb_env_ok(const upb_env *e);
680 void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud);
681 
682 /* Convenience wrappers around the methods of the contained arena. */
683 void upb_env_reporterrorsto(upb_env *e, upb_status *s);
684 bool upb_env_reporterror(upb_env *e, const upb_status *s);
685 void *upb_env_malloc(upb_env *e, size_t size);
686 void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size);
687 void upb_env_free(upb_env *e, void *ptr);
688 bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud);
689 size_t upb_env_bytesallocated(const upb_env *e);
690 
691 UPB_END_EXTERN_C
692 
693 #ifdef __cplusplus
694 
695 class upb::Environment {
696  public:
697   /* The given Arena must outlive this environment. */
698   Environment() { upb_env_initonly(this); }
699 
700   Environment(void *mem, size_t len, Allocator *a) : arena_(mem, len, a) {
701     upb_env_initonly(this);
702   }
703 
704   Arena* arena() { return upb_env_arena(this); }
705 
706   /* Set a custom error reporting function. */
707   void SetErrorFunction(upb_error_func* func, void* ud) {
708     upb_env_seterrorfunc(this, func, ud);
709   }
710 
711   /* Set the error reporting function to simply copy the status to the given
712    * status and abort. */
713   void ReportErrorsTo(Status* status) { upb_env_reporterrorsto(this, status); }
714 
715   /* Returns true if all allocations and AddCleanup() calls have succeeded,
716    * and no errors were reported with ReportError() (except ones that recovered
717    * successfully). */
718   bool ok() const { return upb_env_ok(this); }
719 
720   /* Reports an error to this environment's callback, returning true if
721    * the caller should try to recover. */
722   bool ReportError(const Status* status) {
723     return upb_env_reporterror(this, status);
724   }
725 
726  private:
727   UPB_DISALLOW_COPY_AND_ASSIGN(Environment)
728 
729 #else
730 struct upb_env {
731 #endif  /* __cplusplus */
732   upb_arena arena_;
733   upb_error_func *error_func_;
734   void *error_ud_;
735   bool ok_;
736 };
737 
738 
739 /* upb::InlinedArena **********************************************************/
740 /* upb::InlinedEnvironment ****************************************************/
741 
742 /* upb::InlinedArena and upb::InlinedEnvironment seed their arenas with a
743  * predefined amount of memory.  No heap memory will be allocated until the
744  * initial block is exceeded.
745  *
746  * These types only exist in C++ */
747 
748 #ifdef __cplusplus
749 
750 template <int N> class upb::InlinedArena : public upb::Arena {
751  public:
752   InlinedArena() : Arena(initial_block_, N, NULL) {}
753   explicit InlinedArena(Allocator* a) : Arena(initial_block_, N, a) {}
754 
755  private:
756   UPB_DISALLOW_COPY_AND_ASSIGN(InlinedArena)
757 
758   char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
759 };
760 
761 template <int N> class upb::InlinedEnvironment : public upb::Environment {
762  public:
763   InlinedEnvironment() : Environment(initial_block_, N, NULL) {}
764   explicit InlinedEnvironment(Allocator *a)
765       : Environment(initial_block_, N, a) {}
766 
767  private:
768   UPB_DISALLOW_COPY_AND_ASSIGN(InlinedEnvironment)
769 
770   char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
771 };
772 
773 #endif  /* __cplusplus */
774 
775 
776 
777 #endif  /* UPB_H_ */
778 
779 #ifdef __cplusplus
780 extern "C" {
781 #endif
782 
783 
784 /* upb_value ******************************************************************/
785 
786 /* A tagged union (stored untagged inside the table) so that we can check that
787  * clients calling table accessors are correctly typed without having to have
788  * an explosion of accessors. */
789 typedef enum {
790   UPB_CTYPE_INT32    = 1,
791   UPB_CTYPE_INT64    = 2,
792   UPB_CTYPE_UINT32   = 3,
793   UPB_CTYPE_UINT64   = 4,
794   UPB_CTYPE_BOOL     = 5,
795   UPB_CTYPE_CSTR     = 6,
796   UPB_CTYPE_PTR      = 7,
797   UPB_CTYPE_CONSTPTR = 8,
798   UPB_CTYPE_FPTR     = 9
799 } upb_ctype_t;
800 
801 typedef struct {
802   uint64_t val;
803 #ifndef NDEBUG
804   /* In debug mode we carry the value type around also so we can check accesses
805    * to be sure the right member is being read. */
806   upb_ctype_t ctype;
807 #endif
808 } upb_value;
809 
810 #ifdef NDEBUG
811 #define SET_TYPE(dest, val)      UPB_UNUSED(val)
812 #else
813 #define SET_TYPE(dest, val) dest = val
814 #endif
815 
816 /* Like strdup(), which isn't always available since it's not ANSI C. */
817 char *upb_strdup(const char *s, upb_alloc *a);
818 /* Variant that works with a length-delimited rather than NULL-delimited string,
819  * as supported by strtable. */
820 char *upb_strdup2(const char *s, size_t len, upb_alloc *a);
821 
822 UPB_INLINE char *upb_gstrdup(const char *s) {
823   return upb_strdup(s, &upb_alloc_global);
824 }
825 
826 UPB_INLINE void _upb_value_setval(upb_value *v, uint64_t val,
827                                   upb_ctype_t ctype) {
828   v->val = val;
829   SET_TYPE(v->ctype, ctype);
830 }
831 
832 UPB_INLINE upb_value _upb_value_val(uint64_t val, upb_ctype_t ctype) {
833   upb_value ret;
834   _upb_value_setval(&ret, val, ctype);
835   return ret;
836 }
837 
838 /* For each value ctype, define the following set of functions:
839  *
840  * // Get/set an int32 from a upb_value.
841  * int32_t upb_value_getint32(upb_value val);
842  * void upb_value_setint32(upb_value *val, int32_t cval);
843  *
844  * // Construct a new upb_value from an int32.
845  * upb_value upb_value_int32(int32_t val); */
846 #define FUNCS(name, membername, type_t, converter, proto_type) \
847   UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \
848     val->val = (converter)cval; \
849     SET_TYPE(val->ctype, proto_type); \
850   } \
851   UPB_INLINE upb_value upb_value_ ## name(type_t val) { \
852     upb_value ret; \
853     upb_value_set ## name(&ret, val); \
854     return ret; \
855   } \
856   UPB_INLINE type_t upb_value_get ## name(upb_value val) { \
857     assert(val.ctype == proto_type); \
858     return (type_t)(converter)val.val; \
859   }
860 
861 FUNCS(int32,    int32,        int32_t,      int32_t,    UPB_CTYPE_INT32)
862 FUNCS(int64,    int64,        int64_t,      int64_t,    UPB_CTYPE_INT64)
863 FUNCS(uint32,   uint32,       uint32_t,     uint32_t,   UPB_CTYPE_UINT32)
864 FUNCS(uint64,   uint64,       uint64_t,     uint64_t,   UPB_CTYPE_UINT64)
865 FUNCS(bool,     _bool,        bool,         bool,       UPB_CTYPE_BOOL)
866 FUNCS(cstr,     cstr,         char*,        uintptr_t,  UPB_CTYPE_CSTR)
867 FUNCS(ptr,      ptr,          void*,        uintptr_t,  UPB_CTYPE_PTR)
868 FUNCS(constptr, constptr,     const void*,  uintptr_t,  UPB_CTYPE_CONSTPTR)
869 FUNCS(fptr,     fptr,         upb_func*,    uintptr_t,  UPB_CTYPE_FPTR)
870 
871 #undef FUNCS
872 #undef SET_TYPE
873 
874 
875 /* upb_tabkey *****************************************************************/
876 
877 /* Either:
878  *   1. an actual integer key, or
879  *   2. a pointer to a string prefixed by its uint32_t length, owned by us.
880  *
881  * ...depending on whether this is a string table or an int table.  We would
882  * make this a union of those two types, but C89 doesn't support statically
883  * initializing a non-first union member. */
884 typedef uintptr_t upb_tabkey;
885 
886 #define UPB_TABKEY_NUM(n) n
887 #define UPB_TABKEY_NONE 0
888 /* The preprocessor isn't quite powerful enough to turn the compile-time string
889  * length into a byte-wise string representation, so code generation needs to
890  * help it along.
891  *
892  * "len1" is the low byte and len4 is the high byte. */
893 #ifdef UPB_BIG_ENDIAN
894 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
895     (uintptr_t)(len4 len3 len2 len1 strval)
896 #else
897 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
898     (uintptr_t)(len1 len2 len3 len4 strval)
899 #endif
900 
901 UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) {
902   char* mem = (char*)key;
903   if (len) memcpy(len, mem, sizeof(*len));
904   return mem + sizeof(*len);
905 }
906 
907 
908 /* upb_tabval *****************************************************************/
909 
910 #ifdef __cplusplus
911 
912 /* Status initialization not supported.
913  *
914  * This separate definition is necessary because in C++, UINTPTR_MAX isn't
915  * reliably available. */
916 typedef struct {
917   uint64_t val;
918 } upb_tabval;
919 
920 #else
921 
922 /* C -- supports static initialization, but to support static initialization of
923  * both integers and points for both 32 and 64 bit targets, it takes a little
924  * bit of doing. */
925 
926 #if UINTPTR_MAX == 0xffffffffffffffffULL
927 #define UPB_PTR_IS_64BITS
928 #elif UINTPTR_MAX != 0xffffffff
929 #error Could not determine how many bits pointers are.
930 #endif
931 
932 typedef union {
933   /* For static initialization.
934    *
935    * Unfortunately this ugliness is necessary -- it is the only way that we can,
936    * with -std=c89 -pedantic, statically initialize this to either a pointer or
937    * an integer on 32-bit platforms. */
938   struct {
939 #ifdef UPB_PTR_IS_64BITS
940     uintptr_t val;
941 #else
942     uintptr_t val1;
943     uintptr_t val2;
944 #endif
945   } staticinit;
946 
947   /* The normal accessor that we use for everything at runtime. */
948   uint64_t val;
949 } upb_tabval;
950 
951 #ifdef UPB_PTR_IS_64BITS
952 #define UPB_TABVALUE_INT_INIT(v) {{v}}
953 #define UPB_TABVALUE_EMPTY_INIT  {{-1}}
954 #else
955 
956 /* 32-bit pointers */
957 
958 #ifdef UPB_BIG_ENDIAN
959 #define UPB_TABVALUE_INT_INIT(v) {{0, v}}
960 #define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
961 #else
962 #define UPB_TABVALUE_INT_INIT(v) {{v, 0}}
963 #define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
964 #endif
965 
966 #endif
967 
968 #define UPB_TABVALUE_PTR_INIT(v) UPB_TABVALUE_INT_INIT((uintptr_t)v)
969 
970 #undef UPB_PTR_IS_64BITS
971 
972 #endif  /* __cplusplus */
973 
974 
975 /* upb_table ******************************************************************/
976 
977 typedef struct _upb_tabent {
978   upb_tabkey key;
979   upb_tabval val;
980 
981   /* Internal chaining.  This is const so we can create static initializers for
982    * tables.  We cast away const sometimes, but *only* when the containing
983    * upb_table is known to be non-const.  This requires a bit of care, but
984    * the subtlety is confined to table.c. */
985   const struct _upb_tabent *next;
986 } upb_tabent;
987 
988 typedef struct {
989   size_t count;          /* Number of entries in the hash part. */
990   size_t mask;           /* Mask to turn hash value -> bucket. */
991   upb_ctype_t ctype;     /* Type of all values. */
992   uint8_t size_lg2;      /* Size of the hashtable part is 2^size_lg2 entries. */
993 
994   /* Hash table entries.
995    * Making this const isn't entirely accurate; what we really want is for it to
996    * have the same const-ness as the table it's inside.  But there's no way to
997    * declare that in C.  So we have to make it const so that we can statically
998    * initialize const hash tables.  Then we cast away const when we have to.
999    */
1000   const upb_tabent *entries;
1001 
1002 #ifndef NDEBUG
1003   /* This table's allocator.  We make the user pass it in to every relevant
1004    * function and only use this to check it in debug mode.  We do this solely
1005    * to keep upb_table as small as possible.  This might seem slightly paranoid
1006    * but the plan is to use upb_table for all map fields and extension sets in
1007    * a forthcoming message representation, so there could be a lot of these.
1008    * If this turns out to be too annoying later, we can change it (since this
1009    * is an internal-only header file). */
1010   upb_alloc *alloc;
1011 #endif
1012 } upb_table;
1013 
1014 #ifdef NDEBUG
1015 #  define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
1016      {count, mask, ctype, size_lg2, entries}
1017 #else
1018 #  ifdef UPB_DEBUG_REFS
1019 /* At the moment the only mutable tables we statically initialize are debug
1020  * ref tables. */
1021 #    define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
1022        {count, mask, ctype, size_lg2, entries, &upb_alloc_debugrefs}
1023 #  else
1024 #    define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
1025        {count, mask, ctype, size_lg2, entries, NULL}
1026 #  endif
1027 #endif
1028 
1029 typedef struct {
1030   upb_table t;
1031 } upb_strtable;
1032 
1033 #define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \
1034   {UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries)}
1035 
1036 #define UPB_EMPTY_STRTABLE_INIT(ctype)                           \
1037   UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL)
1038 
1039 typedef struct {
1040   upb_table t;              /* For entries that don't fit in the array part. */
1041   const upb_tabval *array;  /* Array part of the table. See const note above. */
1042   size_t array_size;        /* Array part size. */
1043   size_t array_count;       /* Array part number of elements. */
1044 } upb_inttable;
1045 
1046 #define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \
1047   {UPB_TABLE_INIT(count, mask, ctype, size_lg2, ent), a, asize, acount}
1048 
1049 #define UPB_EMPTY_INTTABLE_INIT(ctype) \
1050   UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0)
1051 
1052 #define UPB_ARRAY_EMPTYENT -1
1053 
1054 UPB_INLINE size_t upb_table_size(const upb_table *t) {
1055   if (t->size_lg2 == 0)
1056     return 0;
1057   else
1058     return 1 << t->size_lg2;
1059 }
1060 
1061 /* Internal-only functions, in .h file only out of necessity. */
1062 UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) {
1063   return e->key == 0;
1064 }
1065 
1066 /* Used by some of the unit tests for generic hashing functionality. */
1067 uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed);
1068 
1069 UPB_INLINE uintptr_t upb_intkey(uintptr_t key) {
1070   return key;
1071 }
1072 
1073 UPB_INLINE uint32_t upb_inthash(uintptr_t key) {
1074   return (uint32_t)key;
1075 }
1076 
1077 static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) {
1078   return t->entries + (hash & t->mask);
1079 }
1080 
1081 UPB_INLINE bool upb_arrhas(upb_tabval key) {
1082   return key.val != (uint64_t)-1;
1083 }
1084 
1085 /* Initialize and uninitialize a table, respectively.  If memory allocation
1086  * failed, false is returned that the table is uninitialized. */
1087 bool upb_inttable_init2(upb_inttable *table, upb_ctype_t ctype, upb_alloc *a);
1088 bool upb_strtable_init2(upb_strtable *table, upb_ctype_t ctype, upb_alloc *a);
1089 void upb_inttable_uninit2(upb_inttable *table, upb_alloc *a);
1090 void upb_strtable_uninit2(upb_strtable *table, upb_alloc *a);
1091 
1092 UPB_INLINE bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype) {
1093   return upb_inttable_init2(table, ctype, &upb_alloc_global);
1094 }
1095 
1096 UPB_INLINE bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype) {
1097   return upb_strtable_init2(table, ctype, &upb_alloc_global);
1098 }
1099 
1100 UPB_INLINE void upb_inttable_uninit(upb_inttable *table) {
1101   upb_inttable_uninit2(table, &upb_alloc_global);
1102 }
1103 
1104 UPB_INLINE void upb_strtable_uninit(upb_strtable *table) {
1105   upb_strtable_uninit2(table, &upb_alloc_global);
1106 }
1107 
1108 /* Returns the number of values in the table. */
1109 size_t upb_inttable_count(const upb_inttable *t);
1110 UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) {
1111   return t->t.count;
1112 }
1113 
1114 /* Inserts the given key into the hashtable with the given value.  The key must
1115  * not already exist in the hash table.  For string tables, the key must be
1116  * NULL-terminated, and the table will make an internal copy of the key.
1117  * Inttables must not insert a value of UINTPTR_MAX.
1118  *
1119  * If a table resize was required but memory allocation failed, false is
1120  * returned and the table is unchanged. */
1121 bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val,
1122                           upb_alloc *a);
1123 bool upb_strtable_insert3(upb_strtable *t, const char *key, size_t len,
1124                           upb_value val, upb_alloc *a);
1125 
1126 UPB_INLINE bool upb_inttable_insert(upb_inttable *t, uintptr_t key,
1127                                     upb_value val) {
1128   return upb_inttable_insert2(t, key, val, &upb_alloc_global);
1129 }
1130 
1131 UPB_INLINE bool upb_strtable_insert2(upb_strtable *t, const char *key,
1132                                      size_t len, upb_value val) {
1133   return upb_strtable_insert3(t, key, len, val, &upb_alloc_global);
1134 }
1135 
1136 /* For NULL-terminated strings. */
1137 UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key,
1138                                     upb_value val) {
1139   return upb_strtable_insert2(t, key, strlen(key), val);
1140 }
1141 
1142 /* Looks up key in this table, returning "true" if the key was found.
1143  * If v is non-NULL, copies the value for this key into *v. */
1144 bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v);
1145 bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
1146                           upb_value *v);
1147 
1148 /* For NULL-terminated strings. */
1149 UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key,
1150                                     upb_value *v) {
1151   return upb_strtable_lookup2(t, key, strlen(key), v);
1152 }
1153 
1154 /* Removes an item from the table.  Returns true if the remove was successful,
1155  * and stores the removed item in *val if non-NULL. */
1156 bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val);
1157 bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len,
1158                           upb_value *val, upb_alloc *alloc);
1159 
1160 UPB_INLINE bool upb_strtable_remove2(upb_strtable *t, const char *key,
1161                                      size_t len, upb_value *val) {
1162   return upb_strtable_remove3(t, key, len, val, &upb_alloc_global);
1163 }
1164 
1165 /* For NULL-terminated strings. */
1166 UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key,
1167                                     upb_value *v) {
1168   return upb_strtable_remove2(t, key, strlen(key), v);
1169 }
1170 
1171 /* Updates an existing entry in an inttable.  If the entry does not exist,
1172  * returns false and does nothing.  Unlike insert/remove, this does not
1173  * invalidate iterators. */
1174 bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val);
1175 
1176 /* Handy routines for treating an inttable like a stack.  May not be mixed with
1177  * other insert/remove calls. */
1178 bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a);
1179 upb_value upb_inttable_pop(upb_inttable *t);
1180 
1181 UPB_INLINE bool upb_inttable_push(upb_inttable *t, upb_value val) {
1182   return upb_inttable_push2(t, val, &upb_alloc_global);
1183 }
1184 
1185 /* Convenience routines for inttables with pointer keys. */
1186 bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val,
1187                              upb_alloc *a);
1188 bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val);
1189 bool upb_inttable_lookupptr(
1190     const upb_inttable *t, const void *key, upb_value *val);
1191 
1192 UPB_INLINE bool upb_inttable_insertptr(upb_inttable *t, const void *key,
1193                                        upb_value val) {
1194   return upb_inttable_insertptr2(t, key, val, &upb_alloc_global);
1195 }
1196 
1197 /* Optimizes the table for the current set of entries, for both memory use and
1198  * lookup time.  Client should call this after all entries have been inserted;
1199  * inserting more entries is legal, but will likely require a table resize. */
1200 void upb_inttable_compact2(upb_inttable *t, upb_alloc *a);
1201 
1202 UPB_INLINE void upb_inttable_compact(upb_inttable *t) {
1203   upb_inttable_compact2(t, &upb_alloc_global);
1204 }
1205 
1206 /* A special-case inlinable version of the lookup routine for 32-bit
1207  * integers. */
1208 UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key,
1209                                       upb_value *v) {
1210   *v = upb_value_int32(0);  /* Silence compiler warnings. */
1211   if (key < t->array_size) {
1212     upb_tabval arrval = t->array[key];
1213     if (upb_arrhas(arrval)) {
1214       _upb_value_setval(v, arrval.val, t->t.ctype);
1215       return true;
1216     } else {
1217       return false;
1218     }
1219   } else {
1220     const upb_tabent *e;
1221     if (t->t.entries == NULL) return false;
1222     for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) {
1223       if ((uint32_t)e->key == key) {
1224         _upb_value_setval(v, e->val.val, t->t.ctype);
1225         return true;
1226       }
1227       if (e->next == NULL) return false;
1228     }
1229   }
1230 }
1231 
1232 /* Exposed for testing only. */
1233 bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a);
1234 
1235 /* Iterators ******************************************************************/
1236 
1237 /* Iterators for int and string tables.  We are subject to some kind of unusual
1238  * design constraints:
1239  *
1240  * For high-level languages:
1241  *  - we must be able to guarantee that we don't crash or corrupt memory even if
1242  *    the program accesses an invalidated iterator.
1243  *
1244  * For C++11 range-based for:
1245  *  - iterators must be copyable
1246  *  - iterators must be comparable
1247  *  - it must be possible to construct an "end" value.
1248  *
1249  * Iteration order is undefined.
1250  *
1251  * Modifying the table invalidates iterators.  upb_{str,int}table_done() is
1252  * guaranteed to work even on an invalidated iterator, as long as the table it
1253  * is iterating over has not been freed.  Calling next() or accessing data from
1254  * an invalidated iterator yields unspecified elements from the table, but it is
1255  * guaranteed not to crash and to return real table elements (except when done()
1256  * is true). */
1257 
1258 
1259 /* upb_strtable_iter **********************************************************/
1260 
1261 /*   upb_strtable_iter i;
1262  *   upb_strtable_begin(&i, t);
1263  *   for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
1264  *     const char *key = upb_strtable_iter_key(&i);
1265  *     const upb_value val = upb_strtable_iter_value(&i);
1266  *     // ...
1267  *   }
1268  */
1269 
1270 typedef struct {
1271   const upb_strtable *t;
1272   size_t index;
1273 } upb_strtable_iter;
1274 
1275 void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t);
1276 void upb_strtable_next(upb_strtable_iter *i);
1277 bool upb_strtable_done(const upb_strtable_iter *i);
1278 const char *upb_strtable_iter_key(const upb_strtable_iter *i);
1279 size_t upb_strtable_iter_keylength(const upb_strtable_iter *i);
1280 upb_value upb_strtable_iter_value(const upb_strtable_iter *i);
1281 void upb_strtable_iter_setdone(upb_strtable_iter *i);
1282 bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
1283                                const upb_strtable_iter *i2);
1284 
1285 
1286 /* upb_inttable_iter **********************************************************/
1287 
1288 /*   upb_inttable_iter i;
1289  *   upb_inttable_begin(&i, t);
1290  *   for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
1291  *     uintptr_t key = upb_inttable_iter_key(&i);
1292  *     upb_value val = upb_inttable_iter_value(&i);
1293  *     // ...
1294  *   }
1295  */
1296 
1297 typedef struct {
1298   const upb_inttable *t;
1299   size_t index;
1300   bool array_part;
1301 } upb_inttable_iter;
1302 
1303 void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t);
1304 void upb_inttable_next(upb_inttable_iter *i);
1305 bool upb_inttable_done(const upb_inttable_iter *i);
1306 uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i);
1307 upb_value upb_inttable_iter_value(const upb_inttable_iter *i);
1308 void upb_inttable_iter_setdone(upb_inttable_iter *i);
1309 bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
1310                                const upb_inttable_iter *i2);
1311 
1312 
1313 #ifdef __cplusplus
1314 }  /* extern "C" */
1315 #endif
1316 
1317 #endif  /* UPB_TABLE_H_ */
1318 
1319 /* Reference tracking will check ref()/unref() operations to make sure the
1320  * ref ownership is correct.  Where possible it will also make tools like
1321  * Valgrind attribute ref leaks to the code that took the leaked ref, not
1322  * the code that originally created the object.
1323  *
1324  * Enabling this requires the application to define upb_lock()/upb_unlock()
1325  * functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE).
1326  * For this reason we don't enable it by default, even in debug builds.
1327  */
1328 
1329 /* #define UPB_DEBUG_REFS */
1330 
1331 #ifdef __cplusplus
1332 namespace upb {
1333 class RefCounted;
1334 template <class T> class reffed_ptr;
1335 }
1336 #endif
1337 
1338 UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted)
1339 
1340 struct upb_refcounted_vtbl;
1341 
1342 #ifdef __cplusplus
1343 
1344 class upb::RefCounted {
1345  public:
1346   /* Returns true if the given object is frozen. */
1347   bool IsFrozen() const;
1348 
1349   /* Increases the ref count, the new ref is owned by "owner" which must not
1350    * already own a ref (and should not itself be a refcounted object if the ref
1351    * could possibly be circular; see below).
1352    * Thread-safe iff "this" is frozen. */
1353   void Ref(const void *owner) const;
1354 
1355   /* Release a ref that was acquired from upb_refcounted_ref() and collects any
1356    * objects it can. */
1357   void Unref(const void *owner) const;
1358 
1359   /* Moves an existing ref from "from" to "to", without changing the overall
1360    * ref count.  DonateRef(foo, NULL, owner) is the same as Ref(foo, owner),
1361    * but "to" may not be NULL. */
1362   void DonateRef(const void *from, const void *to) const;
1363 
1364   /* Verifies that a ref to the given object is currently held by the given
1365    * owner.  Only effective in UPB_DEBUG_REFS builds. */
1366   void CheckRef(const void *owner) const;
1367 
1368  private:
1369   UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted)
1370 #else
1371 struct upb_refcounted {
1372 #endif
1373   /* TODO(haberman): move the actual structure definition to structdefs.int.h.
1374    * The only reason they are here is because inline functions need to see the
1375    * definition of upb_handlers, which needs to see this definition.  But we
1376    * can change the upb_handlers inline functions to deal in raw offsets
1377    * instead.
1378    */
1379 
1380   /* A single reference count shared by all objects in the group. */
1381   uint32_t *group;
1382 
1383   /* A singly-linked list of all objects in the group. */
1384   upb_refcounted *next;
1385 
1386   /* Table of function pointers for this type. */
1387   const struct upb_refcounted_vtbl *vtbl;
1388 
1389   /* Maintained only when mutable, this tracks the number of refs (but not
1390    * ref2's) to this object.  *group should be the sum of all individual_count
1391    * in the group. */
1392   uint32_t individual_count;
1393 
1394   bool is_frozen;
1395 
1396 #ifdef UPB_DEBUG_REFS
1397   upb_inttable *refs;  /* Maps owner -> trackedref for incoming refs. */
1398   upb_inttable *ref2s; /* Set of targets for outgoing ref2s. */
1399 #endif
1400 };
1401 
1402 #ifdef UPB_DEBUG_REFS
1403 extern upb_alloc upb_alloc_debugrefs;
1404 #define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
1405     {&static_refcount, NULL, vtbl, 0, true, refs, ref2s}
1406 #else
1407 #define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
1408     {&static_refcount, NULL, vtbl, 0, true}
1409 #endif
1410 
1411 UPB_BEGIN_EXTERN_C
1412 
1413 /* It is better to use tracked refs when possible, for the extra debugging
1414  * capability.  But if this is not possible (because you don't have easy access
1415  * to a stable pointer value that is associated with the ref), you can pass
1416  * UPB_UNTRACKED_REF instead.  */
1417 extern const void *UPB_UNTRACKED_REF;
1418 
1419 /* Native C API. */
1420 bool upb_refcounted_isfrozen(const upb_refcounted *r);
1421 void upb_refcounted_ref(const upb_refcounted *r, const void *owner);
1422 void upb_refcounted_unref(const upb_refcounted *r, const void *owner);
1423 void upb_refcounted_donateref(
1424     const upb_refcounted *r, const void *from, const void *to);
1425 void upb_refcounted_checkref(const upb_refcounted *r, const void *owner);
1426 
1427 #define UPB_REFCOUNTED_CMETHODS(type, upcastfunc) \
1428   UPB_INLINE bool type ## _isfrozen(const type *v) { \
1429     return upb_refcounted_isfrozen(upcastfunc(v)); \
1430   } \
1431   UPB_INLINE void type ## _ref(const type *v, const void *owner) { \
1432     upb_refcounted_ref(upcastfunc(v), owner); \
1433   } \
1434   UPB_INLINE void type ## _unref(const type *v, const void *owner) { \
1435     upb_refcounted_unref(upcastfunc(v), owner); \
1436   } \
1437   UPB_INLINE void type ## _donateref(const type *v, const void *from, const void *to) { \
1438     upb_refcounted_donateref(upcastfunc(v), from, to); \
1439   } \
1440   UPB_INLINE void type ## _checkref(const type *v, const void *owner) { \
1441     upb_refcounted_checkref(upcastfunc(v), owner); \
1442   }
1443 
1444 #define UPB_REFCOUNTED_CPPMETHODS \
1445   bool IsFrozen() const { \
1446     return upb::upcast_to<const upb::RefCounted>(this)->IsFrozen(); \
1447   } \
1448   void Ref(const void *owner) const { \
1449     return upb::upcast_to<const upb::RefCounted>(this)->Ref(owner); \
1450   } \
1451   void Unref(const void *owner) const { \
1452     return upb::upcast_to<const upb::RefCounted>(this)->Unref(owner); \
1453   } \
1454   void DonateRef(const void *from, const void *to) const { \
1455     return upb::upcast_to<const upb::RefCounted>(this)->DonateRef(from, to); \
1456   } \
1457   void CheckRef(const void *owner) const { \
1458     return upb::upcast_to<const upb::RefCounted>(this)->CheckRef(owner); \
1459   }
1460 
1461 /* Internal-to-upb Interface **************************************************/
1462 
1463 typedef void upb_refcounted_visit(const upb_refcounted *r,
1464                                   const upb_refcounted *subobj,
1465                                   void *closure);
1466 
1467 struct upb_refcounted_vtbl {
1468   /* Must visit all subobjects that are currently ref'd via upb_refcounted_ref2.
1469    * Must be longjmp()-safe. */
1470   void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c);
1471 
1472   /* Must free the object and release all references to other objects. */
1473   void (*free)(upb_refcounted *r);
1474 };
1475 
1476 /* Initializes the refcounted with a single ref for the given owner.  Returns
1477  * false if memory could not be allocated. */
1478 bool upb_refcounted_init(upb_refcounted *r,
1479                          const struct upb_refcounted_vtbl *vtbl,
1480                          const void *owner);
1481 
1482 /* Adds a ref from one refcounted object to another ("from" must not already
1483  * own a ref).  These refs may be circular; cycles will be collected correctly
1484  * (if conservatively).  These refs do not need to be freed in from's free()
1485  * function. */
1486 void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from);
1487 
1488 /* Removes a ref that was acquired from upb_refcounted_ref2(), and collects any
1489  * object it can.  This is only necessary when "from" no longer points to "r",
1490  * and not from from's "free" function. */
1491 void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from);
1492 
1493 #define upb_ref2(r, from) \
1494     upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from)
1495 #define upb_unref2(r, from) \
1496     upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from)
1497 
1498 /* Freezes all mutable object reachable by ref2() refs from the given roots.
1499  * This will split refcounting groups into precise SCC groups, so that
1500  * refcounting of frozen objects can be more aggressive.  If memory allocation
1501  * fails, or if more than 2**31 mutable objects are reachable from "roots", or
1502  * if the maximum depth of the graph exceeds "maxdepth", false is returned and
1503  * the objects are unchanged.
1504  *
1505  * After this operation succeeds, the objects are frozen/const, and may not be
1506  * used through non-const pointers.  In particular, they may not be passed as
1507  * the second parameter of upb_refcounted_{ref,unref}2().  On the upside, all
1508  * operations on frozen refcounteds are threadsafe, and objects will be freed
1509  * at the precise moment that they become unreachable.
1510  *
1511  * Caller must own refs on each object in the "roots" list. */
1512 bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
1513                            int maxdepth);
1514 
1515 /* Shared by all compiled-in refcounted objects. */
1516 extern uint32_t static_refcount;
1517 
1518 UPB_END_EXTERN_C
1519 
1520 #ifdef __cplusplus
1521 /* C++ Wrappers. */
1522 namespace upb {
1523 inline bool RefCounted::IsFrozen() const {
1524   return upb_refcounted_isfrozen(this);
1525 }
1526 inline void RefCounted::Ref(const void *owner) const {
1527   upb_refcounted_ref(this, owner);
1528 }
1529 inline void RefCounted::Unref(const void *owner) const {
1530   upb_refcounted_unref(this, owner);
1531 }
1532 inline void RefCounted::DonateRef(const void *from, const void *to) const {
1533   upb_refcounted_donateref(this, from, to);
1534 }
1535 inline void RefCounted::CheckRef(const void *owner) const {
1536   upb_refcounted_checkref(this, owner);
1537 }
1538 }  /* namespace upb */
1539 #endif
1540 
1541 
1542 /* upb::reffed_ptr ************************************************************/
1543 
1544 #ifdef __cplusplus
1545 
1546 #include <algorithm>  /* For std::swap(). */
1547 
1548 /* Provides RAII semantics for upb refcounted objects.  Each reffed_ptr owns a
1549  * ref on whatever object it points to (if any). */
1550 template <class T> class upb::reffed_ptr {
1551  public:
1552   reffed_ptr() : ptr_(NULL) {}
1553 
1554   /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
1555   template <class U>
1556   reffed_ptr(U* val, const void* ref_donor = NULL)
1557       : ptr_(upb::upcast(val)) {
1558     if (ref_donor) {
1559       assert(ptr_);
1560       ptr_->DonateRef(ref_donor, this);
1561     } else if (ptr_) {
1562       ptr_->Ref(this);
1563     }
1564   }
1565 
1566   template <class U>
1567   reffed_ptr(const reffed_ptr<U>& other)
1568       : ptr_(upb::upcast(other.get())) {
1569     if (ptr_) ptr_->Ref(this);
1570   }
1571 
1572   reffed_ptr(const reffed_ptr& other)
1573       : ptr_(upb::upcast(other.get())) {
1574     if (ptr_) ptr_->Ref(this);
1575   }
1576 
1577   ~reffed_ptr() { if (ptr_) ptr_->Unref(this); }
1578 
1579   template <class U>
1580   reffed_ptr& operator=(const reffed_ptr<U>& other) {
1581     reset(other.get());
1582     return *this;
1583   }
1584 
1585   reffed_ptr& operator=(const reffed_ptr& other) {
1586     reset(other.get());
1587     return *this;
1588   }
1589 
1590   /* TODO(haberman): add C++11 move construction/assignment for greater
1591    * efficiency. */
1592 
1593   void swap(reffed_ptr& other) {
1594     if (ptr_ == other.ptr_) {
1595       return;
1596     }
1597 
1598     if (ptr_) ptr_->DonateRef(this, &other);
1599     if (other.ptr_) other.ptr_->DonateRef(&other, this);
1600     std::swap(ptr_, other.ptr_);
1601   }
1602 
1603   T& operator*() const {
1604     assert(ptr_);
1605     return *ptr_;
1606   }
1607 
1608   T* operator->() const {
1609     assert(ptr_);
1610     return ptr_;
1611   }
1612 
1613   T* get() const { return ptr_; }
1614 
1615   /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
1616   template <class U>
1617   void reset(U* ptr = NULL, const void* ref_donor = NULL) {
1618     reffed_ptr(ptr, ref_donor).swap(*this);
1619   }
1620 
1621   template <class U>
1622   reffed_ptr<U> down_cast() {
1623     return reffed_ptr<U>(upb::down_cast<U*>(get()));
1624   }
1625 
1626   template <class U>
1627   reffed_ptr<U> dyn_cast() {
1628     return reffed_ptr<U>(upb::dyn_cast<U*>(get()));
1629   }
1630 
1631   /* Plain release() is unsafe; if we were the only owner, it would leak the
1632    * object.  Instead we provide this: */
1633   T* ReleaseTo(const void* new_owner) {
1634     T* ret = NULL;
1635     ptr_->DonateRef(this, new_owner);
1636     std::swap(ret, ptr_);
1637     return ret;
1638   }
1639 
1640  private:
1641   T* ptr_;
1642 };
1643 
1644 #endif  /* __cplusplus */
1645 
1646 #endif  /* UPB_REFCOUNT_H_ */
1647 
1648 #ifdef __cplusplus
1649 #include <cstring>
1650 #include <string>
1651 #include <vector>
1652 
1653 namespace upb {
1654 class Def;
1655 class EnumDef;
1656 class FieldDef;
1657 class FileDef;
1658 class MessageDef;
1659 class OneofDef;
1660 }
1661 #endif
1662 
1663 UPB_DECLARE_DERIVED_TYPE(upb::Def, upb::RefCounted, upb_def, upb_refcounted)
1664 UPB_DECLARE_DERIVED_TYPE(upb::OneofDef, upb::RefCounted, upb_oneofdef,
1665                          upb_refcounted)
1666 UPB_DECLARE_DERIVED_TYPE(upb::FileDef, upb::RefCounted, upb_filedef,
1667                          upb_refcounted)
1668 
1669 /* The maximum message depth that the type graph can have.  This is a resource
1670  * limit for the C stack since we sometimes need to recursively traverse the
1671  * graph.  Cycles are ok; the traversal will stop when it detects a cycle, but
1672  * we must hit the cycle before the maximum depth is reached.
