1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * EFI application runtime services
4 *
5 * Copyright (c) 2016 Alexander Graf
6 */
7
8 #include <common.h>
9 #include <command.h>
10 #include <dm.h>
11 #include <efi_loader.h>
12 #include <rtc.h>
13
14 /* For manual relocation support */
15 DECLARE_GLOBAL_DATA_PTR;
16
17 struct efi_runtime_mmio_list {
18 struct list_head link;
19 void **ptr;
20 u64 paddr;
21 u64 len;
22 };
23
24 /* This list contains all runtime available mmio regions */
25 LIST_HEAD(efi_runtime_mmio);
26
27 static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void);
28 static efi_status_t __efi_runtime EFIAPI efi_device_error(void);
29 static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void);
30
31 /*
32 * TODO(sjg@chromium.org): These defines and structs should come from the elf
33 * header for each arch (or a generic header) rather than being repeated here.
34 */
35 #if defined(CONFIG_ARM64)
36 #define R_RELATIVE 1027
37 #define R_MASK 0xffffffffULL
38 #define IS_RELA 1
39 #elif defined(CONFIG_ARM)
40 #define R_RELATIVE 23
41 #define R_MASK 0xffULL
42 #elif defined(CONFIG_X86)
43 #include <asm/elf.h>
44 #define R_RELATIVE R_386_RELATIVE
45 #define R_MASK 0xffULL
46 #elif defined(CONFIG_RISCV)
47 #include <elf.h>
48 #define R_RELATIVE R_RISCV_RELATIVE
49 #define R_MASK 0xffULL
50 #define IS_RELA 1
51
52 struct dyn_sym {
53 ulong foo1;
54 ulong addr;
55 u32 foo2;
56 u32 foo3;
57 };
58 #ifdef CONFIG_CPU_RISCV_32
59 #define R_ABSOLUTE R_RISCV_32
60 #define SYM_INDEX 8
61 #else
62 #define R_ABSOLUTE R_RISCV_64
63 #define SYM_INDEX 32
64 #endif
65 #else
66 #error Need to add relocation awareness
67 #endif
68
69 struct elf_rel {
70 ulong *offset;
71 ulong info;
72 };
73
74 struct elf_rela {
75 ulong *offset;
76 ulong info;
77 long addend;
78 };
79
80 /*
81 * EFI Runtime code lives in 2 stages. In the first stage, U-Boot and an EFI
82 * payload are running concurrently at the same time. In this mode, we can
83 * handle a good number of runtime callbacks
84 */
85
efi_reset_system_boottime(enum efi_reset_type reset_type,efi_status_t reset_status,unsigned long data_size,void * reset_data)86 static void EFIAPI efi_reset_system_boottime(
87 enum efi_reset_type reset_type,
88 efi_status_t reset_status,
89 unsigned long data_size, void *reset_data)
90 {
91 struct efi_event *evt;
92
93 EFI_ENTRY("%d %lx %lx %p", reset_type, reset_status, data_size,
94 reset_data);
95
96 /* Notify reset */
97 list_for_each_entry(evt, &efi_events, link) {
98 if (evt->group &&
99 !guidcmp(evt->group,
100 &efi_guid_event_group_reset_system)) {
101 efi_signal_event(evt, false);
102 break;
103 }
104 }
105 switch (reset_type) {
106 case EFI_RESET_COLD:
107 case EFI_RESET_WARM:
108 case EFI_RESET_PLATFORM_SPECIFIC:
109 do_reset(NULL, 0, 0, NULL);
110 break;
111 case EFI_RESET_SHUTDOWN:
112 /* We don't have anything to map this to */
113 break;
114 }
115
116 while (1) { }
117 }
118
efi_get_time_boottime(struct efi_time * time,struct efi_time_cap * capabilities)119 static efi_status_t EFIAPI efi_get_time_boottime(
120 struct efi_time *time,
121 struct efi_time_cap *capabilities)
122 {
123 #if defined(CONFIG_CMD_DATE) && defined(CONFIG_DM_RTC)
124 struct rtc_time tm;
125 int r;
126 struct udevice *dev;
127
128 EFI_ENTRY("%p %p", time, capabilities);
