• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Copyright (C) 2015 Intel Corporation.   All Rights Reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  ***************************************************************************/
23 
24 // llvm redefines DEBUG
25 #pragma push_macro("DEBUG")
26 #undef DEBUG
27 #include "JitManager.h"
28 #include "llvm-c/Core.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #pragma pop_macro("DEBUG")
31 
32 #include "state.h"
33 #include "gen_state_llvm.h"
34 #include "builder.h"
35 
36 #include "tgsi/tgsi_strings.h"
37 #include "util/u_format.h"
38 #include "util/u_prim.h"
39 #include "gallivm/lp_bld_init.h"
40 #include "gallivm/lp_bld_flow.h"
41 #include "gallivm/lp_bld_struct.h"
42 #include "gallivm/lp_bld_tgsi.h"
43 
44 #include "swr_context.h"
45 #include "gen_swr_context_llvm.h"
46 #include "swr_resource.h"
47 #include "swr_state.h"
48 #include "swr_screen.h"
49 
50 using namespace SwrJit;
51 using namespace llvm;
52 
53 static unsigned
54 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info);
55 
operator ==(const swr_jit_fs_key & lhs,const swr_jit_fs_key & rhs)56 bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs)
57 {
58    return !memcmp(&lhs, &rhs, sizeof(lhs));
59 }
60 
operator ==(const swr_jit_vs_key & lhs,const swr_jit_vs_key & rhs)61 bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs)
62 {
63    return !memcmp(&lhs, &rhs, sizeof(lhs));
64 }
65 
operator ==(const swr_jit_fetch_key & lhs,const swr_jit_fetch_key & rhs)66 bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs)
67 {
68    return !memcmp(&lhs, &rhs, sizeof(lhs));
69 }
70 
operator ==(const swr_jit_gs_key & lhs,const swr_jit_gs_key & rhs)71 bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs)
72 {
73    return !memcmp(&lhs, &rhs, sizeof(lhs));
74 }
75 
76 static void
swr_generate_sampler_key(const struct lp_tgsi_info & info,struct swr_context * ctx,enum pipe_shader_type shader_type,struct swr_jit_sampler_key & key)77 swr_generate_sampler_key(const struct lp_tgsi_info &info,
78                          struct swr_context *ctx,
79                          enum pipe_shader_type shader_type,
80                          struct swr_jit_sampler_key &key)
81 {
82    key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1;
83 
84    for (unsigned i = 0; i < key.nr_samplers; i++) {
85       if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
86          lp_sampler_static_sampler_state(
87             &key.sampler[i].sampler_state,
88             ctx->samplers[shader_type][i]);
89       }
90    }
91 
92    /*
93     * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
94     * are dx10-style? Can't really have mixed opcodes, at least not
95     * if we want to skip the holes here (without rescanning tgsi).
96     */
97    if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
98       key.nr_sampler_views =
99          info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
100       for (unsigned i = 0; i < key.nr_sampler_views; i++) {
101          if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
102             const struct pipe_sampler_view *view =
103                ctx->sampler_views[shader_type][i];
104             lp_sampler_static_texture_state(
105                &key.sampler[i].texture_state, view);
106             if (view) {
107                struct swr_resource *swr_res = swr_resource(view->texture);
108                const struct util_format_description *desc =
109                   util_format_description(view->format);
110                if (swr_res->has_depth && swr_res->has_stencil &&
111                    !util_format_has_depth(desc))
112                   key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
113             }
114          }
115       }
116    } else {
117       key.nr_sampler_views = key.nr_samplers;
118       for (unsigned i = 0; i < key.nr_sampler_views; i++) {
119          if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
120             const struct pipe_sampler_view *view =
121                ctx->sampler_views[shader_type][i];
122             lp_sampler_static_texture_state(
123                &key.sampler[i].texture_state, view);
124             if (view) {
125                struct swr_resource *swr_res = swr_resource(view->texture);
126                const struct util_format_description *desc =
127                   util_format_description(view->format);
128                if (swr_res->has_depth && swr_res->has_stencil &&
129                    !util_format_has_depth(desc))
130                   key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
131             }
132          }
133       }
134    }
135 }
136 
137 void
swr_generate_fs_key(struct swr_jit_fs_key & key,struct swr_context * ctx,swr_fragment_shader * swr_fs)138 swr_generate_fs_key(struct swr_jit_fs_key &key,
139                     struct swr_context *ctx,
140                     swr_fragment_shader *swr_fs)
141 {
142    memset(&key, 0, sizeof(key));
143 
144    key.nr_cbufs = ctx->framebuffer.nr_cbufs;
145    key.light_twoside = ctx->rasterizer->light_twoside;
146    key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable;
147 
148    struct tgsi_shader_info *pPrevShader;
149    if (ctx->gs)
150       pPrevShader = &ctx->gs->info.base;
151    else
152       pPrevShader = &ctx->vs->info.base;
153 
154    memcpy(&key.vs_output_semantic_name,
155           &pPrevShader->output_semantic_name,
156           sizeof(key.vs_output_semantic_name));
157    memcpy(&key.vs_output_semantic_idx,
158           &pPrevShader->output_semantic_index,
159           sizeof(key.vs_output_semantic_idx));
160 
161    swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key);
162 
163    key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable &&
164       ctx->poly_stipple.prim_is_poly;
165 }
166 
167 void
swr_generate_vs_key(struct swr_jit_vs_key & key,struct swr_context * ctx,swr_vertex_shader * swr_vs)168 swr_generate_vs_key(struct swr_jit_vs_key &key,
169                     struct swr_context *ctx,
170                     swr_vertex_shader *swr_vs)
171 {
172    memset(&key, 0, sizeof(key));
173 
174    key.clip_plane_mask =
175       swr_vs->info.base.clipdist_writemask ?