1673  *
1674  * If having a single static limit is too inflexible, we can add another variant
1675  * of Def::Freeze that allows specifying this as a parameter. */
1676 #define UPB_MAX_MESSAGE_DEPTH 64
1677 
1678 
1679 /* upb::Def: base class for top-level defs  ***********************************/
1680 
1681 /* All the different kind of defs that can be defined at the top-level and put
1682  * in a SymbolTable or appear in a FileDef::defs() list.  This excludes some
1683  * defs (like oneofs and files).  It only includes fields because they can be
1684  * defined as extensions. */
1685 typedef enum {
1686   UPB_DEF_MSG,
1687   UPB_DEF_FIELD,
1688   UPB_DEF_ENUM,
1689   UPB_DEF_SERVICE,   /* Not yet implemented. */
1690   UPB_DEF_ANY = -1   /* Wildcard for upb_symtab_get*() */
1691 } upb_deftype_t;
1692 
1693 #ifdef __cplusplus
1694 
1695 /* The base class of all defs.  Its base is upb::RefCounted (use upb::upcast()
1696  * to convert). */
1697 class upb::Def {
1698  public:
1699   typedef upb_deftype_t Type;
1700 
1701   Def* Dup(const void *owner) const;
1702 
1703   /* upb::RefCounted methods like Ref()/Unref(). */
1704   UPB_REFCOUNTED_CPPMETHODS
1705 
1706   Type def_type() const;
1707 
1708   /* "fullname" is the def's fully-qualified name (eg. foo.bar.Message). */
1709   const char *full_name() const;
1710 
1711   /* The final part of a def's name (eg. Message). */
1712   const char *name() const;
1713 
1714   /* The def must be mutable.  Caller retains ownership of fullname.  Defs are
1715    * not required to have a name; if a def has no name when it is frozen, it
1716    * will remain an anonymous def.  On failure, returns false and details in "s"
1717    * if non-NULL. */
1718   bool set_full_name(const char* fullname, upb::Status* s);
1719   bool set_full_name(const std::string &fullname, upb::Status* s);
1720 
1721   /* The file in which this def appears.  It is not necessary to add a def to a
1722    * file (and consequently the accessor may return NULL).  Set this by calling
1723    * file->Add(def). */
1724   FileDef* file() const;
1725 
1726   /* Freezes the given defs; this validates all constraints and marks the defs
1727    * as frozen (read-only).  "defs" may not contain any fielddefs, but fields
1728    * of any msgdefs will be frozen.
1729    *
1730    * Symbolic references to sub-types and enum defaults must have already been
1731    * resolved.  Any mutable defs reachable from any of "defs" must also be in
1732    * the list; more formally, "defs" must be a transitive closure of mutable
1733    * defs.
1734    *
1735    * After this operation succeeds, the finalized defs must only be accessed
1736    * through a const pointer! */
1737   static bool Freeze(Def* const* defs, size_t n, Status* status);
1738   static bool Freeze(const std::vector<Def*>& defs, Status* status);
1739 
1740  private:
1741   UPB_DISALLOW_POD_OPS(Def, upb::Def)
1742 };
1743 
1744 #endif  /* __cplusplus */
1745 
1746 UPB_BEGIN_EXTERN_C
1747 
1748 /* Native C API. */
1749 upb_def *upb_def_dup(const upb_def *def, const void *owner);
1750 
1751 /* Include upb_refcounted methods like upb_def_ref()/upb_def_unref(). */
1752 UPB_REFCOUNTED_CMETHODS(upb_def, upb_def_upcast)
1753 
1754 upb_deftype_t upb_def_type(const upb_def *d);
1755 const char *upb_def_fullname(const upb_def *d);
1756 const char *upb_def_name(const upb_def *d);
1757 const upb_filedef *upb_def_file(const upb_def *d);
1758 bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s);
1759 bool upb_def_freeze(upb_def *const *defs, size_t n, upb_status *s);
1760 
1761 /* Temporary API: for internal use only. */
1762 bool _upb_def_validate(upb_def *const*defs, size_t n, upb_status *s);
1763 
1764 UPB_END_EXTERN_C
1765 
1766 
1767 /* upb::Def casts *************************************************************/
1768 
1769 #ifdef __cplusplus
1770 #define UPB_CPP_CASTS(cname, cpptype)                                          \
1771   namespace upb {                                                              \
1772   template <>                                                                  \
1773   inline cpptype *down_cast<cpptype *, Def>(Def * def) {                       \
1774     return upb_downcast_##cname##_mutable(def);                                \
1775   }                                                                            \
1776   template <>                                                                  \
1777   inline cpptype *dyn_cast<cpptype *, Def>(Def * def) {                        \
1778     return upb_dyncast_##cname##_mutable(def);                                 \
1779   }                                                                            \
1780   template <>                                                                  \
1781   inline const cpptype *down_cast<const cpptype *, const Def>(                 \
1782       const Def *def) {                                                        \
1783     return upb_downcast_##cname(def);                                          \
1784   }                                                                            \
1785   template <>                                                                  \
1786   inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \
1787     return upb_dyncast_##cname(def);                                           \
1788   }                                                                            \
1789   template <>                                                                  \
1790   inline const cpptype *down_cast<const cpptype *, Def>(Def * def) {           \
1791     return upb_downcast_##cname(def);                                          \
1792   }                                                                            \
1793   template <>                                                                  \
1794   inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) {            \
1795     return upb_dyncast_##cname(def);                                           \
1796   }                                                                            \
1797   }  /* namespace upb */
1798 #else
1799 #define UPB_CPP_CASTS(cname, cpptype)
1800 #endif  /* __cplusplus */
1801 
1802 /* Dynamic casts, for determining if a def is of a particular type at runtime.
1803  * Downcasts, for when some wants to assert that a def is of a particular type.
1804  * These are only checked if we are building debug. */
1805 #define UPB_DEF_CASTS(lower, upper, cpptype)                               \
1806   UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) {  \
1807     if (upb_def_type(def) != UPB_DEF_##upper) return NULL;                 \
1808     return (upb_##lower *)def;                                             \
1809   }                                                                        \
1810   UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \
1811     assert(upb_def_type(def) == UPB_DEF_##upper);                          \
1812     return (const upb_##lower *)def;                                       \
1813   }                                                                        \
1814   UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) {    \
1815     return (upb_##lower *)upb_dyncast_##lower(def);                        \
1816   }                                                                        \
1817   UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) {   \
1818     return (upb_##lower *)upb_downcast_##lower(def);                       \
1819   }                                                                        \
1820   UPB_CPP_CASTS(lower, cpptype)
1821 
1822 #define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members)             \
1823   UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, cppmethods,            \
1824                    members)                                                    \
1825   UPB_DEF_CASTS(lower, upper, cppname)
1826 
1827 #define UPB_DECLARE_DEF_TYPE(cppname, lower, upper) \
1828   UPB_DECLARE_DERIVED_TYPE2(cppname, upb::Def, upb::RefCounted, \
1829                             upb_ ## lower, upb_def, upb_refcounted) \
1830   UPB_DEF_CASTS(lower, upper, cppname)
1831 
1832 UPB_DECLARE_DEF_TYPE(upb::FieldDef, fielddef, FIELD)
1833 UPB_DECLARE_DEF_TYPE(upb::MessageDef, msgdef, MSG)
1834 UPB_DECLARE_DEF_TYPE(upb::EnumDef, enumdef, ENUM)
1835 
1836 #undef UPB_DECLARE_DEF_TYPE
1837 #undef UPB_DEF_CASTS
1838 #undef UPB_CPP_CASTS
1839 
1840 
1841 /* upb::FieldDef **************************************************************/
1842 
1843 /* The types a field can have.  Note that this list is not identical to the
1844  * types defined in descriptor.proto, which gives INT32 and SINT32 separate
1845  * types (we distinguish the two with the "integer encoding" enum below). */
1846 typedef enum {
1847   UPB_TYPE_FLOAT    = 1,
1848   UPB_TYPE_DOUBLE   = 2,
1849   UPB_TYPE_BOOL     = 3,
1850   UPB_TYPE_STRING   = 4,
1851   UPB_TYPE_BYTES    = 5,
1852   UPB_TYPE_MESSAGE  = 6,
1853   UPB_TYPE_ENUM     = 7,  /* Enum values are int32. */
1854   UPB_TYPE_INT32    = 8,
1855   UPB_TYPE_UINT32   = 9,
1856   UPB_TYPE_INT64    = 10,
1857   UPB_TYPE_UINT64   = 11
1858 } upb_fieldtype_t;
1859 
1860 /* The repeated-ness of each field; this matches descriptor.proto. */
1861 typedef enum {
1862   UPB_LABEL_OPTIONAL = 1,
1863   UPB_LABEL_REQUIRED = 2,
1864   UPB_LABEL_REPEATED = 3
1865 } upb_label_t;
1866 
1867 /* How integers should be encoded in serializations that offer multiple
1868  * integer encoding methods. */
1869 typedef enum {
1870   UPB_INTFMT_VARIABLE = 1,
1871   UPB_INTFMT_FIXED = 2,
1872   UPB_INTFMT_ZIGZAG = 3   /* Only for signed types (INT32/INT64). */
1873 } upb_intfmt_t;
1874 
1875 /* Descriptor types, as defined in descriptor.proto. */
1876 typedef enum {
1877   UPB_DESCRIPTOR_TYPE_DOUBLE   = 1,
1878   UPB_DESCRIPTOR_TYPE_FLOAT    = 2,
1879   UPB_DESCRIPTOR_TYPE_INT64    = 3,
1880   UPB_DESCRIPTOR_TYPE_UINT64   = 4,
1881   UPB_DESCRIPTOR_TYPE_INT32    = 5,
1882   UPB_DESCRIPTOR_TYPE_FIXED64  = 6,
1883   UPB_DESCRIPTOR_TYPE_FIXED32  = 7,
1884   UPB_DESCRIPTOR_TYPE_BOOL     = 8,
1885   UPB_DESCRIPTOR_TYPE_STRING   = 9,
1886   UPB_DESCRIPTOR_TYPE_GROUP    = 10,
1887   UPB_DESCRIPTOR_TYPE_MESSAGE  = 11,
1888   UPB_DESCRIPTOR_TYPE_BYTES    = 12,
1889   UPB_DESCRIPTOR_TYPE_UINT32   = 13,
1890   UPB_DESCRIPTOR_TYPE_ENUM     = 14,
1891   UPB_DESCRIPTOR_TYPE_SFIXED32 = 15,
1892   UPB_DESCRIPTOR_TYPE_SFIXED64 = 16,
1893   UPB_DESCRIPTOR_TYPE_SINT32   = 17,
1894   UPB_DESCRIPTOR_TYPE_SINT64   = 18
1895 } upb_descriptortype_t;
1896 
1897 typedef enum {
1898   UPB_SYNTAX_PROTO2 = 2,
1899   UPB_SYNTAX_PROTO3 = 3
1900 } upb_syntax_t;
1901 
1902 /* Maximum field number allowed for FieldDefs.  This is an inherent limit of the
1903  * protobuf wire format. */
1904 #define UPB_MAX_FIELDNUMBER ((1 << 29) - 1)
1905 
1906 #ifdef __cplusplus
1907 
1908 /* A upb_fielddef describes a single field in a message.  It is most often
1909  * found as a part of a upb_msgdef, but can also stand alone to represent
1910  * an extension.
1911  *
1912  * Its base class is upb::Def (use upb::upcast() to convert). */
1913 class upb::FieldDef {
1914  public:
1915   typedef upb_fieldtype_t Type;
1916   typedef upb_label_t Label;
1917   typedef upb_intfmt_t IntegerFormat;
1918   typedef upb_descriptortype_t DescriptorType;
1919 
1920   /* These return true if the given value is a valid member of the enumeration. */
1921   static bool CheckType(int32_t val);
1922   static bool CheckLabel(int32_t val);
1923   static bool CheckDescriptorType(int32_t val);
1924   static bool CheckIntegerFormat(int32_t val);
1925 
1926   /* These convert to the given enumeration; they require that the value is
1927    * valid. */
1928   static Type ConvertType(int32_t val);
1929   static Label ConvertLabel(int32_t val);
1930   static DescriptorType ConvertDescriptorType(int32_t val);
1931   static IntegerFormat ConvertIntegerFormat(int32_t val);
1932 
1933   /* Returns NULL if memory allocation failed. */
1934   static reffed_ptr<FieldDef> New();
1935 
1936   /* Duplicates the given field, returning NULL if memory allocation failed.
1937    * When a fielddef is duplicated, the subdef (if any) is made symbolic if it
1938    * wasn't already.  If the subdef is set but has no name (which is possible
1939    * since msgdefs are not required to have a name) the new fielddef's subdef
1940    * will be unset. */
1941   FieldDef* Dup(const void* owner) const;
1942 
1943   /* upb::RefCounted methods like Ref()/Unref(). */
1944   UPB_REFCOUNTED_CPPMETHODS
1945 
1946   /* Functionality from upb::Def. */
1947   const char* full_name() const;
1948 
1949   bool type_is_set() const;  /* set_[descriptor_]type() has been called? */
1950   Type type() const;         /* Requires that type_is_set() == true. */
1951   Label label() const;       /* Defaults to UPB_LABEL_OPTIONAL. */
1952   const char* name() const;  /* NULL if uninitialized. */
1953   uint32_t number() const;   /* Returns 0 if uninitialized. */
1954   bool is_extension() const;
1955 
1956   /* Copies the JSON name for this field into the given buffer.  Returns the
1957    * actual size of the JSON name, including the NULL terminator.  If the
1958    * return value is 0, the JSON name is unset.  If the return value is
1959    * greater than len, the JSON name was truncated.  The buffer is always
1960    * NULL-terminated if len > 0.
1961    *
1962    * The JSON name always defaults to a camelCased version of the regular
1963    * name.  However if the regular name is unset, the JSON name will be unset
1964    * also.
1965    */
1966   size_t GetJsonName(char* buf, size_t len) const;
1967 
1968   /* Convenience version of the above function which copies the JSON name
1969    * into the given string, returning false if the name is not set. */
1970   template <class T>
1971   bool GetJsonName(T* str) {
1972     str->resize(GetJsonName(NULL, 0));
1973     GetJsonName(&(*str)[0], str->size());
1974     return str->size() > 0;
1975   }
1976 
1977   /* For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false,
1978    * indicates whether this field should have lazy parsing handlers that yield
1979    * the unparsed string for the submessage.
1980    *
1981    * TODO(haberman): I think we want to move this into a FieldOptions container
1982    * when we add support for custom options (the FieldOptions struct will
1983    * contain both regular FieldOptions like "lazy" *and* custom options). */
1984   bool lazy() const;
1985 
1986   /* For non-string, non-submessage fields, this indicates whether binary
1987    * protobufs are encoded in packed or non-packed format.
1988    *
1989    * TODO(haberman): see note above about putting options like this into a
1990    * FieldOptions container. */
1991   bool packed() const;
1992 
1993   /* An integer that can be used as an index into an array of fields for
1994    * whatever message this field belongs to.  Guaranteed to be less than
1995    * f->containing_type()->field_count().  May only be accessed once the def has
1996    * been finalized. */
1997   uint32_t index() const;
1998 
1999   /* The MessageDef to which this field belongs.
2000    *
2001    * If this field has been added to a MessageDef, that message can be retrieved
2002    * directly (this is always the case for frozen FieldDefs).
2003    *
2004    * If the field has not yet been added to a MessageDef, you can set the name
2005    * of the containing type symbolically instead.  This is mostly useful for
2006    * extensions, where the extension is declared separately from the message. */
2007   const MessageDef* containing_type() const;
2008   const char* containing_type_name();
2009 
2010   /* The OneofDef to which this field belongs, or NULL if this field is not part
2011    * of a oneof. */
2012   const OneofDef* containing_oneof() const;
2013 
2014   /* The field's type according to the enum in descriptor.proto.  This is not
2015    * the same as UPB_TYPE_*, because it distinguishes between (for example)
2016    * INT32 and SINT32, whereas our "type" enum does not.  This return of
2017    * descriptor_type() is a function of type(), integer_format(), and
2018    * is_tag_delimited().  Likewise set_descriptor_type() sets all three
2019    * appropriately. */
2020   DescriptorType descriptor_type() const;
2021 
2022   /* Convenient field type tests. */
2023   bool IsSubMessage() const;
2024   bool IsString() const;
2025   bool IsSequence() const;
2026   bool IsPrimitive() const;
2027   bool IsMap() const;
2028 
2029   /* Whether this field must be able to explicitly represent presence:
2030    *
2031    * * This is always false for repeated fields (an empty repeated field is
2032    *   equivalent to a repeated field with zero entries).
2033    *
2034    * * This is always true for submessages.
2035    *
2036    * * For other fields, it depends on the message (see
2037    *   MessageDef::SetPrimitivesHavePresence())
2038    */
2039   bool HasPresence() const;
2040 
2041   /* How integers are encoded.  Only meaningful for integer types.
2042    * Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. */
2043   IntegerFormat integer_format() const;
2044 
2045   /* Whether a submessage field is tag-delimited or not (if false, then
2046    * length-delimited).  May only be set when type() == UPB_TYPE_MESSAGE. */
2047   bool is_tag_delimited() const;
2048 
2049   /* Returns the non-string default value for this fielddef, which may either
2050    * be something the client set explicitly or the "default default" (0 for
2051    * numbers, empty for strings).  The field's type indicates the type of the
2052    * returned value, except for enum fields that are still mutable.
2053    *
2054    * Requires that the given function matches the field's current type. */
2055   int64_t default_int64() const;
2056   int32_t default_int32() const;
2057   uint64_t default_uint64() const;
2058   uint32_t default_uint32() const;
2059   bool default_bool() const;
2060   float default_float() const;
2061   double default_double() const;
2062 
2063   /* The resulting string is always NULL-terminated.  If non-NULL, the length
2064    * will be stored in *len. */
2065   const char *default_string(size_t* len) const;
2066 
2067   /* For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either
2068    * string or int32, and both of these methods will always return true.
2069    *
2070    * For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated.
2071    * Enum defaults are unusual. They can be specified either as string or int32,
2072    * but to be valid the enum must have that value as a member.  And if no
2073    * default is specified, the "default default" comes from the EnumDef.
2074    *
2075    * We allow reading the default as either an int32 or a string, but only if
2076    * we have a meaningful value to report.  We have a meaningful value if it was
2077    * set explicitly, or if we could get the "default default" from the EnumDef.
2078    * Also if you explicitly set the name and we find the number in the EnumDef */
2079   bool EnumHasStringDefault() const;
2080   bool EnumHasInt32Default() const;
2081 
2082   /* Submessage and enum fields must reference a "subdef", which is the
2083    * upb::MessageDef or upb::EnumDef that defines their type.  Note that when
2084    * the FieldDef is mutable it may not have a subdef *yet*, but this function
2085    * still returns true to indicate that the field's type requires a subdef. */
2086   bool HasSubDef() const;
2087 
2088   /* Returns the enum or submessage def for this field, if any.  The field's
2089    * type must match (ie. you may only call enum_subdef() for fields where
2090    * type() == UPB_TYPE_ENUM).  Returns NULL if the subdef has not been set or
2091    * is currently set symbolically. */
2092   const EnumDef* enum_subdef() const;
2093   const MessageDef* message_subdef() const;
2094 
2095   /* Returns the generic subdef for this field.  Requires that HasSubDef() (ie.
2096    * only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). */
2097   const Def* subdef() const;
2098 
2099   /* Returns the symbolic name of the subdef.  If the subdef is currently set
2100    * unresolved (ie. set symbolically) returns the symbolic name.  If it has
2101    * been resolved to a specific subdef, returns the name from that subdef. */
2102   const char* subdef_name() const;
2103 
2104   /* Setters (non-const methods), only valid for mutable FieldDefs! ***********/
2105 
2106   bool set_full_name(const char* fullname, upb::Status* s);
2107   bool set_full_name(const std::string& fullname, upb::Status* s);
2108 
2109   /* This may only be called if containing_type() == NULL (ie. the field has not
2110    * been added to a message yet). */
2111   bool set_containing_type_name(const char *name, Status* status);
2112   bool set_containing_type_name(const std::string& name, Status* status);
2113 
2114   /* Defaults to false.  When we freeze, we ensure that this can only be true
2115    * for length-delimited message fields.  Prior to freezing this can be true or
2116    * false with no restrictions. */
2117   void set_lazy(bool lazy);
2118 
2119   /* Defaults to true.  Sets whether this field is encoded in packed format. */
2120   void set_packed(bool packed);
2121 
2122   /* "type" or "descriptor_type" MUST be set explicitly before the fielddef is
2123    * finalized.  These setters require that the enum value is valid; if the
2124    * value did not come directly from an enum constant, the caller should
2125    * validate it first with the functions above (CheckFieldType(), etc). */
2126   void set_type(Type type);
2127   void set_label(Label label);
2128   void set_descriptor_type(DescriptorType type);
2129   void set_is_extension(bool is_extension);
2130 
2131   /* "number" and "name" must be set before the FieldDef is added to a
2132    * MessageDef, and may not be set after that.
2133    *
2134    * "name" is the same as full_name()/set_full_name(), but since fielddefs
2135    * most often use simple, non-qualified names, we provide this accessor
2136    * also.  Generally only extensions will want to think of this name as
2137    * fully-qualified. */
2138   bool set_number(uint32_t number, upb::Status* s);
2139   bool set_name(const char* name, upb::Status* s);
2140   bool set_name(const std::string& name, upb::Status* s);
2141 
2142   /* Sets the JSON name to the given string. */
2143   /* TODO(haberman): implement.  Right now only default json_name (camelCase)
2144    * is supported. */
2145   bool set_json_name(const char* json_name, upb::Status* s);
2146   bool set_json_name(const std::string& name, upb::Status* s);
2147 
2148   /* Clears the JSON name. This will make it revert to its default, which is
2149    * a camelCased version of the regular field name. */
2150   void clear_json_name();
2151 
2152   void set_integer_format(IntegerFormat format);
2153   bool set_tag_delimited(bool tag_delimited, upb::Status* s);
2154 
2155   /* Sets default value for the field.  The call must exactly match the type
2156    * of the field.  Enum fields may use either setint32 or setstring to set
2157    * the default numerically or symbolically, respectively, but symbolic
2158    * defaults must be resolved before finalizing (see ResolveEnumDefault()).
2159    *
2160    * Changing the type of a field will reset its default. */
2161   void set_default_int64(int64_t val);
2162   void set_default_int32(int32_t val);
2163   void set_default_uint64(uint64_t val);
2164   void set_default_uint32(uint32_t val);
2165   void set_default_bool(bool val);
2166   void set_default_float(float val);
2167   void set_default_double(double val);
2168   bool set_default_string(const void *str, size_t len, Status *s);
2169   bool set_default_string(const std::string &str, Status *s);
2170   void set_default_cstr(const char *str, Status *s);
2171 
2172   /* Before a fielddef is frozen, its subdef may be set either directly (with a
2173    * upb::Def*) or symbolically.  Symbolic refs must be resolved before the
2174    * containing msgdef can be frozen (see upb_resolve() above).  upb always
2175    * guarantees that any def reachable from a live def will also be kept alive.
2176    *
2177    * Both methods require that upb_hassubdef(f) (so the type must be set prior
2178    * to calling these methods).  Returns false if this is not the case, or if
2179    * the given subdef is not of the correct type.  The subdef is reset if the
2180    * field's type is changed.  The subdef can be set to NULL to clear it. */
2181   bool set_subdef(const Def* subdef, Status* s);
2182   bool set_enum_subdef(const EnumDef* subdef, Status* s);
2183   bool set_message_subdef(const MessageDef* subdef, Status* s);
2184   bool set_subdef_name(const char* name, Status* s);
2185   bool set_subdef_name(const std::string &name, Status* s);
2186 
2187  private:
2188   UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef)
2189 };
2190 
2191 # endif  /* defined(__cplusplus) */
2192 
2193 UPB_BEGIN_EXTERN_C
2194 
2195 /* Native C API. */
2196 upb_fielddef *upb_fielddef_new(const void *owner);
2197 upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner);
2198 
2199 /* Include upb_refcounted methods like upb_fielddef_ref(). */
2200 UPB_REFCOUNTED_CMETHODS(upb_fielddef, upb_fielddef_upcast2)
2201 
2202 /* Methods from upb_def. */
2203 const char *upb_fielddef_fullname(const upb_fielddef *f);
2204 bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname,
2205                               upb_status *s);
2206 
2207 bool upb_fielddef_typeisset(const upb_fielddef *f);
2208 upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f);
2209 upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f);
2210 upb_label_t upb_fielddef_label(const upb_fielddef *f);
2211 uint32_t upb_fielddef_number(const upb_fielddef *f);
2212 const char *upb_fielddef_name(const upb_fielddef *f);
2213 bool upb_fielddef_isextension(const upb_fielddef *f);
2214 bool upb_fielddef_lazy(const upb_fielddef *f);
2215 bool upb_fielddef_packed(const upb_fielddef *f);
2216 size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len);
2217 const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f);
2218 const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f);
2219 upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f);
2220 const char *upb_fielddef_containingtypename(upb_fielddef *f);
2221 upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f);
2222 uint32_t upb_fielddef_index(const upb_fielddef *f);
2223 bool upb_fielddef_istagdelim(const upb_fielddef *f);
2224 bool upb_fielddef_issubmsg(const upb_fielddef *f);
2225 bool upb_fielddef_isstring(const upb_fielddef *f);
2226 bool upb_fielddef_isseq(const upb_fielddef *f);
2227 bool upb_fielddef_isprimitive(const upb_fielddef *f);
2228 bool upb_fielddef_ismap(const upb_fielddef *f);
2229 bool upb_fielddef_haspresence(const upb_fielddef *f);
2230 int64_t upb_fielddef_defaultint64(const upb_fielddef *f);
2231 int32_t upb_fielddef_defaultint32(const upb_fielddef *f);
2232 uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f);
2233 uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f);
2234 bool upb_fielddef_defaultbool(const upb_fielddef *f);
2235 float upb_fielddef_defaultfloat(const upb_fielddef *f);
2236 double upb_fielddef_defaultdouble(const upb_fielddef *f);
2237 const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len);
2238 bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f);
2239 bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f);
2240 bool upb_fielddef_hassubdef(const upb_fielddef *f);
2241 const upb_def *upb_fielddef_subdef(const upb_fielddef *f);
2242 const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f);
2243 const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f);
2244 const char *upb_fielddef_subdefname(const upb_fielddef *f);
2245 
2246 void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type);
2247 void upb_fielddef_setdescriptortype(upb_fielddef *f, int type);
2248 void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label);
2249 bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s);
2250 bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s);
2251 bool upb_fielddef_setjsonname(upb_fielddef *f, const char *name, upb_status *s);
2252 bool upb_fielddef_clearjsonname(upb_fielddef *f);
2253 bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
2254                                         upb_status *s);
2255 void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension);
2256 void upb_fielddef_setlazy(upb_fielddef *f, bool lazy);
2257 void upb_fielddef_setpacked(upb_fielddef *f, bool packed);
2258 void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt);
2259 void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim);
2260 void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val);
2261 void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val);
2262 void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val);
2263 void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val);
2264 void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val);
2265 void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val);
2266 void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val);
2267 bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
2268                                 upb_status *s);
2269 void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
2270                                  upb_status *s);
2271 bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
2272                             upb_status *s);
2273 bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
2274                                upb_status *s);
2275 bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
2276                                 upb_status *s);
2277 bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
2278                                 upb_status *s);
2279 
2280 bool upb_fielddef_checklabel(int32_t label);
2281 bool upb_fielddef_checktype(int32_t type);
2282 bool upb_fielddef_checkdescriptortype(int32_t type);
2283 bool upb_fielddef_checkintfmt(int32_t fmt);
2284 
2285 UPB_END_EXTERN_C
2286 
2287 
2288 /* upb::MessageDef ************************************************************/
2289 
2290 typedef upb_inttable_iter upb_msg_field_iter;
2291 typedef upb_strtable_iter upb_msg_oneof_iter;
2292 
2293 /* Well-known field tag numbers for map-entry messages. */
2294 #define UPB_MAPENTRY_KEY   1
2295 #define UPB_MAPENTRY_VALUE 2
2296 
2297 #ifdef __cplusplus
2298 
2299 /* Structure that describes a single .proto message type.
2300  *
2301  * Its base class is upb::Def (use upb::upcast() to convert). */
2302 class upb::MessageDef {
2303  public:
2304   /* Returns NULL if memory allocation failed. */
2305   static reffed_ptr<MessageDef> New();
2306 
2307   /* upb::RefCounted methods like Ref()/Unref(). */
2308   UPB_REFCOUNTED_CPPMETHODS
2309 
2310   /* Functionality from upb::Def. */
2311   const char* full_name() const;
2312   const char* name() const;
2313   bool set_full_name(const char* fullname, Status* s);
2314   bool set_full_name(const std::string& fullname, Status* s);
2315 
2316   /* Call to freeze this MessageDef.
2317    * WARNING: this will fail if this message has any unfrozen submessages!
2318    * Messages with cycles must be frozen as a batch using upb::Def::Freeze(). */
2319   bool Freeze(Status* s);
2320 
2321   /* The number of fields that belong to the MessageDef. */
2322   int field_count() const;
2323 
2324   /* The number of oneofs that belong to the MessageDef. */
2325   int oneof_count() const;
2326 
2327   /* Adds a field (upb_fielddef object) to a msgdef.  Requires that the msgdef
2328    * and the fielddefs are mutable.  The fielddef's name and number must be
2329    * set, and the message may not already contain any field with this name or
2330    * number, and this fielddef may not be part of another message.  In error
2331    * cases false is returned and the msgdef is unchanged.
2332    *
2333    * If the given field is part of a oneof, this call succeeds if and only if
2334    * that oneof is already part of this msgdef. (Note that adding a oneof to a
2335    * msgdef automatically adds all of its fields to the msgdef at the time that
2336    * the oneof is added, so it is usually more idiomatic to add the oneof's
2337    * fields first then add the oneof to the msgdef. This case is supported for
2338    * convenience.)
2339    *
2340    * If |f| is already part of this MessageDef, this method performs no action
2341    * and returns true (success). Thus, this method is idempotent. */
2342   bool AddField(FieldDef* f, Status* s);
2343   bool AddField(const reffed_ptr<FieldDef>& f, Status* s);
2344 
2345   /* Adds a oneof (upb_oneofdef object) to a msgdef. Requires that the msgdef,
2346    * oneof, and any fielddefs are mutable, that the fielddefs contained in the
2347    * oneof do not have any name or number conflicts with existing fields in the
2348    * msgdef, and that the oneof's name is unique among all oneofs in the msgdef.
2349    * If the oneof is added successfully, all of its fields will be added
2350    * directly to the msgdef as well. In error cases, false is returned and the
2351    * msgdef is unchanged. */
2352   bool AddOneof(OneofDef* o, Status* s);
2353   bool AddOneof(const reffed_ptr<OneofDef>& o, Status* s);
2354 
2355   upb_syntax_t syntax() const;
2356 
2357   /* Returns false if we don't support this syntax value. */
2358   bool set_syntax(upb_syntax_t syntax);
2359 
2360   /* Set this to false to indicate that primitive fields should not have
2361    * explicit presence information associated with them.  This will affect all
2362    * fields added to this message.  Defaults to true. */
2363   void SetPrimitivesHavePresence(bool have_presence);
2364 
2365   /* These return NULL if the field is not found. */
2366   FieldDef* FindFieldByNumber(uint32_t number);
2367   FieldDef* FindFieldByName(const char *name, size_t len);
2368   const FieldDef* FindFieldByNumber(uint32_t number) const;
2369   const FieldDef* FindFieldByName(const char* name, size_t len) const;
2370 
2371 
2372   FieldDef* FindFieldByName(const char *name) {
2373     return FindFieldByName(name, strlen(name));
2374   }
2375   const FieldDef* FindFieldByName(const char *name) const {
2376     return FindFieldByName(name, strlen(name));
2377   }
2378 
2379   template <class T>
2380   FieldDef* FindFieldByName(const T& str) {
2381     return FindFieldByName(str.c_str(), str.size());
2382   }
2383   template <class T>
2384   const FieldDef* FindFieldByName(const T& str) const {
2385     return FindFieldByName(str.c_str(), str.size());
2386   }
2387 
2388   OneofDef* FindOneofByName(const char* name, size_t len);
2389   const OneofDef* FindOneofByName(const char* name, size_t len) const;
2390 
2391   OneofDef* FindOneofByName(const char* name) {
2392     return FindOneofByName(name, strlen(name));
2393   }
2394   const OneofDef* FindOneofByName(const char* name) const {
2395     return FindOneofByName(name, strlen(name));
2396   }
2397 
2398   template<class T>
2399   OneofDef* FindOneofByName(const T& str) {
2400     return FindOneofByName(str.c_str(), str.size());
2401   }
2402   template<class T>
2403   const OneofDef* FindOneofByName(const T& str) const {
2404     return FindOneofByName(str.c_str(), str.size());
2405   }
2406 
2407   /* Returns a new msgdef that is a copy of the given msgdef (and a copy of all
2408    * the fields) but with any references to submessages broken and replaced
2409    * with just the name of the submessage.  Returns NULL if memory allocation
2410    * failed.
2411    *
2412    * TODO(haberman): which is more useful, keeping fields resolved or
2413    * unresolving them?  If there's no obvious answer, Should this functionality
2414    * just be moved into symtab.c? */
2415   MessageDef* Dup(const void* owner) const;
2416 
2417   /* Is this message a map entry? */
2418   void setmapentry(bool map_entry);
2419   bool mapentry() const;
2420 
2421   /* Iteration over fields.  The order is undefined. */
2422   class field_iterator
2423       : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2424    public:
2425     explicit field_iterator(MessageDef* md);
2426     static field_iterator end(MessageDef* md);
2427 
2428     void operator++();
2429     FieldDef* operator*() const;
2430     bool operator!=(const field_iterator& other) const;
2431     bool operator==(const field_iterator& other) const;
2432 
2433    private:
2434     upb_msg_field_iter iter_;
2435   };
2436 
2437   class const_field_iterator
2438       : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2439    public:
2440     explicit const_field_iterator(const MessageDef* md);
2441     static const_field_iterator end(const MessageDef* md);
2442 
2443     void operator++();
2444     const FieldDef* operator*() const;
2445     bool operator!=(const const_field_iterator& other) const;
2446     bool operator==(const const_field_iterator& other) const;
2447 
2448    private:
2449     upb_msg_field_iter iter_;
2450   };
2451 
2452   /* Iteration over oneofs. The order is undefined. */
2453   class oneof_iterator
2454       : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2455    public:
2456     explicit oneof_iterator(MessageDef* md);
2457     static oneof_iterator end(MessageDef* md);
2458 
2459     void operator++();
2460     OneofDef* operator*() const;
2461     bool operator!=(const oneof_iterator& other) const;
2462     bool operator==(const oneof_iterator& other) const;
2463 
2464    private:
2465     upb_msg_oneof_iter iter_;
2466   };
2467 
2468   class const_oneof_iterator
2469       : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2470    public:
2471     explicit const_oneof_iterator(const MessageDef* md);
2472     static const_oneof_iterator end(const MessageDef* md);
2473 
2474     void operator++();
2475     const OneofDef* operator*() const;
2476     bool operator!=(const const_oneof_iterator& other) const;
2477     bool operator==(const const_oneof_iterator& other) const;
2478 
2479    private:
2480     upb_msg_oneof_iter iter_;
2481   };
2482 
2483   class FieldAccessor {
2484    public:
2485     explicit FieldAccessor(MessageDef* msg) : msg_(msg) {}
2486     field_iterator begin() { return msg_->field_begin(); }
2487     field_iterator end() { return msg_->field_end(); }
2488    private:
2489     MessageDef* msg_;
2490   };
2491 
2492   class ConstFieldAccessor {
2493    public:
2494     explicit ConstFieldAccessor(const MessageDef* msg) : msg_(msg) {}
2495     const_field_iterator begin() { return msg_->field_begin(); }
2496     const_field_iterator end() { return msg_->field_end(); }
2497    private:
2498     const MessageDef* msg_;
2499   };
2500 
2501   class OneofAccessor {
2502    public:
2503     explicit OneofAccessor(MessageDef* msg) : msg_(msg) {}
2504     oneof_iterator begin() { return msg_->oneof_begin(); }
2505     oneof_iterator end() { return msg_->oneof_end(); }
2506    private:
2507     MessageDef* msg_;
2508   };
2509 
2510   class ConstOneofAccessor {
2511    public:
2512     explicit ConstOneofAccessor(const MessageDef* msg) : msg_(msg) {}
2513     const_oneof_iterator begin() { return msg_->oneof_begin(); }
2514     const_oneof_iterator end() { return msg_->oneof_end(); }
2515    private:
2516     const MessageDef* msg_;
2517   };
2518 
2519   field_iterator field_begin();
2520   field_iterator field_end();
2521   const_field_iterator field_begin() const;
2522   const_field_iterator field_end() const;
2523 
2524   oneof_iterator oneof_begin();
2525   oneof_iterator oneof_end();
2526   const_oneof_iterator oneof_begin() const;
2527   const_oneof_iterator oneof_end() const;
2528 
2529   FieldAccessor fields() { return FieldAccessor(this); }
2530   ConstFieldAccessor fields() const { return ConstFieldAccessor(this); }
2531   OneofAccessor oneofs() { return OneofAccessor(this); }
2532   ConstOneofAccessor oneofs() const { return ConstOneofAccessor(this); }
2533 
2534  private:
2535   UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef)
2536 };
2537 
2538 #endif  /* __cplusplus */
2539 
2540 UPB_BEGIN_EXTERN_C
2541 
2542 /* Returns NULL if memory allocation failed. */
2543 upb_msgdef *upb_msgdef_new(const void *owner);
2544 
2545 /* Include upb_refcounted methods like upb_msgdef_ref(). */
2546 UPB_REFCOUNTED_CMETHODS(upb_msgdef, upb_msgdef_upcast2)
2547 
2548 bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status);
2549 
2550 upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner);
2551 const char *upb_msgdef_fullname(const upb_msgdef *m);
2552 const char *upb_msgdef_name(const upb_msgdef *m);
2553 int upb_msgdef_numoneofs(const upb_msgdef *m);
2554 upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m);
2555 
2556 bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
2557                          upb_status *s);
2558 bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor,
2559                          upb_status *s);
2560 bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s);
2561 void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry);
2562 bool upb_msgdef_mapentry(const upb_msgdef *m);
2563 bool upb_msgdef_setsyntax(upb_msgdef *m, upb_syntax_t syntax);
2564 
2565 /* Field lookup in a couple of different variations:
2566  *   - itof = int to field
2567  *   - ntof = name to field
2568  *   - ntofz = name to field, null-terminated string. */
2569 const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i);
2570 const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
2571                                     size_t len);
2572 int upb_msgdef_numfields(const upb_msgdef *m);
2573 
2574 UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m,
2575                                                 const char *name) {
2576   return upb_msgdef_ntof(m, name, strlen(name));
2577 }
2578 
2579 UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) {
2580   return (upb_fielddef*)upb_msgdef_itof(m, i);
2581 }
2582 
2583 UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m,
2584                                                  const char *name, size_t len) {
2585   return (upb_fielddef *)upb_msgdef_ntof(m, name, len);
2586 }
2587 
2588 /* Oneof lookup:
2589  *   - ntoo = name to oneof
2590  *   - ntooz = name to oneof, null-terminated string. */
2591 const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
2592                                     size_t len);
2593 int upb_msgdef_numoneofs(const upb_msgdef *m);
2594 
2595 UPB_INLINE const upb_oneofdef *upb_msgdef_ntooz(const upb_msgdef *m,
2596                                                const char *name) {
2597   return upb_msgdef_ntoo(m, name, strlen(name));
2598 }
2599 
2600 UPB_INLINE upb_oneofdef *upb_msgdef_ntoo_mutable(upb_msgdef *m,
2601                                                  const char *name, size_t len) {
2602   return (upb_oneofdef *)upb_msgdef_ntoo(m, name, len);
2603 }
2604 
2605 /* Lookup of either field or oneof by name.  Returns whether either was found.