129
130 r = uclass_get_device(UCLASS_RTC, 0, &dev);
131 if (r)
132 return EFI_EXIT(EFI_DEVICE_ERROR);
133
134 r = dm_rtc_get(dev, &tm);
135 if (r)
136 return EFI_EXIT(EFI_DEVICE_ERROR);
137
138 memset(time, 0, sizeof(*time));
139 time->year = tm.tm_year;
140 time->month = tm.tm_mon;
141 time->day = tm.tm_mday;
142 time->hour = tm.tm_hour;
143 time->minute = tm.tm_min;
144 time->daylight = tm.tm_isdst;
145
146 return EFI_EXIT(EFI_SUCCESS);
147 #else
148 return EFI_DEVICE_ERROR;
149 #endif
150 }
151
152 /* Boards may override the helpers below to implement RTS functionality */
153
efi_reset_system(enum efi_reset_type reset_type,efi_status_t reset_status,unsigned long data_size,void * reset_data)154 void __weak __efi_runtime EFIAPI efi_reset_system(
155 enum efi_reset_type reset_type,
156 efi_status_t reset_status,
157 unsigned long data_size, void *reset_data)
158 {
159 /* Nothing we can do */
160 while (1) { }
161 }
162
efi_reset_system_init(void)163 efi_status_t __weak efi_reset_system_init(void)
164 {
165 return EFI_SUCCESS;
166 }
167
efi_get_time(struct efi_time * time,struct efi_time_cap * capabilities)168 efi_status_t __weak __efi_runtime EFIAPI efi_get_time(
169 struct efi_time *time,
170 struct efi_time_cap *capabilities)
171 {
172 /* Nothing we can do */
173 return EFI_DEVICE_ERROR;
174 }
175
efi_get_time_init(void)176 efi_status_t __weak efi_get_time_init(void)
177 {
178 return EFI_SUCCESS;
179 }
180
181 struct efi_runtime_detach_list_struct {
182 void *ptr;
183 void *patchto;
184 };
185
186 static const struct efi_runtime_detach_list_struct efi_runtime_detach_list[] = {
187 {
188 /* do_reset is gone */
189 .ptr = &efi_runtime_services.reset_system,
190 .patchto = efi_reset_system,
191 }, {
192 /* invalidate_*cache_all are gone */
193 .ptr = &efi_runtime_services.set_virtual_address_map,
194 .patchto = &efi_invalid_parameter,
195 }, {
196 /* RTC accessors are gone */
197 .ptr = &efi_runtime_services.get_time,
198 .patchto = &efi_get_time,
199 }, {
200 /* Clean up system table */
201 .ptr = &systab.con_in,
202 .patchto = NULL,
203 }, {
204 /* Clean up system table */
205 .ptr = &systab.con_out,
206 .patchto = NULL,
207 }, {
208 /* Clean up system table */
209 .ptr = &systab.std_err,
210 .patchto = NULL,
211 }, {
212 /* Clean up system table */
213 .ptr = &systab.boottime,
214 .patchto = NULL,
215 }, {
216 .ptr = &efi_runtime_services.get_variable,
217 .patchto = &efi_device_error,
218 }, {
219 .ptr = &efi_runtime_services.get_next_variable_name,
220 .patchto = &efi_device_error,
221 }, {
222 .ptr = &efi_runtime_services.set_variable,
223 .patchto = &efi_device_error,
224 }
225 };
226
efi_runtime_tobedetached(void * p)227 static bool efi_runtime_tobedetached(void *p)
228 {
229 int i;
230
231 for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++)
232 if (efi_runtime_detach_list[i].ptr == p)
233 return true;
234
235 return false;
236 }
237
efi_runtime_detach(ulong offset)238 static void efi_runtime_detach(ulong offset)
239 {
240 int i;
241 ulong patchoff = offset - (ulong)gd->relocaddr;
242
243 for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) {
244 ulong patchto = (ulong)efi_runtime_detach_list[i].patchto;
245 ulong *p = efi_runtime_detach_list[i].ptr;
246 ulong newaddr = patchto ? (patchto + patchoff) : 0;