176       swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable :
177       ctx->rasterizer->clip_plane_enable;
178 
179    swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key);
180 }
181 
182 void
swr_generate_fetch_key(struct swr_jit_fetch_key & key,struct swr_vertex_element_state * velems)183 swr_generate_fetch_key(struct swr_jit_fetch_key &key,
184                        struct swr_vertex_element_state *velems)
185 {
186    memset(&key, 0, sizeof(key));
187 
188    key.fsState = velems->fsState;
189 }
190 
191 void
swr_generate_gs_key(struct swr_jit_gs_key & key,struct swr_context * ctx,swr_geometry_shader * swr_gs)192 swr_generate_gs_key(struct swr_jit_gs_key &key,
193                     struct swr_context *ctx,
194                     swr_geometry_shader *swr_gs)
195 {
196    memset(&key, 0, sizeof(key));
197 
198    struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base;
199 
200    memcpy(&key.vs_output_semantic_name,
201           &pPrevShader->output_semantic_name,
202           sizeof(key.vs_output_semantic_name));
203    memcpy(&key.vs_output_semantic_idx,
204           &pPrevShader->output_semantic_index,
205           sizeof(key.vs_output_semantic_idx));
206 
207    swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key);
208 }
209 
210 struct BuilderSWR : public Builder {
BuilderSWRBuilderSWR211    BuilderSWR(JitManager *pJitMgr, const char *pName)
212       : Builder(pJitMgr)
213    {
214       pJitMgr->SetupNewModule();
215       gallivm = gallivm_create(pName, wrap(&JM()->mContext));
216       pJitMgr->mpCurrentModule = unwrap(gallivm->module);
217    }
218 
~BuilderSWRBuilderSWR219    ~BuilderSWR() {
220       gallivm_free_ir(gallivm);
221    }
222 
223    void WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput,
224                 unsigned slot, unsigned channel);
225 
226    struct gallivm_state *gallivm;
227    PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key);
228    PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key);
229    PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key);
230 
231    LLVMValueRef
232    swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
233                            struct lp_build_tgsi_context * bld_base,
234                            boolean is_vindex_indirect,
235                            LLVMValueRef vertex_index,
236                            boolean is_aindex_indirect,
237                            LLVMValueRef attrib_index,
238                            LLVMValueRef swizzle_index);
239    void
240    swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
241                            struct lp_build_tgsi_context * bld_base,
242                            LLVMValueRef (*outputs)[4],
243                            LLVMValueRef emitted_vertices_vec);
244 
245    void
246    swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
247                              struct lp_build_tgsi_context * bld_base,
248                              LLVMValueRef verts_per_prim_vec,
249                              LLVMValueRef emitted_prims_vec);
250 
251    void
252    swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
253                         struct lp_build_tgsi_context * bld_base,
254                         LLVMValueRef total_emitted_vertices_vec,
255                         LLVMValueRef emitted_prims_vec);
256 
257 };
258 
259 struct swr_gs_llvm_iface {
260    struct lp_build_tgsi_gs_iface base;
261    struct tgsi_shader_info *info;
262 
263    BuilderSWR *pBuilder;
264 
265    Value *pGsCtx;
266    SWR_GS_STATE *pGsState;
267    uint32_t num_outputs;
268    uint32_t num_verts_per_prim;
269 
270    Value *pVtxAttribMap;
271 };
272 
273 // trampoline functions so we can use the builder llvm construction methods
274 static LLVMValueRef
swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface * gs_iface,struct lp_build_tgsi_context * bld_base,boolean is_vindex_indirect,LLVMValueRef vertex_index,boolean is_aindex_indirect,LLVMValueRef attrib_index,LLVMValueRef swizzle_index)275 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
276                            struct lp_build_tgsi_context * bld_base,
277                            boolean is_vindex_indirect,
278                            LLVMValueRef vertex_index,
279                            boolean is_aindex_indirect,
280                            LLVMValueRef attrib_index,
281                            LLVMValueRef swizzle_index)
282 {
283     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
284 
285     return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base,
286                                                    is_vindex_indirect,
287                                                    vertex_index,
288                                                    is_aindex_indirect,
289                                                    attrib_index,
290                                                    swizzle_index);
291 }
292 
293 static void
swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface * gs_base,struct lp_build_tgsi_context * bld_base,LLVMValueRef (* outputs)[4],LLVMValueRef emitted_vertices_vec)294 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
295                            struct lp_build_tgsi_context * bld_base,
296                            LLVMValueRef (*outputs)[4],
297                            LLVMValueRef emitted_vertices_vec)
298 {
299     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
300 
301     iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base,
302                                             outputs,
303                                             emitted_vertices_vec);
304 }
305 
306 static void
swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface * gs_base,struct lp_build_tgsi_context * bld_base,LLVMValueRef verts_per_prim_vec,LLVMValueRef emitted_prims_vec)307 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
308                              struct lp_build_tgsi_context * bld_base,
309                              LLVMValueRef verts_per_prim_vec,
310                              LLVMValueRef emitted_prims_vec)
311 {
312     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
313 
314     iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base,
315                                               verts_per_prim_vec,
316                                               emitted_prims_vec);
317 }
318 
319 static void
swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface * gs_base,struct lp_build_tgsi_context * bld_base,LLVMValueRef total_emitted_vertices_vec,LLVMValueRef emitted_prims_vec)320 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
321                         struct lp_build_tgsi_context * bld_base,
322                         LLVMValueRef total_emitted_vertices_vec,
323                         LLVMValueRef emitted_prims_vec)
324 {
325     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
326 
327     iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base,
328                                          total_emitted_vertices_vec,
329                                          emitted_prims_vec);
330 }
331 
332 LLVMValueRef
swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface * gs_iface,struct lp_build_tgsi_context * bld_base,boolean is_vindex_indirect,LLVMValueRef vertex_index,boolean is_aindex_indirect,LLVMValueRef attrib_index,LLVMValueRef swizzle_index)333 BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
334                            struct lp_build_tgsi_context * bld_base,
335                            boolean is_vindex_indirect,
336                            LLVMValueRef vertex_index,
337                            boolean is_aindex_indirect,
338                            LLVMValueRef attrib_index,
339                            LLVMValueRef swizzle_index)
340 {
341     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
342     Value *vert_index = unwrap(vertex_index);
343     Value *attr_index = unwrap(attrib_index);
344 
345     IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
346 
347     if (is_vindex_indirect || is_aindex_indirect) {
348        int i;
349        Value *res = unwrap(bld_base->base.zero);
350        struct lp_type type = bld_base->base.type;
351 
352        for (i = 0; i < type.length; i++) {
353           Value *vert_chan_index = vert_index;
354           Value *attr_chan_index = attr_index;
355 
356           if (is_vindex_indirect) {
357              vert_chan_index = VEXTRACT(vert_index, C(i));
358           }