2606  * If the return is true, then the found def will be set, and the non-found
2607  * one set to NULL. */
2608 bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len,
2609                            const upb_fielddef **f, const upb_oneofdef **o);
2610 
2611 UPB_INLINE bool upb_msgdef_lookupnamez(const upb_msgdef *m, const char *name,
2612                                        const upb_fielddef **f,
2613                                        const upb_oneofdef **o) {
2614   return upb_msgdef_lookupname(m, name, strlen(name), f, o);
2615 }
2616 
2617 /* Iteration over fields and oneofs.  For example:
2618  *
2619  * upb_msg_field_iter i;
2620  * for(upb_msg_field_begin(&i, m);
2621  *     !upb_msg_field_done(&i);
2622  *     upb_msg_field_next(&i)) {
2623  *   upb_fielddef *f = upb_msg_iter_field(&i);
2624  *   // ...
2625  * }
2626  *
2627  * For C we don't have separate iterators for const and non-const.
2628  * It is the caller's responsibility to cast the upb_fielddef* to
2629  * const if the upb_msgdef* is const. */
2630 void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m);
2631 void upb_msg_field_next(upb_msg_field_iter *iter);
2632 bool upb_msg_field_done(const upb_msg_field_iter *iter);
2633 upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter);
2634 void upb_msg_field_iter_setdone(upb_msg_field_iter *iter);
2635 
2636 /* Similar to above, we also support iterating through the oneofs in a
2637  * msgdef. */
2638 void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m);
2639 void upb_msg_oneof_next(upb_msg_oneof_iter *iter);
2640 bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter);
2641 upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter);
2642 void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter);
2643 
2644 UPB_END_EXTERN_C
2645 
2646 
2647 /* upb::EnumDef ***************************************************************/
2648 
2649 typedef upb_strtable_iter upb_enum_iter;
2650 
2651 #ifdef __cplusplus
2652 
2653 /* Class that represents an enum.  Its base class is upb::Def (convert with
2654  * upb::upcast()). */
2655 class upb::EnumDef {
2656  public:
2657   /* Returns NULL if memory allocation failed. */
2658   static reffed_ptr<EnumDef> New();
2659 
2660   /* upb::RefCounted methods like Ref()/Unref(). */
2661   UPB_REFCOUNTED_CPPMETHODS
2662 
2663   /* Functionality from upb::Def. */
2664   const char* full_name() const;
2665   const char* name() const;
2666   bool set_full_name(const char* fullname, Status* s);
2667   bool set_full_name(const std::string& fullname, Status* s);
2668 
2669   /* Call to freeze this EnumDef. */
2670   bool Freeze(Status* s);
2671 
2672   /* The value that is used as the default when no field default is specified.
2673    * If not set explicitly, the first value that was added will be used.
2674    * The default value must be a member of the enum.
2675    * Requires that value_count() > 0. */
2676   int32_t default_value() const;
2677 
2678   /* Sets the default value.  If this value is not valid, returns false and an
2679    * error message in status. */
2680   bool set_default_value(int32_t val, Status* status);
2681 
2682   /* Returns the number of values currently defined in the enum.  Note that
2683    * multiple names can refer to the same number, so this may be greater than
2684    * the total number of unique numbers. */
2685   int value_count() const;
2686 
2687   /* Adds a single name/number pair to the enum.  Fails if this name has
2688    * already been used by another value. */
2689   bool AddValue(const char* name, int32_t num, Status* status);
2690   bool AddValue(const std::string& name, int32_t num, Status* status);
2691 
2692   /* Lookups from name to integer, returning true if found. */
2693   bool FindValueByName(const char* name, int32_t* num) const;
2694 
2695   /* Finds the name corresponding to the given number, or NULL if none was
2696    * found.  If more than one name corresponds to this number, returns the
2697    * first one that was added. */
2698   const char* FindValueByNumber(int32_t num) const;
2699 
2700   /* Returns a new EnumDef with all the same values.  The new EnumDef will be
2701    * owned by the given owner. */
2702   EnumDef* Dup(const void* owner) const;
2703 
2704   /* Iteration over name/value pairs.  The order is undefined.
2705    * Adding an enum val invalidates any iterators.
2706    *
2707    * TODO: make compatible with range-for, with elements as pairs? */
2708   class Iterator {
2709    public:
2710     explicit Iterator(const EnumDef*);
2711 
2712     int32_t number();
2713     const char *name();
2714     bool Done();
2715     void Next();
2716 
2717    private:
2718     upb_enum_iter iter_;
2719   };
2720 
2721  private:
2722   UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef)
2723 };
2724 
2725 #endif  /* __cplusplus */
2726 
2727 UPB_BEGIN_EXTERN_C
2728 
2729 /* Native C API. */
2730 upb_enumdef *upb_enumdef_new(const void *owner);
2731 upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner);
2732 
2733 /* Include upb_refcounted methods like upb_enumdef_ref(). */
2734 UPB_REFCOUNTED_CMETHODS(upb_enumdef, upb_enumdef_upcast2)
2735 
2736 bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status);
2737 
2738 /* From upb_def. */
2739 const char *upb_enumdef_fullname(const upb_enumdef *e);
2740 const char *upb_enumdef_name(const upb_enumdef *e);
2741 bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
2742                              upb_status *s);
2743 
2744 int32_t upb_enumdef_default(const upb_enumdef *e);
2745 bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s);
2746 int upb_enumdef_numvals(const upb_enumdef *e);
2747 bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
2748                         upb_status *status);
2749 
2750 /* Enum lookups:
2751  * - ntoi:  look up a name with specified length.
2752  * - ntoiz: look up a name provided as a null-terminated string.
2753  * - iton:  look up an integer, returning the name as a null-terminated
2754  *          string. */
2755 bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len,
2756                       int32_t *num);
2757 UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e,
2758                                   const char *name, int32_t *num) {
2759   return upb_enumdef_ntoi(e, name, strlen(name), num);
2760 }
2761 const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num);
2762 
2763 /*  upb_enum_iter i;
2764  *  for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
2765  *    // ...
2766  *  }
2767  */
2768 void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e);
2769 void upb_enum_next(upb_enum_iter *iter);
2770 bool upb_enum_done(upb_enum_iter *iter);
2771 const char *upb_enum_iter_name(upb_enum_iter *iter);
2772 int32_t upb_enum_iter_number(upb_enum_iter *iter);
2773 
2774 UPB_END_EXTERN_C
2775 
2776 /* upb::OneofDef **************************************************************/
2777 
2778 typedef upb_inttable_iter upb_oneof_iter;
2779 
2780 #ifdef __cplusplus
2781 
2782 /* Class that represents a oneof. */
2783 class upb::OneofDef {
2784  public:
2785   /* Returns NULL if memory allocation failed. */
2786   static reffed_ptr<OneofDef> New();
2787 
2788   /* upb::RefCounted methods like Ref()/Unref(). */
2789   UPB_REFCOUNTED_CPPMETHODS
2790 
2791   /* Returns the MessageDef that owns this OneofDef. */
2792   const MessageDef* containing_type() const;
2793 
2794   /* Returns the name of this oneof. This is the name used to look up the oneof
2795    * by name once added to a message def. */
2796   const char* name() const;
2797   bool set_name(const char* name, Status* s);
2798   bool set_name(const std::string& name, Status* s);
2799 
2800   /* Returns the number of fields currently defined in the oneof. */
2801   int field_count() const;
2802 
2803   /* Adds a field to the oneof. The field must not have been added to any other
2804    * oneof or msgdef. If the oneof is not yet part of a msgdef, then when the
2805    * oneof is eventually added to a msgdef, all fields added to the oneof will
2806    * also be added to the msgdef at that time. If the oneof is already part of a
2807    * msgdef, the field must either be a part of that msgdef already, or must not
2808    * be a part of any msgdef; in the latter case, the field is added to the
2809    * msgdef as a part of this operation.
2810    *
2811    * The field may only have an OPTIONAL label, never REQUIRED or REPEATED.
2812    *
2813    * If |f| is already part of this MessageDef, this method performs no action
2814    * and returns true (success). Thus, this method is idempotent. */
2815   bool AddField(FieldDef* field, Status* s);
2816   bool AddField(const reffed_ptr<FieldDef>& field, Status* s);
2817 
2818   /* Looks up by name. */
2819   const FieldDef* FindFieldByName(const char* name, size_t len) const;
2820   FieldDef* FindFieldByName(const char* name, size_t len);
2821   const FieldDef* FindFieldByName(const char* name) const {
2822     return FindFieldByName(name, strlen(name));
2823   }
2824   FieldDef* FindFieldByName(const char* name) {
2825     return FindFieldByName(name, strlen(name));
2826   }
2827 
2828   template <class T>
2829   FieldDef* FindFieldByName(const T& str) {
2830     return FindFieldByName(str.c_str(), str.size());
2831   }
2832   template <class T>
2833   const FieldDef* FindFieldByName(const T& str) const {
2834     return FindFieldByName(str.c_str(), str.size());
2835   }
2836 
2837   /* Looks up by tag number. */
2838   const FieldDef* FindFieldByNumber(uint32_t num) const;
2839 
2840   /* Returns a new OneofDef with all the same fields. The OneofDef will be owned
2841    * by the given owner. */
2842   OneofDef* Dup(const void* owner) const;
2843 
2844   /* Iteration over fields.  The order is undefined. */
2845   class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> {
2846    public:
2847     explicit iterator(OneofDef* md);
2848     static iterator end(OneofDef* md);
2849 
2850     void operator++();
2851     FieldDef* operator*() const;
2852     bool operator!=(const iterator& other) const;
2853     bool operator==(const iterator& other) const;
2854 
2855    private:
2856     upb_oneof_iter iter_;
2857   };
2858 
2859   class const_iterator
2860       : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
2861    public:
2862     explicit const_iterator(const OneofDef* md);
2863     static const_iterator end(const OneofDef* md);
2864 
2865     void operator++();
2866     const FieldDef* operator*() const;
2867     bool operator!=(const const_iterator& other) const;
2868     bool operator==(const const_iterator& other) const;
2869 
2870    private:
2871     upb_oneof_iter iter_;
2872   };
2873 
2874   iterator begin();
2875   iterator end();
2876   const_iterator begin() const;
2877   const_iterator end() const;
2878 
2879  private:
2880   UPB_DISALLOW_POD_OPS(OneofDef, upb::OneofDef)
2881 };
2882 
2883 #endif  /* __cplusplus */
2884 
2885 UPB_BEGIN_EXTERN_C
2886 
2887 /* Native C API. */
2888 upb_oneofdef *upb_oneofdef_new(const void *owner);
2889 upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner);
2890 
2891 /* Include upb_refcounted methods like upb_oneofdef_ref(). */
2892 UPB_REFCOUNTED_CMETHODS(upb_oneofdef, upb_oneofdef_upcast)
2893 
2894 const char *upb_oneofdef_name(const upb_oneofdef *o);
2895 bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s);
2896 
2897 const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o);
2898 int upb_oneofdef_numfields(const upb_oneofdef *o);
2899 bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f,
2900                            const void *ref_donor,
2901                            upb_status *s);
2902 
2903 /* Oneof lookups:
2904  * - ntof:  look up a field by name.
2905  * - ntofz: look up a field by name (as a null-terminated string).
2906  * - itof:  look up a field by number. */
2907 const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
2908                                       const char *name, size_t length);
2909 UPB_INLINE const upb_fielddef *upb_oneofdef_ntofz(const upb_oneofdef *o,
2910                                                   const char *name) {
2911   return upb_oneofdef_ntof(o, name, strlen(name));
2912 }
2913 const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num);
2914 
2915 /*  upb_oneof_iter i;
2916  *  for(upb_oneof_begin(&i, e); !upb_oneof_done(&i); upb_oneof_next(&i)) {
2917  *    // ...
2918  *  }
2919  */
2920 void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o);
2921 void upb_oneof_next(upb_oneof_iter *iter);
2922 bool upb_oneof_done(upb_oneof_iter *iter);
2923 upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter);
2924 void upb_oneof_iter_setdone(upb_oneof_iter *iter);
2925 
2926 UPB_END_EXTERN_C
2927 
2928 
2929 /* upb::FileDef ***************************************************************/
2930 
2931 #ifdef __cplusplus
2932 
2933 /* Class that represents a .proto file with some things defined in it.
2934  *
2935  * Many users won't care about FileDefs, but they are necessary if you want to
2936  * read the values of file-level options. */
2937 class upb::FileDef {
2938  public:
2939   /* Returns NULL if memory allocation failed. */
2940   static reffed_ptr<FileDef> New();
2941 
2942   /* upb::RefCounted methods like Ref()/Unref(). */
2943   UPB_REFCOUNTED_CPPMETHODS
2944 
2945   /* Get/set name of the file (eg. "foo/bar.proto"). */
2946   const char* name() const;
2947   bool set_name(const char* name, Status* s);
2948   bool set_name(const std::string& name, Status* s);
2949 
2950   /* Package name for definitions inside the file (eg. "foo.bar"). */
2951   const char* package() const;
2952   bool set_package(const char* package, Status* s);
2953 
2954   /* Syntax for the file.  Defaults to proto2. */
2955   upb_syntax_t syntax() const;
2956   void set_syntax(upb_syntax_t syntax);
2957 
2958   /* Get the list of defs from the file.  These are returned in the order that
2959    * they were added to the FileDef. */
2960   int def_count() const;
2961   const Def* def(int index) const;
2962   Def* def(int index);
2963 
2964   /* Get the list of dependencies from the file.  These are returned in the
2965    * order that they were added to the FileDef. */
2966   int dependency_count() const;
2967   const FileDef* dependency(int index) const;
2968 
2969   /* Adds defs to this file.  The def must not already belong to another
2970    * file.
2971    *
2972    * Note: this does *not* ensure that this def's name is unique in this file!
2973    * Use a SymbolTable if you want to check this property.  Especially since
2974    * properly checking uniqueness would require a check across *all* files
2975    * (including dependencies). */
2976   bool AddDef(Def* def, Status* s);
2977   bool AddMessage(MessageDef* m, Status* s);
2978   bool AddEnum(EnumDef* e, Status* s);
2979   bool AddExtension(FieldDef* f, Status* s);
2980 
2981   /* Adds a dependency of this file. */
2982   bool AddDependency(const FileDef* file);
2983 
2984   /* Freezes this FileDef and all messages/enums under it.  All subdefs must be
2985    * resolved and all messages/enums must validate.  Returns true if this
2986    * succeeded.
2987    *
2988    * TODO(haberman): should we care whether the file's dependencies are frozen
2989    * already? */
2990   bool Freeze(Status* s);
2991 
2992  private:
2993   UPB_DISALLOW_POD_OPS(FileDef, upb::FileDef)
2994 };
2995 
2996 #endif
2997 
2998 UPB_BEGIN_EXTERN_C
2999 
3000 upb_filedef *upb_filedef_new(const void *owner);
3001 
3002 /* Include upb_refcounted methods like upb_msgdef_ref(). */
3003 UPB_REFCOUNTED_CMETHODS(upb_filedef, upb_filedef_upcast)
3004 
3005 const char *upb_filedef_name(const upb_filedef *f);
3006 const char *upb_filedef_package(const upb_filedef *f);
3007 upb_syntax_t upb_filedef_syntax(const upb_filedef *f);
3008 size_t upb_filedef_defcount(const upb_filedef *f);
3009 size_t upb_filedef_depcount(const upb_filedef *f);
3010 const upb_def *upb_filedef_def(const upb_filedef *f, size_t i);
3011 const upb_filedef *upb_filedef_dep(const upb_filedef *f, size_t i);
3012 
3013 bool upb_filedef_freeze(upb_filedef *f, upb_status *s);
3014 bool upb_filedef_setname(upb_filedef *f, const char *name, upb_status *s);
3015 bool upb_filedef_setpackage(upb_filedef *f, const char *package, upb_status *s);
3016 bool upb_filedef_setsyntax(upb_filedef *f, upb_syntax_t syntax, upb_status *s);
3017 
3018 bool upb_filedef_adddef(upb_filedef *f, upb_def *def, const void *ref_donor,
3019                         upb_status *s);
3020 bool upb_filedef_adddep(upb_filedef *f, const upb_filedef *dep);
3021 
3022 UPB_INLINE bool upb_filedef_addmsg(upb_filedef *f, upb_msgdef *m,
3023                                    const void *ref_donor, upb_status *s) {
3024   return upb_filedef_adddef(f, upb_msgdef_upcast_mutable(m), ref_donor, s);
3025 }
3026 
3027 UPB_INLINE bool upb_filedef_addenum(upb_filedef *f, upb_enumdef *e,
3028                                     const void *ref_donor, upb_status *s) {
3029   return upb_filedef_adddef(f, upb_enumdef_upcast_mutable(e), ref_donor, s);
3030 }
3031 
3032 UPB_INLINE bool upb_filedef_addext(upb_filedef *file, upb_fielddef *f,
3033                                    const void *ref_donor, upb_status *s) {
3034   return upb_filedef_adddef(file, upb_fielddef_upcast_mutable(f), ref_donor, s);
3035 }
3036 UPB_INLINE upb_def *upb_filedef_mutabledef(upb_filedef *f, int i) {
3037   return (upb_def*)upb_filedef_def(f, i);
3038 }
3039 
3040 UPB_END_EXTERN_C
3041 
3042 #ifdef __cplusplus
3043 
3044 UPB_INLINE const char* upb_safecstr(const std::string& str) {
3045   assert(str.size() == std::strlen(str.c_str()));
3046   return str.c_str();
3047 }
3048 
3049 /* Inline C++ wrappers. */
3050 namespace upb {
3051 
3052 inline Def* Def::Dup(const void* owner) const {
3053   return upb_def_dup(this, owner);
3054 }
3055 inline Def::Type Def::def_type() const { return upb_def_type(this); }
3056 inline const char* Def::full_name() const { return upb_def_fullname(this); }
3057 inline const char* Def::name() const { return upb_def_name(this); }
3058 inline bool Def::set_full_name(const char* fullname, Status* s) {
3059   return upb_def_setfullname(this, fullname, s);
3060 }
3061 inline bool Def::set_full_name(const std::string& fullname, Status* s) {
3062   return upb_def_setfullname(this, upb_safecstr(fullname), s);
3063 }
3064 inline bool Def::Freeze(Def* const* defs, size_t n, Status* status) {
3065   return upb_def_freeze(defs, n, status);
3066 }
3067 inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) {
3068   return upb_def_freeze((Def* const*)&defs[0], defs.size(), status);
3069 }
3070 
3071 inline bool FieldDef::CheckType(int32_t val) {
3072   return upb_fielddef_checktype(val);
3073 }
3074 inline bool FieldDef::CheckLabel(int32_t val) {
3075   return upb_fielddef_checklabel(val);
3076 }
3077 inline bool FieldDef::CheckDescriptorType(int32_t val) {
3078   return upb_fielddef_checkdescriptortype(val);
3079 }
3080 inline bool FieldDef::CheckIntegerFormat(int32_t val) {
3081   return upb_fielddef_checkintfmt(val);
3082 }
3083 inline FieldDef::Type FieldDef::ConvertType(int32_t val) {
3084   assert(CheckType(val));
3085   return static_cast<FieldDef::Type>(val);
3086 }
3087 inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) {
3088   assert(CheckLabel(val));
3089   return static_cast<FieldDef::Label>(val);
3090 }
3091 inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) {
3092   assert(CheckDescriptorType(val));
3093   return static_cast<FieldDef::DescriptorType>(val);
3094 }
3095 inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) {
3096   assert(CheckIntegerFormat(val));
3097   return static_cast<FieldDef::IntegerFormat>(val);
3098 }
3099 
3100 inline reffed_ptr<FieldDef> FieldDef::New() {
3101   upb_fielddef *f = upb_fielddef_new(&f);
3102   return reffed_ptr<FieldDef>(f, &f);
3103 }
3104 inline FieldDef* FieldDef::Dup(const void* owner) const {
3105   return upb_fielddef_dup(this, owner);
3106 }
3107 inline const char* FieldDef::full_name() const {
3108   return upb_fielddef_fullname(this);
3109 }
3110 inline bool FieldDef::set_full_name(const char* fullname, Status* s) {
3111   return upb_fielddef_setfullname(this, fullname, s);
3112 }
3113 inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) {
3114   return upb_fielddef_setfullname(this, upb_safecstr(fullname), s);
3115 }
3116 inline bool FieldDef::type_is_set() const {
3117   return upb_fielddef_typeisset(this);
3118 }
3119 inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); }
3120 inline FieldDef::DescriptorType FieldDef::descriptor_type() const {
3121   return upb_fielddef_descriptortype(this);
3122 }
3123 inline FieldDef::Label FieldDef::label() const {
3124   return upb_fielddef_label(this);
3125 }
3126 inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); }
3127 inline const char* FieldDef::name() const { return upb_fielddef_name(this); }
3128 inline bool FieldDef::is_extension() const {
3129   return upb_fielddef_isextension(this);
3130 }
3131 inline size_t FieldDef::GetJsonName(char* buf, size_t len) const {
3132   return upb_fielddef_getjsonname(this, buf, len);
3133 }
3134 inline bool FieldDef::lazy() const {
3135   return upb_fielddef_lazy(this);
3136 }
3137 inline void FieldDef::set_lazy(bool lazy) {
3138   upb_fielddef_setlazy(this, lazy);
3139 }
3140 inline bool FieldDef::packed() const {
3141   return upb_fielddef_packed(this);
3142 }
3143 inline uint32_t FieldDef::index() const {
3144   return upb_fielddef_index(this);
3145 }
3146 inline void FieldDef::set_packed(bool packed) {
3147   upb_fielddef_setpacked(this, packed);
3148 }
3149 inline const MessageDef* FieldDef::containing_type() const {
3150   return upb_fielddef_containingtype(this);
3151 }
3152 inline const OneofDef* FieldDef::containing_oneof() const {
3153   return upb_fielddef_containingoneof(this);
3154 }
3155 inline const char* FieldDef::containing_type_name() {
3156   return upb_fielddef_containingtypename(this);
3157 }
3158 inline bool FieldDef::set_number(uint32_t number, Status* s) {
3159   return upb_fielddef_setnumber(this, number, s);
3160 }
3161 inline bool FieldDef::set_name(const char *name, Status* s) {
3162   return upb_fielddef_setname(this, name, s);
3163 }
3164 inline bool FieldDef::set_name(const std::string& name, Status* s) {
3165   return upb_fielddef_setname(this, upb_safecstr(name), s);
3166 }
3167 inline bool FieldDef::set_json_name(const char *name, Status* s) {
3168   return upb_fielddef_setjsonname(this, name, s);
3169 }
3170 inline bool FieldDef::set_json_name(const std::string& name, Status* s) {
3171   return upb_fielddef_setjsonname(this, upb_safecstr(name), s);
3172 }
3173 inline void FieldDef::clear_json_name() {
3174   upb_fielddef_clearjsonname(this);
3175 }
3176 inline bool FieldDef::set_containing_type_name(const char *name, Status* s) {
3177   return upb_fielddef_setcontainingtypename(this, name, s);
3178 }
3179 inline bool FieldDef::set_containing_type_name(const std::string &name,
3180                                                Status *s) {
3181   return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s);
3182 }
3183 inline void FieldDef::set_type(upb_fieldtype_t type) {
3184   upb_fielddef_settype(this, type);
3185 }
3186 inline void FieldDef::set_is_extension(bool is_extension) {
3187   upb_fielddef_setisextension(this, is_extension);
3188 }
3189 inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) {
3190   upb_fielddef_setdescriptortype(this, type);
3191 }
3192 inline void FieldDef::set_label(upb_label_t label) {
3193   upb_fielddef_setlabel(this, label);
3194 }
3195 inline bool FieldDef::IsSubMessage() const {
3196   return upb_fielddef_issubmsg(this);
3197 }
3198 inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); }
3199 inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); }
3200 inline bool FieldDef::IsMap() const { return upb_fielddef_ismap(this); }
3201 inline int64_t FieldDef::default_int64() const {
3202   return upb_fielddef_defaultint64(this);
3203 }
3204 inline int32_t FieldDef::default_int32() const {
3205   return upb_fielddef_defaultint32(this);
3206 }
3207 inline uint64_t FieldDef::default_uint64() const {
3208   return upb_fielddef_defaultuint64(this);
3209 }
3210 inline uint32_t FieldDef::default_uint32() const {
3211   return upb_fielddef_defaultuint32(this);
3212 }
3213 inline bool FieldDef::default_bool() const {
3214   return upb_fielddef_defaultbool(this);
3215 }
3216 inline float FieldDef::default_float() const {
3217   return upb_fielddef_defaultfloat(this);
3218 }
3219 inline double FieldDef::default_double() const {
3220   return upb_fielddef_defaultdouble(this);
3221 }
3222 inline const char* FieldDef::default_string(size_t* len) const {
3223   return upb_fielddef_defaultstr(this, len);
3224 }
3225 inline void FieldDef::set_default_int64(int64_t value) {
3226   upb_fielddef_setdefaultint64(this, value);
3227 }
3228 inline void FieldDef::set_default_int32(int32_t value) {
3229   upb_fielddef_setdefaultint32(this, value);
3230 }
3231 inline void FieldDef::set_default_uint64(uint64_t value) {
3232   upb_fielddef_setdefaultuint64(this, value);
3233 }
3234 inline void FieldDef::set_default_uint32(uint32_t value) {
3235   upb_fielddef_setdefaultuint32(this, value);
3236 }
3237 inline void FieldDef::set_default_bool(bool value) {
3238   upb_fielddef_setdefaultbool(this, value);
3239 }
3240 inline void FieldDef::set_default_float(float value) {
3241   upb_fielddef_setdefaultfloat(this, value);
3242 }
3243 inline void FieldDef::set_default_double(double value) {
3244   upb_fielddef_setdefaultdouble(this, value);
3245 }
3246 inline bool FieldDef::set_default_string(const void *str, size_t len,
3247                                          Status *s) {
3248   return upb_fielddef_setdefaultstr(this, str, len, s);
3249 }
3250 inline bool FieldDef::set_default_string(const std::string& str, Status* s) {
3251   return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s);
3252 }
3253 inline void FieldDef::set_default_cstr(const char* str, Status* s) {
3254   return upb_fielddef_setdefaultcstr(this, str, s);
3255 }
3256 inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); }
3257 inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); }
3258 inline const MessageDef *FieldDef::message_subdef() const {
3259   return upb_fielddef_msgsubdef(this);
3260 }
3261 inline const EnumDef *FieldDef::enum_subdef() const {
3262   return upb_fielddef_enumsubdef(this);
3263 }
3264 inline const char* FieldDef::subdef_name() const {
3265   return upb_fielddef_subdefname(this);
3266 }
3267 inline bool FieldDef::set_subdef(const Def* subdef, Status* s) {
3268   return upb_fielddef_setsubdef(this, subdef, s);
3269 }
3270 inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) {
3271   return upb_fielddef_setenumsubdef(this, subdef, s);
3272 }
3273 inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) {
3274   return upb_fielddef_setmsgsubdef(this, subdef, s);
3275 }
3276 inline bool FieldDef::set_subdef_name(const char* name, Status* s) {
3277   return upb_fielddef_setsubdefname(this, name, s);
3278 }
3279 inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) {
3280   return upb_fielddef_setsubdefname(this, upb_safecstr(name), s);
3281 }
3282 
3283 inline reffed_ptr<MessageDef> MessageDef::New() {
3284   upb_msgdef *m = upb_msgdef_new(&m);
3285   return reffed_ptr<MessageDef>(m, &m);
3286 }
3287 inline const char *MessageDef::full_name() const {
3288   return upb_msgdef_fullname(this);
3289 }
3290 inline const char *MessageDef::name() const {
3291   return upb_msgdef_name(this);
3292 }
3293 inline upb_syntax_t MessageDef::syntax() const {
3294   return upb_msgdef_syntax(this);
3295 }
3296 inline bool MessageDef::set_full_name(const char* fullname, Status* s) {
3297   return upb_msgdef_setfullname(this, fullname, s);
3298 }
3299 inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) {
3300   return upb_msgdef_setfullname(this, upb_safecstr(fullname), s);
3301 }
3302 inline bool MessageDef::set_syntax(upb_syntax_t syntax) {
3303   return upb_msgdef_setsyntax(this, syntax);
3304 }
3305 inline bool MessageDef::Freeze(Status* status) {
3306   return upb_msgdef_freeze(this, status);
3307 }
3308 inline int MessageDef::field_count() const {
3309   return upb_msgdef_numfields(this);
3310 }
3311 inline int MessageDef::oneof_count() const {
3312   return upb_msgdef_numoneofs(this);
3313 }
3314 inline bool MessageDef::AddField(upb_fielddef* f, Status* s) {
3315   return upb_msgdef_addfield(this, f, NULL, s);
3316 }
3317 inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) {
3318   return upb_msgdef_addfield(this, f.get(), NULL, s);
3319 }
3320 inline bool MessageDef::AddOneof(upb_oneofdef* o, Status* s) {
3321   return upb_msgdef_addoneof(this, o, NULL, s);
3322 }
3323 inline bool MessageDef::AddOneof(const reffed_ptr<OneofDef>& o, Status* s) {
3324   return upb_msgdef_addoneof(this, o.get(), NULL, s);
3325 }
3326 inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) {
3327   return upb_msgdef_itof_mutable(this, number);
3328 }
3329 inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) {
3330   return upb_msgdef_ntof_mutable(this, name, len);
3331 }
3332 inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const {
3333   return upb_msgdef_itof(this, number);
3334 }
3335 inline const FieldDef *MessageDef::FindFieldByName(const char *name,
3336                                                    size_t len) const {
3337   return upb_msgdef_ntof(this, name, len);
3338 }
3339 inline OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) {
3340   return upb_msgdef_ntoo_mutable(this, name, len);
3341 }
3342 inline const OneofDef* MessageDef::FindOneofByName(const char* name,
3343                                                    size_t len) const {
3344   return upb_msgdef_ntoo(this, name, len);
3345 }
3346 inline MessageDef* MessageDef::Dup(const void *owner) const {
3347   return upb_msgdef_dup(this, owner);
3348 }
3349 inline void MessageDef::setmapentry(bool map_entry) {
3350   upb_msgdef_setmapentry(this, map_entry);
3351 }
3352 inline bool MessageDef::mapentry() const {
3353   return upb_msgdef_mapentry(this);
3354 }
3355 inline MessageDef::field_iterator MessageDef::field_begin() {
3356   return field_iterator(this);
3357 }
3358 inline MessageDef::field_iterator MessageDef::field_end() {
3359   return field_iterator::end(this);
3360 }
3361 inline MessageDef::const_field_iterator MessageDef::field_begin() const {
3362   return const_field_iterator(this);
3363 }
3364 inline MessageDef::const_field_iterator MessageDef::field_end() const {
3365   return const_field_iterator::end(this);
3366 }
3367 
3368 inline MessageDef::oneof_iterator MessageDef::oneof_begin() {
3369   return oneof_iterator(this);
3370 }
3371 inline MessageDef::oneof_iterator MessageDef::oneof_end() {
3372   return oneof_iterator::end(this);
3373 }
3374 inline MessageDef::const_oneof_iterator MessageDef::oneof_begin() const {
3375   return const_oneof_iterator(this);
3376 }
3377 inline MessageDef::const_oneof_iterator MessageDef::oneof_end() const {
3378   return const_oneof_iterator::end(this);
3379 }
3380 
3381 inline MessageDef::field_iterator::field_iterator(MessageDef* md) {
3382   upb_msg_field_begin(&iter_, md);
3383 }
3384 inline MessageDef::field_iterator MessageDef::field_iterator::end(
3385     MessageDef* md) {
3386   MessageDef::field_iterator iter(md);
3387   upb_msg_field_iter_setdone(&iter.iter_);
3388   return iter;
3389 }
3390 inline FieldDef* MessageDef::field_iterator::operator*() const {
3391   return upb_msg_iter_field(&iter_);
3392 }
3393 inline void MessageDef::field_iterator::operator++() {
3394   return upb_msg_field_next(&iter_);
3395 }
3396 inline bool MessageDef::field_iterator::operator==(
3397     const field_iterator &other) const {
3398   return upb_inttable_iter_isequal(&iter_, &other.iter_);
3399 }
3400 inline bool MessageDef::field_iterator::operator!=(
3401     const field_iterator &other) const {
3402   return !(*this == other);
3403 }
3404 
3405 inline MessageDef::const_field_iterator::const_field_iterator(
3406     const MessageDef* md) {
3407   upb_msg_field_begin(&iter_, md);
3408 }
3409 inline MessageDef::const_field_iterator MessageDef::const_field_iterator::end(
3410     const MessageDef *md) {
3411   MessageDef::const_field_iterator iter(md);
3412   upb_msg_field_iter_setdone(&iter.iter_);
3413   return iter;
3414 }
3415 inline const FieldDef* MessageDef::const_field_iterator::operator*() const {
3416   return upb_msg_iter_field(&iter_);
3417 }
3418 inline void MessageDef::const_field_iterator::operator++() {
3419   return upb_msg_field_next(&iter_);
3420 }
3421 inline bool MessageDef::const_field_iterator::operator==(
3422     const const_field_iterator &other) const {
3423   return upb_inttable_iter_isequal(&iter_, &other.iter_);
3424 }
3425 inline bool MessageDef::const_field_iterator::operator!=(
3426     const const_field_iterator &other) const {
3427   return !(*this == other);
3428 }
3429 
3430 inline MessageDef::oneof_iterator::oneof_iterator(MessageDef* md) {
3431   upb_msg_oneof_begin(&iter_, md);
3432 }
3433 inline MessageDef::oneof_iterator MessageDef::oneof_iterator::end(
3434     MessageDef* md) {
3435   MessageDef::oneof_iterator iter(md);
3436   upb_msg_oneof_iter_setdone(&iter.iter_);
3437   return iter;
3438 }
3439 inline OneofDef* MessageDef::oneof_iterator::operator*() const {
3440   return upb_msg_iter_oneof(&iter_);
3441 }
3442 inline void MessageDef::oneof_iterator::operator++() {
3443   return upb_msg_oneof_next(&iter_);
3444 }
3445 inline bool MessageDef::oneof_iterator::operator==(
3446     const oneof_iterator &other) const {
3447   return upb_strtable_iter_isequal(&iter_, &other.iter_);
3448 }
3449 inline bool MessageDef::oneof_iterator::operator!=(
3450     const oneof_iterator &other) const {
3451   return !(*this == other);
3452 }
3453 
3454 inline MessageDef::const_oneof_iterator::const_oneof_iterator(
3455     const MessageDef* md) {
3456   upb_msg_oneof_begin(&iter_, md);
3457 }
3458 inline MessageDef::const_oneof_iterator MessageDef::const_oneof_iterator::end(
3459     const MessageDef *md) {
3460   MessageDef::const_oneof_iterator iter(md);
3461   upb_msg_oneof_iter_setdone(&iter.iter_);
3462   return iter;
3463 }
3464 inline const OneofDef* MessageDef::const_oneof_iterator::operator*() const {
3465   return upb_msg_iter_oneof(&iter_);
3466 }
3467 inline void MessageDef::const_oneof_iterator::operator++() {
3468   return upb_msg_oneof_next(&iter_);
3469 }
3470 inline bool MessageDef::const_oneof_iterator::operator==(
3471     const const_oneof_iterator &other) const {
3472   return upb_strtable_iter_isequal(&iter_, &other.iter_);
3473 }
3474 inline bool MessageDef::const_oneof_iterator::operator!=(
3475     const const_oneof_iterator &other) const {
3476   return !(*this == other);
3477 }
3478 
3479 inline reffed_ptr<EnumDef> EnumDef::New() {
3480   upb_enumdef *e = upb_enumdef_new(&e);
3481   return reffed_ptr<EnumDef>(e, &e);
3482 }
3483 inline const char* EnumDef::full_name() const {
3484   return upb_enumdef_fullname(this);
3485 }
3486 inline const char* EnumDef::name() const {
3487   return upb_enumdef_name(this);
3488 }
3489 inline bool EnumDef::set_full_name(const char* fullname, Status* s) {
3490   return upb_enumdef_setfullname(this, fullname, s);
3491 }
3492 inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) {
3493   return upb_enumdef_setfullname(this, upb_safecstr(fullname), s);
3494 }
3495 inline bool EnumDef::Freeze(Status* status) {
3496   return upb_enumdef_freeze(this, status);
3497 }
3498 inline int32_t EnumDef::default_value() const {
3499   return upb_enumdef_default(this);
3500 }
3501 inline bool EnumDef::set_default_value(int32_t val, Status* status) {
3502   return upb_enumdef_setdefault(this, val, status);
3503 }
3504 inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); }
3505 inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) {
3506   return upb_enumdef_addval(this, name, num, status);
3507 }
3508 inline bool EnumDef::AddValue(const std::string& name, int32_t num,
3509                               Status* status) {
3510   return upb_enumdef_addval(this, upb_safecstr(name), num, status);
3511 }
3512 inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const {
3513   return upb_enumdef_ntoiz(this, name, num);
3514 }
3515 inline const char* EnumDef::FindValueByNumber(int32_t num) const {
3516   return upb_enumdef_iton(this, num);
3517 }
3518 inline EnumDef* EnumDef::Dup(const void* owner) const {
3519   return upb_enumdef_dup(this, owner);
3520 }
3521 
3522 inline EnumDef::Iterator::Iterator(const EnumDef* e) {
3523   upb_enum_begin(&iter_, e);
3524 }
3525 inline int32_t EnumDef::Iterator::number() {
3526   return upb_enum_iter_number(&iter_);
3527 }
3528 inline const char* EnumDef::Iterator::name() {
3529   return upb_enum_iter_name(&iter_);
3530 }
3531 inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); }
3532 inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); }
3533 
3534 inline reffed_ptr<OneofDef> OneofDef::New() {
3535   upb_oneofdef *o = upb_oneofdef_new(&o);
3536   return reffed_ptr<OneofDef>(o, &o);
3537 }
3538 
3539 inline const MessageDef* OneofDef::containing_type() const {
3540   return upb_oneofdef_containingtype(this);
3541 }
3542 inline const char* OneofDef::name() const {
3543   return upb_oneofdef_name(this);
3544 }
3545 inline bool OneofDef::set_name(const char* name, Status* s) {
3546   return upb_oneofdef_setname(this, name, s);
3547 }
3548 inline bool OneofDef::set_name(const std::string& name, Status* s) {
3549   return upb_oneofdef_setname(this, upb_safecstr(name), s);
3550 }
3551 inline int OneofDef::field_count() const {
3552   return upb_oneofdef_numfields(this);
3553 }
3554 inline bool OneofDef::AddField(FieldDef* field, Status* s) {
3555   return upb_oneofdef_addfield(this, field, NULL, s);
3556 }
3557 inline bool OneofDef::AddField(const reffed_ptr<FieldDef>& field, Status* s) {
3558   return upb_oneofdef_addfield(this, field.get(), NULL, s);
3559 }
3560 inline const FieldDef* OneofDef::FindFieldByName(const char* name,
3561                                                  size_t len) const {
3562   return upb_oneofdef_ntof(this, name, len);
3563 }
3564 inline const FieldDef* OneofDef::FindFieldByNumber(uint32_t num) const {
3565   return upb_oneofdef_itof(this, num);
3566 }
3567 inline OneofDef::iterator OneofDef::begin() { return iterator(this); }
3568 inline OneofDef::iterator OneofDef::end() { return iterator::end(this); }
3569 inline OneofDef::const_iterator OneofDef::begin() const {
3570   return const_iterator(this);
3571 }
3572 inline OneofDef::const_iterator OneofDef::end() const {
3573   return const_iterator::end(this);
3574 }
3575 
3576 inline OneofDef::iterator::iterator(OneofDef* o) {
3577   upb_oneof_begin(&iter_, o);
3578 }
3579 inline OneofDef::iterator OneofDef::iterator::end(OneofDef* o) {
3580   OneofDef::iterator iter(o);
3581   upb_oneof_iter_setdone(&iter.iter_);
3582   return iter;
3583 }
3584 inline FieldDef* OneofDef::iterator::operator*() const {
3585   return upb_oneof_iter_field(&iter_);
3586 }
3587 inline void OneofDef::iterator::operator++() { return upb_oneof_next(&iter_); }
3588 inline bool OneofDef::iterator::operator==(const iterator &other) const {
3589   return upb_inttable_iter_isequal(&iter_, &other.iter_);
3590 }
3591 inline bool OneofDef::iterator::operator!=(const iterator &other) const {
3592   return !(*this == other);
3593 }
3594 
3595 inline OneofDef::const_iterator::const_iterator(const OneofDef* md) {
3596   upb_oneof_begin(&iter_, md);
3597 }
3598 inline OneofDef::const_iterator OneofDef::const_iterator::end(
3599     const OneofDef *md) {
3600   OneofDef::const_iterator iter(md);
3601   upb_oneof_iter_setdone(&iter.iter_);
3602   return iter;
3603 }
3604 inline const FieldDef* OneofDef::const_iterator::operator*() const {
3605   return upb_msg_iter_field(&iter_);
3606 }
3607 inline void OneofDef::const_iterator::operator++() {
3608   return upb_oneof_next(&iter_);
3609 }
3610 inline bool OneofDef::const_iterator::operator==(
3611     const const_iterator &other) const {
3612   return upb_inttable_iter_isequal(&iter_, &other.iter_);
3613 }
3614 inline bool OneofDef::const_iterator::operator!=(
3615     const const_iterator &other) const {
3616   return !(*this == other);
3617 }
3618 
3619 inline reffed_ptr<FileDef> FileDef::New() {
3620   upb_filedef *f = upb_filedef_new(&f);
3621   return reffed_ptr<FileDef>(f, &f);
3622 }
3623 
3624 inline const char* FileDef::name() const {
3625   return upb_filedef_name(this);
3626 }
3627 inline bool FileDef::set_name(const char* name, Status* s) {
3628   return upb_filedef_setname(this, name, s);
3629 }
3630 inline bool FileDef::set_name(const std::string& name, Status* s) {
3631   return upb_filedef_setname(this, upb_safecstr(name), s);
3632 }
3633 inline const char* FileDef::package() const {
3634   return upb_filedef_package(this);
3635 }
3636 inline bool FileDef::set_package(const char* package, Status* s) {
3637   return upb_filedef_setpackage(this, package, s);
3638 }
3639 inline int FileDef::def_count() const {
3640   return upb_filedef_defcount(this);
3641 }
3642 inline const Def* FileDef::def(int index) const {
3643   return upb_filedef_def(this, index);
3644 }
3645 inline Def* FileDef::def(int index) {
3646   return const_cast<Def*>(upb_filedef_def(this, index));
3647 }
3648 inline int FileDef::dependency_count() const {
3649   return upb_filedef_depcount(this);
3650 }
3651 inline const FileDef* FileDef::dependency(int index) const {
3652   return upb_filedef_dep(this, index);
3653 }
3654 inline bool FileDef::AddDef(Def* def, Status* s) {
3655   return upb_filedef_adddef(this, def, NULL, s);
3656 }
3657 inline bool FileDef::AddMessage(MessageDef* m, Status* s) {
3658   return upb_filedef_addmsg(this, m, NULL, s);
3659 }
3660 inline bool FileDef::AddEnum(EnumDef* e, Status* s) {
3661   return upb_filedef_addenum(this, e, NULL, s);
3662 }
3663 inline bool FileDef::AddExtension(FieldDef* f, Status* s) {
3664   return upb_filedef_addext(this, f, NULL, s);
3665 }
3666 inline bool FileDef::AddDependency(const FileDef* file) {
3667   return upb_filedef_adddep(this, file);
3668 }
3669 
3670 }  /* namespace upb */
3671 #endif
3672 
3673 #endif /* UPB_DEF_H_ */
3674 /*
3675 ** This file contains definitions of structs that should be considered private
3676 ** and NOT stable across versions of upb.