247
248 debug("%s: Setting %p to %lx\n", __func__, p, newaddr);
249 *p = newaddr;
250 }
251 }
252
253 /* Relocate EFI runtime to uboot_reloc_base = offset */
efi_runtime_relocate(ulong offset,struct efi_mem_desc * map)254 void efi_runtime_relocate(ulong offset, struct efi_mem_desc *map)
255 {
256 #ifdef IS_RELA
257 struct elf_rela *rel = (void*)&__efi_runtime_rel_start;
258 #else
259 struct elf_rel *rel = (void*)&__efi_runtime_rel_start;
260 static ulong lastoff = CONFIG_SYS_TEXT_BASE;
261 #endif
262
263 debug("%s: Relocating to offset=%lx\n", __func__, offset);
264 for (; (ulong)rel < (ulong)&__efi_runtime_rel_stop; rel++) {
265 ulong base = CONFIG_SYS_TEXT_BASE;
266 ulong *p;
267 ulong newaddr;
268
269 p = (void*)((ulong)rel->offset - base) + gd->relocaddr;
270
271 debug("%s: rel->info=%#lx *p=%#lx rel->offset=%p\n", __func__, rel->info, *p, rel->offset);
272
273 switch (rel->info & R_MASK) {
274 case R_RELATIVE:
275 #ifdef IS_RELA
276 newaddr = rel->addend + offset - CONFIG_SYS_TEXT_BASE;
277 #else
278 newaddr = *p - lastoff + offset;
279 #endif
280 break;
281 #ifdef R_ABSOLUTE
282 case R_ABSOLUTE: {
283 ulong symidx = rel->info >> SYM_INDEX;
284 extern struct dyn_sym __dyn_sym_start[];
285 newaddr = __dyn_sym_start[symidx].addr + offset;
286 break;
287 }
288 #endif
289 default:
290 continue;
291 }
292
293 /* Check if the relocation is inside bounds */
294 if (map && ((newaddr < map->virtual_start) ||
295 newaddr > (map->virtual_start +
296 (map->num_pages << EFI_PAGE_SHIFT)))) {
297 if (!efi_runtime_tobedetached(p))
298 printf("U-Boot EFI: Relocation at %p is out of "
299 "range (%lx)\n", p, newaddr);
300 continue;
301 }
302
303 debug("%s: Setting %p to %lx\n", __func__, p, newaddr);
304 *p = newaddr;
305 flush_dcache_range((ulong)p & ~(EFI_CACHELINE_SIZE - 1),
306 ALIGN((ulong)&p[1], EFI_CACHELINE_SIZE));
307 }
308
309 #ifndef IS_RELA
310 lastoff = offset;
311 #endif
312
313 invalidate_icache_all();
314 }
315
efi_set_virtual_address_map(unsigned long memory_map_size,unsigned long descriptor_size,uint32_t descriptor_version,struct efi_mem_desc * virtmap)316 static efi_status_t EFIAPI efi_set_virtual_address_map(
317 unsigned long memory_map_size,
318 unsigned long descriptor_size,
319 uint32_t descriptor_version,
320 struct efi_mem_desc *virtmap)
321 {
322 ulong runtime_start = (ulong)&__efi_runtime_start &
323 ~(ulong)EFI_PAGE_MASK;
324 int n = memory_map_size / descriptor_size;
325 int i;
326
327 EFI_ENTRY("%lx %lx %x %p", memory_map_size, descriptor_size,
328 descriptor_version, virtmap);
329
330 /* Rebind mmio pointers */
331 for (i = 0; i < n; i++) {
332 struct efi_mem_desc *map = (void*)virtmap +
333 (descriptor_size * i);
334 struct list_head *lhandle;
335 efi_physical_addr_t map_start = map->physical_start;
336 efi_physical_addr_t map_len = map->num_pages << EFI_PAGE_SHIFT;
337 efi_physical_addr_t map_end = map_start + map_len;
338
339 /* Adjust all mmio pointers in this region */
340 list_for_each(lhandle, &efi_runtime_mmio) {
341 struct efi_runtime_mmio_list *lmmio;
342
343 lmmio = list_entry(lhandle,
344 struct efi_runtime_mmio_list,
345 link);
346 if ((map_start <= lmmio->paddr) &&
347 (map_end >= lmmio->paddr)) {
348 u64 off = map->virtual_start - map_start;
349 uintptr_t new_addr = lmmio->paddr + off;