359           if (is_aindex_indirect) {
360              attr_chan_index = VEXTRACT(attr_index, C(i));
361           }
362 
363           Value *attrib =
364              LOAD(GEP(iface->pVtxAttribMap, {C(0), attr_chan_index}));
365 
366           Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
367           Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
368 
369           Value *pVector = ADD(MUL(vert_chan_index, pInputVertStride), attrib);
370           Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
371 
372           Value *value = VEXTRACT(pInput, C(i));
373           res = VINSERT(res, value, C(i));
374        }
375 
376        return wrap(res);
377     } else {
378        Value *attrib = LOAD(GEP(iface->pVtxAttribMap, {C(0), attr_index}));
379 
380        Value *pVertex = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pVerts});
381        Value *pInputVertStride = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_inputVertStride});
382 
383        Value *pVector = ADD(MUL(vert_index, pInputVertStride), attrib);
384 
385        Value *pInput = LOAD(GEP(pVertex, {pVector, unwrap(swizzle_index)}));
386 
387        return wrap(pInput);
388     }
389 }
390 
391 // GS output stream layout
392 #define VERTEX_COUNT_SIZE 32
393 #define CONTROL_HEADER_SIZE (8*32)
394 
395 void
swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface * gs_base,struct lp_build_tgsi_context * bld_base,LLVMValueRef (* outputs)[4],LLVMValueRef emitted_vertices_vec)396 BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
397                            struct lp_build_tgsi_context * bld_base,
398                            LLVMValueRef (*outputs)[4],
399                            LLVMValueRef emitted_vertices_vec)
400 {
401     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
402 
403     IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
404 
405     const uint32_t headerSize = VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE;
406     const uint32_t attribSize = 4 * sizeof(float);
407     const uint32_t vertSize = attribSize * SWR_VTX_NUM_SLOTS;
408     Value *pVertexOffset = MUL(unwrap(emitted_vertices_vec), VIMMED1(vertSize));
409 
410     Value *vMask = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_mask});
411     Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, mVWidth));
412 
413     Value *pStack = STACKSAVE();
414     Value *pTmpPtr = ALLOCA(mFP32Ty, C(4)); // used for dummy write for lane masking
415 
416     for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
417        uint32_t attribSlot = attrib;
418        uint32_t sgvChannel = 0;
419        if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
420           attribSlot = VERTEX_SGV_SLOT;
421           sgvChannel = VERTEX_SGV_POINT_SIZE_COMP;
422        } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER) {
423           attribSlot = VERTEX_SGV_SLOT;
424           sgvChannel = VERTEX_SGV_RTAI_COMP;
425        } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
426           attribSlot = VERTEX_POSITION_SLOT;
427        } else {
428           attribSlot = VERTEX_ATTRIB_START_SLOT + attrib;
429           if (iface->info->writes_position) {
430              attribSlot--;
431           }
432        }
433 
434        Value *pOutputOffset = ADD(pVertexOffset, VIMMED1(headerSize + attribSize * attribSlot)); // + sgvChannel ?
435 
436        for (uint32_t lane = 0; lane < mVWidth; ++lane) {
437           Value *pLaneOffset = VEXTRACT(pOutputOffset, C(lane));
438           Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
439           Value *pStreamOffset = GEP(pStream, pLaneOffset);
440           pStreamOffset = BITCAST(pStreamOffset, mFP32PtrTy);
441 
442           Value *pLaneMask = VEXTRACT(vMask1, C(lane));
443           pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
444 
445           for (uint32_t channel = 0; channel < 4; ++channel) {
446              Value *vData;
447 
448              if (attribSlot == VERTEX_SGV_SLOT)
449                 vData = LOAD(unwrap(outputs[attrib][0]));
450              else
451                 vData = LOAD(unwrap(outputs[attrib][channel]));
452 
453              if (attribSlot != VERTEX_SGV_SLOT ||
454                  sgvChannel == channel) {
455                 vData = VEXTRACT(vData, C(lane));
456                 STORE(vData, pStreamOffset);
457              }
458              pStreamOffset = GEP(pStreamOffset, C(1));
459           }
460        }
461     }
462 
463     STACKRESTORE(pStack);
464 }
465 
466 void
swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface * gs_base,struct lp_build_tgsi_context * bld_base,LLVMValueRef verts_per_prim_vec,LLVMValueRef emitted_prims_vec)467 BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
468                              struct lp_build_tgsi_context * bld_base,
469                              LLVMValueRef verts_per_prim_vec,
470                              LLVMValueRef emitted_prims_vec)
471 {
472     swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
473 
474     IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
475 
476     Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
477     Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
478 
479     uint32_t vertsPerPrim = iface->num_verts_per_prim;
480 
481     Value *vCount =
482        ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)),
483            unwrap(verts_per_prim_vec));
484 
485     struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
486     vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr));
487 
488     struct lp_exec_mask *exec_mask = &bld->exec_mask;
489     Value *mask = unwrap(lp_build_mask_value(bld->mask));
490     if (exec_mask->has_mask)
491        mask = AND(mask, unwrap(exec_mask->exec_mask));
492 
493     Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0)));
494     mask = AND(mask, cmpMask);
495     vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
496 
497     vCount = SUB(vCount, VIMMED1(1));
498     Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), VIMMED1(VERTEX_COUNT_SIZE));
499     Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
500 
501     vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
502 
503     Value *pStack = STACKSAVE();
504     Value *pTmpPtr = ALLOCA(mInt8Ty, C(4)); // used for dummy read/write for lane masking
505 
506     for (uint32_t lane = 0; lane < mVWidth; ++lane) {
507        Value *vLaneOffset = VEXTRACT(vOffset, C(lane));
508        Value *pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
509        Value *pStreamOffset = GEP(pStream, vLaneOffset);
510 
511        Value *pLaneMask = VEXTRACT(vMask1, C(lane));
512        pStreamOffset = SELECT(pLaneMask, pStreamOffset, pTmpPtr);
513 
514        Value *vVal = LOAD(pStreamOffset);
515        vVal = OR(vVal, VEXTRACT(vValue, C(lane)));
516        STORE(vVal, pStreamOffset);
517     }
518 
519     STACKRESTORE(pStack);
520 }
521 
522 void
swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface * gs_base,struct lp_build_tgsi_context * bld_base,LLVMValueRef total_emitted_vertices_vec,LLVMValueRef emitted_prims_vec)523 BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
524                         struct lp_build_tgsi_context * bld_base,
525                         LLVMValueRef total_emitted_vertices_vec,
526                         LLVMValueRef emitted_prims_vec)
527 {
528    swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
529 
530    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
531 
532    // Store emit count to each output stream in the first DWORD
533    for (uint32_t lane = 0; lane < mVWidth; ++lane)
534    {
535       Value* pStream = LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
536       pStream = BITCAST(pStream, mInt32PtrTy);
537       Value* pLaneCount = VEXTRACT(unwrap(total_emitted_vertices_vec), C(lane));
538       STORE(pLaneCount, pStream);
539    }
540 }
541 
542 PFN_GS_FUNC
CompileGS(struct swr_context * ctx,swr_jit_gs_key & key)543 BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
544 {
545    SWR_GS_STATE *pGS = &ctx->gs->gsState;
546    struct tgsi_shader_info *info = &ctx->gs->info.base;
547 
548    memset(pGS, 0, sizeof(*pGS));
549 
550    pGS->gsEnable = true;
551 
552    pGS->numInputAttribs = info->num_inputs;
553    pGS->outputTopology =
554       swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
555    pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
556    pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS];
557 
558    // XXX: single stream for now...