3677 **
3678 ** The only reason they are declared here and not in .c files is to allow upb
3679 ** and the application (if desired) to embed statically-initialized instances
3680 ** of structures like defs.
3681 **
3682 ** If you include this file, all guarantees of ABI compatibility go out the
3683 ** window!  Any code that includes this file needs to recompile against the
3684 ** exact same version of upb that they are linking against.
3685 **
3686 ** You also need to recompile if you change the value of the UPB_DEBUG_REFS
3687 ** flag.
3688 */
3689 
3690 
3691 #ifndef UPB_STATICINIT_H_
3692 #define UPB_STATICINIT_H_
3693 
3694 #ifdef __cplusplus
3695 /* Because of how we do our typedefs, this header can't be included from C++. */
3696 #error This file cannot be included from C++
3697 #endif
3698 
3699 /* upb_refcounted *************************************************************/
3700 
3701 
3702 /* upb_def ********************************************************************/
3703 
3704 struct upb_def {
3705   upb_refcounted base;
3706 
3707   const char *fullname;
3708   const upb_filedef* file;
3709   char type;  /* A upb_deftype_t (char to save space) */
3710 
3711   /* Used as a flag during the def's mutable stage.  Must be false unless
3712    * it is currently being used by a function on the stack.  This allows
3713    * us to easily determine which defs were passed into the function's
3714    * current invocation. */
3715   bool came_from_user;
3716 };
3717 
3718 #define UPB_DEF_INIT(name, type, vtbl, refs, ref2s) \
3719     { UPB_REFCOUNT_INIT(vtbl, refs, ref2s), name, NULL, type, false }
3720 
3721 
3722 /* upb_fielddef ***************************************************************/
3723 
3724 struct upb_fielddef {
3725   upb_def base;
3726 
3727   union {
3728     int64_t sint;
3729     uint64_t uint;
3730     double dbl;
3731     float flt;
3732     void *bytes;
3733   } defaultval;
3734   union {
3735     const upb_msgdef *def;  /* If !msg_is_symbolic. */
3736     char *name;             /* If msg_is_symbolic. */
3737   } msg;
3738   union {
3739     const upb_def *def;  /* If !subdef_is_symbolic. */
3740     char *name;          /* If subdef_is_symbolic. */
3741   } sub;  /* The msgdef or enumdef for this field, if upb_hassubdef(f). */
3742   bool subdef_is_symbolic;
3743   bool msg_is_symbolic;
3744   const upb_oneofdef *oneof;
3745   bool default_is_string;
3746   bool type_is_set_;     /* False until type is explicitly set. */
3747   bool is_extension_;
3748   bool lazy_;
3749   bool packed_;
3750   upb_intfmt_t intfmt;
3751   bool tagdelim;
3752   upb_fieldtype_t type_;
3753   upb_label_t label_;
3754   uint32_t number_;
3755   uint32_t selector_base;  /* Used to index into a upb::Handlers table. */
3756   uint32_t index_;
3757 };
3758 
3759 extern const struct upb_refcounted_vtbl upb_fielddef_vtbl;
3760 
3761 #define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy,   \
3762                           packed, name, num, msgdef, subdef, selector_base,    \
3763                           index, defaultval, refs, ref2s)                      \
3764   {                                                                            \
3765     UPB_DEF_INIT(name, UPB_DEF_FIELD, &upb_fielddef_vtbl, refs, ref2s),        \
3766         defaultval, {msgdef}, {subdef}, NULL, false, false,                    \
3767         type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \
3768         lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \
3769   }
3770 
3771 
3772 /* upb_msgdef *****************************************************************/
3773 
3774 struct upb_msgdef {
3775   upb_def base;
3776 
3777   size_t selector_count;
3778   uint32_t submsg_field_count;
3779 
3780   /* Tables for looking up fields by number and name. */
3781   upb_inttable itof;  /* int to field */
3782   upb_strtable ntof;  /* name to field/oneof */
3783 
3784   /* Is this a map-entry message? */
3785   bool map_entry;
3786 
3787   /* Whether this message has proto2 or proto3 semantics. */
3788   upb_syntax_t syntax;
3789 
3790   /* TODO(haberman): proper extension ranges (there can be multiple). */
3791 };
3792 
3793 extern const struct upb_refcounted_vtbl upb_msgdef_vtbl;
3794 
3795 /* TODO: also support static initialization of the oneofs table. This will be
3796  * needed if we compile in descriptors that contain oneofs. */
3797 #define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \
3798                         map_entry, syntax, refs, ref2s)                       \
3799   {                                                                           \
3800     UPB_DEF_INIT(name, UPB_DEF_MSG, &upb_fielddef_vtbl, refs, ref2s),         \
3801         selector_count, submsg_field_count, itof, ntof, map_entry, syntax     \
3802   }
3803 
3804 
3805 /* upb_enumdef ****************************************************************/
3806 
3807 struct upb_enumdef {
3808   upb_def base;
3809 
3810   upb_strtable ntoi;
3811   upb_inttable iton;
3812   int32_t defaultval;
3813 };
3814 
3815 extern const struct upb_refcounted_vtbl upb_enumdef_vtbl;
3816 
3817 #define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \
3818   { UPB_DEF_INIT(name, UPB_DEF_ENUM, &upb_enumdef_vtbl, refs, ref2s), ntoi,    \
3819     iton, defaultval }
3820 
3821 
3822 /* upb_oneofdef ***************************************************************/
3823 
3824 struct upb_oneofdef {
3825   upb_refcounted base;
3826 
3827   const char *name;
3828   upb_strtable ntof;
3829   upb_inttable itof;
3830   const upb_msgdef *parent;
3831 };
3832 
3833 extern const struct upb_refcounted_vtbl upb_oneofdef_vtbl;
3834 
3835 #define UPB_ONEOFDEF_INIT(name, ntof, itof, refs, ref2s) \
3836   { UPB_REFCOUNT_INIT(&upb_oneofdef_vtbl, refs, ref2s), name, ntof, itof }
3837 
3838 
3839 /* upb_symtab *****************************************************************/
3840 
3841 struct upb_symtab {
3842   upb_refcounted base;
3843 
3844   upb_strtable symtab;
3845 };
3846 
3847 struct upb_filedef {
3848   upb_refcounted base;
3849 
3850   const char *name;
3851   const char *package;
3852   upb_syntax_t syntax;
3853 
3854   upb_inttable defs;
3855   upb_inttable deps;
3856 };
3857 
3858 extern const struct upb_refcounted_vtbl upb_filedef_vtbl;
3859 
3860 #endif  /* UPB_STATICINIT_H_ */
3861 /*
3862 ** upb::Handlers (upb_handlers)
3863 **
3864 ** A upb_handlers is like a virtual table for a upb_msgdef.  Each field of the
3865 ** message can have associated functions that will be called when we are
3866 ** parsing or visiting a stream of data.  This is similar to how handlers work
3867 ** in SAX (the Simple API for XML).
3868 **
3869 ** The handlers have no idea where the data is coming from, so a single set of
3870 ** handlers could be used with two completely different data sources (for
3871 ** example, a parser and a visitor over in-memory objects).  This decoupling is
3872 ** the most important feature of upb, because it allows parsers and serializers
3873 ** to be highly reusable.
3874 **
3875 ** This is a mixed C/C++ interface that offers a full API to both languages.
3876 ** See the top-level README for more information.
3877 */
3878 
3879 #ifndef UPB_HANDLERS_H
3880 #define UPB_HANDLERS_H
3881 
3882 
3883 #ifdef __cplusplus
3884 namespace upb {
3885 class BufferHandle;
3886 class BytesHandler;
3887 class HandlerAttributes;
3888 class Handlers;
3889 template <class T> class Handler;
3890 template <class T> struct CanonicalType;
3891 }  /* namespace upb */
3892 #endif
3893 
3894 UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle)
3895 UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler)
3896 UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr)
3897 UPB_DECLARE_DERIVED_TYPE(upb::Handlers, upb::RefCounted,
3898                          upb_handlers, upb_refcounted)
3899 
3900 /* The maximum depth that the handler graph can have.  This is a resource limit
3901  * for the C stack since we sometimes need to recursively traverse the graph.
3902  * Cycles are ok; the traversal will stop when it detects a cycle, but we must
3903  * hit the cycle before the maximum depth is reached.
3904  *
3905  * If having a single static limit is too inflexible, we can add another variant
3906  * of Handlers::Freeze that allows specifying this as a parameter. */
3907 #define UPB_MAX_HANDLER_DEPTH 64
3908 
3909 /* All the different types of handlers that can be registered.
3910  * Only needed for the advanced functions in upb::Handlers. */
3911 typedef enum {
3912   UPB_HANDLER_INT32,
3913   UPB_HANDLER_INT64,
3914   UPB_HANDLER_UINT32,
3915   UPB_HANDLER_UINT64,
3916   UPB_HANDLER_FLOAT,
3917   UPB_HANDLER_DOUBLE,
3918   UPB_HANDLER_BOOL,
3919   UPB_HANDLER_STARTSTR,
3920   UPB_HANDLER_STRING,
3921   UPB_HANDLER_ENDSTR,
3922   UPB_HANDLER_STARTSUBMSG,
3923   UPB_HANDLER_ENDSUBMSG,
3924   UPB_HANDLER_STARTSEQ,
3925   UPB_HANDLER_ENDSEQ
3926 } upb_handlertype_t;
3927 
3928 #define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1)
3929 
3930 #define UPB_BREAK NULL
3931 
3932 /* A convenient definition for when no closure is needed. */
3933 extern char _upb_noclosure;
3934 #define UPB_NO_CLOSURE &_upb_noclosure
3935 
3936 /* A selector refers to a specific field handler in the Handlers object
3937  * (for example: the STARTSUBMSG handler for field "field15"). */
3938 typedef int32_t upb_selector_t;
3939 
3940 UPB_BEGIN_EXTERN_C
3941 
3942 /* Forward-declares for C inline accessors.  We need to declare these here
3943  * so we can "friend" them in the class declarations in C++. */
3944 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
3945                                              upb_selector_t s);
3946 UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr);
3947 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
3948                                                    upb_selector_t s);
3949 
3950 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h);
3951 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
3952                                      const void *type);
3953 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
3954                                      size_t ofs);
3955 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h);
3956 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h);
3957 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h);
3958 
3959 UPB_END_EXTERN_C
3960 
3961 
3962 /* Static selectors for upb::Handlers. */
3963 #define UPB_STARTMSG_SELECTOR 0
3964 #define UPB_ENDMSG_SELECTOR 1
3965 #define UPB_STATIC_SELECTOR_COUNT 2
3966 
3967 /* Static selectors for upb::BytesHandler. */
3968 #define UPB_STARTSTR_SELECTOR 0
3969 #define UPB_STRING_SELECTOR 1
3970 #define UPB_ENDSTR_SELECTOR 2
3971 
3972 typedef void upb_handlerfree(void *d);
3973 
3974 #ifdef __cplusplus
3975 
3976 /* A set of attributes that accompanies a handler's function pointer. */
3977 class upb::HandlerAttributes {
3978  public:
3979   HandlerAttributes();
3980   ~HandlerAttributes();
3981 
3982   /* Sets the handler data that will be passed as the second parameter of the
3983    * handler.  To free this pointer when the handlers are freed, call
3984    * Handlers::AddCleanup(). */
3985   bool SetHandlerData(const void *handler_data);
3986   const void* handler_data() const;
3987 
3988   /* Use this to specify the type of the closure.  This will be checked against
3989    * all other closure types for handler that use the same closure.
3990    * Registration will fail if this does not match all other non-NULL closure
3991    * types. */
3992   bool SetClosureType(const void *closure_type);
3993   const void* closure_type() const;
3994 
3995   /* Use this to specify the type of the returned closure.  Only used for
3996    * Start*{String,SubMessage,Sequence} handlers.  This must match the closure
3997    * type of any handlers that use it (for example, the StringBuf handler must
3998    * match the closure returned from StartString). */
3999   bool SetReturnClosureType(const void *return_closure_type);
4000   const void* return_closure_type() const;
4001 
4002   /* Set to indicate that the handler always returns "ok" (either "true" or a
4003    * non-NULL closure).  This is a hint that can allow code generators to
4004    * generate more efficient code. */
4005   bool SetAlwaysOk(bool always_ok);
4006   bool always_ok() const;
4007 
4008  private:
4009   friend UPB_INLINE const void * ::upb_handlerattr_handlerdata(
4010       const upb_handlerattr *attr);
4011 #else
4012 struct upb_handlerattr {
4013 #endif
4014   const void *handler_data_;
4015   const void *closure_type_;
4016   const void *return_closure_type_;
4017   bool alwaysok_;
4018 };
4019 
4020 #define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false}
4021 
4022 typedef struct {
4023   upb_func *func;
4024 
4025   /* It is wasteful to include the entire attributes here:
4026    *
4027    * * Some of the information is redundant (like storing the closure type
4028    *   separately for each handler that must match).
4029    * * Some of the info is only needed prior to freeze() (like closure types).
4030    * * alignment padding wastes a lot of space for alwaysok_.
4031    *
4032    * If/when the size and locality of handlers is an issue, we can optimize this
4033    * not to store the entire attr like this.  We do not expose the table's
4034    * layout to allow this optimization in the future. */
4035   upb_handlerattr attr;
4036 } upb_handlers_tabent;
4037 
4038 #ifdef __cplusplus
4039 
4040 /* Extra information about a buffer that is passed to a StringBuf handler.
4041  * TODO(haberman): allow the handle to be pinned so that it will outlive
4042  * the handler invocation. */
4043 class upb::BufferHandle {
4044  public:
4045   BufferHandle();
4046   ~BufferHandle();
4047 
4048   /* The beginning of the buffer.  This may be different than the pointer
4049    * passed to a StringBuf handler because the handler may receive data
4050    * that is from the middle or end of a larger buffer. */
4051   const char* buffer() const;
4052 
4053   /* The offset within the attached object where this buffer begins.  Only
4054    * meaningful if there is an attached object. */
4055   size_t object_offset() const;
4056 
4057   /* Note that object_offset is the offset of "buf" within the attached
4058    * object. */
4059   void SetBuffer(const char* buf, size_t object_offset);
4060 
4061   /* The BufferHandle can have an "attached object", which can be used to
4062    * tunnel through a pointer to the buffer's underlying representation. */
4063   template <class T>
4064   void SetAttachedObject(const T* obj);
4065 
4066   /* Returns NULL if the attached object is not of this type. */
4067   template <class T>
4068   const T* GetAttachedObject() const;
4069 
4070  private:
4071   friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h);
4072   friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h,
4073                                                 const void *obj,
4074                                                 const void *type);
4075   friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h,
4076                                                 const char *buf, size_t ofs);
4077   friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h);
4078   friend UPB_INLINE const void* ::upb_bufhandle_objtype(
4079       const upb_bufhandle *h);
4080   friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h);
4081 #else
4082 struct upb_bufhandle {
4083 #endif
4084   const char *buf_;
4085   const void *obj_;
4086   const void *objtype_;
4087   size_t objofs_;
4088 };
4089 
4090 #ifdef __cplusplus
4091 
4092 /* A upb::Handlers object represents the set of handlers associated with a
4093  * message in the graph of messages.  You can think of it as a big virtual
4094  * table with functions corresponding to all the events that can fire while
4095  * parsing or visiting a message of a specific type.
4096  *
4097  * Any handlers that are not set behave as if they had successfully consumed
4098  * the value.  Any unset Start* handlers will propagate their closure to the
4099  * inner frame.
4100  *
4101  * The easiest way to create the *Handler objects needed by the Set* methods is
4102  * with the UpbBind() and UpbMakeHandler() macros; see below. */
4103 class upb::Handlers {
4104  public:
4105   typedef upb_selector_t Selector;
4106   typedef upb_handlertype_t Type;
4107 
4108   typedef Handler<void *(*)(void *, const void *)> StartFieldHandler;
4109   typedef Handler<bool (*)(void *, const void *)> EndFieldHandler;
4110   typedef Handler<bool (*)(void *, const void *)> StartMessageHandler;
4111   typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler;
4112   typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler;
4113   typedef Handler<size_t (*)(void *, const void *, const char *, size_t,
4114                              const BufferHandle *)> StringHandler;
4115 
4116   template <class T> struct ValueHandler {
4117     typedef Handler<bool(*)(void *, const void *, T)> H;
4118   };
4119 
4120   typedef ValueHandler<int32_t>::H     Int32Handler;
4121   typedef ValueHandler<int64_t>::H     Int64Handler;
4122   typedef ValueHandler<uint32_t>::H    UInt32Handler;
4123   typedef ValueHandler<uint64_t>::H    UInt64Handler;
4124   typedef ValueHandler<float>::H       FloatHandler;
4125   typedef ValueHandler<double>::H      DoubleHandler;
4126   typedef ValueHandler<bool>::H        BoolHandler;
4127 
4128   /* Any function pointer can be converted to this and converted back to its
4129    * correct type. */
4130   typedef void GenericFunction();
4131 
4132   typedef void HandlersCallback(const void *closure, upb_handlers *h);
4133 
4134   /* Returns a new handlers object for the given frozen msgdef.
4135    * Returns NULL if memory allocation failed. */
4136   static reffed_ptr<Handlers> New(const MessageDef *m);
4137 
4138   /* Convenience function for registering a graph of handlers that mirrors the
4139    * graph of msgdefs for some message.  For "m" and all its children a new set
4140    * of handlers will be created and the given callback will be invoked,
4141    * allowing the client to register handlers for this message.  Note that any
4142    * subhandlers set by the callback will be overwritten. */
4143   static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m,
4144                                               HandlersCallback *callback,
4145                                               const void *closure);
4146 
4147   /* Functionality from upb::RefCounted. */
4148   UPB_REFCOUNTED_CPPMETHODS
4149 
4150   /* All handler registration functions return bool to indicate success or
4151    * failure; details about failures are stored in this status object.  If a
4152    * failure does occur, it must be cleared before the Handlers are frozen,
4153    * otherwise the freeze() operation will fail.  The functions may *only* be
4154    * used while the Handlers are mutable. */
4155   const Status* status();
4156   void ClearError();
4157 
4158   /* Call to freeze these Handlers.  Requires that any SubHandlers are already
4159    * frozen.  For cycles, you must use the static version below and freeze the
4160    * whole graph at once. */
4161   bool Freeze(Status* s);
4162 
4163   /* Freezes the given set of handlers.  You may not freeze a handler without
4164    * also freezing any handlers they point to. */
4165   static bool Freeze(Handlers*const* handlers, int n, Status* s);
4166   static bool Freeze(const std::vector<Handlers*>& handlers, Status* s);
4167 
4168   /* Returns the msgdef associated with this handlers object. */
4169   const MessageDef* message_def() const;
4170 
4171   /* Adds the given pointer and function to the list of cleanup functions that
4172    * will be run when these handlers are freed.  If this pointer has previously
4173    * been registered, the function returns false and does nothing. */
4174   bool AddCleanup(void *ptr, upb_handlerfree *cleanup);
4175 
4176   /* Sets the startmsg handler for the message, which is defined as follows:
4177    *
4178    *   bool startmsg(MyType* closure) {
4179    *     // Called when the message begins.  Returns true if processing should
4180    *     // continue.
4181    *     return true;
4182    *   }
4183    */
4184   bool SetStartMessageHandler(const StartMessageHandler& handler);
4185 
4186   /* Sets the endmsg handler for the message, which is defined as follows:
4187    *
4188    *   bool endmsg(MyType* closure, upb_status *status) {
4189    *     // Called when processing of this message ends, whether in success or
4190    *     // failure.  "status" indicates the final status of processing, and
4191    *     // can also be modified in-place to update the final status.
4192    *   }
4193    */
4194   bool SetEndMessageHandler(const EndMessageHandler& handler);
4195 
4196   /* Sets the value handler for the given field, which is defined as follows
4197    * (this is for an int32 field; other field types will pass their native
4198    * C/C++ type for "val"):
4199    *
4200    *   bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
4201    *     // Called when the field's value is encountered.  "d" contains
4202    *     // whatever data was bound to this field when it was registered.
4203    *     // Returns true if processing should continue.
4204    *     return true;
4205    *   }
4206    *
4207    *   handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...)));
4208    *
4209    * The value type must exactly match f->type().
4210    * For example, a handler that takes an int32_t parameter may only be used for
4211    * fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM.
4212    *
4213    * Returns false if the handler failed to register; in this case the cleanup
4214    * handler (if any) will be called immediately.
4215    */
4216   bool SetInt32Handler (const FieldDef* f,  const Int32Handler& h);
4217   bool SetInt64Handler (const FieldDef* f,  const Int64Handler& h);
4218   bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h);
4219   bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h);
4220   bool SetFloatHandler (const FieldDef* f,  const FloatHandler& h);
4221   bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h);
4222   bool SetBoolHandler  (const FieldDef* f,   const BoolHandler& h);
4223 
4224   /* Like the previous, but templated on the type on the value (ie. int32).
4225    * This is mostly useful to call from other templates.  To call this you must
4226    * specify the template parameter explicitly, ie:
4227    *   h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData)); */
4228   template <class T>
4229   bool SetValueHandler(
4230       const FieldDef *f,
4231       const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler);
4232 
4233   /* Sets handlers for a string field, which are defined as follows:
4234    *
4235    *   MySubClosure* startstr(MyClosure* c, const MyHandlerData* d,
4236    *                          size_t size_hint) {
4237    *     // Called when a string value begins.  The return value indicates the
4238    *     // closure for the string.  "size_hint" indicates the size of the
4239    *     // string if it is known, however if the string is length-delimited
4240    *     // and the end-of-string is not available size_hint will be zero.
4241    *     // This case is indistinguishable from the case where the size is
4242    *     // known to be zero.
4243    *     //
4244    *     // TODO(haberman): is it important to distinguish these cases?
4245    *     // If we had ssize_t as a type we could make -1 "unknown", but
4246    *     // ssize_t is POSIX (not ANSI) and therefore less portable.
4247    *     // In practice I suspect it won't be important to distinguish.
4248    *     return closure;
4249    *   }
4250    *
4251    *   size_t str(MyClosure* closure, const MyHandlerData* d,
4252    *              const char *str, size_t len) {
4253    *     // Called for each buffer of string data; the multiple physical buffers
4254    *     // are all part of the same logical string.  The return value indicates
4255    *     // how many bytes were consumed.  If this number is less than "len",
4256    *     // this will also indicate that processing should be halted for now,
4257    *     // like returning false or UPB_BREAK from any other callback.  If
4258    *     // number is greater than "len", the excess bytes will be skipped over
4259    *     // and not passed to the callback.
4260    *     return len;
4261    *   }
4262    *
4263    *   bool endstr(MyClosure* c, const MyHandlerData* d) {
4264    *     // Called when a string value ends.  Return value indicates whether
4265    *     // processing should continue.
4266    *     return true;
4267    *   }
4268    */
4269   bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h);
4270   bool SetStringHandler(const FieldDef* f, const StringHandler& h);
4271   bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h);
4272 
4273   /* Sets the startseq handler, which is defined as follows:
4274    *
4275    *   MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) {
4276    *     // Called when a sequence (repeated field) begins.  The returned
4277    *     // pointer indicates the closure for the sequence (or UPB_BREAK
4278    *     // to interrupt processing).
4279    *     return closure;
4280    *   }
4281    *
4282    *   h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...)));
4283    *
4284    * Returns "false" if "f" does not belong to this message or is not a
4285    * repeated field.
4286    */
4287   bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h);
4288 
4289   /* Sets the startsubmsg handler for the given field, which is defined as
4290    * follows:
4291    *
4292    *   MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) {
4293    *     // Called when a submessage begins.  The returned pointer indicates the
4294    *     // closure for the sequence (or UPB_BREAK to interrupt processing).
4295    *     return closure;
4296    *   }
4297    *
4298    *   h->SetStartSubMessageHandler(f, UpbBind(startsubmsg,
4299    *                                           new MyHandlerData(...)));
4300    *
4301    * Returns "false" if "f" does not belong to this message or is not a
4302    * submessage/group field.
4303    */
4304   bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h);
4305 
4306   /* Sets the endsubmsg handler for the given field, which is defined as
4307    * follows:
4308    *
4309    *   bool endsubmsg(MyClosure* c, const MyHandlerData* d) {
4310    *     // Called when a submessage ends.  Returns true to continue processing.
4311    *     return true;
4312    *   }
4313    *
4314    * Returns "false" if "f" does not belong to this message or is not a
4315    * submessage/group field.
4316    */
4317   bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h);
4318 
4319   /* Starts the endsubseq handler for the given field, which is defined as
4320    * follows:
4321    *
4322    *   bool endseq(MyClosure* c, const MyHandlerData* d) {
4323    *     // Called when a sequence ends.  Returns true continue processing.
4324    *     return true;
4325    *   }
4326    *
4327    * Returns "false" if "f" does not belong to this message or is not a
4328    * repeated field.
4329    */
4330   bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h);
4331 
4332   /* Sets or gets the object that specifies handlers for the given field, which
4333    * must be a submessage or group.  Returns NULL if no handlers are set. */
4334   bool SetSubHandlers(const FieldDef* f, const Handlers* sub);
4335   const Handlers* GetSubHandlers(const FieldDef* f) const;
4336 
4337   /* Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the
4338    * field. */
4339   const Handlers* GetSubHandlers(Selector startsubmsg) const;
4340 
4341   /* A selector refers to a specific field handler in the Handlers object
4342    * (for example: the STARTSUBMSG handler for field "field15").
4343    * On success, returns true and stores the selector in "s".
4344    * If the FieldDef or Type are invalid, returns false.
4345    * The returned selector is ONLY valid for Handlers whose MessageDef
4346    * contains this FieldDef. */
4347   static bool GetSelector(const FieldDef* f, Type type, Selector* s);
4348 
4349   /* Given a START selector of any kind, returns the corresponding END selector. */
4350   static Selector GetEndSelector(Selector start_selector);
4351 
4352   /* Returns the function pointer for this handler.  It is the client's
4353    * responsibility to cast to the correct function type before calling it. */
4354   GenericFunction* GetHandler(Selector selector);
4355 
4356   /* Sets the given attributes to the attributes for this selector. */
4357   bool GetAttributes(Selector selector, HandlerAttributes* attr);
4358 
4359   /* Returns the handler data that was registered with this handler. */
4360   const void* GetHandlerData(Selector selector);
4361 
4362   /* Could add any of the following functions as-needed, with some minor
4363    * implementation changes:
4364    *
4365    * const FieldDef* GetFieldDef(Selector selector);
4366    * static bool IsSequence(Selector selector); */
4367 
4368  private:
4369   UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers)
4370 
4371   friend UPB_INLINE GenericFunction *::upb_handlers_gethandler(
4372       const upb_handlers *h, upb_selector_t s);
4373   friend UPB_INLINE const void *::upb_handlers_gethandlerdata(
4374       const upb_handlers *h, upb_selector_t s);
4375 #else
4376 struct upb_handlers {
4377 #endif
4378   upb_refcounted base;
4379 
4380   const upb_msgdef *msg;
4381   const upb_handlers **sub;
4382   const void *top_closure_type;
4383   upb_inttable cleanup_;
4384   upb_status status_;  /* Used only when mutable. */
4385   upb_handlers_tabent table[1];  /* Dynamically-sized field handler array. */
4386 };
4387 
4388 #ifdef __cplusplus
4389 
4390 namespace upb {
4391 
4392 /* Convenience macros for creating a Handler object that is wrapped with a
4393  * type-safe wrapper function that converts the "void*" parameters/returns
4394  * of the underlying C API into nice C++ function.
4395  *
4396  * Sample usage:
4397  *   void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) {
4398  *     // do stuff ...
4399  *   }
4400  *
4401  *   // Handler that doesn't need any data bound to it.
4402  *   void OnValue2(MyClosure* c, int32_t val) {
4403  *     // do stuff ...
4404  *   }
4405  *
4406  *   // Handler that returns bool so it can return failure if necessary.
4407  *   bool OnValue3(MyClosure* c, int32_t val) {
4408  *     // do stuff ...
4409  *     return ok;
4410  *   }
4411  *
4412  *   // Member function handler.
4413  *   class MyClosure {
4414  *    public:
4415  *     void OnValue(int32_t val) {
4416  *       // do stuff ...
4417  *     }
4418  *   };
4419  *
4420  *   // Takes ownership of the MyHandlerData.
4421  *   handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...)));
4422  *   handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2));
4423  *   handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3));
4424  *   handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue));
4425  */
4426 
4427 #ifdef UPB_CXX11
4428 
4429 /* In C++11, the "template" disambiguator can appear even outside templates,
4430  * so all calls can safely use this pair of macros. */
4431 
4432 #define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>()
4433 
4434 /* We have to be careful to only evaluate "d" once. */
4435 #define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
4436 
4437 #else
4438 
4439 /* Prior to C++11, the "template" disambiguator may only appear inside a
4440  * template, so the regular macro must not use "template" */
4441 
4442 #define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>()
4443 
4444 #define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d))
4445 
4446 #endif  /* UPB_CXX11 */
4447 
4448 /* This macro must be used in C++98 for calls from inside a template.  But we
4449  * define this variant in all cases; code that wants to be compatible with both
4450  * C++98 and C++11 should always use this macro when calling from a template. */
4451 #define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>()
4452 
4453 /* We have to be careful to only evaluate "d" once. */
4454 #define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
4455 
4456 /* Handler: a struct that contains the (handler, data, deleter) tuple that is
4457  * used to register all handlers.  Users can Make() these directly but it's
4458  * more convenient to use the UpbMakeHandler/UpbBind macros above. */
4459 template <class T> class Handler {
4460  public:
4461   /* The underlying, handler function signature that upb uses internally. */
4462   typedef T FuncPtr;
4463 
4464   /* Intentionally implicit. */
4465   template <class F> Handler(F func);
4466   ~Handler();
4467 
4468  private:
4469   void AddCleanup(Handlers* h) const {
4470     if (cleanup_func_) {
4471       bool ok = h->AddCleanup(cleanup_data_, cleanup_func_);
4472       UPB_ASSERT_VAR(ok, ok);
4473     }
4474   }
4475 
4476   UPB_DISALLOW_COPY_AND_ASSIGN(Handler)
4477   friend class Handlers;
4478   FuncPtr handler_;
4479   mutable HandlerAttributes attr_;
4480   mutable bool registered_;
4481   void *cleanup_data_;
4482   upb_handlerfree *cleanup_func_;
4483 };
4484 
4485 }  /* namespace upb */
4486 
4487 #endif  /* __cplusplus */
4488 
4489 UPB_BEGIN_EXTERN_C
4490 
4491 /* Native C API. */
4492 
4493 /* Handler function typedefs. */
4494 typedef bool upb_startmsg_handlerfunc(void *c, const void*);
4495 typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status);
4496 typedef void* upb_startfield_handlerfunc(void *c, const void *hd);
4497 typedef bool upb_endfield_handlerfunc(void *c, const void *hd);
4498 typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val);
4499 typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val);
4500 typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val);
4501 typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val);
4502 typedef bool upb_float_handlerfunc(void *c, const void *hd, float val);
4503 typedef bool upb_double_handlerfunc(void *c, const void *hd, double val);
4504 typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val);
4505 typedef void *upb_startstr_handlerfunc(void *c, const void *hd,
4506                                        size_t size_hint);
4507 typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf,
4508                                       size_t n, const upb_bufhandle* handle);
4509 
4510 /* upb_bufhandle */
4511 size_t upb_bufhandle_objofs(const upb_bufhandle *h);
4512 
4513 /* upb_handlerattr */
4514 void upb_handlerattr_init(upb_handlerattr *attr);
4515 void upb_handlerattr_uninit(upb_handlerattr *attr);
4516 
4517 bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd);
4518 bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type);
4519 const void *upb_handlerattr_closuretype(const upb_handlerattr *attr);
4520 bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
4521                                           const void *type);
4522 const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr);
4523 bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok);
4524 bool upb_handlerattr_alwaysok(const upb_handlerattr *attr);
4525 
4526 UPB_INLINE const void *upb_handlerattr_handlerdata(
4527     const upb_handlerattr *attr) {
4528   return attr->handler_data_;
4529 }
4530 
4531 /* upb_handlers */
4532 typedef void upb_handlers_callback(const void *closure, upb_handlers *h);
4533 upb_handlers *upb_handlers_new(const upb_msgdef *m,
4534                                const void *owner);
4535 const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
4536                                            const void *owner,
4537                                            upb_handlers_callback *callback,
4538                                            const void *closure);
4539 
4540 /* Include refcounted methods like upb_handlers_ref(). */
4541 UPB_REFCOUNTED_CMETHODS(upb_handlers, upb_handlers_upcast)
4542 
4543 const upb_status *upb_handlers_status(upb_handlers *h);
4544 void upb_handlers_clearerr(upb_handlers *h);
4545 const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h);
4546 bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree);
4547 
4548 bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
4549                               upb_handlerattr *attr);
4550 bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
4551                             upb_handlerattr *attr);
4552 bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f,
4553                            upb_int32_handlerfunc *func, upb_handlerattr *attr);
4554 bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f,
4555                            upb_int64_handlerfunc *func, upb_handlerattr *attr);
4556 bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f,
4557                             upb_uint32_handlerfunc *func,
4558                             upb_handlerattr *attr);
4559 bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f,
4560                             upb_uint64_handlerfunc *func,
4561                             upb_handlerattr *attr);
4562 bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f,
4563                            upb_float_handlerfunc *func, upb_handlerattr *attr);
4564 bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f,
4565                             upb_double_handlerfunc *func,
4566                             upb_handlerattr *attr);
4567 bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f,
4568                           upb_bool_handlerfunc *func,
4569                           upb_handlerattr *attr);
4570 bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f,
4571                               upb_startstr_handlerfunc *func,
4572                               upb_handlerattr *attr);
4573 bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f,
4574                             upb_string_handlerfunc *func,
4575                             upb_handlerattr *attr);
4576 bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f,
4577                             upb_endfield_handlerfunc *func,
4578                             upb_handlerattr *attr);
4579 bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f,
4580                               upb_startfield_handlerfunc *func,
4581                               upb_handlerattr *attr);
4582 bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f,
4583                                  upb_startfield_handlerfunc *func,
4584                                  upb_handlerattr *attr);
4585 bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f,
4586                                upb_endfield_handlerfunc *func,
4587                                upb_handlerattr *attr);
4588 bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f,
4589                             upb_endfield_handlerfunc *func,
4590                             upb_handlerattr *attr);
4591 
4592 bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
4593                                  const upb_handlers *sub);
4594 const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
4595                                                 const upb_fielddef *f);
4596 const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
4597                                                     upb_selector_t sel);
4598 
4599 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
4600                                              upb_selector_t s) {
4601   return (upb_func *)h->table[s].func;
4602 }
4603 
4604 bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s,
4605                           upb_handlerattr *attr);
4606 
4607 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
4608                                                    upb_selector_t s) {
4609   return upb_handlerattr_handlerdata(&h->table[s].attr);
4610 }
4611 
4612 #ifdef __cplusplus
4613 
4614 /* Handler types for single fields.
4615  * Right now we only have one for TYPE_BYTES but ones for other types
4616  * should follow.
4617  *
4618  * These follow the same handlers protocol for fields of a message. */
4619 class upb::BytesHandler {
4620  public:
4621   BytesHandler();
4622   ~BytesHandler();
4623 #else
4624 struct upb_byteshandler {
4625 #endif
4626   upb_handlers_tabent table[3];
4627 };
4628 
4629 void upb_byteshandler_init(upb_byteshandler *h);
4630 
4631 /* Caller must ensure that "d" outlives the handlers.
4632  * TODO(haberman): should this have a "freeze" operation?  It's not necessary
4633  * for memory management, but could be useful to force immutability and provide
4634  * a convenient moment to verify that all registration succeeded. */
4635 bool upb_byteshandler_setstartstr(upb_byteshandler *h,
4636                                   upb_startstr_handlerfunc *func, void *d);
4637 bool upb_byteshandler_setstring(upb_byteshandler *h,
4638                                 upb_string_handlerfunc *func, void *d);
4639 bool upb_byteshandler_setendstr(upb_byteshandler *h,
4640                                 upb_endfield_handlerfunc *func, void *d);
4641 
4642 /* "Static" methods */
4643 bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s);
4644 upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f);
4645 bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
4646                               upb_selector_t *s);
4647 UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) {
4648   return start + 1;
4649 }
4650 
4651 /* Internal-only. */
4652 uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f);
4653 uint32_t upb_handlers_selectorcount(const upb_fielddef *f);
4654 
4655 UPB_END_EXTERN_C
4656 
4657 /*
4658 ** Inline definitions for handlers.h, which are particularly long and a bit
4659 ** tricky.
4660 */
4661 
4662 #ifndef UPB_HANDLERS_INL_H_
4663 #define UPB_HANDLERS_INL_H_
4664 
4665 #include <limits.h>
4666 
4667 /* C inline methods. */
4668 
4669 /* upb_bufhandle */
4670 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) {
4671   h->obj_ = NULL;
4672   h->objtype_ = NULL;
4673   h->buf_ = NULL;
4674   h->objofs_ = 0;
4675 }
4676 UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) {
4677   UPB_UNUSED(h);
4678 }
4679 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
4680                                      const void *type) {
4681   h->obj_ = obj;
4682   h->objtype_ = type;
4683 }
4684 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
4685                                      size_t ofs) {
4686   h->buf_ = buf;
4687   h->objofs_ = ofs;
4688 }
4689 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) {
4690   return h->obj_;
4691 }
4692 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) {
4693   return h->objtype_;
4694 }
4695 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) {
4696   return h->buf_;
4697 }
4698 
4699 
4700 #ifdef __cplusplus
4701 
4702 /* Type detection and typedefs for integer types.
4703  * For platforms where there are multiple 32-bit or 64-bit types, we need to be
4704  * able to enumerate them so we can properly create overloads for all variants.
4705  *
4706  * If any platform existed where there were three integer types with the same
4707  * size, this would have to become more complicated.  For example, short, int,
4708  * and long could all be 32-bits.  Even more diabolically, short, int, long,
4709  * and long long could all be 64 bits and still be standard-compliant.
4710  * However, few platforms are this strange, and it's unlikely that upb will be
4711  * used on the strangest ones. */
4712 
4713 /* Can't count on stdint.h limits like INT32_MAX, because in C++ these are
4714  * only defined when __STDC_LIMIT_MACROS are defined before the *first* include
4715  * of stdint.h.  We can't guarantee that someone else didn't include these first
4716  * without defining __STDC_LIMIT_MACROS. */
4717 #define UPB_INT32_MAX 0x7fffffffLL
4718 #define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
4719 #define UPB_INT64_MAX 0x7fffffffffffffffLL
4720 #define UPB_INT64_MIN (-UPB_INT64_MAX - 1)
4721 
4722 #if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
4723 #define UPB_INT_IS_32BITS 1
4724 #endif
4725 
4726 #if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
4727 #define UPB_LONG_IS_32BITS 1
4728 #endif
4729 
4730 #if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
4731 #define UPB_LONG_IS_64BITS 1
4732 #endif
4733 
4734 #if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
4735 #define UPB_LLONG_IS_64BITS 1
4736 #endif
4737 
4738 /* We use macros instead of typedefs so we can undefine them later and avoid
4739  * leaking them outside this header file. */
4740 #if UPB_INT_IS_32BITS
4741 #define UPB_INT32_T int
4742 #define UPB_UINT32_T unsigned int
4743 
4744 #if UPB_LONG_IS_32BITS
4745 #define UPB_TWO_32BIT_TYPES 1
4746 #define UPB_INT32ALT_T long
4747 #define UPB_UINT32ALT_T unsigned long
4748 #endif  /* UPB_LONG_IS_32BITS */
4749 
4750 #elif UPB_LONG_IS_32BITS  /* && !UPB_INT_IS_32BITS */
4751 #define UPB_INT32_T long
4752 #define UPB_UINT32_T unsigned long
4753 #endif  /* UPB_INT_IS_32BITS */
4754 
4755 
4756 #if UPB_LONG_IS_64BITS
4757 #define UPB_INT64_T long
4758 #define UPB_UINT64_T unsigned long
4759 
4760 #if UPB_LLONG_IS_64BITS
4761 #define UPB_TWO_64BIT_TYPES 1
4762 #define UPB_INT64ALT_T long long
4763 #define UPB_UINT64ALT_T unsigned long long
4764 #endif  /* UPB_LLONG_IS_64BITS */
4765 
4766 #elif UPB_LLONG_IS_64BITS  /* && !UPB_LONG_IS_64BITS */
4767 #define UPB_INT64_T long long
4768 #define UPB_UINT64_T unsigned long long
4769 #endif  /* UPB_LONG_IS_64BITS */
4770 
4771 #undef UPB_INT32_MAX
4772 #undef UPB_INT32_MIN
4773 #undef UPB_INT64_MAX
4774 #undef UPB_INT64_MIN
4775 #undef UPB_INT_IS_32BITS
4776 #undef UPB_LONG_IS_32BITS
4777 #undef UPB_LONG_IS_64BITS
4778 #undef UPB_LLONG_IS_64BITS
4779 
4780 
4781 namespace upb {
4782 
4783 typedef void CleanupFunc(void *ptr);
4784 
4785 /* Template to remove "const" from "const T*" and just return "T*".
4786  *
4787  * We define a nonsense default because otherwise it will fail to instantiate as
4788  * a function parameter type even in cases where we don't expect any caller to
4789  * actually match the overload. */
4790 class CouldntRemoveConst {};
4791 template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
4792 template <class T> struct remove_constptr<const T *> { typedef T *type; };
4793 
4794 /* Template that we use below to remove a template specialization from
4795  * consideration if it matches a specific type. */
4796 template <class T, class U> struct disable_if_same { typedef void Type; };
4797 template <class T> struct disable_if_same<T, T> {};
4798 
4799 template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); }
4800 
4801 template <class T1, class T2>
4802 struct FirstUnlessVoidOrBool {
4803   typedef T1 value;
4804 };
4805 
4806 template <class T2>
4807 struct FirstUnlessVoidOrBool<void, T2> {
4808   typedef T2 value;
4809 };
4810 
4811 template <class T2>
4812 struct FirstUnlessVoidOrBool<bool, T2> {
4813   typedef T2 value;
4814 };
4815 
4816 template<class T, class U>
4817 struct is_same {
4818   static bool value;
4819 };
4820 
4821 template<class T>
4822 struct is_same<T, T> {
4823   static bool value;
4824 };
4825 
4826 template<class T, class U>
4827 bool is_same<T, U>::value = false;
4828 
4829 template<class T>
4830 bool is_same<T, T>::value = true;
4831 
4832 /* FuncInfo *******************************************************************/
4833 
4834 /* Info about the user's original, pre-wrapped function. */
4835 template <class C, class R = void>
4836 struct FuncInfo {
4837   /* The type of the closure that the function takes (its first param). */
4838   typedef C Closure;
4839 
4840   /* The return type. */
4841   typedef R Return;
4842 };
4843 
4844 /* Func ***********************************************************************/
4845 
4846 /* Func1, Func2, Func3: Template classes representing a function and its
4847  * signature.
4848  *
4849  * Since the function is a template parameter, calling the function can be
4850  * inlined at compile-time and does not require a function pointer at runtime.
4851  * These functions are not bound to a handler data so have no data or cleanup
4852  * handler. */
4853 struct UnboundFunc {
4854   CleanupFunc *GetCleanup() { return NULL; }
4855   void *GetData() { return NULL; }
4856 };
4857 
4858 template <class R, class P1, R F(P1), class I>
4859 struct Func1 : public UnboundFunc {
4860   typedef R Return;
4861   typedef I FuncInfo;
4862   static R Call(P1 p1) { return F(p1); }
4863 };
4864 
4865 template <class R, class P1, class P2, R F(P1, P2), class I>
4866 struct Func2 : public UnboundFunc {
4867   typedef R Return;
4868   typedef I FuncInfo;
4869   static R Call(P1 p1, P2 p2) { return F(p1, p2); }
4870 };
4871 
4872 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
4873 struct Func3 : public UnboundFunc {
4874   typedef R Return;
4875   typedef I FuncInfo;
4876   static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
4877 };
4878 
4879 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
4880           class I>
4881 struct Func4 : public UnboundFunc {
4882   typedef R Return;
4883   typedef I FuncInfo;
4884   static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
4885 };
4886 
4887 template <class R, class P1, class P2, class P3, class P4, class P5,
4888           R F(P1, P2, P3, P4, P5), class I>
4889 struct Func5 : public UnboundFunc {
4890   typedef R Return;
4891   typedef I FuncInfo;
4892   static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
4893     return F(p1, p2, p3, p4, p5);
4894   }
4895 };
4896 
4897 /* BoundFunc ******************************************************************/
4898 
4899 /* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
4900  * shall be bound to the function's second parameter.
4901  *
4902  * Note that the second parameter is a const pointer, but our stored bound value
4903  * is non-const so we can free it when the handlers are destroyed. */
4904 template <class T>
4905 struct BoundFunc {
4906   typedef typename remove_constptr<T>::type MutableP2;
4907   explicit BoundFunc(MutableP2 data_) : data(data_) {}
4908   CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
4909   MutableP2 GetData() { return data; }
4910   MutableP2 data;
4911 };
4912 
4913 template <class R, class P1, class P2, R F(P1, P2), class I>
4914 struct BoundFunc2 : public BoundFunc<P2> {
4915   typedef BoundFunc<P2> Base;
4916   typedef I FuncInfo;
4917   explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
4918 };
4919 
4920 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
4921 struct BoundFunc3 : public BoundFunc<P2> {
4922   typedef BoundFunc<P2> Base;
4923   typedef I FuncInfo;
4924   explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
4925 };
4926 
4927 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
4928           class I>
4929 struct BoundFunc4 : public BoundFunc<P2> {
4930   typedef BoundFunc<P2> Base;
4931   typedef I FuncInfo;
4932   explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
4933 };
4934 
4935 template <class R, class P1, class P2, class P3, class P4, class P5,
4936           R F(P1, P2, P3, P4, P5), class I>
4937 struct BoundFunc5 : public BoundFunc<P2> {
4938   typedef BoundFunc<P2> Base;
4939   typedef I FuncInfo;
4940   explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
4941 };
4942 
4943 /* FuncSig ********************************************************************/
4944 
4945 /* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
4946  * *signature*, but without a specific function attached.
4947  *
4948  * These classes contain member functions that can be invoked with a
4949  * specific function to return a Func/BoundFunc class. */
4950 template <class R, class P1>
4951 struct FuncSig1 {
4952   template <R F(P1)>
4953   Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
4954     return Func1<R, P1, F, FuncInfo<P1, R> >();
4955   }
4956 };
4957 
4958 template <class R, class P1, class P2>
4959 struct FuncSig2 {
4960   template <R F(P1, P2)>
4961   Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
4962     return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
4963   }
4964 
4965   template <R F(P1, P2)>
4966   BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
4967       typename remove_constptr<P2>::type param2) {
4968     return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
4969   }
4970 };
4971 
4972 template <class R, class P1, class P2, class P3>
4973 struct FuncSig3 {
4974   template <R F(P1, P2, P3)>
4975   Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
4976     return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
4977   }
4978 
4979   template <R F(P1, P2, P3)>
4980   BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
4981       typename remove_constptr<P2>::type param2) {
4982     return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
4983   }
4984 };
4985 
4986 template <class R, class P1, class P2, class P3, class P4>
4987 struct FuncSig4 {
4988   template <R F(P1, P2, P3, P4)>
4989   Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
4990     return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
4991   }
4992 
4993   template <R F(P1, P2, P3, P4)>
4994   BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
4995       typename remove_constptr<P2>::type param2) {
4996     return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
4997   }
4998 };
4999 
5000 template <class R, class P1, class P2, class P3, class P4, class P5>
5001 struct FuncSig5 {
5002   template <R F(P1, P2, P3, P4, P5)>
5003   Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
5004     return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
5005   }
5006 
5007   template <R F(P1, P2, P3, P4, P5)>
5008   BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
5009       typename remove_constptr<P2>::type param2) {
5010     return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
5011   }
5012 };
5013 
5014 /* Overloaded template function that can construct the appropriate FuncSig*
5015  * class given a function pointer by deducing the template parameters. */
5016 template <class R, class P1>
5017 inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
5018   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5019   return FuncSig1<R, P1>();
5020 }
5021 
5022 template <class R, class P1, class P2>
5023 inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
5024   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5025   return FuncSig2<R, P1, P2>();
5026 }
5027 
5028 template <class R, class P1, class P2, class P3>
5029 inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
5030   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5031   return FuncSig3<R, P1, P2, P3>();
5032 }
5033 
5034 template <class R, class P1, class P2, class P3, class P4>
5035 inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
5036   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5037   return FuncSig4<R, P1, P2, P3, P4>();
5038 }
5039 
5040 template <class R, class P1, class P2, class P3, class P4, class P5>
5041 inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
5042   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5043   return FuncSig5<R, P1, P2, P3, P4, P5>();
5044 }
5045 
5046 /* MethodSig ******************************************************************/
5047 
5048 /* CallMethod*: a function template that calls a given method. */
5049 template <class R, class C, R (C::*F)()>
5050 R CallMethod0(C *obj) {
5051   return ((*obj).*F)();
5052 }
5053 
5054 template <class R, class C, class P1, R (C::*F)(P1)>
5055 R CallMethod1(C *obj, P1 arg1) {
5056   return ((*obj).*F)(arg1);
5057 }
5058 
5059 template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
5060 R CallMethod2(C *obj, P1 arg1, P2 arg2) {
5061   return ((*obj).*F)(arg1, arg2);
5062 }
5063 
5064 template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
5065 R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
5066   return ((*obj).*F)(arg1, arg2, arg3);
5067 }
5068 
5069 template <class R, class C, class P1, class P2, class P3, class P4,
5070           R (C::*F)(P1, P2, P3, P4)>
5071 R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
5072   return ((*obj).*F)(arg1, arg2, arg3, arg4);
5073 }
5074 
5075 /* MethodSig: like FuncSig, but for member functions.
5076  *
5077  * GetFunc() returns a normal FuncN object, so after calling GetFunc() no
5078  * more logic is required to special-case methods. */
5079 template <class R, class C>
5080 struct MethodSig0 {
5081   template <R (C::*F)()>
5082   Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
5083     return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
5084   }
5085 };
5086 
5087 template <class R, class C, class P1>
5088 struct MethodSig1 {
5089   template <R (C::*F)(P1)>
5090   Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
5091     return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
5092   }
5093 
5094   template <R (C::*F)(P1)>
5095   BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
5096       typename remove_constptr<P1>::type param1) {
5097     return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
5098         param1);
5099   }
5100 };
5101 
5102 template <class R, class C, class P1, class P2>
5103 struct MethodSig2 {
5104   template <R (C::*F)(P1, P2)>
5105   Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
5106   GetFunc() {
5107     return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
5108                  FuncInfo<C *, R> >();
5109   }
5110 
5111   template <R (C::*F)(P1, P2)>
5112   BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
5113   GetFunc(typename remove_constptr<P1>::type param1) {
5114     return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
5115                       FuncInfo<C *, R> >(param1);
5116   }
5117 };
5118 
5119 template <class R, class C, class P1, class P2, class P3>
5120 struct MethodSig3 {
5121   template <R (C::*F)(P1, P2, P3)>
5122   Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
5123   GetFunc() {
5124     return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
5125                  FuncInfo<C *, R> >();
5126   }
5127 
5128   template <R (C::*F)(P1, P2, P3)>
5129   BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
5130              FuncInfo<C *, R> >
5131   GetFunc(typename remove_constptr<P1>::type param1) {
5132     return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
5133                       FuncInfo<C *, R> >(param1);
5134   }
5135 };
5136 
5137 template <class R, class C, class P1, class P2, class P3, class P4>
5138 struct MethodSig4 {
5139   template <R (C::*F)(P1, P2, P3, P4)>
5140   Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
5141         FuncInfo<C *, R> >
5142   GetFunc() {
5143     return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
5144                  FuncInfo<C *, R> >();
5145   }
5146 
5147   template <R (C::*F)(P1, P2, P3, P4)>
5148   BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
5149              FuncInfo<C *, R> >
5150   GetFunc(typename remove_constptr<P1>::type param1) {
5151     return BoundFunc5<R, C *, P1, P2, P3, P4,
5152                       CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
5153         param1);
5154   }
5155 };
5156 
5157 template <class R, class C>
5158 inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
5159   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5160   return MethodSig0<R, C>();
5161 }
5162 
5163 template <class R, class C, class P1>
5164 inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
5165   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5166   return MethodSig1<R, C, P1>();
5167 }
5168 
5169 template <class R, class C, class P1, class P2>
5170 inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
5171   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5172   return MethodSig2<R, C, P1, P2>();
5173 }
5174 
5175 template <class R, class C, class P1, class P2, class P3>
5176 inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
5177   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5178   return MethodSig3<R, C, P1, P2, P3>();
5179 }
5180 
5181 template <class R, class C, class P1, class P2, class P3, class P4>
5182 inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
5183   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
5184   return MethodSig4<R, C, P1, P2, P3, P4>();
5185 }
5186 
5187 /* MaybeWrapReturn ************************************************************/
5188 
5189 /* Template class that attempts to wrap the return value of the function so it
5190  * matches the expected type.  There are two main adjustments it may make:
5191  *
5192  *   1. If the function returns void, make it return the expected type and with
5193  *      a value that always indicates success.
5194  *   2. If the function returns bool, make it return the expected type with a
5195  *      value that indicates success or failure.
5196  *
5197  * The "expected type" for return is:
5198  *   1. void* for start handlers.  If the closure parameter has a different type
5199  *      we will cast it to void* for the return in the success case.
5200  *   2. size_t for string buffer handlers.
5201  *   3. bool for everything else. */
5202 
5203 /* Template parameters are FuncN type and desired return type. */
5204 template <class F, class R, class Enable = void>
5205 struct MaybeWrapReturn;
5206 
5207 /* If the return type matches, return the given function unwrapped. */
5208 template <class F>
5209 struct MaybeWrapReturn<F, typename F::Return> {
5210   typedef F Func;
5211 };
5212 
5213 /* Function wrapper that munges the return value from void to (bool)true. */
5214 template <class P1, class P2, void F(P1, P2)>
5215 bool ReturnTrue2(P1 p1, P2 p2) {
5216   F(p1, p2);
5217   return true;
5218 }
5219 
5220 template <class P1, class P2, class P3, void F(P1, P2, P3)>
5221 bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
5222   F(p1, p2, p3);
5223   return true;
5224 }
5225 
5226 /* Function wrapper that munges the return value from void to (void*)arg1  */
5227 template <class P1, class P2, void F(P1, P2)>
5228 void *ReturnClosure2(P1 p1, P2 p2) {
5229   F(p1, p2);
5230   return p1;
5231 }
5232 
5233 template <class P1, class P2, class P3, void F(P1, P2, P3)>
5234 void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
5235   F(p1, p2, p3);
5236   return p1;
5237 }
5238 
5239 /* Function wrapper that munges the return value from R to void*. */
5240 template <class R, class P1, class P2, R F(P1, P2)>
5241 void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
5242   return F(p1, p2);
5243 }
5244 
5245 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
5246 void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
5247   return F(p1, p2, p3);
5248 }
5249 
5250 /* Function wrapper that munges the return value from bool to void*. */
5251 template <class P1, class P2, bool F(P1, P2)>
5252 void *ReturnClosureOrBreak2(P1 p1, P2 p2) {
5253   return F(p1, p2) ? p1 : UPB_BREAK;
5254 }
5255 
5256 template <class P1, class P2, class P3, bool F(P1, P2, P3)>
5257 void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) {
5258   return F(p1, p2, p3) ? p1 : UPB_BREAK;
5259 }
5260 
5261 /* For the string callback, which takes five params, returns the size param. */
5262 template <class P1, class P2,
5263           void F(P1, P2, const char *, size_t, const BufferHandle *)>
5264 size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
5265                        const BufferHandle *p5) {
5266   F(p1, p2, p3, p4, p5);
5267   return p4;
5268 }
5269 
5270 /* For the string callback, which takes five params, returns the size param or
5271  * zero. */
5272 template <class P1, class P2,
5273           bool F(P1, P2, const char *, size_t, const BufferHandle *)>
5274 size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4,
5275                   const BufferHandle *p5) {
5276   return F(p1, p2, p3, p4, p5) ? p4 : 0;
5277 }
5278 
5279 /* If we have a function returning void but want a function returning bool, wrap
5280  * it in a function that returns true. */
5281 template <class P1, class P2, void F(P1, P2), class I>
5282 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
5283   typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
5284 };
5285 
5286 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
5287 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
5288   typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
5289 };
5290 
5291 /* If our function returns void but we want one returning void*, wrap it in a
5292  * function that returns the first argument. */
5293 template <class P1, class P2, void F(P1, P2), class I>
5294 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
5295   typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
5296 };
5297 
5298 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
5299 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
5300   typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
5301 };
5302 
5303 /* If our function returns R* but we want one returning void*, wrap it in a
5304  * function that casts to void*. */
5305 template <class R, class P1, class P2, R *F(P1, P2), class I>
5306 struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
5307                        typename disable_if_same<R *, void *>::Type> {
5308   typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
5309 };
5310 
5311 template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
5312 struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
5313                        typename disable_if_same<R *, void *>::Type> {
5314   typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
5315       Func;
5316 };
5317 
5318 /* If our function returns bool but we want one returning void*, wrap it in a
5319  * function that returns either the first param or UPB_BREAK. */
5320 template <class P1, class P2, bool F(P1, P2), class I>
5321 struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> {
5322   typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func;
5323 };
5324 
5325 template <class P1, class P2, class P3, bool F(P1, P2, P3), class I>
5326 struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> {
5327   typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I>
5328       Func;
5329 };
5330 
5331 /* If our function returns void but we want one returning size_t, wrap it in a
5332  * function that returns the size argument. */
5333 template <class P1, class P2,
5334           void F(P1, P2, const char *, size_t, const BufferHandle *), class I>
5335 struct MaybeWrapReturn<
5336     Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
5337           size_t> {
5338   typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
5339                 ReturnStringLen<P1, P2, F>, I> Func;
5340 };
5341 
5342 /* If our function returns bool but we want one returning size_t, wrap it in a
5343  * function that returns either 0 or the buf size. */
5344 template <class P1, class P2,
5345           bool F(P1, P2, const char *, size_t, const BufferHandle *), class I>
5346 struct MaybeWrapReturn<
5347     Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
5348     size_t> {
5349   typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
5350                 ReturnNOr0<P1, P2, F>, I> Func;
5351 };
5352 
5353 /* ConvertParams **************************************************************/
5354 
5355 /* Template class that converts the function parameters if necessary, and
5356  * ignores the HandlerData parameter if appropriate.
5357  *
5358  * Template parameter is the are FuncN function type. */
5359 template <class F, class T>
5360 struct ConvertParams;
5361 
5362 /* Function that discards the handler data parameter. */
5363 template <class R, class P1, R F(P1)>
5364 R IgnoreHandlerData2(void *p1, const void *hd) {
5365   UPB_UNUSED(hd);
5366   return F(static_cast<P1>(p1));
5367 }
5368 
5369 template <class R, class P1, class P2Wrapper, class P2Wrapped,
5370           R F(P1, P2Wrapped)>
5371 R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
5372   UPB_UNUSED(hd);
5373   return F(static_cast<P1>(p1), p2);
5374 }
5375 
5376 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
5377 R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
5378   UPB_UNUSED(hd);
5379   return F(static_cast<P1>(p1), p2, p3);
5380 }
5381 
5382 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
5383 R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
5384   UPB_UNUSED(hd);
5385   return F(static_cast<P1>(p1), p2, p3, p4);
5386 }
5387 
5388 template <class R, class P1, R F(P1, const char*, size_t)>
5389 R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
5390                                 size_t p3, const BufferHandle *handle) {
5391   UPB_UNUSED(hd);
5392   UPB_UNUSED(handle);
5393   return F(static_cast<P1>(p1), p2, p3);
5394 }
5395 
5396 /* Function that casts the handler data parameter. */
5397 template <class R, class P1, class P2, R F(P1, P2)>
5398 R CastHandlerData2(void *c, const void *hd) {
5399   return F(static_cast<P1>(c), static_cast<P2>(hd));
5400 }
5401 
5402 template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
5403           R F(P1, P2, P3Wrapped)>
5404 R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
5405   return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
5406 }
5407 
5408 template <class R, class P1, class P2, class P3, class P4, class P5,
5409           R F(P1, P2, P3, P4, P5)>
5410 R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
5411   return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
5412 }
5413 
5414 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
5415 R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
5416                               size_t p4, const BufferHandle *handle) {
5417   UPB_UNUSED(handle);
5418   return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
5419 }
5420 
5421 /* For unbound functions, ignore the handler data. */
5422 template <class R, class P1, R F(P1), class I, class T>
5423 struct ConvertParams<Func1<R, P1, F, I>, T> {
5424   typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
5425 };
5426 
5427 template <class R, class P1, class P2, R F(P1, P2), class I,
5428           class R2, class P1_2, class P2_2, class P3_2>
5429 struct ConvertParams<Func2<R, P1, P2, F, I>,
5430                      R2 (*)(P1_2, P2_2, P3_2)> {
5431   typedef Func3<R, void *, const void *, P3_2,
5432                 IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func;
5433 };
5434 
5435 /* For StringBuffer only; this ignores both the handler data and the
5436  * BufferHandle. */
5437 template <class R, class P1, R F(P1, const char *, size_t), class I, class T>
5438 struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> {
5439   typedef Func5<R, void *, const void *, const char *, size_t,
5440                 const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
5441                 I> Func;
5442 };
5443 
5444 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
5445           class I, class T>
5446 struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> {
5447   typedef Func5<R, void *, const void *, P2, P3, P4,
5448                 IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
5449 };
5450 
5451 /* For bound functions, cast the handler data. */
5452 template <class R, class P1, class P2, R F(P1, P2), class I, class T>
5453 struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> {
5454   typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
5455       Func;
5456 };
5457 
5458 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I,
5459           class R2, class P1_2, class P2_2, class P3_2>
5460 struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>,
5461                      R2 (*)(P1_2, P2_2, P3_2)> {
5462   typedef Func3<R, void *, const void *, P3_2,
5463                 CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func;
5464 };
5465 
5466 /* For StringBuffer only; this ignores the BufferHandle. */
5467 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
5468           class I, class T>
5469 struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> {
5470   typedef Func5<R, void *, const void *, const char *, size_t,
5471                 const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>,
5472                 I> Func;
5473 };
5474 
5475 template <class R, class P1, class P2, class P3, class P4, class P5,
5476           R F(P1, P2, P3, P4, P5), class I, class T>
5477 struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> {
5478   typedef Func5<R, void *, const void *, P3, P4, P5,
5479                 CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
5480 };
5481 
5482 /* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
5483  * variant C type. */
5484 #define TYPE_METHODS(utype, ltype, ctype, vtype)                               \
5485   template <> struct CanonicalType<vtype> {                                    \
5486     typedef ctype Type;                                                        \
5487   };                                                                           \
5488   template <>                                                                  \
5489   inline bool Handlers::SetValueHandler<vtype>(                                \
5490       const FieldDef *f,                                                       \
5491       const Handlers::utype ## Handler& handler) {                             \
5492     assert(!handler.registered_);                                              \
5493     handler.AddCleanup(this);                                                  \
5494     handler.registered_ = true;                                                \
5495     return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \
5496   }                                                                            \
5497 
5498 TYPE_METHODS(Double, double, double,   double)
5499 TYPE_METHODS(Float,  float,  float,    float)
5500 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T)
5501 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T)
5502 TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64_T)
5503 TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32_T)
5504 TYPE_METHODS(Bool,   bool,   bool,     bool)
5505 
5506 #ifdef UPB_TWO_32BIT_TYPES
5507 TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32ALT_T)
5508 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T)
5509 #endif
5510 
5511 #ifdef UPB_TWO_64BIT_TYPES
5512 TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64ALT_T)
5513 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T)
5514 #endif
5515 #undef TYPE_METHODS
5516 
5517 template <> struct CanonicalType<Status*> {
5518   typedef Status* Type;
5519 };
5520 
5521 /* Type methods that are only one-per-canonical-type and not
5522  * one-per-cvariant. */
5523 
5524 #define TYPE_METHODS(utype, ctype) \
5525     inline bool Handlers::Set##utype##Handler(const FieldDef *f, \
5526                                               const utype##Handler &h) { \
5527       return SetValueHandler<ctype>(f, h); \
5528     } \
5529 
5530 TYPE_METHODS(Double, double)
5531 TYPE_METHODS(Float,  float)
5532 TYPE_METHODS(UInt64, uint64_t)
5533 TYPE_METHODS(UInt32, uint32_t)
5534 TYPE_METHODS(Int64,  int64_t)
5535 TYPE_METHODS(Int32,  int32_t)
5536 TYPE_METHODS(Bool,   bool)
5537 #undef TYPE_METHODS
5538 
5539 template <class F> struct ReturnOf;
5540 
5541 template <class R, class P1, class P2>
5542 struct ReturnOf<R (*)(P1, P2)> {
5543   typedef R Return;
5544 };
5545 
5546 template <class R, class P1, class P2, class P3>
5547 struct ReturnOf<R (*)(P1, P2, P3)> {
5548   typedef R Return;
5549 };
5550 
5551 template <class R, class P1, class P2, class P3, class P4>
5552 struct ReturnOf<R (*)(P1, P2, P3, P4)> {
5553   typedef R Return;
5554 };
5555 
5556 template <class R, class P1, class P2, class P3, class P4, class P5>
5557 struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
5558   typedef R Return;
5559 };
5560 
5561 template<class T> const void *UniquePtrForType() {
5562   static const char ch = 0;
5563   return &ch;
5564 }
5565 
5566 template <class T>
5567 template <class F>
5568 inline Handler<T>::Handler(F func)
5569     : registered_(false),
5570       cleanup_data_(func.GetData()),
5571       cleanup_func_(func.GetCleanup()) {
5572   upb_handlerattr_sethandlerdata(&attr_, func.GetData());
5573   typedef typename ReturnOf<T>::Return Return;
5574   typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc;
5575   typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
5576       ReturnWrappedFunc;
5577   handler_ = ReturnWrappedFunc().Call;
5578 
5579   /* Set attributes based on what templates can statically tell us about the
5580    * user's function. */
5581 
5582   /* If the original function returns void, then we know that we wrapped it to
5583    * always return ok. */
5584   bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
5585   attr_.SetAlwaysOk(always_ok);
5586 
5587   /* Closure parameter and return type. */
5588   attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>());
5589 
5590   /* We use the closure type (from the first parameter) if the return type is
5591    * void or bool, since these are the two cases we wrap to return the closure's
5592    * type anyway.