559    pGS->isSingleStream = true;
560    pGS->singleStreamID = 0;
561 
562    pGS->vertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
563    pGS->srcVertexAttribOffset = VERTEX_ATTRIB_START_SLOT; // TODO: optimize
564    pGS->inputVertStride = pGS->numInputAttribs + pGS->vertexAttribOffset;
565    pGS->outputVertexSize = SWR_VTX_NUM_SLOTS;
566    pGS->controlDataSize = 8; // GS ouputs max of 8 32B units
567    pGS->controlDataOffset = VERTEX_COUNT_SIZE;
568    pGS->outputVertexOffset = pGS->controlDataOffset + CONTROL_HEADER_SIZE;
569 
570    pGS->allocationSize =
571       VERTEX_COUNT_SIZE + // vertex count
572       CONTROL_HEADER_SIZE + // control header
573       (SWR_VTX_NUM_SLOTS * 16) * // sizeof vertex
574       pGS->maxNumVerts; // num verts
575 
576    struct swr_geometry_shader *gs = ctx->gs;
577 
578    LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
579    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
580 
581    memset(outputs, 0, sizeof(outputs));
582 
583    AttrBuilder attrBuilder;
584    attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
585 
586    std::vector<Type *> gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
587                               PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)};
588    FunctionType *vsFuncType =
589       FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false);
590 
591    // create new vertex shader function
592    auto pFunction = Function::Create(vsFuncType,
593                                      GlobalValue::ExternalLinkage,
594                                      "GS",
595                                      JM()->mpCurrentModule);
596 #if HAVE_LLVM < 0x0500
597    AttributeSet attrSet = AttributeSet::get(
598       JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
599    pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
600 #else
601    pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
602 #endif
603 
604    BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
605    IRB()->SetInsertPoint(block);
606    LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
607 
608    auto argitr = pFunction->arg_begin();
609    Value *hPrivateData = &*argitr++;
610    hPrivateData->setName("hPrivateData");
611    Value *pGsCtx = &*argitr++;
612    pGsCtx->setName("gsCtx");
613 
614    Value *consts_ptr =
615       GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)});
616    consts_ptr->setName("gs_constants");
617    Value *const_sizes_ptr =
618       GEP(hPrivateData, {0, swr_draw_context_num_constantsGS});
619    const_sizes_ptr->setName("num_gs_constants");
620 
621    struct lp_build_sampler_soa *sampler =
622       swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY);
623 
624    struct lp_bld_tgsi_system_values system_values;
625    memset(&system_values, 0, sizeof(system_values));
626    system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID}));
627    system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID}));
628 
629    std::vector<Constant*> mapConstants;
630    Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS));
631    for (unsigned slot = 0; slot < info->num_inputs; slot++) {
632       ubyte semantic_name = info->input_semantic_name[slot];
633       ubyte semantic_idx = info->input_semantic_index[slot];
634 
635       unsigned vs_slot = locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base);
636 
637       vs_slot += VERTEX_ATTRIB_START_SLOT;
638 
639       if (ctx->vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
640          vs_slot--;
641 
642       if (semantic_name == TGSI_SEMANTIC_POSITION)
643          vs_slot = VERTEX_POSITION_SLOT;
644 
645       STORE(C(vs_slot), vtxAttribMap, {0, slot});
646       mapConstants.push_back(C(vs_slot));
647    }
648 
649    struct lp_build_mask_context mask;
650    Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask");
651    lp_build_mask_begin(&mask, gallivm,
652                        lp_type_float_vec(32, 32 * 8), wrap(mask_val));
653 
654    // zero out cut buffer so we can load/modify/store bits
655    for (uint32_t lane = 0; lane < mVWidth; ++lane)
656    {
657       Value* pStream = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pStreams, lane});
658       MEMSET(pStream, C((char)0), VERTEX_COUNT_SIZE + CONTROL_HEADER_SIZE, sizeof(float) * KNOB_SIMD_WIDTH);
659    }
660 
661    struct swr_gs_llvm_iface gs_iface;
662    gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
663    gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex;
664    gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive;
665    gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue;
666    gs_iface.pBuilder = this;
667    gs_iface.pGsCtx = pGsCtx;
668    gs_iface.pGsState = pGS;
669    gs_iface.num_outputs = gs->info.base.num_outputs;
670    gs_iface.num_verts_per_prim =
671       u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
672    gs_iface.info = info;
673    gs_iface.pVtxAttribMap = vtxAttribMap;
674 
675    lp_build_tgsi_soa(gallivm,
676                      gs->pipe.tokens,
677                      lp_type_float_vec(32, 32 * 8),
678                      &mask,
679                      wrap(consts_ptr),
680                      wrap(const_sizes_ptr),
681                      &system_values,
682                      inputs,
683                      outputs,
684                      wrap(hPrivateData), // (sampler context)
685                      NULL, // thread data
686                      sampler,
687                      &gs->info.base,
688                      &gs_iface.base);
689 
690    lp_build_mask_end(&mask);
691 
692    sampler->destroy(sampler);
693 
694    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
695 
696    RET_VOID();
697 
698    gallivm_verify_function(gallivm, wrap(pFunction));
699    gallivm_compile_module(gallivm);
700 
701    PFN_GS_FUNC pFunc =
702       (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
703 
704    debug_printf("geom shader  %p\n", pFunc);
705    assert(pFunc && "Error: GeomShader = NULL");
706 
707    JM()->mIsModuleFinalized = true;
708 
709    return pFunc;
710 }
711 
712 PFN_GS_FUNC
swr_compile_gs(struct swr_context * ctx,swr_jit_gs_key & key)713 swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key)