5593    *
5594    * This is all nonsense for non START* handlers, but it doesn't matter because
5595    * in that case the value will be ignored. */
5596   typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return,
5597                                          typename F::FuncInfo::Closure>::value
5598       EffectiveReturn;
5599   attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>());
5600 }
5601 
5602 template <class T>
5603 inline Handler<T>::~Handler() {
5604   assert(registered_);
5605 }
5606 
5607 inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); }
5608 inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); }
5609 inline bool HandlerAttributes::SetHandlerData(const void *hd) {
5610   return upb_handlerattr_sethandlerdata(this, hd);
5611 }
5612 inline const void* HandlerAttributes::handler_data() const {
5613   return upb_handlerattr_handlerdata(this);
5614 }
5615 inline bool HandlerAttributes::SetClosureType(const void *type) {
5616   return upb_handlerattr_setclosuretype(this, type);
5617 }
5618 inline const void* HandlerAttributes::closure_type() const {
5619   return upb_handlerattr_closuretype(this);
5620 }
5621 inline bool HandlerAttributes::SetReturnClosureType(const void *type) {
5622   return upb_handlerattr_setreturnclosuretype(this, type);
5623 }
5624 inline const void* HandlerAttributes::return_closure_type() const {
5625   return upb_handlerattr_returnclosuretype(this);
5626 }
5627 inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) {
5628   return upb_handlerattr_setalwaysok(this, always_ok);
5629 }
5630 inline bool HandlerAttributes::always_ok() const {
5631   return upb_handlerattr_alwaysok(this);
5632 }
5633 
5634 inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); }
5635 inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); }
5636 inline const char* BufferHandle::buffer() const {
5637   return upb_bufhandle_buf(this);
5638 }
5639 inline size_t BufferHandle::object_offset() const {
5640   return upb_bufhandle_objofs(this);
5641 }
5642 inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) {
5643   upb_bufhandle_setbuf(this, buf, ofs);
5644 }
5645 template <class T>
5646 void BufferHandle::SetAttachedObject(const T* obj) {
5647   upb_bufhandle_setobj(this, obj, UniquePtrForType<T>());
5648 }
5649 template <class T>
5650 const T* BufferHandle::GetAttachedObject() const {
5651   return upb_bufhandle_objtype(this) == UniquePtrForType<T>()
5652       ? static_cast<const T *>(upb_bufhandle_obj(this))
5653                                : NULL;
5654 }
5655 
5656 inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) {
5657   upb_handlers *h = upb_handlers_new(m, &h);
5658   return reffed_ptr<Handlers>(h, &h);
5659 }
5660 inline reffed_ptr<const Handlers> Handlers::NewFrozen(
5661     const MessageDef *m, upb_handlers_callback *callback,
5662     const void *closure) {
5663   const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure);
5664   return reffed_ptr<const Handlers>(h, &h);
5665 }
5666 inline const Status* Handlers::status() {
5667   return upb_handlers_status(this);
5668 }
5669 inline void Handlers::ClearError() {
5670   return upb_handlers_clearerr(this);
5671 }
5672 inline bool Handlers::Freeze(Status *s) {
5673   upb::Handlers* h = this;
5674   return upb_handlers_freeze(&h, 1, s);
5675 }
5676 inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) {
5677   return upb_handlers_freeze(handlers, n, s);
5678 }
5679 inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) {
5680   return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status);
5681 }
5682 inline const MessageDef *Handlers::message_def() const {
5683   return upb_handlers_msgdef(this);
5684 }
5685 inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) {
5686   return upb_handlers_addcleanup(this, p, func);
5687 }
5688 inline bool Handlers::SetStartMessageHandler(
5689     const Handlers::StartMessageHandler &handler) {
5690   assert(!handler.registered_);
5691   handler.registered_ = true;
5692   handler.AddCleanup(this);
5693   return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_);
5694 }
5695 inline bool Handlers::SetEndMessageHandler(
5696     const Handlers::EndMessageHandler &handler) {
5697   assert(!handler.registered_);
5698   handler.registered_ = true;
5699   handler.AddCleanup(this);
5700   return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_);
5701 }
5702 inline bool Handlers::SetStartStringHandler(const FieldDef *f,
5703                                             const StartStringHandler &handler) {
5704   assert(!handler.registered_);
5705   handler.registered_ = true;
5706   handler.AddCleanup(this);
5707   return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_);
5708 }
5709 inline bool Handlers::SetEndStringHandler(const FieldDef *f,
5710                                           const EndFieldHandler &handler) {
5711   assert(!handler.registered_);
5712   handler.registered_ = true;
5713   handler.AddCleanup(this);
5714   return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_);
5715 }
5716 inline bool Handlers::SetStringHandler(const FieldDef *f,
5717                                        const StringHandler& handler) {
5718   assert(!handler.registered_);
5719   handler.registered_ = true;
5720   handler.AddCleanup(this);
5721   return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_);
5722 }
5723 inline bool Handlers::SetStartSequenceHandler(
5724     const FieldDef *f, const StartFieldHandler &handler) {
5725   assert(!handler.registered_);
5726   handler.registered_ = true;
5727   handler.AddCleanup(this);
5728   return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_);
5729 }
5730 inline bool Handlers::SetStartSubMessageHandler(
5731     const FieldDef *f, const StartFieldHandler &handler) {
5732   assert(!handler.registered_);
5733   handler.registered_ = true;
5734   handler.AddCleanup(this);
5735   return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_);
5736 }
5737 inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f,
5738                                               const EndFieldHandler &handler) {
5739   assert(!handler.registered_);
5740   handler.registered_ = true;
5741   handler.AddCleanup(this);
5742   return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_);
5743 }
5744 inline bool Handlers::SetEndSequenceHandler(const FieldDef *f,
5745                                             const EndFieldHandler &handler) {
5746   assert(!handler.registered_);
5747   handler.registered_ = true;
5748   handler.AddCleanup(this);
5749   return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_);
5750 }
5751 inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) {
5752   return upb_handlers_setsubhandlers(this, f, sub);
5753 }
5754 inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const {
5755   return upb_handlers_getsubhandlers(this, f);
5756 }
5757 inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const {
5758   return upb_handlers_getsubhandlers_sel(this, sel);
5759 }
5760 inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type,
5761                                   Handlers::Selector *s) {
5762   return upb_handlers_getselector(f, type, s);
5763 }
5764 inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) {
5765   return upb_handlers_getendselector(start);
5766 }
5767 inline Handlers::GenericFunction *Handlers::GetHandler(
5768     Handlers::Selector selector) {
5769   return upb_handlers_gethandler(this, selector);
5770 }
5771 inline const void *Handlers::GetHandlerData(Handlers::Selector selector) {
5772   return upb_handlers_gethandlerdata(this, selector);
5773 }
5774 
5775 inline BytesHandler::BytesHandler() {
5776   upb_byteshandler_init(this);
5777 }
5778 
5779 inline BytesHandler::~BytesHandler() {}
5780 
5781 }  /* namespace upb */
5782 
5783 #endif  /* __cplusplus */
5784 
5785 
5786 #undef UPB_TWO_32BIT_TYPES
5787 #undef UPB_TWO_64BIT_TYPES
5788 #undef UPB_INT32_T
5789 #undef UPB_UINT32_T
5790 #undef UPB_INT32ALT_T
5791 #undef UPB_UINT32ALT_T
5792 #undef UPB_INT64_T
5793 #undef UPB_UINT64_T
5794 #undef UPB_INT64ALT_T
5795 #undef UPB_UINT64ALT_T
5796 
5797 #endif  /* UPB_HANDLERS_INL_H_ */
5798 
5799 #endif  /* UPB_HANDLERS_H */
5800 /*
5801 ** upb::Sink (upb_sink)
5802 ** upb::BytesSink (upb_bytessink)
5803 **
5804 ** A upb_sink is an object that binds a upb_handlers object to some runtime
5805 ** state.  It is the object that can actually receive data via the upb_handlers
5806 ** interface.
5807 **
5808 ** Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or
5809 ** thread-safe.  You can create as many of them as you want, but each one may
5810 ** only be used in a single thread at a time.
5811 **
5812 ** If we compare with class-based OOP, a you can think of a upb_def as an
5813 ** abstract base class, a upb_handlers as a concrete derived class, and a
5814 ** upb_sink as an object (class instance).
5815 */
5816 
5817 #ifndef UPB_SINK_H
5818 #define UPB_SINK_H
5819 
5820 
5821 #ifdef __cplusplus
5822 namespace upb {
5823 class BufferSource;
5824 class BytesSink;
5825 class Sink;
5826 }
5827 #endif
5828 
5829 UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc)
5830 UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink)
5831 UPB_DECLARE_TYPE(upb::Sink, upb_sink)
5832 
5833 #ifdef __cplusplus
5834 
5835 /* A upb::Sink is an object that binds a upb::Handlers object to some runtime
5836  * state.  It represents an endpoint to which data can be sent.
5837  *
5838  * TODO(haberman): right now all of these functions take selectors.  Should they
5839  * take selectorbase instead?
5840  *
5841  * ie. instead of calling:
5842  *   sink->StartString(FOO_FIELD_START_STRING, ...)
5843  * a selector base would let you say:
5844  *   sink->StartString(FOO_FIELD, ...)
5845  *
5846  * This would make call sites a little nicer and require emitting fewer selector
5847  * definitions in .h files.
5848  *
5849  * But the current scheme has the benefit that you can retrieve a function
5850  * pointer for any handler with handlers->GetHandler(selector), without having
5851  * to have a separate GetHandler() function for each handler type.  The JIT
5852  * compiler uses this.  To accommodate we'd have to expose a separate
5853  * GetHandler() for every handler type.
5854  *
5855  * Also to ponder: selectors right now are independent of a specific Handlers
5856  * instance.  In other words, they allocate a number to every possible handler
5857  * that *could* be registered, without knowing anything about what handlers
5858  * *are* registered.  That means that using selectors as table offsets prohibits
5859  * us from compacting the handler table at Freeze() time.  If the table is very
5860  * sparse, this could be wasteful.
5861  *
5862  * Having another selector-like thing that is specific to a Handlers instance
5863  * would allow this compacting, but then it would be impossible to write code
5864  * ahead-of-time that can be bound to any Handlers instance at runtime.  For
5865  * example, a .proto file parser written as straight C will not know what
5866  * Handlers it will be bound to, so when it calls sink->StartString() what
5867  * selector will it pass?  It needs a selector like we have today, that is
5868  * independent of any particular upb::Handlers.
5869  *
5870  * Is there a way then to allow Handlers table compaction? */
5871 class upb::Sink {
5872  public:
5873   /* Constructor with no initialization; must be Reset() before use. */
5874   Sink() {}
5875 
5876   /* Constructs a new sink for the given frozen handlers and closure.
5877    *
5878    * TODO: once the Handlers know the expected closure type, verify that T
5879    * matches it. */
5880   template <class T> Sink(const Handlers* handlers, T* closure);
5881 
5882   /* Resets the value of the sink. */
5883   template <class T> void Reset(const Handlers* handlers, T* closure);
5884 
5885   /* Returns the top-level object that is bound to this sink.
5886    *
5887    * TODO: once the Handlers know the expected closure type, verify that T
5888    * matches it. */
5889   template <class T> T* GetObject() const;
5890 
5891   /* Functions for pushing data into the sink.
5892    *
5893    * These return false if processing should stop (either due to error or just
5894    * to suspend).
5895    *
5896    * These may not be called from within one of the same sink's handlers (in
5897    * other words, handlers are not re-entrant). */
5898 
5899   /* Should be called at the start and end of every message; both the top-level
5900    * message and submessages.  This means that submessages should use the
5901    * following sequence:
5902    *   sink->StartSubMessage(startsubmsg_selector);
5903    *   sink->StartMessage();
5904    *   // ...
5905    *   sink->EndMessage(&status);
5906    *   sink->EndSubMessage(endsubmsg_selector); */
5907   bool StartMessage();
5908   bool EndMessage(Status* status);
5909 
5910   /* Putting of individual values.  These work for both repeated and
5911    * non-repeated fields, but for repeated fields you must wrap them in
5912    * calls to StartSequence()/EndSequence(). */
5913   bool PutInt32(Handlers::Selector s, int32_t val);
5914   bool PutInt64(Handlers::Selector s, int64_t val);
5915   bool PutUInt32(Handlers::Selector s, uint32_t val);
5916   bool PutUInt64(Handlers::Selector s, uint64_t val);
5917   bool PutFloat(Handlers::Selector s, float val);
5918   bool PutDouble(Handlers::Selector s, double val);
5919   bool PutBool(Handlers::Selector s, bool val);
5920 
5921   /* Putting of string/bytes values.  Each string can consist of zero or more
5922    * non-contiguous buffers of data.
5923    *
5924    * For StartString(), the function will write a sink for the string to "sub."
5925    * The sub-sink must be used for any/all PutStringBuffer() calls. */
5926   bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub);
5927   size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len,
5928                          const BufferHandle *handle);
5929   bool EndString(Handlers::Selector s);
5930 
5931   /* For submessage fields.
5932    *
5933    * For StartSubMessage(), the function will write a sink for the string to
5934    * "sub." The sub-sink must be used for any/all handlers called within the
5935    * submessage. */
5936   bool StartSubMessage(Handlers::Selector s, Sink* sub);
5937   bool EndSubMessage(Handlers::Selector s);
5938 
5939   /* For repeated fields of any type, the sequence of values must be wrapped in
5940    * these calls.
5941    *
5942    * For StartSequence(), the function will write a sink for the string to
5943    * "sub." The sub-sink must be used for any/all handlers called within the
5944    * sequence. */
5945   bool StartSequence(Handlers::Selector s, Sink* sub);
5946   bool EndSequence(Handlers::Selector s);
5947 
5948   /* Copy and assign specifically allowed.
5949    * We don't even bother making these members private because so many
5950    * functions need them and this is mainly just a dumb data container anyway.
5951    */
5952 #else
5953 struct upb_sink {
5954 #endif
5955   const upb_handlers *handlers;
5956   void *closure;
5957 };
5958 
5959 #ifdef __cplusplus
5960 class upb::BytesSink {
5961  public:
5962   BytesSink() {}
5963 
5964   /* Constructs a new sink for the given frozen handlers and closure.
5965    *
5966    * TODO(haberman): once the Handlers know the expected closure type, verify
5967    * that T matches it. */
5968   template <class T> BytesSink(const BytesHandler* handler, T* closure);
5969 
5970   /* Resets the value of the sink. */
5971   template <class T> void Reset(const BytesHandler* handler, T* closure);
5972 
5973   bool Start(size_t size_hint, void **subc);
5974   size_t PutBuffer(void *subc, const char *buf, size_t len,
5975                    const BufferHandle *handle);
5976   bool End();
5977 #else
5978 struct upb_bytessink {
5979 #endif
5980   const upb_byteshandler *handler;
5981   void *closure;
5982 };
5983 
5984 #ifdef __cplusplus
5985 
5986 /* A class for pushing a flat buffer of data to a BytesSink.
5987  * You can construct an instance of this to get a resumable source,
5988  * or just call the static PutBuffer() to do a non-resumable push all in one
5989  * go. */
5990 class upb::BufferSource {
5991  public:
5992   BufferSource();
5993   BufferSource(const char* buf, size_t len, BytesSink* sink);
5994 
5995   /* Returns true if the entire buffer was pushed successfully.  Otherwise the
5996    * next call to PutNext() will resume where the previous one left off.
5997    * TODO(haberman): implement this. */
5998   bool PutNext();
5999 
6000   /* A static version; with this version is it not possible to resume in the
6001    * case of failure or a partially-consumed buffer. */
6002   static bool PutBuffer(const char* buf, size_t len, BytesSink* sink);
6003 
6004   template <class T> static bool PutBuffer(const T& str, BytesSink* sink) {
6005     return PutBuffer(str.c_str(), str.size(), sink);
6006   }
6007 #else
6008 struct upb_bufsrc {
6009   char dummy;
6010 #endif
6011 };
6012 
6013 UPB_BEGIN_EXTERN_C
6014 
6015 /* Inline definitions. */
6016 
6017 UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h,
6018                                     void *closure) {
6019   s->handler = h;
6020   s->closure = closure;
6021 }
6022 
6023 UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint,
6024                                     void **subc) {
6025   typedef upb_startstr_handlerfunc func;
6026   func *start;
6027   *subc = s->closure;
6028   if (!s->handler) return true;
6029   start = (func *)s->handler->table[UPB_STARTSTR_SELECTOR].func;
6030 
6031   if (!start) return true;
6032   *subc = start(s->closure, upb_handlerattr_handlerdata(
6033                                 &s->handler->table[UPB_STARTSTR_SELECTOR].attr),
6034                 size_hint);
6035   return *subc != NULL;
6036 }
6037 
6038 UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc,
6039                                        const char *buf, size_t size,
6040                                        const upb_bufhandle* handle) {
6041   typedef upb_string_handlerfunc func;
6042   func *putbuf;
6043   if (!s->handler) return true;
6044   putbuf = (func *)s->handler->table[UPB_STRING_SELECTOR].func;
6045 
6046   if (!putbuf) return true;
6047   return putbuf(subc, upb_handlerattr_handlerdata(
6048                           &s->handler->table[UPB_STRING_SELECTOR].attr),
6049                 buf, size, handle);
6050 }
6051 
6052 UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) {
6053   typedef upb_endfield_handlerfunc func;
6054   func *end;
6055   if (!s->handler) return true;
6056   end = (func *)s->handler->table[UPB_ENDSTR_SELECTOR].func;
6057 
6058   if (!end) return true;
6059   return end(s->closure,
6060              upb_handlerattr_handlerdata(
6061                  &s->handler->table[UPB_ENDSTR_SELECTOR].attr));
6062 }
6063 
6064 UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len,
6065                                   upb_bytessink *sink) {
6066   void *subc;
6067   bool ret;
6068   upb_bufhandle handle;
6069   upb_bufhandle_init(&handle);
6070   upb_bufhandle_setbuf(&handle, buf, 0);
6071   ret = upb_bytessink_start(sink, len, &subc);
6072   if (ret && len != 0) {
6073     ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len);
6074   }
6075   if (ret) {
6076     ret = upb_bytessink_end(sink);
6077   }
6078   upb_bufhandle_uninit(&handle);
6079   return ret;
6080 }
6081 
6082 #define PUTVAL(type, ctype)                                                    \
6083   UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel,          \
6084                                      ctype val) {                              \
6085     typedef upb_##type##_handlerfunc functype;                                 \
6086     functype *func;                                                            \
6087     const void *hd;                                                            \
6088     if (!s->handlers) return true;                                             \
6089     func = (functype *)upb_handlers_gethandler(s->handlers, sel);              \
6090     if (!func) return true;                                                    \
6091     hd = upb_handlers_gethandlerdata(s->handlers, sel);                        \
6092     return func(s->closure, hd, val);                                          \
6093   }
6094 
6095 PUTVAL(int32,  int32_t)
6096 PUTVAL(int64,  int64_t)
6097 PUTVAL(uint32, uint32_t)
6098 PUTVAL(uint64, uint64_t)
6099 PUTVAL(float,  float)
6100 PUTVAL(double, double)
6101 PUTVAL(bool,   bool)
6102 #undef PUTVAL
6103 
6104 UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) {
6105   s->handlers = h;
6106   s->closure = c;
6107 }
6108 
6109 UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel,
6110                                      const char *buf, size_t n,
6111                                      const upb_bufhandle *handle) {
6112   typedef upb_string_handlerfunc func;
6113   func *handler;
6114   const void *hd;
6115   if (!s->handlers) return n;
6116   handler = (func *)upb_handlers_gethandler(s->handlers, sel);
6117 
6118   if (!handler) return n;
6119   hd = upb_handlers_gethandlerdata(s->handlers, sel);
6120   return handler(s->closure, hd, buf, n, handle);
6121 }
6122 
6123 UPB_INLINE bool upb_sink_startmsg(upb_sink *s) {
6124   typedef upb_startmsg_handlerfunc func;
6125   func *startmsg;
6126   const void *hd;
6127   if (!s->handlers) return true;
6128   startmsg = (func*)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR);
6129 
6130   if (!startmsg) return true;
6131   hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR);
6132   return startmsg(s->closure, hd);
6133 }
6134 
6135 UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) {
6136   typedef upb_endmsg_handlerfunc func;
6137   func *endmsg;
6138   const void *hd;
6139   if (!s->handlers) return true;
6140   endmsg = (func *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR);
6141 
6142   if (!endmsg) return true;
6143   hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR);
6144   return endmsg(s->closure, hd, status);
6145 }
6146 
6147 UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel,
6148                                   upb_sink *sub) {
6149   typedef upb_startfield_handlerfunc func;
6150   func *startseq;
6151   const void *hd;
6152   sub->closure = s->closure;
6153   sub->handlers = s->handlers;
6154   if (!s->handlers) return true;
6155   startseq = (func*)upb_handlers_gethandler(s->handlers, sel);
6156 
6157   if (!startseq) return true;
6158   hd = upb_handlers_gethandlerdata(s->handlers, sel);
6159   sub->closure = startseq(s->closure, hd);
6160   return sub->closure ? true : false;
6161 }
6162 
6163 UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) {
6164   typedef upb_endfield_handlerfunc func;
6165   func *endseq;
6166   const void *hd;
6167   if (!s->handlers) return true;
6168   endseq = (func*)upb_handlers_gethandler(s->handlers, sel);
6169 
6170   if (!endseq) return true;
6171   hd = upb_handlers_gethandlerdata(s->handlers, sel);
6172   return endseq(s->closure, hd);
6173 }
6174 
6175 UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel,
6176                                   size_t size_hint, upb_sink *sub) {
6177   typedef upb_startstr_handlerfunc func;
6178   func *startstr;
6179   const void *hd;
6180   sub->closure = s->closure;
6181   sub->handlers = s->handlers;
6182   if (!s->handlers) return true;
6183   startstr = (func*)upb_handlers_gethandler(s->handlers, sel);
6184 
6185   if (!startstr) return true;
6186   hd = upb_handlers_gethandlerdata(s->handlers, sel);
6187   sub->closure = startstr(s->closure, hd, size_hint);
6188   return sub->closure ? true : false;
6189 }
6190 
6191 UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) {
6192   typedef upb_endfield_handlerfunc func;
6193   func *endstr;
6194   const void *hd;
6195   if (!s->handlers) return true;
6196   endstr = (func*)upb_handlers_gethandler(s->handlers, sel);
6197 
6198   if (!endstr) return true;
6199   hd = upb_handlers_gethandlerdata(s->handlers, sel);
6200   return endstr(s->closure, hd);
6201 }
6202 
6203 UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel,
6204                                      upb_sink *sub) {
6205   typedef upb_startfield_handlerfunc func;
6206   func *startsubmsg;
6207   const void *hd;
6208   sub->closure = s->closure;
6209   if (!s->handlers) {
6210     sub->handlers = NULL;
6211     return true;
6212   }
6213   sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel);
6214   startsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
6215 
6216   if (!startsubmsg) return true;
6217   hd = upb_handlers_gethandlerdata(s->handlers, sel);
6218   sub->closure = startsubmsg(s->closure, hd);
6219   return sub->closure ? true : false;
6220 }
6221 
6222 UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) {
6223   typedef upb_endfield_handlerfunc func;
6224   func *endsubmsg;
6225   const void *hd;
6226   if (!s->handlers) return true;
6227   endsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
6228 
6229   if (!endsubmsg) return s->closure;
6230   hd = upb_handlers_gethandlerdata(s->handlers, sel);
6231   return endsubmsg(s->closure, hd);
6232 }
6233 
6234 UPB_END_EXTERN_C
6235 
6236 #ifdef __cplusplus
6237 
6238 namespace upb {
6239 
6240 template <class T> Sink::Sink(const Handlers* handlers, T* closure) {
6241   upb_sink_reset(this, handlers, closure);
6242 }
6243 template <class T>
6244 inline void Sink::Reset(const Handlers* handlers, T* closure) {
6245   upb_sink_reset(this, handlers, closure);
6246 }
6247 inline bool Sink::StartMessage() {
6248   return upb_sink_startmsg(this);
6249 }
6250 inline bool Sink::EndMessage(Status* status) {
6251   return upb_sink_endmsg(this, status);
6252 }
6253 inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) {
6254   return upb_sink_putint32(this, sel, val);
6255 }
6256 inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) {
6257   return upb_sink_putint64(this, sel, val);
6258 }
6259 inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) {
6260   return upb_sink_putuint32(this, sel, val);
6261 }
6262 inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) {
6263   return upb_sink_putuint64(this, sel, val);
6264 }
6265 inline bool Sink::PutFloat(Handlers::Selector sel, float val) {
6266   return upb_sink_putfloat(this, sel, val);
6267 }
6268 inline bool Sink::PutDouble(Handlers::Selector sel, double val) {
6269   return upb_sink_putdouble(this, sel, val);
6270 }
6271 inline bool Sink::PutBool(Handlers::Selector sel, bool val) {
6272   return upb_sink_putbool(this, sel, val);
6273 }
6274 inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint,
6275                               Sink *sub) {
6276   return upb_sink_startstr(this, sel, size_hint, sub);
6277 }
6278 inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf,
6279                                     size_t len, const BufferHandle* handle) {
6280   return upb_sink_putstring(this, sel, buf, len, handle);
6281 }
6282 inline bool Sink::EndString(Handlers::Selector sel) {
6283   return upb_sink_endstr(this, sel);
6284 }
6285 inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) {
6286   return upb_sink_startsubmsg(this, sel, sub);
6287 }
6288 inline bool Sink::EndSubMessage(Handlers::Selector sel) {
6289   return upb_sink_endsubmsg(this, sel);
6290 }
6291 inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) {
6292   return upb_sink_startseq(this, sel, sub);
6293 }
6294 inline bool Sink::EndSequence(Handlers::Selector sel) {
6295   return upb_sink_endseq(this, sel);
6296 }
6297 
6298 template <class T>
6299 BytesSink::BytesSink(const BytesHandler* handler, T* closure) {
6300   Reset(handler, closure);
6301 }
6302 
6303 template <class T>
6304 void BytesSink::Reset(const BytesHandler *handler, T *closure) {
6305   upb_bytessink_reset(this, handler, closure);
6306 }
6307 inline bool BytesSink::Start(size_t size_hint, void **subc) {
6308   return upb_bytessink_start(this, size_hint, subc);
6309 }
6310 inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len,
6311                                    const BufferHandle *handle) {
6312   return upb_bytessink_putbuf(this, subc, buf, len, handle);
6313 }
6314 inline bool BytesSink::End() {
6315   return upb_bytessink_end(this);
6316 }
6317 
6318 inline bool BufferSource::PutBuffer(const char *buf, size_t len,
6319                                     BytesSink *sink) {
6320   return upb_bufsrc_putbuf(buf, len, sink);
6321 }
6322 
6323 }  /* namespace upb */
6324 #endif
6325 
6326 #endif
6327 /*
6328 ** For handlers that do very tiny, very simple operations, the function call
6329 ** overhead of calling a handler can be significant.  This file allows the
6330 ** user to define handlers that do something very simple like store the value
6331 ** to memory and/or set a hasbit.  JIT compilers can then special-case these
6332 ** handlers and emit specialized code for them instead of actually calling the
6333 ** handler.
6334 **
6335 ** The functionality is very simple/limited right now but may expand to be able
6336 ** to call another function.
6337 */
6338 
6339 #ifndef UPB_SHIM_H
6340 #define UPB_SHIM_H
6341 
6342 
6343 typedef struct {
6344   size_t offset;
6345   int32_t hasbit;
6346 } upb_shim_data;
6347 
6348 #ifdef __cplusplus
6349 
6350 namespace upb {
6351 
6352 struct Shim {
6353   typedef upb_shim_data Data;
6354 
6355   /* Sets a handler for the given field that writes the value to the given
6356    * offset and, if hasbit >= 0, sets a bit at the given bit offset.  Returns
6357    * true if the handler was set successfully. */
6358   static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit);
6359 
6360   /* If this handler is a shim, returns the corresponding upb::Shim::Data and
6361    * stores the type in "type".  Otherwise returns NULL. */
6362   static const Data* GetData(const Handlers* h, Handlers::Selector s,
6363                              FieldDef::Type* type);
6364 };
6365 
6366 }  /* namespace upb */
6367 
6368 #endif
6369 
6370 UPB_BEGIN_EXTERN_C
6371 
6372 /* C API. */
6373 bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
6374                   int32_t hasbit);
6375 const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
6376                                       upb_fieldtype_t *type);
6377 
6378 UPB_END_EXTERN_C
6379 
6380 #ifdef __cplusplus
6381 /* C++ Wrappers. */
6382 namespace upb {
6383 inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs,
6384                       int32_t hasbit) {
6385   return upb_shim_set(h, f, ofs, hasbit);
6386 }
6387 inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s,
6388                                        FieldDef::Type* type) {
6389   return upb_shim_getdata(h, s, type);
6390 }
6391 }  /* namespace upb */
6392 #endif
6393 
6394 #endif  /* UPB_SHIM_H */
6395 /*
6396 ** upb::SymbolTable (upb_symtab)
6397 **
6398 ** A symtab (symbol table) stores a name->def map of upb_defs.  Clients could
6399 ** always create such tables themselves, but upb_symtab has logic for resolving
6400 ** symbolic references, and in particular, for keeping a whole set of consistent
6401 ** defs when replacing some subset of those defs.  This logic is nontrivial.
6402 **
6403 ** This is a mixed C/C++ interface that offers a full API to both languages.
6404 ** See the top-level README for more information.
6405 */
6406 
6407 #ifndef UPB_SYMTAB_H_
6408 #define UPB_SYMTAB_H_
6409 
6410 
6411 #ifdef __cplusplus
6412 #include <vector>
6413 namespace upb { class SymbolTable; }
6414 #endif
6415 
6416 UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted,
6417                          upb_symtab, upb_refcounted)
6418 
6419 typedef struct {
6420  UPB_PRIVATE_FOR_CPP
6421   upb_strtable_iter iter;
6422   upb_deftype_t type;
6423 } upb_symtab_iter;
6424 
6425 #ifdef __cplusplus
6426 
6427 /* Non-const methods in upb::SymbolTable are NOT thread-safe. */
6428 class upb::SymbolTable {
6429  public:
6430   /* Returns a new symbol table with a single ref owned by "owner."
6431    * Returns NULL if memory allocation failed. */
6432   static reffed_ptr<SymbolTable> New();
6433 
6434   /* Include RefCounted base methods. */
6435   UPB_REFCOUNTED_CPPMETHODS
6436 
6437   /* For all lookup functions, the returned pointer is not owned by the
6438    * caller; it may be invalidated by any non-const call or unref of the
6439    * SymbolTable!  To protect against this, take a ref if desired. */
6440 
6441   /* Freezes the symbol table: prevents further modification of it.
6442    * After the Freeze() operation is successful, the SymbolTable must only be
6443    * accessed via a const pointer.
6444    *
6445    * Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
6446    * a necessary step in using a SymbolTable.  If you have no need for it to be
6447    * immutable, there is no need to freeze it ever.  However sometimes it is
6448    * useful, and SymbolTables that are statically compiled into the binary are
6449    * always frozen by nature. */
6450   void Freeze();
6451 
6452   /* Resolves the given symbol using the rules described in descriptor.proto,
6453    * namely:
6454    *
6455    *    If the name starts with a '.', it is fully-qualified.  Otherwise,
6456    *    C++-like scoping rules are used to find the type (i.e. first the nested
6457    *    types within this message are searched, then within the parent, on up
6458    *    to the root namespace).
6459    *
6460    * If not found, returns NULL. */
6461   const Def* Resolve(const char* base, const char* sym) const;
6462 
6463   /* Finds an entry in the symbol table with this exact name.  If not found,
6464    * returns NULL. */
6465   const Def* Lookup(const char *sym) const;
6466   const MessageDef* LookupMessage(const char *sym) const;
6467   const EnumDef* LookupEnum(const char *sym) const;
6468 
6469   /* TODO: introduce a C++ iterator, but make it nice and templated so that if
6470    * you ask for an iterator of MessageDef the iterated elements are strongly
6471    * typed as MessageDef*. */
6472 
6473   /* Adds the given mutable defs to the symtab, resolving all symbols
6474    * (including enum default values) and finalizing the defs.  Only one def per
6475    * name may be in the list, but defs can replace existing defs in the symtab.
6476    * All defs must have a name -- anonymous defs are not allowed.  Anonymous
6477    * defs can still be frozen by calling upb_def_freeze() directly.
6478    *
6479    * Any existing defs that can reach defs that are being replaced will
6480    * themselves be replaced also, so that the resulting set of defs is fully
6481    * consistent.
6482    *
6483    * This logic implemented in this method is a convenience; ultimately it
6484    * calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
6485    * upb_freeze(), any of which the client could call themself.  However, since
6486    * the logic for doing so is nontrivial, we provide it here.
6487    *
6488    * The entire operation either succeeds or fails.  If the operation fails,
6489    * the symtab is unchanged, false is returned, and status indicates the
6490    * error.  The caller passes a ref on all defs to the symtab (even if the
6491    * operation fails).
6492    *
6493    * TODO(haberman): currently failure will leave the symtab unchanged, but may
6494    * leave the defs themselves partially resolved.  Does this matter?  If so we
6495    * could do a prepass that ensures that all symbols are resolvable and bail
6496    * if not, so we don't mutate anything until we know the operation will
6497    * succeed.
6498    *
6499    * TODO(haberman): since the defs must be mutable, refining a frozen def
6500    * requires making mutable copies of the entire tree.  This is wasteful if
6501    * only a few messages are changing.  We may want to add a way of adding a
6502    * tree of frozen defs to the symtab (perhaps an alternate constructor where
6503    * you pass the root of the tree?) */
6504   bool Add(Def*const* defs, size_t n, void* ref_donor, Status* status);
6505 
6506   bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
6507     return Add((Def*const*)&defs[0], defs.size(), owner, status);
6508   }
6509 
6510   /* Resolves all subdefs for messages in this file and attempts to freeze the
6511    * file.  If this succeeds, adds all the symbols to this SymbolTable
6512    * (replacing any existing ones with the same names). */
6513   bool AddFile(FileDef* file, Status* s);
6514 
6515  private:
6516   UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable)
6517 };
6518 
6519 #endif  /* __cplusplus */
6520 
6521 UPB_BEGIN_EXTERN_C
6522 
6523 /* Native C API. */
6524 
6525 /* Include refcounted methods like upb_symtab_ref(). */
6526 UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast)
6527 
6528 upb_symtab *upb_symtab_new(const void *owner);
6529 void upb_symtab_freeze(upb_symtab *s);
6530 const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
6531                                   const char *sym);
6532 const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
6533 const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
6534 const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
6535 bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
6536                     void *ref_donor, upb_status *status);
6537 bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status* status);
6538 
6539 /* upb_symtab_iter i;
6540  * for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
6541  *     upb_symtab_next(&i)) {
6542  *   const upb_def *def = upb_symtab_iter_def(&i);
6543  *    // ...