714 {
715    BuilderSWR builder(
716       reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
717       "GS");
718    PFN_GS_FUNC func = builder.CompileGS(ctx, key);
719 
720    ctx->gs->map.insert(std::make_pair(key, make_unique<VariantGS>(builder.gallivm, func)));
721    return func;
722 }
723 
724 void
WriteVS(Value * pVal,Value * pVsContext,Value * pVtxOutput,unsigned slot,unsigned channel)725 BuilderSWR::WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel)
726 {
727 #if USE_SIMD16_FRONTEND && !USE_SIMD16_VS
728    // interleave the simdvertex components into the dest simd16vertex
729    //   slot16offset = slot8offset * 2
730    //   comp16offset = comp8offset * 2 + alternateOffset
731 
732    Value *offset = LOAD(pVsContext, { 0, SWR_VS_CONTEXT_AlternateOffset });
733    Value *pOut = GEP(pVtxOutput, { C(0), C(0), C(slot * 2), offset } );
734    STORE(pVal, pOut, {channel * 2});
735 #else
736    Value *pOut = GEP(pVtxOutput, {0, 0, slot});
737    STORE(pVal, pOut, {0, channel});
738 #endif
739 }
740 
741 PFN_VERTEX_FUNC
CompileVS(struct swr_context * ctx,swr_jit_vs_key & key)742 BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key)
743 {
744    struct swr_vertex_shader *swr_vs = ctx->vs;
745 
746    LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
747    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
748 
749    memset(outputs, 0, sizeof(outputs));
750 
751    AttrBuilder attrBuilder;
752    attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
753 
754    std::vector<Type *> vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
755                               PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)};
756    FunctionType *vsFuncType =
757       FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false);
758 
759    // create new vertex shader function
760    auto pFunction = Function::Create(vsFuncType,
761                                      GlobalValue::ExternalLinkage,
762                                      "VS",
763                                      JM()->mpCurrentModule);
764 #if HAVE_LLVM < 0x0500
765    AttributeSet attrSet = AttributeSet::get(
766       JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
767    pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
768 #else
769    pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
770 #endif
771 
772    BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
773    IRB()->SetInsertPoint(block);
774    LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
775 
776    auto argitr = pFunction->arg_begin();
777    Value *hPrivateData = &*argitr++;
778    hPrivateData->setName("hPrivateData");
779    Value *pVsCtx = &*argitr++;
780    pVsCtx->setName("vsCtx");
781 
782    Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)});
783 
784    consts_ptr->setName("vs_constants");
785    Value *const_sizes_ptr =
786       GEP(hPrivateData, {0, swr_draw_context_num_constantsVS});
787    const_sizes_ptr->setName("num_vs_constants");
788 
789    Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin});
790 #if USE_SIMD16_VS
791    vtxInput = BITCAST(vtxInput, PointerType::get(Gen_simd16vertex(JM()), 0));
792 #endif
793 
794    for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
795       const unsigned mask = swr_vs->info.base.input_usage_mask[attrib];
796       for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
797          if (mask & (1 << channel)) {
798             inputs[attrib][channel] =
799                wrap(LOAD(vtxInput, {0, 0, attrib, channel}));
800          }
801       }
802    }
803 
804    struct lp_build_sampler_soa *sampler =
805       swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX);
806 
807    struct lp_bld_tgsi_system_values system_values;
808    memset(&system_values, 0, sizeof(system_values));
809    system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID}));
810 
811 #if USE_SIMD16_VS
812    system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID16}));
813 #else
814    system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID}));
815 #endif
816 
817 #if USE_SIMD16_VS
818    uint32_t vectorWidth = mVWidth16;
819 #else
820    uint32_t vectorWidth = mVWidth;
821 #endif
822 
823    lp_build_tgsi_soa(gallivm,
824                      swr_vs->pipe.tokens,
825                      lp_type_float_vec(32, 32 * vectorWidth),
826                      NULL, // mask
827                      wrap(consts_ptr),
828                      wrap(const_sizes_ptr),
829                      &system_values,
830                      inputs,
831                      outputs,
832                      wrap(hPrivateData), // (sampler context)
833                      NULL, // thread data
834                      sampler, // sampler
835                      &swr_vs->info.base,
836                      NULL); // geometry shader face
837 
838    sampler->destroy(sampler);
839 
840    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
841 
842    Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout});
843 #if USE_SIMD16_VS
844    vtxOutput = BITCAST(vtxOutput, PointerType::get(Gen_simd16vertex(JM()), 0));
845 #endif
846 
847    for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
848       for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) {
849          if (!outputs[attrib][channel])
850             continue;
851 
852          Value *val;
853          uint32_t outSlot;
854 
855          if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
856             if (channel != VERTEX_SGV_POINT_SIZE_COMP)
857                continue;
858             val = LOAD(unwrap(outputs[attrib][0]));
859             outSlot = VERTEX_SGV_SLOT;
860          } else if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
861             val = LOAD(unwrap(outputs[attrib][channel]));
862             outSlot = VERTEX_POSITION_SLOT;
863          } else {
864             val = LOAD(unwrap(outputs[attrib][channel]));
865             outSlot = VERTEX_ATTRIB_START_SLOT + attrib;
866             if (swr_vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
867                outSlot--;
868          }
869 
870          WriteVS(val, pVsCtx, vtxOutput, outSlot, channel);
871       }
872    }
873 
874    if (ctx->rasterizer->clip_plane_enable ||