6544  * }
6545  *
6546  * For C we don't have separate iterators for const and non-const.
6547  * It is the caller's responsibility to cast the upb_fielddef* to
6548  * const if the upb_msgdef* is const. */
6549 void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
6550                       upb_deftype_t type);
6551 void upb_symtab_next(upb_symtab_iter *iter);
6552 bool upb_symtab_done(const upb_symtab_iter *iter);
6553 const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
6554 
6555 UPB_END_EXTERN_C
6556 
6557 #ifdef __cplusplus
6558 /* C++ inline wrappers. */
6559 namespace upb {
6560 inline reffed_ptr<SymbolTable> SymbolTable::New() {
6561   upb_symtab *s = upb_symtab_new(&s);
6562   return reffed_ptr<SymbolTable>(s, &s);
6563 }
6564 
6565 inline void SymbolTable::Freeze() {
6566   return upb_symtab_freeze(this);
6567 }
6568 inline const Def *SymbolTable::Resolve(const char *base,
6569                                        const char *sym) const {
6570   return upb_symtab_resolve(this, base, sym);
6571 }
6572 inline const Def* SymbolTable::Lookup(const char *sym) const {
6573   return upb_symtab_lookup(this, sym);
6574 }
6575 inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
6576   return upb_symtab_lookupmsg(this, sym);
6577 }
6578 inline bool SymbolTable::Add(
6579     Def*const* defs, size_t n, void* ref_donor, Status* status) {
6580   return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
6581 }
6582 inline bool SymbolTable::AddFile(FileDef* file, Status* s) {
6583   return upb_symtab_addfile(this, file, s);
6584 }
6585 }  /* namespace upb */
6586 #endif
6587 
6588 #endif  /* UPB_SYMTAB_H_ */
6589 /*
6590 ** upb::descriptor::Reader (upb_descreader)
6591 **
6592 ** Provides a way of building upb::Defs from data in descriptor.proto format.
6593 */
6594 
6595 #ifndef UPB_DESCRIPTOR_H
6596 #define UPB_DESCRIPTOR_H
6597 
6598 
6599 #ifdef __cplusplus
6600 namespace upb {
6601 namespace descriptor {
6602 class Reader;
6603 }  /* namespace descriptor */
6604 }  /* namespace upb */
6605 #endif
6606 
6607 UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader)
6608 
6609 #ifdef __cplusplus
6610 
6611 /* Class that receives descriptor data according to the descriptor.proto schema
6612  * and use it to build upb::Defs corresponding to that schema. */
6613 class upb::descriptor::Reader {
6614  public:
6615   /* These handlers must have come from NewHandlers() and must outlive the
6616    * Reader.
6617    *
6618    * TODO: generate the handlers statically (like we do with the
6619    * descriptor.proto defs) so that there is no need to pass this parameter (or
6620    * to build/memory-manage the handlers at runtime at all).  Unfortunately this
6621    * is a bit tricky to implement for Handlers, but necessary to simplify this
6622    * interface. */
6623   static Reader* Create(Environment* env, const Handlers* handlers);
6624 
6625   /* The reader's input; this is where descriptor.proto data should be sent. */
6626   Sink* input();
6627 
6628   /* Use to get the FileDefs that have been parsed. */
6629   size_t file_count() const;
6630   FileDef* file(size_t i) const;
6631 
6632   /* Builds and returns handlers for the reader, owned by "owner." */
6633   static Handlers* NewHandlers(const void* owner);
6634 
6635  private:
6636   UPB_DISALLOW_POD_OPS(Reader, upb::descriptor::Reader)
6637 };
6638 
6639 #endif
6640 
6641 UPB_BEGIN_EXTERN_C
6642 
6643 /* C API. */
6644 upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h);
6645 upb_sink *upb_descreader_input(upb_descreader *r);
6646 size_t upb_descreader_filecount(const upb_descreader *r);
6647 upb_filedef *upb_descreader_file(const upb_descreader *r, size_t i);
6648 const upb_handlers *upb_descreader_newhandlers(const void *owner);
6649 
6650 UPB_END_EXTERN_C
6651 
6652 #ifdef __cplusplus
6653 /* C++ implementation details. ************************************************/
6654 namespace upb {
6655 namespace descriptor {
6656 inline Reader* Reader::Create(Environment* e, const Handlers *h) {
6657   return upb_descreader_create(e, h);
6658 }
6659 inline Sink* Reader::input() { return upb_descreader_input(this); }
6660 inline size_t Reader::file_count() const {
6661   return upb_descreader_filecount(this);
6662 }
6663 inline FileDef* Reader::file(size_t i) const {
6664   return upb_descreader_file(this, i);
6665 }
6666 }  /* namespace descriptor */
6667 }  /* namespace upb */
6668 #endif
6669 
6670 #endif  /* UPB_DESCRIPTOR_H */
6671 /* This file contains accessors for a set of compiled-in defs.
6672  * Note that unlike Google's protobuf, it does *not* define
6673  * generated classes or any other kind of data structure for
6674  * actually storing protobufs.  It only contains *defs* which
6675  * let you reflect over a protobuf *schema*.
6676  */
6677 /* This file was generated by upbc (the upb compiler) from the input
6678  * file:
6679  *
6680  *     upb/descriptor/descriptor.proto
6681  *
6682  * Do not edit -- your changes will be discarded when the file is
6683  * regenerated. */
6684 
6685 #ifndef UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
6686 #define UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
6687 
6688 
6689 UPB_BEGIN_EXTERN_C
6690 
6691 /* Enums */
6692 
6693 typedef enum {
6694   google_protobuf_FieldDescriptorProto_LABEL_OPTIONAL = 1,
6695   google_protobuf_FieldDescriptorProto_LABEL_REQUIRED = 2,
6696   google_protobuf_FieldDescriptorProto_LABEL_REPEATED = 3
6697 } google_protobuf_FieldDescriptorProto_Label;
6698 
6699 typedef enum {
6700   google_protobuf_FieldDescriptorProto_TYPE_DOUBLE = 1,
6701   google_protobuf_FieldDescriptorProto_TYPE_FLOAT = 2,
6702   google_protobuf_FieldDescriptorProto_TYPE_INT64 = 3,
6703   google_protobuf_FieldDescriptorProto_TYPE_UINT64 = 4,
6704   google_protobuf_FieldDescriptorProto_TYPE_INT32 = 5,
6705   google_protobuf_FieldDescriptorProto_TYPE_FIXED64 = 6,
6706   google_protobuf_FieldDescriptorProto_TYPE_FIXED32 = 7,
6707   google_protobuf_FieldDescriptorProto_TYPE_BOOL = 8,
6708   google_protobuf_FieldDescriptorProto_TYPE_STRING = 9,
6709   google_protobuf_FieldDescriptorProto_TYPE_GROUP = 10,
6710   google_protobuf_FieldDescriptorProto_TYPE_MESSAGE = 11,
6711   google_protobuf_FieldDescriptorProto_TYPE_BYTES = 12,
6712   google_protobuf_FieldDescriptorProto_TYPE_UINT32 = 13,
6713   google_protobuf_FieldDescriptorProto_TYPE_ENUM = 14,
6714   google_protobuf_FieldDescriptorProto_TYPE_SFIXED32 = 15,
6715   google_protobuf_FieldDescriptorProto_TYPE_SFIXED64 = 16,
6716   google_protobuf_FieldDescriptorProto_TYPE_SINT32 = 17,
6717   google_protobuf_FieldDescriptorProto_TYPE_SINT64 = 18
6718 } google_protobuf_FieldDescriptorProto_Type;
6719 
6720 typedef enum {
6721   google_protobuf_FieldOptions_STRING = 0,
6722   google_protobuf_FieldOptions_CORD = 1,
6723   google_protobuf_FieldOptions_STRING_PIECE = 2
6724 } google_protobuf_FieldOptions_CType;
6725 
6726 typedef enum {
6727   google_protobuf_FieldOptions_JS_NORMAL = 0,
6728   google_protobuf_FieldOptions_JS_STRING = 1,
6729   google_protobuf_FieldOptions_JS_NUMBER = 2
6730 } google_protobuf_FieldOptions_JSType;
6731 
6732 typedef enum {
6733   google_protobuf_FileOptions_SPEED = 1,
6734   google_protobuf_FileOptions_CODE_SIZE = 2,
6735   google_protobuf_FileOptions_LITE_RUNTIME = 3
6736 } google_protobuf_FileOptions_OptimizeMode;
6737 
6738 /* MessageDefs: call these functions to get a ref to a msgdef. */
6739 const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_get(const void *owner);
6740 const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(const void *owner);
6741 const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(const void *owner);
6742 const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto_get(const void *owner);
6743 const upb_msgdef *upbdefs_google_protobuf_EnumOptions_get(const void *owner);
6744 const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto_get(const void *owner);
6745 const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions_get(const void *owner);
6746 const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto_get(const void *owner);
6747 const upb_msgdef *upbdefs_google_protobuf_FieldOptions_get(const void *owner);
6748 const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto_get(const void *owner);
6749 const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet_get(const void *owner);
6750 const upb_msgdef *upbdefs_google_protobuf_FileOptions_get(const void *owner);
6751 const upb_msgdef *upbdefs_google_protobuf_MessageOptions_get(const void *owner);
6752 const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto_get(const void *owner);
6753 const upb_msgdef *upbdefs_google_protobuf_MethodOptions_get(const void *owner);
6754 const upb_msgdef *upbdefs_google_protobuf_OneofDescriptorProto_get(const void *owner);
6755 const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto_get(const void *owner);
6756 const upb_msgdef *upbdefs_google_protobuf_ServiceOptions_get(const void *owner);
6757 const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_get(const void *owner);
6758 const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location_get(const void *owner);
6759 const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_get(const void *owner);
6760 const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart_get(const void *owner);
6761 
6762 /* EnumDefs: call these functions to get a ref to an enumdef. */
6763 const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label_get(const void *owner);
6764 const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type_get(const void *owner);
6765 const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType_get(const void *owner);
6766 const upb_enumdef *upbdefs_google_protobuf_FieldOptions_JSType_get(const void *owner);
6767 const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode_get(const void *owner);
6768 
6769 /* Functions to test whether this message is of a certain type. */
6770 UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_is(const upb_msgdef *m) {
6771   return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto") == 0;
6772 }
6773 UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(const upb_msgdef *m) {
6774   return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ExtensionRange") == 0;
6775 }
6776 UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(const upb_msgdef *m) {
6777   return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ReservedRange") == 0;
6778 }
6779 UPB_INLINE bool upbdefs_google_protobuf_EnumDescriptorProto_is(const upb_msgdef *m) {
6780   return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumDescriptorProto") == 0;
6781 }
6782 UPB_INLINE bool upbdefs_google_protobuf_EnumOptions_is(const upb_msgdef *m) {
6783   return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumOptions") == 0;
6784 }
6785 UPB_INLINE bool upbdefs_google_protobuf_EnumValueDescriptorProto_is(const upb_msgdef *m) {
6786   return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueDescriptorProto") == 0;
6787 }
6788 UPB_INLINE bool upbdefs_google_protobuf_EnumValueOptions_is(const upb_msgdef *m) {
6789   return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueOptions") == 0;
6790 }
6791 UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_is(const upb_msgdef *m) {
6792   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldDescriptorProto") == 0;
6793 }
6794 UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_is(const upb_msgdef *m) {
6795   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldOptions") == 0;
6796 }
6797 UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorProto_is(const upb_msgdef *m) {
6798   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorProto") == 0;
6799 }
6800 UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorSet_is(const upb_msgdef *m) {
6801   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorSet") == 0;
6802 }
6803 UPB_INLINE bool upbdefs_google_protobuf_FileOptions_is(const upb_msgdef *m) {
6804   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileOptions") == 0;
6805 }
6806 UPB_INLINE bool upbdefs_google_protobuf_MessageOptions_is(const upb_msgdef *m) {
6807   return strcmp(upb_msgdef_fullname(m), "google.protobuf.MessageOptions") == 0;
6808 }
6809 UPB_INLINE bool upbdefs_google_protobuf_MethodDescriptorProto_is(const upb_msgdef *m) {
6810   return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodDescriptorProto") == 0;
6811 }
6812 UPB_INLINE bool upbdefs_google_protobuf_MethodOptions_is(const upb_msgdef *m) {
6813   return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodOptions") == 0;
6814 }
6815 UPB_INLINE bool upbdefs_google_protobuf_OneofDescriptorProto_is(const upb_msgdef *m) {
6816   return strcmp(upb_msgdef_fullname(m), "google.protobuf.OneofDescriptorProto") == 0;
6817 }
6818 UPB_INLINE bool upbdefs_google_protobuf_ServiceDescriptorProto_is(const upb_msgdef *m) {
6819   return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceDescriptorProto") == 0;
6820 }
6821 UPB_INLINE bool upbdefs_google_protobuf_ServiceOptions_is(const upb_msgdef *m) {
6822   return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceOptions") == 0;
6823 }
6824 UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_is(const upb_msgdef *m) {
6825   return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo") == 0;
6826 }
6827 UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_Location_is(const upb_msgdef *m) {
6828   return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo.Location") == 0;
6829 }
6830 UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_is(const upb_msgdef *m) {
6831   return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption") == 0;
6832 }
6833 UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_NamePart_is(const upb_msgdef *m) {
6834   return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption.NamePart") == 0;
6835 }
6836 
6837 /* Functions to test whether this enum is of a certain type. */
6838 UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Label_is(const upb_enumdef *e) {
6839   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Label") == 0;
6840 }
6841 UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Type_is(const upb_enumdef *e) {
6842   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Type") == 0;
6843 }
6844 UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_CType_is(const upb_enumdef *e) {
6845   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.CType") == 0;
6846 }
6847 UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_JSType_is(const upb_enumdef *e) {
6848   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.JSType") == 0;
6849 }
6850 UPB_INLINE bool upbdefs_google_protobuf_FileOptions_OptimizeMode_is(const upb_enumdef *e) {
6851   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FileOptions.OptimizeMode") == 0;
6852 }
6853 
6854 
6855 /* Functions to get a fielddef from a msgdef reference. */
6856 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 2); }
6857 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 1); }
6858 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 2); }
6859 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 1); }
6860 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6861 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6862 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6863 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_field(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6864 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6865 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_nested_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6866 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_oneof_decl(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
6867 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
6868 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
6869 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
6870 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6871 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6872 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6873 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_allow_alias(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 2); }
6874 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 3); }
6875 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 999); }
6876 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6877 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6878 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6879 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 1); }
6880 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 999); }
6881 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_default_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
6882 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_extendee(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6883 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_json_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
6884 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_label(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6885 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6886 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6887 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_oneof_index(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
6888 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
6889 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6890 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6891 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_ctype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 1); }
6892 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 3); }
6893 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_jstype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 6); }
6894 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_lazy(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 5); }
6895 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_packed(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 2); }
6896 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 999); }
6897 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_weak(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 10); }
6898 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6899 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6900 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
6901 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_message_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6902 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6903 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
6904 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6905 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_public_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
6906 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_service(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6907 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_source_code_info(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
6908 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_syntax(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 12); }
6909 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_weak_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 11); }
6910 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_f_file(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorSet_is(m)); return upb_msgdef_itof(m, 1); }
6911 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_enable_arenas(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 31); }
6912 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 16); }
6913 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_csharp_namespace(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 37); }
6914 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 23); }
6915 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_go_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 11); }
6916 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generate_equals_and_hash(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 20); }
6917 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 17); }
6918 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_multiple_files(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 10); }
6919 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_outer_classname(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 8); }
6920 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 1); }
6921 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_string_check_utf8(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 27); }
6922 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_javanano_use_deprecated_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 38); }
6923 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_objc_class_prefix(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 36); }
6924 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_optimize_for(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 9); }
6925 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_py_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 18); }
6926 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 999); }
6927 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 3); }
6928 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_map_entry(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 7); }
6929 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_message_set_wire_format(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 1); }
6930 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_no_standard_descriptor_accessor(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 2); }
6931 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 999); }
6932 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_client_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
6933 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_input_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6934 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6935 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
6936 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_output_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6937 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_server_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
6938 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 33); }
6939 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 999); }
6940 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_OneofDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6941 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_method(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
6942 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
6943 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
6944 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 33); }
6945 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 999); }
6946 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 3); }
6947 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_detached_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 6); }
6948 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_path(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 1); }
6949 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_span(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 2); }
6950 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_trailing_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 4); }
6951 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_f_location(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_is(m)); return upb_msgdef_itof(m, 1); }
6952 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_is_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 2); }
6953 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_name_part(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 1); }
6954 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_aggregate_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 8); }
6955 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_double_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 6); }
6956 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_identifier_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 3); }
6957 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 2); }
6958 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_negative_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 5); }
6959 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_positive_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 4); }
6960 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_string_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 7); }
6961 
6962 UPB_END_EXTERN_C
6963 
6964 #ifdef __cplusplus
6965 
6966 namespace upbdefs {
6967 namespace google {
6968 namespace protobuf {
6969 
6970 class DescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6971  public:
6972   DescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6973       : reffed_ptr(m, ref_donor) {
6974     assert(upbdefs_google_protobuf_DescriptorProto_is(m));
6975   }
6976 
6977   static DescriptorProto get() {
6978     const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_get(&m);
6979     return DescriptorProto(m, &m);
6980   }
6981 
6982   class ExtensionRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6983    public:
6984     ExtensionRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6985         : reffed_ptr(m, ref_donor) {
6986       assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m));
6987     }
6988 
6989     static ExtensionRange get() {
6990       const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(&m);
6991       return ExtensionRange(m, &m);
6992     }
6993   };
6994 
6995   class ReservedRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
6996    public:
6997     ReservedRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
6998         : reffed_ptr(m, ref_donor) {
6999       assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m));
7000     }
7001 
7002     static ReservedRange get() {
7003       const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(&m);
7004       return ReservedRange(m, &m);
7005     }
7006   };
7007 };
7008 
7009 class EnumDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7010  public:
7011   EnumDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7012       : reffed_ptr(m, ref_donor) {
7013     assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m));
7014   }
7015 
7016   static EnumDescriptorProto get() {
7017     const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumDescriptorProto_get(&m);
7018     return EnumDescriptorProto(m, &m);
7019   }
7020 };
7021 
7022 class EnumOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7023  public:
7024   EnumOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7025       : reffed_ptr(m, ref_donor) {
7026     assert(upbdefs_google_protobuf_EnumOptions_is(m));
7027   }
7028 
7029   static EnumOptions get() {
7030     const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumOptions_get(&m);
7031     return EnumOptions(m, &m);
7032   }
7033 };
7034 
7035 class EnumValueDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7036  public:
7037   EnumValueDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7038       : reffed_ptr(m, ref_donor) {
7039     assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m));
7040   }
7041 
7042   static EnumValueDescriptorProto get() {
7043     const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueDescriptorProto_get(&m);
7044     return EnumValueDescriptorProto(m, &m);
7045   }
7046 };
7047 
7048 class EnumValueOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7049  public:
7050   EnumValueOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7051       : reffed_ptr(m, ref_donor) {
7052     assert(upbdefs_google_protobuf_EnumValueOptions_is(m));
7053   }
7054 
7055   static EnumValueOptions get() {
7056     const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueOptions_get(&m);
7057     return EnumValueOptions(m, &m);
7058   }
7059 };
7060 
7061 class FieldDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7062  public:
7063   FieldDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7064       : reffed_ptr(m, ref_donor) {
7065     assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m));
7066   }
7067 
7068   static FieldDescriptorProto get() {
7069     const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldDescriptorProto_get(&m);
7070     return FieldDescriptorProto(m, &m);
7071   }
7072 
7073   class Label : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7074    public:
7075     Label(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7076         : reffed_ptr(e, ref_donor) {
7077       assert(upbdefs_google_protobuf_FieldDescriptorProto_Label_is(e));
7078     }
7079     static Label get() {
7080       const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Label_get(&e);
7081       return Label(e, &e);
7082     }
7083   };
7084 
7085   class Type : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7086    public:
7087     Type(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7088         : reffed_ptr(e, ref_donor) {
7089       assert(upbdefs_google_protobuf_FieldDescriptorProto_Type_is(e));
7090     }
7091     static Type get() {
7092       const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Type_get(&e);
7093       return Type(e, &e);
7094     }
7095   };
7096 };
7097 
7098 class FieldOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7099  public:
7100   FieldOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7101       : reffed_ptr(m, ref_donor) {
7102     assert(upbdefs_google_protobuf_FieldOptions_is(m));
7103   }
7104 
7105   static FieldOptions get() {
7106     const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldOptions_get(&m);
7107     return FieldOptions(m, &m);
7108   }
7109 
7110   class CType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7111    public:
7112     CType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7113         : reffed_ptr(e, ref_donor) {
7114       assert(upbdefs_google_protobuf_FieldOptions_CType_is(e));
7115     }
7116     static CType get() {
7117       const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_CType_get(&e);
7118       return CType(e, &e);
7119     }
7120   };
7121 
7122   class JSType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7123    public:
7124     JSType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7125         : reffed_ptr(e, ref_donor) {
7126       assert(upbdefs_google_protobuf_FieldOptions_JSType_is(e));
7127     }
7128     static JSType get() {
7129       const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_JSType_get(&e);
7130       return JSType(e, &e);
7131     }
7132   };
7133 };
7134 
7135 class FileDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7136  public:
7137   FileDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7138       : reffed_ptr(m, ref_donor) {
7139     assert(upbdefs_google_protobuf_FileDescriptorProto_is(m));
7140   }
7141 
7142   static FileDescriptorProto get() {
7143     const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorProto_get(&m);
7144     return FileDescriptorProto(m, &m);
7145   }
7146 };
7147 
7148 class FileDescriptorSet : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7149  public:
7150   FileDescriptorSet(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7151       : reffed_ptr(m, ref_donor) {
7152     assert(upbdefs_google_protobuf_FileDescriptorSet_is(m));
7153   }
7154 
7155   static FileDescriptorSet get() {
7156     const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorSet_get(&m);
7157     return FileDescriptorSet(m, &m);
7158   }
7159 };
7160 
7161 class FileOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7162  public:
7163   FileOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7164       : reffed_ptr(m, ref_donor) {
7165     assert(upbdefs_google_protobuf_FileOptions_is(m));
7166   }
7167 
7168   static FileOptions get() {
7169     const ::upb::MessageDef* m = upbdefs_google_protobuf_FileOptions_get(&m);
7170     return FileOptions(m, &m);
7171   }
7172 
7173   class OptimizeMode : public ::upb::reffed_ptr<const ::upb::EnumDef> {
7174    public:
7175     OptimizeMode(const ::upb::EnumDef* e, const void *ref_donor = NULL)
7176         : reffed_ptr(e, ref_donor) {
7177       assert(upbdefs_google_protobuf_FileOptions_OptimizeMode_is(e));
7178     }
7179     static OptimizeMode get() {
7180       const ::upb::EnumDef* e = upbdefs_google_protobuf_FileOptions_OptimizeMode_get(&e);
7181       return OptimizeMode(e, &e);
7182     }
7183   };
7184 };
7185 
7186 class MessageOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7187  public:
7188   MessageOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7189       : reffed_ptr(m, ref_donor) {
7190     assert(upbdefs_google_protobuf_MessageOptions_is(m));
7191   }
7192 
7193   static MessageOptions get() {
7194     const ::upb::MessageDef* m = upbdefs_google_protobuf_MessageOptions_get(&m);
7195     return MessageOptions(m, &m);
7196   }
7197 };
7198 
7199 class MethodDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7200  public:
7201   MethodDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7202       : reffed_ptr(m, ref_donor) {
7203     assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m));
7204   }
7205 
7206   static MethodDescriptorProto get() {
7207     const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodDescriptorProto_get(&m);
7208     return MethodDescriptorProto(m, &m);
7209   }
7210 };
7211 
7212 class MethodOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7213  public:
7214   MethodOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7215       : reffed_ptr(m, ref_donor) {
7216     assert(upbdefs_google_protobuf_MethodOptions_is(m));
7217   }
7218 
7219   static MethodOptions get() {
7220     const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodOptions_get(&m);
7221     return MethodOptions(m, &m);
7222   }
7223 };
7224 
7225 class OneofDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7226  public:
7227   OneofDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7228       : reffed_ptr(m, ref_donor) {
7229     assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m));
7230   }
7231 
7232   static OneofDescriptorProto get() {
7233     const ::upb::MessageDef* m = upbdefs_google_protobuf_OneofDescriptorProto_get(&m);
7234     return OneofDescriptorProto(m, &m);
7235   }
7236 };
7237 
7238 class ServiceDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7239  public:
7240   ServiceDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7241       : reffed_ptr(m, ref_donor) {
7242     assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m));
7243   }
7244 
7245   static ServiceDescriptorProto get() {
7246     const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceDescriptorProto_get(&m);
7247     return ServiceDescriptorProto(m, &m);
7248   }
7249 };
7250 
7251 class ServiceOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7252  public:
7253   ServiceOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7254       : reffed_ptr(m, ref_donor) {
7255     assert(upbdefs_google_protobuf_ServiceOptions_is(m));
7256   }
7257 
7258   static ServiceOptions get() {
7259     const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceOptions_get(&m);
7260     return ServiceOptions(m, &m);
7261   }
7262 };
7263 
7264 class SourceCodeInfo : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7265  public:
7266   SourceCodeInfo(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7267       : reffed_ptr(m, ref_donor) {
7268     assert(upbdefs_google_protobuf_SourceCodeInfo_is(m));
7269   }
7270 
7271   static SourceCodeInfo get() {
7272     const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_get(&m);
7273     return SourceCodeInfo(m, &m);
7274   }
7275 
7276   class Location : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7277    public:
7278     Location(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7279         : reffed_ptr(m, ref_donor) {
7280       assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m));
7281     }
7282 
7283     static Location get() {
7284       const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_Location_get(&m);
7285       return Location(m, &m);
7286     }
7287   };
7288 };
7289 
7290 class UninterpretedOption : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7291  public:
7292   UninterpretedOption(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7293       : reffed_ptr(m, ref_donor) {
7294     assert(upbdefs_google_protobuf_UninterpretedOption_is(m));
7295   }
7296 
7297   static UninterpretedOption get() {
7298     const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_get(&m);
7299     return UninterpretedOption(m, &m);
7300   }
7301 
7302   class NamePart : public ::upb::reffed_ptr<const ::upb::MessageDef> {
7303    public:
7304     NamePart(const ::upb::MessageDef* m, const void *ref_donor = NULL)
7305         : reffed_ptr(m, ref_donor) {
7306       assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m));
7307     }
7308 
7309     static NamePart get() {
7310       const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_NamePart_get(&m);
7311       return NamePart(m, &m);
7312     }
7313   };
7314 };
7315 
7316 }  /* namespace protobuf */
7317 }  /* namespace google */
7318 }  /* namespace upbdefs */
7319 
7320 #endif  /* __cplusplus */
7321 
7322 #endif  /* UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ */
7323 /*
7324 ** Internal-only definitions for the decoder.
7325 */
7326 
7327 #ifndef UPB_DECODER_INT_H_
7328 #define UPB_DECODER_INT_H_
7329 
7330 /*
7331 ** upb::pb::Decoder
7332 **
7333 ** A high performance, streaming, resumable decoder for the binary protobuf
7334 ** format.
7335 **
7336 ** This interface works the same regardless of what decoder backend is being
7337 ** used.  A client of this class does not need to know whether decoding is using
7338 ** a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder.  By default,
7339 ** it will always use the fastest available decoder.  However, you can call
7340 ** set_allow_jit(false) to disable any JIT decoder that might be available.
7341 ** This is primarily useful for testing purposes.
7342 */
7343 
7344 #ifndef UPB_DECODER_H_
7345 #define UPB_DECODER_H_
7346 
7347 
7348 #ifdef __cplusplus
7349 namespace upb {
7350 namespace pb {
7351 class CodeCache;
7352 class Decoder;
7353 class DecoderMethod;
7354 class DecoderMethodOptions;
7355 }  /* namespace pb */
7356 }  /* namespace upb */
7357 #endif
7358 
7359 UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache)
7360 UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder)
7361 UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts)
7362 
7363 UPB_DECLARE_DERIVED_TYPE(upb::pb::DecoderMethod, upb::RefCounted,
7364                          upb_pbdecodermethod, upb_refcounted)
7365 
7366 /* The maximum number of bytes we are required to buffer internally between
7367  * calls to the decoder.  The value is 14: a 5 byte unknown tag plus ten-byte
7368  * varint, less one because we are buffering an incomplete value.
7369  *
7370  * Should only be used by unit tests. */
7371 #define UPB_DECODER_MAX_RESIDUAL_BYTES 14
7372 
7373 #ifdef __cplusplus
7374 
7375 /* The parameters one uses to construct a DecoderMethod.
7376  * TODO(haberman): move allowjit here?  Seems more convenient for users.
7377  * TODO(haberman): move this to be heap allocated for ABI stability. */
7378 class upb::pb::DecoderMethodOptions {
7379  public:
7380   /* Parameter represents the destination handlers that this method will push
7381    * to. */
7382   explicit DecoderMethodOptions(const Handlers* dest_handlers);
7383 
7384   /* Should the decoder push submessages to lazy handlers for fields that have
7385    * them?  The caller should set this iff the lazy handlers expect data that is
7386    * in protobuf binary format and the caller wishes to lazy parse it. */
7387   void set_lazy(bool lazy);
7388 #else
7389 struct upb_pbdecodermethodopts {
7390 #endif
7391   const upb_handlers *handlers;
7392   bool lazy;
7393 };
7394 
7395 #ifdef __cplusplus
7396 
7397 /* Represents the code to parse a protobuf according to a destination
7398  * Handlers. */
7399 class upb::pb::DecoderMethod {
7400  public:
7401   /* Include base methods from upb::ReferenceCounted. */
7402   UPB_REFCOUNTED_CPPMETHODS
7403 
7404   /* The destination handlers that are statically bound to this method.
7405    * This method is only capable of outputting to a sink that uses these
7406    * handlers. */
7407   const Handlers* dest_handlers() const;
7408 
7409   /* The input handlers for this decoder method. */
7410   const BytesHandler* input_handler() const;
7411 
7412   /* Whether this method is native. */
7413   bool is_native() const;
7414 
7415   /* Convenience method for generating a DecoderMethod without explicitly
7416    * creating a CodeCache. */
7417   static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts);
7418 
7419  private:
7420   UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod)
7421 };
7422 
7423 #endif
7424 
7425 /* Preallocation hint: decoder won't allocate more bytes than this when first
7426  * constructed.  This hint may be an overestimate for some build configurations.
7427  * But if the decoder library is upgraded without recompiling the application,
7428  * it may be an underestimate. */
7429 #define UPB_PB_DECODER_SIZE 4416
7430 
7431 #ifdef __cplusplus
7432 
7433 /* A Decoder receives binary protobuf data on its input sink and pushes the
7434  * decoded data to its output sink. */
7435 class upb::pb::Decoder {
7436  public:
7437   /* Constructs a decoder instance for the given method, which must outlive this
7438    * decoder.  Any errors during parsing will be set on the given status, which
7439    * must also outlive this decoder.
7440    *
7441    * The sink must match the given method. */
7442   static Decoder* Create(Environment* env, const DecoderMethod* method,
7443                          Sink* output);
7444 
7445   /* Returns the DecoderMethod this decoder is parsing from. */
7446   const DecoderMethod* method() const;
7447 
7448   /* The sink on which this decoder receives input. */
7449   BytesSink* input();
7450 
7451   /* Returns number of bytes successfully parsed.
7452    *
7453    * This can be useful for determining the stream position where an error
7454    * occurred.
7455    *
7456    * This value may not be up-to-date when called from inside a parsing
7457    * callback. */
7458   uint64_t BytesParsed() const;
7459 
7460   /* Gets/sets the parsing nexting limit.  If the total number of nested
7461    * submessages and repeated fields hits this limit, parsing will fail.  This
7462    * is a resource limit that controls the amount of memory used by the parsing
7463    * stack.
7464    *
7465    * Setting the limit will fail if the parser is currently suspended at a depth
7466    * greater than this, or if memory allocation of the stack fails. */
7467   size_t max_nesting() const;
7468   bool set_max_nesting(size_t max);
7469 
7470   void Reset();
7471 
7472   static const size_t kSize = UPB_PB_DECODER_SIZE;
7473 
7474  private:
7475   UPB_DISALLOW_POD_OPS(Decoder, upb::pb::Decoder)
7476 };
7477 
7478 #endif  /* __cplusplus */
7479 
7480 #ifdef __cplusplus
7481 
7482 /* A class for caching protobuf processing code, whether bytecode for the
7483  * interpreted decoder or machine code for the JIT.
7484  *
7485  * This class is not thread-safe.
7486  *
7487  * TODO(haberman): move this to be heap allocated for ABI stability. */
7488 class upb::pb::CodeCache {
7489  public:
7490   CodeCache();
7491   ~CodeCache();
7492 
7493   /* Whether the cache is allowed to generate machine code.  Defaults to true.
7494    * There is no real reason to turn it off except for testing or if you are
7495    * having a specific problem with the JIT.
7496    *
7497    * Note that allow_jit = true does not *guarantee* that the code will be JIT
7498    * compiled.  If this platform is not supported or the JIT was not compiled
7499    * in, the code may still be interpreted. */
7500   bool allow_jit() const;
7501 
7502   /* This may only be called when the object is first constructed, and prior to
7503    * any code generation, otherwise returns false and does nothing. */
7504   bool set_allow_jit(bool allow);
7505 
7506   /* Returns a DecoderMethod that can push data to the given handlers.
7507    * If a suitable method already exists, it will be returned from the cache.
7508    *
7509    * Specifying the destination handlers here allows the DecoderMethod to be
7510    * statically bound to the destination handlers if possible, which can allow
7511    * more efficient decoding.  However the returned method may or may not
7512    * actually be statically bound.  But in all cases, the returned method can
7513    * push data to the given handlers. */
7514   const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts);
7515 
7516   /* If/when someone needs to explicitly create a dynamically-bound
7517    * DecoderMethod*, we can add a method to get it here. */
7518 
7519  private:
7520   UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache)
7521 #else
7522 struct upb_pbcodecache {
7523 #endif
7524   bool allow_jit_;
7525 
7526   /* Array of mgroups. */
7527   upb_inttable groups;
7528 };
7529 
7530 UPB_BEGIN_EXTERN_C
7531 
7532 upb_pbdecoder *upb_pbdecoder_create(upb_env *e,
7533                                     const upb_pbdecodermethod *method,
7534                                     upb_sink *output);
7535 const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d);
7536 upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d);
7537 uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d);
7538 size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d);
7539 bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max);
7540 void upb_pbdecoder_reset(upb_pbdecoder *d);
7541 
7542 void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
7543                                   const upb_handlers *h);
7544 void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy);
7545 
7546 
7547 /* Include refcounted methods like upb_pbdecodermethod_ref(). */
7548 UPB_REFCOUNTED_CMETHODS(upb_pbdecodermethod, upb_pbdecodermethod_upcast)
7549 
7550 const upb_handlers *upb_pbdecodermethod_desthandlers(
7551     const upb_pbdecodermethod *m);
7552 const upb_byteshandler *upb_pbdecodermethod_inputhandler(
7553     const upb_pbdecodermethod *m);
7554 bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m);
7555 const upb_pbdecodermethod *upb_pbdecodermethod_new(
7556     const upb_pbdecodermethodopts *opts, const void *owner);
7557 
7558 void upb_pbcodecache_init(upb_pbcodecache *c);
7559 void upb_pbcodecache_uninit(upb_pbcodecache *c);
7560 bool upb_pbcodecache_allowjit(const upb_pbcodecache *c);
7561 bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow);
7562 const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
7563     upb_pbcodecache *c, const upb_pbdecodermethodopts *opts);
7564 
7565 UPB_END_EXTERN_C
7566 
7567 #ifdef __cplusplus
7568 
7569 namespace upb {
7570 
7571 namespace pb {
7572 
7573 /* static */
7574 inline Decoder* Decoder::Create(Environment* env, const DecoderMethod* m,
7575                                 Sink* sink) {
7576   return upb_pbdecoder_create(env, m, sink);
7577 }
7578 inline const DecoderMethod* Decoder::method() const {
7579   return upb_pbdecoder_method(this);
7580 }
7581 inline BytesSink* Decoder::input() {
7582   return upb_pbdecoder_input(this);
7583 }
7584 inline uint64_t Decoder::BytesParsed() const {
7585   return upb_pbdecoder_bytesparsed(this);
7586 }
7587 inline size_t Decoder::max_nesting() const {
7588   return upb_pbdecoder_maxnesting(this);
7589 }
7590 inline bool Decoder::set_max_nesting(size_t max) {
7591   return upb_pbdecoder_setmaxnesting(this, max);
7592 }
7593 inline void Decoder::Reset() { upb_pbdecoder_reset(this); }
7594 
7595 inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) {
7596   upb_pbdecodermethodopts_init(this, h);
7597 }
7598 inline void DecoderMethodOptions::set_lazy(bool lazy) {
7599   upb_pbdecodermethodopts_setlazy(this, lazy);
7600 }
7601 
7602 inline const Handlers* DecoderMethod::dest_handlers() const {
7603   return upb_pbdecodermethod_desthandlers(this);
7604 }
7605 inline const BytesHandler* DecoderMethod::input_handler() const {
7606   return upb_pbdecodermethod_inputhandler(this);
7607 }
7608 inline bool DecoderMethod::is_native() const {
7609   return upb_pbdecodermethod_isnative(this);
7610 }
7611 /* static */
7612 inline reffed_ptr<const DecoderMethod> DecoderMethod::New(
7613     const DecoderMethodOptions &opts) {
7614   const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m);
7615   return reffed_ptr<const DecoderMethod>(m, &m);
7616 }
7617 
7618 inline CodeCache::CodeCache() {
7619   upb_pbcodecache_init(this);
7620 }
7621 inline CodeCache::~CodeCache() {
7622   upb_pbcodecache_uninit(this);
7623 }
7624 inline bool CodeCache::allow_jit() const {
7625   return upb_pbcodecache_allowjit(this);
7626 }
7627 inline bool CodeCache::set_allow_jit(bool allow) {
7628   return upb_pbcodecache_setallowjit(this, allow);
7629 }
7630 inline const DecoderMethod *CodeCache::GetDecoderMethod(
7631     const DecoderMethodOptions& opts) {
7632   return upb_pbcodecache_getdecodermethod(this, &opts);
7633 }
7634 
7635 }  /* namespace pb */
7636 }  /* namespace upb */
7637 
7638 #endif  /* __cplusplus */
7639 
7640 #endif  /* UPB_DECODER_H_ */
7641 
7642 /* C++ names are not actually used since this type isn't exposed to users. */
7643 #ifdef __cplusplus
7644 namespace upb {
7645 namespace pb {
7646 class MessageGroup;
7647 }  /* namespace pb */
7648 }  /* namespace upb */
7649 #endif
7650 UPB_DECLARE_DERIVED_TYPE(upb::pb::MessageGroup, upb::RefCounted,
7651                          mgroup, upb_refcounted)
7652 
7653 /* Opcode definitions.  The canonical meaning of each opcode is its
7654  * implementation in the interpreter (the JIT is written to match this).
7655  *
7656  * All instructions have the opcode in the low byte.
7657  * Instruction format for most instructions is:
7658  *
7659  * +-------------------+--------+
7660  * |     arg (24)      | op (8) |
7661  * +-------------------+--------+
7662  *
7663  * Exceptions are indicated below.  A few opcodes are multi-word. */
7664 typedef enum {
7665   /* Opcodes 1-8, 13, 15-18 parse their respective descriptor types.
7666    * Arg for all of these is the upb selector for this field. */
7667 #define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type
7668   T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
7669   T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
7670 #undef T
7671   OP_STARTMSG       = 9,   /* No arg. */
7672   OP_ENDMSG         = 10,  /* No arg. */
7673   OP_STARTSEQ       = 11,
7674   OP_ENDSEQ         = 12,
7675   OP_STARTSUBMSG    = 14,
7676   OP_ENDSUBMSG      = 19,
7677   OP_STARTSTR       = 20,
7678   OP_STRING         = 21,
7679   OP_ENDSTR         = 22,
7680 
7681   OP_PUSHTAGDELIM   = 23,  /* No arg. */
7682   OP_PUSHLENDELIM   = 24,  /* No arg. */
7683   OP_POP            = 25,  /* No arg. */
7684   OP_SETDELIM       = 26,  /* No arg. */
7685   OP_SETBIGGROUPNUM = 27,  /* two words:
7686                             *   | unused (24)     | opc (8) |
7687                             *   |        groupnum (32)      | */
7688   OP_CHECKDELIM     = 28,
7689   OP_CALL           = 29,
7690   OP_RET            = 30,
7691   OP_BRANCH         = 31,
7692 
7693   /* Different opcodes depending on how many bytes expected. */
7694   OP_TAG1           = 32,  /* | match tag (16) | jump target (8) | opc (8) | */
7695   OP_TAG2           = 33,  /* | match tag (16) | jump target (8) | opc (8) | */
7696   OP_TAGN           = 34,  /* three words: */
7697                            /*   | unused (16) | jump target(8) | opc (8) | */
7698                            /*   |           match tag 1 (32)             | */
7699                            /*   |           match tag 2 (32)             | */
7700 
7701   OP_SETDISPATCH    = 35,  /* N words: */
7702                            /*   | unused (24)         | opc | */
7703                            /*   | upb_inttable* (32 or 64)  | */
7704 
7705   OP_DISPATCH       = 36,  /* No arg. */
7706 
7707   OP_HALT           = 37   /* No arg. */
7708 } opcode;
7709 
7710 #define OP_MAX OP_HALT
7711 
7712 UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; }
7713 
7714 /* Method group; represents a set of decoder methods that had their code
7715  * emitted together, and must therefore be freed together.  Immutable once
7716  * created.  It is possible we may want to expose this to users at some point.
7717  *
7718  * Overall ownership of Decoder objects looks like this:
7719  *
7720  *                +----------+
7721  *                |          | <---> DecoderMethod
7722  *                | method   |
7723  * CodeCache ---> |  group   | <---> DecoderMethod
7724  *                |          |
7725  *                | (mgroup) | <---> DecoderMethod
7726  *                +----------+
7727  */
7728 struct mgroup {
7729   upb_refcounted base;
7730 
7731   /* Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod.  We own refs on the
7732    * methods. */
7733   upb_inttable methods;
7734 
7735   /* When we add the ability to link to previously existing mgroups, we'll
7736    * need an array of mgroups we reference here, and own refs on them. */
7737 
7738   /* The bytecode for our methods, if any exists.  Owned by us. */
7739   uint32_t *bytecode;
7740   uint32_t *bytecode_end;
7741 
7742 #ifdef UPB_USE_JIT_X64
7743   /* JIT-generated machine code, if any. */
7744   upb_string_handlerfunc *jit_code;
7745   /* The size of the jit_code (required to munmap()). */
7746   size_t jit_size;
7747   char *debug_info;
7748   void *dl;
7749 #endif
7750 };
7751 
7752 /* The maximum that any submessages can be nested.  Matches proto2's limit.
7753  * This specifies the size of the decoder's statically-sized array and therefore
7754  * setting it high will cause the upb::pb::Decoder object to be larger.
7755  *
7756  * If necessary we can add a runtime-settable property to Decoder that allow
7757  * this to be larger than the compile-time setting, but this would add
7758  * complexity, particularly since we would have to decide how/if to give users
7759  * the ability to set a custom memory allocation function. */
7760 #define UPB_DECODER_MAX_NESTING 64
7761 
7762 /* Internal-only struct used by the decoder. */
7763 typedef struct {
7764   /* Space optimization note: we store two pointers here that the JIT
7765    * doesn't need at all; the upb_handlers* inside the sink and
7766    * the dispatch table pointer.  We can optimze so that the JIT uses
7767    * smaller stack frames than the interpreter.  The only thing we need
7768    * to guarantee is that the fallback routines can find end_ofs. */
7769   upb_sink sink;
7770 
7771   /* The absolute stream offset of the end-of-frame delimiter.
7772    * Non-delimited frames (groups and non-packed repeated fields) reuse the
7773    * delimiter of their parent, even though the frame may not end there.
7774    *
7775    * NOTE: the JIT stores a slightly different value here for non-top frames.
7776    * It stores the value relative to the end of the enclosed message.  But the
7777    * top frame is still stored the same way, which is important for ensuring
7778    * that calls from the JIT into C work correctly. */
7779   uint64_t end_ofs;
7780   const uint32_t *base;
7781 
7782   /* 0 indicates a length-delimited field.
7783    * A positive number indicates a known group.
7784    * A negative number indicates an unknown group. */
7785   int32_t groupnum;
7786   upb_inttable *dispatch;  /* Not used by the JIT. */
7787 } upb_pbdecoder_frame;
7788 
7789 struct upb_pbdecodermethod {
7790   upb_refcounted base;
7791 
7792   /* While compiling, the base is relative in "ofs", after compiling it is
7793    * absolute in "ptr". */
7794   union {
7795     uint32_t ofs;     /* PC offset of method. */
7796     void *ptr;        /* Pointer to bytecode or machine code for this method. */
7797   } code_base;
7798 
7799   /* The decoder method group to which this method belongs.  We own a ref.
7800    * Owning a ref on the entire group is more coarse-grained than is strictly
7801    * necessary; all we truly require is that methods we directly reference
7802    * outlive us, while the group could contain many other messages we don't
7803    * require.  But the group represents the messages that were
7804    * allocated+compiled together, so it makes the most sense to free them
7805    * together also. */
7806   const upb_refcounted *group;
7807 
7808   /* Whether this method is native code or bytecode. */
7809   bool is_native_;
7810 
7811   /* The handler one calls to invoke this method. */
7812   upb_byteshandler input_handler_;
7813 
7814   /* The destination handlers this method is bound to.  We own a ref. */
7815   const upb_handlers *dest_handlers_;
7816 
7817   /* Dispatch table -- used by both bytecode decoder and JIT when encountering a
7818    * field number that wasn't the one we were expecting to see.  See
7819    * decoder.int.h for the layout of this table. */
7820   upb_inttable dispatch;
7821 };
7822 
7823 struct upb_pbdecoder {
7824   upb_env *env;
7825 
7826   /* Our input sink. */
7827   upb_bytessink input_;
7828 
7829   /* The decoder method we are parsing with (owned). */
7830   const upb_pbdecodermethod *method_;
7831 
7832   size_t call_len;
7833   const uint32_t *pc, *last;
7834 
7835   /* Current input buffer and its stream offset. */
7836   const char *buf, *ptr, *end, *checkpoint;
7837 
7838   /* End of the delimited region, relative to ptr, NULL if not in this buf. */
7839   const char *delim_end;
7840 
7841   /* End of the delimited region, relative to ptr, end if not in this buf. */
7842   const char *data_end;
7843 
7844   /* Overall stream offset of "buf." */
7845   uint64_t bufstart_ofs;
7846 
7847   /* Buffer for residual bytes not parsed from the previous buffer. */
7848   char residual[UPB_DECODER_MAX_RESIDUAL_BYTES];
7849   char *residual_end;
7850 
7851   /* Bytes of data that should be discarded from the input beore we start
7852    * parsing again.  We set this when we internally determine that we can
7853    * safely skip the next N bytes, but this region extends past the current
7854    * user buffer. */
7855   size_t skip;
7856 
7857   /* Stores the user buffer passed to our decode function. */
7858   const char *buf_param;
7859   size_t size_param;
7860   const upb_bufhandle *handle;
7861 
7862   /* Our internal stack. */
7863   upb_pbdecoder_frame *stack, *top, *limit;
7864   const uint32_t **callstack;
7865   size_t stack_size;
7866 
7867   upb_status *status;
7868 
7869 #ifdef UPB_USE_JIT_X64
7870   /* Used momentarily by the generated code to store a value while a user
7871    * function is called. */
7872   uint32_t tmp_len;
7873 
7874   const void *saved_rsp;
7875 #endif
7876 };
7877 
7878 /* Decoder entry points; used as handlers. */
7879 void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint);
7880 void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint);
7881 size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
7882                             size_t size, const upb_bufhandle *handle);
7883 bool upb_pbdecoder_end(void *closure, const void *handler_data);
7884 
7885 /* Decoder-internal functions that the JIT calls to handle fallback paths. */
7886 int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
7887                              size_t size, const upb_bufhandle *handle);
7888 size_t upb_pbdecoder_suspend(upb_pbdecoder *d);
7889 int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
7890                                   uint8_t wire_type);
7891 int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected);
7892 int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64);
7893 int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32);
7894 int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64);
7895 void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg);
7896 
7897 /* Error messages that are shared between the bytecode and JIT decoders. */
7898 extern const char *kPbDecoderStackOverflow;
7899 extern const char *kPbDecoderSubmessageTooLong;
7900 
7901 /* Access to decoderplan members needed by the decoder. */
7902 const char *upb_pbdecoder_getopname(unsigned int op);
7903 
7904 /* JIT codegen entry point. */
7905 void upb_pbdecoder_jit(mgroup *group);
7906 void upb_pbdecoder_freejit(mgroup *group);
7907 UPB_REFCOUNTED_CMETHODS(mgroup, mgroup_upcast)
7908 
7909 /* A special label that means "do field dispatch for this message and branch to
7910  * wherever that takes you." */
7911 #define LABEL_DISPATCH 0
7912 
7913 /* A special slot in the dispatch table that stores the epilogue (ENDMSG and/or
7914  * RET) for branching to when we find an appropriate ENDGROUP tag. */
7915 #define DISPATCH_ENDMSG 0
7916 
7917 /* It's important to use this invalid wire type instead of 0 (which is a valid
7918  * wire type). */
7919 #define NO_WIRE_TYPE 0xff
7920 
7921 /* The dispatch table layout is:
7922  *   [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ]
7923  *
7924  * If wt1 matches, jump to the 48-bit offset.  If wt2 matches, lookup
7925  * (UPB_MAX_FIELDNUMBER + fieldnum) and jump there.
7926  *
7927  * We need two wire types because of packed/non-packed compatibility.  A
7928  * primitive repeated field can use either wire type and be valid.  While we
7929  * could key the table on fieldnum+wiretype, the table would be 8x sparser.
7930  *
7931  * Storing two wire types in the primary value allows us to quickly rule out
7932  * the second wire type without needing to do a separate lookup (this case is
7933  * less common than an unknown field). */
7934 UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1,
7935                                                uint8_t wt2) {
7936   return (ofs << 16) | (wt2 << 8) | wt1;
7937 }
7938 
7939 UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs,
7940                                              uint8_t *wt1, uint8_t *wt2) {
7941   *wt1 = (uint8_t)dispatch;
7942   *wt2 = (uint8_t)(dispatch >> 8);
7943   *ofs = dispatch >> 16;
7944 }
7945 
7946 /* All of the functions in decoder.c that return int32_t return values according
7947  * to the following scheme:
7948  *   1. negative values indicate a return code from the following list.
7949  *   2. positive values indicate that error or end of buffer was hit, and
7950  *      that the decode function should immediately return the given value
7951  *      (the decoder state has already been suspended and is ready to be
7952  *      resumed). */
7953 #define DECODE_OK -1
7954 #define DECODE_MISMATCH -2  /* Used only from checktag_slow(). */
7955 #define DECODE_ENDGROUP -3  /* Used only from checkunknown(). */
7956 
7957 #define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; }
7958 
7959 #endif  /* UPB_DECODER_INT_H_ */
7960 /*
7961 ** A number of routines for varint manipulation (we keep them all around to
7962 ** have multiple approaches available for benchmarking).
7963 */
7964 
7965 #ifndef UPB_VARINT_DECODER_H_
7966 #define UPB_VARINT_DECODER_H_
7967 
7968 #include <assert.h>
7969 #include <stdint.h>
7970 #include <string.h>
7971 
7972 #ifdef __cplusplus
7973 extern "C" {
7974 #endif
7975 
7976 /* A list of types as they are encoded on-the-wire. */
7977 typedef enum {
7978   UPB_WIRE_TYPE_VARINT      = 0,
7979   UPB_WIRE_TYPE_64BIT       = 1,
7980   UPB_WIRE_TYPE_DELIMITED   = 2,
7981   UPB_WIRE_TYPE_START_GROUP = 3,
7982   UPB_WIRE_TYPE_END_GROUP   = 4,
7983   UPB_WIRE_TYPE_32BIT       = 5
7984 } upb_wiretype_t;
7985 
7986 #define UPB_MAX_WIRE_TYPE 5
7987 
7988 /* The maximum number of bytes that it takes to encode a 64-bit varint.
7989  * Note that with a better encoding this could be 9 (TODO: write up a
7990  * wiki document about this). */
7991 #define UPB_PB_VARINT_MAX_LEN 10
7992 
7993 /* Array of the "native" (ie. non-packed-repeated) wire type for the given a
7994  * descriptor type (upb_descriptortype_t). */
7995 extern const uint8_t upb_pb_native_wire_types[];
7996 
7997 /* Zig-zag encoding/decoding **************************************************/
7998 
7999 UPB_INLINE int32_t upb_zzdec_32(uint32_t n) {
8000   return (n >> 1) ^ -(int32_t)(n & 1);
8001 }
8002 UPB_INLINE int64_t upb_zzdec_64(uint64_t n) {
8003   return (n >> 1) ^ -(int64_t)(n & 1);
8004 }
8005 UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); }
8006 UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); }
8007 
8008 /* Decoding *******************************************************************/
8009 
8010 /* All decoding functions return this struct by value. */
8011 typedef struct {
8012   const char *p;  /* NULL if the varint was unterminated. */
8013   uint64_t val;
8014 } upb_decoderet;
8015 
8016 UPB_INLINE upb_decoderet upb_decoderet_make(const char *p, uint64_t val) {
8017   upb_decoderet ret;
8018   ret.p = p;
8019   ret.val = val;
8020   return ret;
8021 }
8022 
8023 /* Four functions for decoding a varint of at most eight bytes.  They are all
8024  * functionally identical, but are implemented in different ways and likely have
8025  * different performance profiles.  We keep them around for performance testing.
8026  *
8027  * Note that these functions may not read byte-by-byte, so they must not be used
8028  * unless there are at least eight bytes left in the buffer! */
8029 upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r);
8030 upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r);
8031 upb_decoderet upb_vdecode_max8_wright(upb_decoderet r);
8032 upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r);
8033 
8034 /* Template for a function that checks the first two bytes with branching
8035  * and dispatches 2-10 bytes with a separate function.  Note that this may read
8036  * up to 10 bytes, so it must not be used unless there are at least ten bytes
8037  * left in the buffer! */
8038 #define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function)                  \
8039 UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) {         \
8040   uint8_t *p = (uint8_t*)_p;                                                   \
8041   upb_decoderet r;                                                             \
8042   if ((*p & 0x80) == 0) {                                                      \
8043   /* Common case: one-byte varint. */                                          \
8044     return upb_decoderet_make(_p + 1, *p & 0x7fU);                             \
8045   }                                                                            \
8046   r = upb_decoderet_make(_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7));    \
8047   if ((*(p + 1) & 0x80) == 0) {                                                \
8048     /* Two-byte varint. */                                                     \
8049     return r;                                                                  \
8050   }                                                                            \
8051   /* Longer varint, fallback to out-of-line function. */                       \
8052   return decode_max8_function(r);                                              \
8053 }
8054 
8055 UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32)
8056 UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64)
8057 UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright)
8058 UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino)
8059 #undef UPB_VARINT_DECODER_CHECK2
8060 
8061 /* Our canonical functions for decoding varints, based on the currently
8062  * favored best-performing implementations. */
8063 UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) {
8064   if (sizeof(long) == 8)
8065     return upb_vdecode_check2_branch64(p);
8066   else
8067     return upb_vdecode_check2_branch32(p);
8068 }
8069 
8070 UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) {
8071   return upb_vdecode_max8_massimino(r);
8072 }
8073 
8074 
8075 /* Encoding *******************************************************************/
8076 
8077 UPB_INLINE int upb_value_size(uint64_t val) {
8078 #ifdef __GNUC__
8079   int high_bit = 63 - __builtin_clzll(val);  /* 0-based, undef if val == 0. */
8080 #else
8081   int high_bit = 0;
8082   uint64_t tmp = val;
8083   while(tmp >>= 1) high_bit++;
8084 #endif
8085   return val == 0 ? 1 : high_bit / 8 + 1;
8086 }
8087 
8088 /* Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN
8089  * bytes long), returning how many bytes were used.
8090  *
8091  * TODO: benchmark and optimize if necessary. */
8092 UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) {
8093   size_t i;
8094   if (val == 0) { buf[0] = 0; return 1; }
8095   i = 0;
8096   while (val) {
8097     uint8_t byte = val & 0x7fU;
8098     val >>= 7;
8099     if (val) byte |= 0x80U;
8100     buf[i++] = byte;
8101   }
8102   return i;
8103 }
8104 
8105 UPB_INLINE size_t upb_varint_size(uint64_t val) {
8106   char buf[UPB_PB_VARINT_MAX_LEN];
8107   return upb_vencode64(val, buf);
8108 }
8109 
8110 /* Encodes a 32-bit varint, *not* sign-extended. */
8111 UPB_INLINE uint64_t upb_vencode32(uint32_t val) {
8112   char buf[UPB_PB_VARINT_MAX_LEN];
8113   size_t bytes = upb_vencode64(val, buf);
8114   uint64_t ret = 0;
8115   assert(bytes <= 5);
8116   memcpy(&ret, buf, bytes);
8117   assert(ret <= 0xffffffffffU);
8118   return ret;
8119 }
8120 
8121 #ifdef __cplusplus
8122 }  /* extern "C" */
8123 #endif
8124 
8125 #endif  /* UPB_VARINT_DECODER_H_ */
8126 /*
8127 ** upb::pb::Encoder (upb_pb_encoder)
8128 **
8129 ** Implements a set of upb_handlers that write protobuf data to the binary wire
8130 ** format.
8131 **
8132 ** This encoder implementation does not have any access to any out-of-band or
8133 ** precomputed lengths for submessages, so it must buffer submessages internally
8134 ** before it can emit the first byte.
8135 */
8136 
8137 #ifndef UPB_ENCODER_H_
8138 #define UPB_ENCODER_H_
8139 
8140 
8141 #ifdef __cplusplus
8142 namespace upb {
8143 namespace pb {
8144 class Encoder;
8145 }  /* namespace pb */
8146 }  /* namespace upb */
8147 #endif
8148 
8149 UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder)
8150 
8151 #define UPB_PBENCODER_MAX_NESTING 100
8152 
8153 /* upb::pb::Encoder ***********************************************************/
8154 
8155 /* Preallocation hint: decoder won't allocate more bytes than this when first
8156  * constructed.  This hint may be an overestimate for some build configurations.
8157  * But if the decoder library is upgraded without recompiling the application,
8158  * it may be an underestimate. */
8159 #define UPB_PB_ENCODER_SIZE 768
8160 
8161 #ifdef __cplusplus
8162 
8163 class upb::pb::Encoder {
8164  public:
8165   /* Creates a new encoder in the given environment.  The Handlers must have
8166    * come from NewHandlers() below. */
8167   static Encoder* Create(Environment* env, const Handlers* handlers,
8168                          BytesSink* output);
8169 
8170   /* The input to the encoder. */
8171   Sink* input();
8172 
8173   /* Creates a new set of handlers for this MessageDef. */
8174   static reffed_ptr<const Handlers> NewHandlers(const MessageDef* msg);
8175 
8176   static const size_t kSize = UPB_PB_ENCODER_SIZE;
8177 
8178  private:
8179   UPB_DISALLOW_POD_OPS(Encoder, upb::pb::Encoder)
8180 };
8181 
8182 #endif
8183 
8184 UPB_BEGIN_EXTERN_C
8185 
8186 const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
8187                                                const void *owner);
8188 upb_sink *upb_pb_encoder_input(upb_pb_encoder *p);
8189 upb_pb_encoder* upb_pb_encoder_create(upb_env* e, const upb_handlers* h,
8190                                       upb_bytessink* output);
8191 
8192 UPB_END_EXTERN_C
8193 
8194 #ifdef __cplusplus
8195 
8196 namespace upb {
8197 namespace pb {
8198 inline Encoder* Encoder::Create(Environment* env, const Handlers* handlers,
8199                                 BytesSink* output) {
8200   return upb_pb_encoder_create(env, handlers, output);
8201 }
8202 inline Sink* Encoder::input() {
8203   return upb_pb_encoder_input(this);
8204 }
8205 inline reffed_ptr<const Handlers> Encoder::NewHandlers(
8206     const upb::MessageDef *md) {
8207   const Handlers* h = upb_pb_encoder_newhandlers(md, &h);
8208   return reffed_ptr<const Handlers>(h, &h);
8209 }
8210 }  /* namespace pb */
8211 }  /* namespace upb */
8212 
8213 #endif
8214 
8215 #endif  /* UPB_ENCODER_H_ */
8216 /*
8217 ** upb's core components like upb_decoder and upb_msg are carefully designed to
8218 ** avoid depending on each other for maximum orthogonality.  In other words,
8219 ** you can use a upb_decoder to decode into *any* kind of structure; upb_msg is
8220 ** just one such structure.  A upb_msg can be serialized/deserialized into any
8221 ** format, protobuf binary format is just one such format.
8222 **
8223 ** However, for convenience we provide functions here for doing common
8224 ** operations like deserializing protobuf binary format into a upb_msg.  The
8225 ** compromise is that this file drags in almost all of upb as a dependency,
8226 ** which could be undesirable if you're trying to use a trimmed-down build of
8227 ** upb.
8228 **
8229 ** While these routines are convenient, they do not reuse any encoding/decoding
8230 ** state.  For example, if a decoder is JIT-based, it will be re-JITted every
8231 ** time these functions are called.  For this reason, if you are parsing lots
8232 ** of data and efficiency is an issue, these may not be the best functions to
8233 ** use (though they are useful for prototyping, before optimizing).
8234 */
8235 
8236 #ifndef UPB_GLUE_H
8237 #define UPB_GLUE_H
8238 
8239 #include <stdbool.h>
8240 
8241 #ifdef __cplusplus
8242 #include <vector>
8243 
8244 extern "C" {
8245 #endif
8246 
8247 /* Loads a binary descriptor and returns a NULL-terminated array of unfrozen
8248  * filedefs.  The caller owns the returned array, which must be freed with
8249  * upb_gfree(). */
8250 upb_filedef **upb_loaddescriptor(const char *buf, size_t n, const void *owner,
8251                                  upb_status *status);
8252 
8253 #ifdef __cplusplus
8254 }  /* extern "C" */
8255 
8256 namespace upb {
8257 
8258 inline bool LoadDescriptor(const char* buf, size_t n, Status* status,
8259                            std::vector<reffed_ptr<FileDef> >* files) {
8260   FileDef** parsed_files = upb_loaddescriptor(buf, n, &parsed_files, status);
8261 
8262   if (parsed_files) {
8263     FileDef** p = parsed_files;
8264     while (*p) {
8265       files->push_back(reffed_ptr<FileDef>(*p, &parsed_files));
8266       ++p;
8267     }
8268     free(parsed_files);
8269     return true;
8270   } else {
8271     return false;
8272   }
8273 }
8274 
8275 /* Templated so it can accept both string and std::string. */
8276 template <typename T>
8277 bool LoadDescriptor(const T& desc, Status* status,
8278                     std::vector<reffed_ptr<FileDef> >* files) {
8279   return LoadDescriptor(desc.c_str(), desc.size(), status, files);
8280 }
8281 
8282 }  /* namespace upb */
8283 
8284 #endif
8285 
8286 #endif  /* UPB_GLUE_H */
8287 /*
8288 ** upb::pb::TextPrinter (upb_textprinter)
8289 **
8290 ** Handlers for writing to protobuf text format.
8291 */
8292 
8293 #ifndef UPB_TEXT_H_
8294 #define UPB_TEXT_H_
8295 
8296 
8297 #ifdef __cplusplus
8298 namespace upb {
8299 namespace pb {
8300 class TextPrinter;
8301 }  /* namespace pb */
8302 }  /* namespace upb */
8303 #endif
8304 
8305 UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter)
8306 
8307 #ifdef __cplusplus
8308 
8309 class upb::pb::TextPrinter {
8310  public:
8311   /* The given handlers must have come from NewHandlers().  It must outlive the
8312    * TextPrinter. */
8313   static TextPrinter *Create(Environment *env, const upb::Handlers *handlers,
8314                              BytesSink *output);
8315 
8316   void SetSingleLineMode(bool single_line);
8317 
8318   Sink* input();
8319 
8320   /* If handler caching becomes a requirement we can add a code cache as in
8321    * decoder.h */
8322   static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md);
8323 };
8324 
8325 #endif
8326 
8327 UPB_BEGIN_EXTERN_C
8328 
8329 /* C API. */
8330 upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h,
8331                                         upb_bytessink *output);
8332 void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line);
8333 upb_sink *upb_textprinter_input(upb_textprinter *p);
8334 
8335 const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
8336                                                 const void *owner);
8337 
8338 UPB_END_EXTERN_C
8339 
8340 #ifdef __cplusplus
8341 
8342 namespace upb {
8343 namespace pb {
8344 inline TextPrinter *TextPrinter::Create(Environment *env,
8345                                         const upb::Handlers *handlers,
8346                                         BytesSink *output) {
8347   return upb_textprinter_create(env, handlers, output);
8348 }
8349 inline void TextPrinter::SetSingleLineMode(bool single_line) {
8350   upb_textprinter_setsingleline(this, single_line);
8351 }
8352 inline Sink* TextPrinter::input() {
8353   return upb_textprinter_input(this);
8354 }
8355 inline reffed_ptr<const Handlers> TextPrinter::NewHandlers(
8356     const MessageDef *md) {
8357   const Handlers* h = upb_textprinter_newhandlers(md, &h);
8358   return reffed_ptr<const Handlers>(h, &h);
8359 }
8360 }  /* namespace pb */
8361 }  /* namespace upb */
8362 
8363 #endif
8364 
8365 #endif  /* UPB_TEXT_H_ */
8366 /*
8367 ** upb::json::Parser (upb_json_parser)
8368 **
8369 ** Parses JSON according to a specific schema.
8370 ** Support for parsing arbitrary JSON (schema-less) will be added later.
8371 */
8372 
8373 #ifndef UPB_JSON_PARSER_H_
8374 #define UPB_JSON_PARSER_H_
8375 
8376 
8377 #ifdef __cplusplus
8378 namespace upb {
8379 namespace json {
8380 class Parser;
8381 class ParserMethod;
8382 }  /* namespace json */
8383 }  /* namespace upb */
8384 #endif
8385 
8386 UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser)
8387 UPB_DECLARE_DERIVED_TYPE(upb::json::ParserMethod, upb::RefCounted,
8388                          upb_json_parsermethod, upb_refcounted)
8389 
8390 /* upb::json::Parser **********************************************************/
8391 
8392 /* Preallocation hint: parser won't allocate more bytes than this when first
8393  * constructed.  This hint may be an overestimate for some build configurations.
8394  * But if the parser library is upgraded without recompiling the application,
8395  * it may be an underestimate. */
8396 #define UPB_JSON_PARSER_SIZE 4112
8397 
8398 #ifdef __cplusplus
8399 
8400 /* Parses an incoming BytesStream, pushing the results to the destination
8401  * sink. */
8402 class upb::json::Parser {
8403  public:
8404   static Parser* Create(Environment* env, const ParserMethod* method,
8405                         Sink* output);
8406 
8407   BytesSink* input();
8408 
8409  private:
8410   UPB_DISALLOW_POD_OPS(Parser, upb::json::Parser)
8411 };
8412 
8413 class upb::json::ParserMethod {
8414  public:
8415   /* Include base methods from upb::ReferenceCounted. */
8416   UPB_REFCOUNTED_CPPMETHODS
8417 
8418   /* Returns handlers for parsing according to the specified schema. */
8419   static reffed_ptr<const ParserMethod> New(const upb::MessageDef* md);
8420 
8421   /* The destination handlers that are statically bound to this method.
8422    * This method is only capable of outputting to a sink that uses these
8423    * handlers. */
8424   const Handlers* dest_handlers() const;
8425 
8426   /* The input handlers for this decoder method. */
8427   const BytesHandler* input_handler() const;
8428 
8429  private:
8430   UPB_DISALLOW_POD_OPS(ParserMethod, upb::json::ParserMethod)
8431 };
8432 
8433 #endif
8434 
8435 UPB_BEGIN_EXTERN_C
8436 
8437 upb_json_parser* upb_json_parser_create(upb_env* e,
8438                                         const upb_json_parsermethod* m,
8439                                         upb_sink* output);
8440 upb_bytessink *upb_json_parser_input(upb_json_parser *p);
8441 
8442 upb_json_parsermethod* upb_json_parsermethod_new(const upb_msgdef* md,
8443                                                  const void* owner);
8444 const upb_handlers *upb_json_parsermethod_desthandlers(
8445     const upb_json_parsermethod *m);
8446 const upb_byteshandler *upb_json_parsermethod_inputhandler(
8447     const upb_json_parsermethod *m);
8448 
8449 /* Include refcounted methods like upb_json_parsermethod_ref(). */
8450 UPB_REFCOUNTED_CMETHODS(upb_json_parsermethod, upb_json_parsermethod_upcast)
8451 
8452 UPB_END_EXTERN_C
8453 
8454 #ifdef __cplusplus
8455 
8456 namespace upb {
8457 namespace json {
8458 inline Parser* Parser::Create(Environment* env, const ParserMethod* method,
8459                               Sink* output) {
8460   return upb_json_parser_create(env, method, output);
8461 }
8462 inline BytesSink* Parser::input() {
8463   return upb_json_parser_input(this);
8464 }
8465 
8466 inline const Handlers* ParserMethod::dest_handlers() const {
8467   return upb_json_parsermethod_desthandlers(this);
8468 }
8469 inline const BytesHandler* ParserMethod::input_handler() const {
8470   return upb_json_parsermethod_inputhandler(this);
8471 }
8472 /* static */
8473 inline reffed_ptr<const ParserMethod> ParserMethod::New(
8474     const MessageDef* md) {
8475   const upb_json_parsermethod *m = upb_json_parsermethod_new(md, &m);
8476   return reffed_ptr<const ParserMethod>(m, &m);
8477 }
8478 
8479 }  /* namespace json */
8480 }  /* namespace upb */
8481 
8482 #endif
8483 
8484 
8485 #endif  /* UPB_JSON_PARSER_H_ */
8486 /*
8487 ** upb::json::Printer
8488 **
8489 ** Handlers that emit JSON according to a specific protobuf schema.
8490 */
8491 
8492 #ifndef UPB_JSON_TYPED_PRINTER_H_
8493 #define UPB_JSON_TYPED_PRINTER_H_
8494 
8495 
8496 #ifdef __cplusplus
8497 namespace upb {
8498 namespace json {
8499 class Printer;
8500 }  /* namespace json */
8501 }  /* namespace upb */
8502 #endif
8503 
8504 UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer)
8505 
8506 
8507 /* upb::json::Printer *********************************************************/
8508 
8509 #define UPB_JSON_PRINTER_SIZE 176
8510 
8511 #ifdef __cplusplus
8512 
8513 /* Prints an incoming stream of data to a BytesSink in JSON format. */
8514 class upb::json::Printer {
8515  public:
8516   static Printer* Create(Environment* env, const upb::Handlers* handlers,
8517                          BytesSink* output);
8518 
8519   /* The input to the printer. */
8520   Sink* input();
8521 
8522   /* Returns handlers for printing according to the specified schema.
8523    * If preserve_proto_fieldnames is true, the output JSON will use the
8524    * original .proto field names (ie. {"my_field":3}) instead of using
8525    * camelCased names, which is the default: (eg. {"myField":3}). */
8526   static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md,
8527                                                 bool preserve_proto_fieldnames);
8528 
8529   static const size_t kSize = UPB_JSON_PRINTER_SIZE;
8530 
8531  private:
8532   UPB_DISALLOW_POD_OPS(Printer, upb::json::Printer)
8533 };
8534 
8535 #endif
8536 
8537 UPB_BEGIN_EXTERN_C
8538 
8539 /* Native C API. */
8540 upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h,
8541                                           upb_bytessink *output);
8542 upb_sink *upb_json_printer_input(upb_json_printer *p);
8543 const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
8544                                                  bool preserve_fieldnames,
8545                                                  const void *owner);
8546 
8547 UPB_END_EXTERN_C
8548 
8549 #ifdef __cplusplus
8550 
8551 namespace upb {
8552 namespace json {
8553 inline Printer* Printer::Create(Environment* env, const upb::Handlers* handlers,
8554                                 BytesSink* output) {
8555   return upb_json_printer_create(env, handlers, output);
8556 }
8557 inline Sink* Printer::input() { return upb_json_printer_input(this); }
8558 inline reffed_ptr<const Handlers> Printer::NewHandlers(
8559     const upb::MessageDef *md, bool preserve_proto_fieldnames) {
8560   const Handlers* h = upb_json_printer_newhandlers(
8561       md, preserve_proto_fieldnames, &h);
8562   return reffed_ptr<const Handlers>(h, &h);
8563 }
8564 }  /* namespace json */
8565 }  /* namespace upb */
8566 
8567 #endif
8568 
8569 #endif  /* UPB_JSON_TYPED_PRINTER_H_ */
8570