875        swr_vs->info.base.culldist_writemask) {
876       unsigned clip_mask = ctx->rasterizer->clip_plane_enable;
877 
878       unsigned cv = 0;
879       if (swr_vs->info.base.writes_clipvertex) {
880          cv = locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0,
881                              &swr_vs->info.base);
882       } else {
883          for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
884             if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
885                 swr_vs->info.base.output_semantic_index[i] == 0) {
886                cv = i;
887                break;
888             }
889          }
890       }
891       LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], "");
892       LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], "");
893       LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], "");
894       LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], "");
895 
896       for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) {
897          // clip distance overrides user clip planes
898          if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) ||
899              ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) {
900             unsigned cv = locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1,
901                                          &swr_vs->info.base);
902             if (val < 4) {
903                LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], "");
904                WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
905             } else {
906                LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], "");
907                WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
908             }
909             continue;
910          }
911 
912          if (!(clip_mask & (1 << val)))
913             continue;
914 
915          Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0}));
916          Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1}));
917          Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2}));
918          Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3}));
919 #if USE_SIMD16_VS
920          Value *bpx = VBROADCAST_16(px);
921          Value *bpy = VBROADCAST_16(py);
922          Value *bpz = VBROADCAST_16(pz);
923          Value *bpw = VBROADCAST_16(pw);
924 #else
925          Value *bpx = VBROADCAST(px);
926          Value *bpy = VBROADCAST(py);
927          Value *bpz = VBROADCAST(pz);
928          Value *bpw = VBROADCAST(pw);
929 #endif
930          Value *dist = FADD(FMUL(unwrap(cx), bpx),
931                             FADD(FMUL(unwrap(cy), bpy),
932                                  FADD(FMUL(unwrap(cz), bpz),
933                                       FMUL(unwrap(cw), bpw))));
934 
935          if (val < 4)
936             WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
937          else
938             WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
939       }
940    }
941 
942    RET_VOID();
943 
944    gallivm_verify_function(gallivm, wrap(pFunction));
945    gallivm_compile_module(gallivm);
946 
947    //   lp_debug_dump_value(func);
948 
949    PFN_VERTEX_FUNC pFunc =
950       (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
951 
952    debug_printf("vert shader  %p\n", pFunc);
953    assert(pFunc && "Error: VertShader = NULL");
954 
955    JM()->mIsModuleFinalized = true;
956 
957    return pFunc;
958 }
959 
960 PFN_VERTEX_FUNC
swr_compile_vs(struct swr_context * ctx,swr_jit_vs_key & key)961 swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key)
962 {
963    if (!ctx->vs->pipe.tokens)
964       return NULL;
965 
966    BuilderSWR builder(
967       reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
968       "VS");
969    PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key);
970 
971    ctx->vs->map.insert(std::make_pair(key, make_unique<VariantVS>(builder.gallivm, func)));
972    return func;
973 }
974 
975 unsigned
swr_so_adjust_attrib(unsigned in_attrib,swr_vertex_shader * swr_vs)976 swr_so_adjust_attrib(unsigned in_attrib,
977                      swr_vertex_shader *swr_vs)
978 {
979    ubyte semantic_name;
980    unsigned attrib;
981 
982    attrib = in_attrib + VERTEX_ATTRIB_START_SLOT;
983 
984    if (swr_vs) {
985       semantic_name = swr_vs->info.base.output_semantic_name[in_attrib];
986       if (semantic_name == TGSI_SEMANTIC_POSITION) {
987          attrib = VERTEX_POSITION_SLOT;
988       } else if (semantic_name == TGSI_SEMANTIC_PSIZE) {
989          attrib = VERTEX_SGV_SLOT;
990       } else if (semantic_name == TGSI_SEMANTIC_LAYER) {
991          attrib = VERTEX_SGV_SLOT;
992       } else {
993          if (swr_vs->info.base.writes_position) {
994                attrib--;
995          }
996       }
997    }
998 
999    return attrib;
1000 }
1001 
1002 static unsigned
locate_linkage(ubyte name,ubyte index,struct tgsi_shader_info * info)1003 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info)
1004 {
1005    for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
1006       if ((info->output_semantic_name[i] == name)
1007           && (info->output_semantic_index[i] == index)) {
1008          return i;
1009       }
1010    }
1011 
1012    return 0xFFFFFFFF;
1013 }
1014 
1015 PFN_PIXEL_KERNEL
CompileFS(struct swr_context * ctx,swr_jit_fs_key & key)1016 BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key)
1017 {
1018    struct swr_fragment_shader *swr_fs = ctx->fs;
1019 
1020    struct tgsi_shader_info *pPrevShader;
1021    if (ctx->gs)
1022       pPrevShader = &ctx->gs->info.base;
1023    else
1024       pPrevShader = &ctx->vs->info.base;
1025 
1026    LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
1027    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
1028 
1029    memset(inputs, 0, sizeof(inputs));
1030    memset(outputs, 0, sizeof(outputs));
1031 
1032    struct lp_build_sampler_soa *sampler = NULL;
1033 
1034    AttrBuilder attrBuilder;
1035    attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
1036 
1037    std::vector<Type *> fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
1038                               PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)};
1039    FunctionType *funcType =
1040       FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false);
1041 
1042    auto pFunction = Function::Create(funcType,
1043                                      GlobalValue::ExternalLinkage,
1044                                      "FS",
1045                                      JM()->mpCurrentModule);
1046 #if HAVE_LLVM < 0x0500
1047    AttributeSet attrSet = AttributeSet::get(
1048       JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
1049    pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
1050 #else
1051    pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
1052 #endif
1053 
1054    BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
1055    IRB()->SetInsertPoint(block);
1056    LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
1057 
1058    auto args = pFunction->arg_begin();
1059    Value *hPrivateData = &*args++;
1060    hPrivateData->setName("hPrivateData");
1061    Value *pPS = &*args++;
1062    pPS->setName("psCtx");
1063 
1064    Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS});
1065    consts_ptr->setName("fs_constants");
1066    Value *const_sizes_ptr =
1067       GEP(hPrivateData, {0, swr_draw_context_num_constantsFS});
1068    const_sizes_ptr->setName("num_fs_constants");
1069 
1070    // load *pAttribs, *pPerspAttribs
1071    Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs");
1072    Value *pPerspAttribs =
1073       LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs");
1074 
1075    swr_fs->constantMask = 0;
1076    swr_fs->flatConstantMask = 0;
1077    swr_fs->pointSpriteMask = 0;
1078 
1079    for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
1080       const unsigned mask = swr_fs->info.base.input_usage_mask[attrib];
1081       const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib];
1082       const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib];
1083 
1084       if (!mask)
1085          continue;
1086 
1087       // load i,j
1088       Value *vi = nullptr, *vj = nullptr;
1089       switch (interpLoc) {
1090       case TGSI_INTERPOLATE_LOC_CENTER:
1091          vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i");
1092          vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j");
1093          break;
1094       case TGSI_INTERPOLATE_LOC_CENTROID:
1095          vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i");
1096          vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j");
1097          break;
1098       case TGSI_INTERPOLATE_LOC_SAMPLE:
1099          vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i");
1100          vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j");
1101          break;
1102       }
1103 
1104       // load/compute w
1105       Value *vw = nullptr, *pAttribs;
1106       if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1107           interpMode == TGSI_INTERPOLATE_COLOR) {
1108          pAttribs = pPerspAttribs;
1109          switch (interpLoc) {
1110          case TGSI_INTERPOLATE_LOC_CENTER:
1111             vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}));
1112             break;
1113          case TGSI_INTERPOLATE_LOC_CENTROID:
1114             vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid}));
1115             break;
1116          case TGSI_INTERPOLATE_LOC_SAMPLE:
1117             vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample}));
1118             break;
1119          }
1120       } else {
1121          pAttribs = pRawAttribs;
1122          vw = VIMMED1(1.f);
1123       }
1124 
1125       vw->setName("w");
1126 
1127       ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib];
1128       ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib];
1129 
1130       if (semantic_name == TGSI_SEMANTIC_FACE) {
1131          Value *ff =
1132             UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty);
1133          ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f));
1134          ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace");
1135 
1136          inputs[attrib][0] = wrap(ff);
1137          inputs[attrib][1] = wrap(VIMMED1(0.0f));
1138          inputs[attrib][2] = wrap(VIMMED1(0.0f));
1139          inputs[attrib][3] = wrap(VIMMED1(1.0f));
1140          continue;
1141       } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord
1142          if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1143              TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) {
1144             inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX"));
1145             inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY"));
1146          } else {
1147             inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX"));
1148             inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY"));
1149          }
1150          inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ"));
1151          inputs[attrib][3] =
1152             wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW"));
1153          continue;
1154       }
1155 
1156       unsigned linkedAttrib =
1157          locate_linkage(semantic_name, semantic_idx, pPrevShader) - 1;
1158 
1159       uint32_t extraAttribs = 0;
1160       if (semantic_name == TGSI_SEMANTIC_PRIMID && !ctx->gs) {
1161          /* non-gs generated primID - need to grab from swizzleMap override */
1162          linkedAttrib = pPrevShader->num_outputs - 1;
1163          swr_fs->constantMask |= 1 << linkedAttrib;
1164          extraAttribs++;
1165       } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1166           key.sprite_coord_enable & (1 << semantic_idx)) {
1167          /* we add an extra attrib to the backendState in swr_update_derived. */
1168          linkedAttrib = pPrevShader->num_outputs + extraAttribs - 1;
1169          swr_fs->pointSpriteMask |= (1 << linkedAttrib);
1170          extraAttribs++;
1171       } else if (linkedAttrib == 0xFFFFFFFF) {
1172          inputs[attrib][0] = wrap(VIMMED1(0.0f));
1173          inputs[attrib][1] = wrap(VIMMED1(0.0f));
1174          inputs[attrib][2] = wrap(VIMMED1(0.0f));
1175          inputs[attrib][3] = wrap(VIMMED1(1.0f));
1176          /* If we're reading in color and 2-sided lighting is enabled, we have
1177           * to keep going.
1178           */
1179          if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside)
1180             continue;
1181       } else {
1182          if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1183             swr_fs->constantMask |= 1 << linkedAttrib;
1184          } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1185             swr_fs->flatConstantMask |= 1 << linkedAttrib;
1186          }
1187       }
1188 
1189       unsigned bcolorAttrib = 0xFFFFFFFF;
1190       Value *offset = NULL;
1191       if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) {
1192          bcolorAttrib = locate_linkage(
1193                TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader) - 1;
1194          /* Neither front nor back colors were available. Nothing to load. */
1195          if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF)
1196             continue;
1197          /* If there is no front color, just always use the back color. */
1198          if (linkedAttrib == 0xFFFFFFFF)
1199             linkedAttrib = bcolorAttrib;
1200 
1201          if (bcolorAttrib != 0xFFFFFFFF) {
1202             if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1203                swr_fs->constantMask |= 1 << bcolorAttrib;
1204             } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1205                swr_fs->flatConstantMask |= 1 << bcolorAttrib;
1206             }
1207 
1208             unsigned diff = 12 * (bcolorAttrib - linkedAttrib);
1209 
1210             if (diff) {
1211                Value *back =
1212                   XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace");
1213 
1214                offset = MUL(back, C(diff));
1215                offset->setName("offset");
1216             }
1217          }
1218       }
1219 
1220       for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1221          if (mask & (1 << channel)) {
1222             Value *indexA = C(linkedAttrib * 12 + channel);
1223             Value *indexB = C(linkedAttrib * 12 + channel + 4);
1224             Value *indexC = C(linkedAttrib * 12 + channel + 8);
1225 
1226             if (offset) {
1227                indexA = ADD(indexA, offset);
1228                indexB = ADD(indexB, offset);
1229                indexC = ADD(indexC, offset);
1230             }
1231 
1232             Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA)));
1233             Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB)));
1234             Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC)));
1235 
1236             if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1237                inputs[attrib][channel] = wrap(va);
1238             } else {
1239                Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj);
1240 
1241                vc = FMUL(vk, vc);
1242 
1243                Value *interp = FMUL(va, vi);
1244                Value *interp1 = FMUL(vb, vj);
1245                interp = FADD(interp, interp1);
1246                interp = FADD(interp, vc);
1247                if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1248                    interpMode == TGSI_INTERPOLATE_COLOR)
1249                   interp = FMUL(interp, vw);
1250                inputs[attrib][channel] = wrap(interp);
1251             }
1252          }
1253       }
1254    }
1255 
1256    sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT);
1257 
1258    struct lp_bld_tgsi_system_values system_values;
1259    memset(&system_values, 0, sizeof(system_values));
1260 
1261    struct lp_build_mask_context mask;
1262    bool uses_mask = false;
1263 
1264    if (swr_fs->info.base.uses_kill ||
1265        key.poly_stipple_enable) {
1266       Value *vActiveMask = NULL;
1267       if (swr_fs->info.base.uses_kill) {
1268          vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask");
1269       }
1270       if (key.poly_stipple_enable) {
1271          // first get fragment xy coords and clip to stipple bounds
1272          Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL});
1273          Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL});
1274          Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty);
1275          Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty);
1276 
1277          // stipple pattern is 32x32, which means that one line of stipple
1278          // is stored in one word:
1279          // vXstipple is bit offset inside 32-bit stipple word
1280          // vYstipple is word index is stipple array
1281          Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1)
1282          Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1)
1283 
1284          // grab stipple pattern base address
1285          Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0});
1286          stipplePtr = BITCAST(stipplePtr, mInt8PtrTy);
1287 
1288          // peform a gather to grab stipple words for each lane
1289          Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple,
1290                                     VIMMED1(0xffffffff), 4);
1291 
1292          // create a mask with one bit corresponding to the x stipple
1293          // and AND it with the pattern, to see if we have a bit
1294          Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple);
1295          Value *vStippleMask = AND(vStipple, vBitMask);
1296          vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0));
1297          vStippleMask = VMASK(vStippleMask);
1298 
1299          if (swr_fs->info.base.uses_kill) {
1300             vActiveMask = AND(vActiveMask, vStippleMask);
1301          } else {
1302             vActiveMask = vStippleMask;
1303          }
1304       }
1305       lp_build_mask_begin(
1306          &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask));
1307       uses_mask = true;
1308    }
1309 
1310    lp_build_tgsi_soa(gallivm,
1311                      swr_fs->pipe.tokens,
1312                      lp_type_float_vec(32, 32 * 8),
1313                      uses_mask ? &mask : NULL, // mask
1314                      wrap(consts_ptr),
1315                      wrap(const_sizes_ptr),
1316                      &system_values,
1317                      inputs,
1318                      outputs,
1319                      wrap(hPrivateData),
1320                      NULL, // thread data
1321                      sampler, // sampler
1322                      &swr_fs->info.base,
1323                      NULL); // geometry shader face
1324 
1325    sampler->destroy(sampler);
1326 
1327    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1328 
1329    for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs;
1330         attrib++) {
1331       switch (swr_fs->info.base.output_semantic_name[attrib]) {
1332       case TGSI_SEMANTIC_POSITION: {
1333          // write z
1334          LLVMValueRef outZ =
1335             LLVMBuildLoad(gallivm->builder, outputs[attrib][2], "");
1336          STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ});
1337          break;
1338       }
1339       case TGSI_SEMANTIC_COLOR: {
1340          for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1341             if (!outputs[attrib][channel])
1342                continue;
1343 
1344             LLVMValueRef out =
1345                LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], "");
1346             if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1347                 swr_fs->info.base.output_semantic_index[attrib] == 0) {
1348                for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) {
1349                   STORE(unwrap(out),
1350                         pPS,
1351                         {0, SWR_PS_CONTEXT_shaded, rt, channel});
1352                }
1353             } else {
1354                STORE(unwrap(out),
1355                      pPS,
1356                      {0,
1357                            SWR_PS_CONTEXT_shaded,
1358                            swr_fs->info.base.output_semantic_index[attrib],
1359                            channel});
1360             }
1361          }
1362          break;
1363       }
1364       default: {
1365          fprintf(stderr,
1366                  "unknown output from FS %s[%d]\n",
1367                  tgsi_semantic_names[swr_fs->info.base
1368                                         .output_semantic_name[attrib]],
1369                  swr_fs->info.base.output_semantic_index[attrib]);
1370          break;
1371       }
1372       }
1373    }
1374 
1375    LLVMValueRef mask_result = 0;
1376    if (uses_mask) {
1377       mask_result = lp_build_mask_end(&mask);
1378    }
1379 
1380    IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1381 
1382    if (uses_mask) {
1383       STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask});
1384    }
1385 
1386    RET_VOID();
1387 
1388    gallivm_verify_function(gallivm, wrap(pFunction));
1389 
1390    gallivm_compile_module(gallivm);
1391 
1392    PFN_PIXEL_KERNEL kernel =
1393       (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction));
1394    debug_printf("frag shader  %p\n", kernel);
1395    assert(kernel && "Error: FragShader = NULL");
1396 
1397    JM()->mIsModuleFinalized = true;
1398 
1399    return kernel;
1400 }
1401 
1402 PFN_PIXEL_KERNEL
swr_compile_fs(struct swr_context * ctx,swr_jit_fs_key & key)1403 swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key)
1404 {
1405    if (!ctx->fs->pipe.tokens)
1406       return NULL;
1407 
1408    BuilderSWR builder(
1409       reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
1410       "FS");
1411    PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key);
1412 
1413    ctx->fs->map.insert(std::make_pair(key, make_unique<VariantFS>(builder.gallivm, func)));
1414    return func;
1415 }
1416