350 *lmmio->ptr = (void *)new_addr;
351 }
352 }
353 }
354
355 /* Move the actual runtime code over */
356 for (i = 0; i < n; i++) {
357 struct efi_mem_desc *map;
358
359 map = (void*)virtmap + (descriptor_size * i);
360 if (map->type == EFI_RUNTIME_SERVICES_CODE) {
361 ulong new_offset = map->virtual_start -
362 (runtime_start - gd->relocaddr);
363
364 efi_runtime_relocate(new_offset, map);
365 /* Once we're virtual, we can no longer handle
366 complex callbacks */
367 efi_runtime_detach(new_offset);
368 return EFI_EXIT(EFI_SUCCESS);
369 }
370 }
371
372 return EFI_EXIT(EFI_INVALID_PARAMETER);
373 }
374
efi_add_runtime_mmio(void * mmio_ptr,u64 len)375 efi_status_t efi_add_runtime_mmio(void *mmio_ptr, u64 len)
376 {
377 struct efi_runtime_mmio_list *newmmio;
378 u64 pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
379 uint64_t addr = *(uintptr_t *)mmio_ptr;
380 uint64_t retaddr;
381
382 retaddr = efi_add_memory_map(addr, pages, EFI_MMAP_IO, false);
383 if (retaddr != addr)
384 return EFI_OUT_OF_RESOURCES;
385
386 newmmio = calloc(1, sizeof(*newmmio));
387 if (!newmmio)
388 return EFI_OUT_OF_RESOURCES;
389 newmmio->ptr = mmio_ptr;
390 newmmio->paddr = *(uintptr_t *)mmio_ptr;
391 newmmio->len = len;
392 list_add_tail(&newmmio->link, &efi_runtime_mmio);
393
394 return EFI_SUCCESS;
395 }
396
397 /*
398 * In the second stage, U-Boot has disappeared. To isolate our runtime code
399 * that at this point still exists from the rest, we put it into a special
400 * section.
401 *
402 * !!WARNING!!
403 *
404 * This means that we can not rely on any code outside of this file in any
405 * function or variable below this line.
406 *
407 * Please keep everything fully self-contained and annotated with
408 * __efi_runtime and __efi_runtime_data markers.
409 */
410
411 /*
412 * Relocate the EFI runtime stub to a different place. We need to call this
413 * the first time we expose the runtime interface to a user and on set virtual
414 * address map calls.
415 */
416
efi_unimplemented(void)417 static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void)
418 {
419 return EFI_UNSUPPORTED;
420 }
421
efi_device_error(void)422 static efi_status_t __efi_runtime EFIAPI efi_device_error(void)
423 {
424 return EFI_DEVICE_ERROR;
425 }
426
efi_invalid_parameter(void)427 static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void)
428 {
429 return EFI_INVALID_PARAMETER;
430 }
431
efi_update_capsule(struct efi_capsule_header ** capsule_header_array,efi_uintn_t capsule_count,u64 scatter_gather_list)432 efi_status_t __efi_runtime EFIAPI efi_update_capsule(
433 struct efi_capsule_header **capsule_header_array,
434 efi_uintn_t capsule_count,
435 u64 scatter_gather_list)
436 {
437 return EFI_UNSUPPORTED;
438 }
439
efi_query_capsule_caps(struct efi_capsule_header ** capsule_header_array,efi_uintn_t capsule_count,u64 maximum_capsule_size,u32 reset_type)440 efi_status_t __efi_runtime EFIAPI efi_query_capsule_caps(
441 struct efi_capsule_header **capsule_header_array,
442 efi_uintn_t capsule_count,
443 u64 maximum_capsule_size,
444 u32 reset_type)
445 {
446 return EFI_UNSUPPORTED;
447 }
448
efi_query_variable_info(u32 attributes,u64 * maximum_variable_storage_size,u64 * remaining_variable_storage_size,u64 * maximum_variable_size)449 efi_status_t __efi_runtime EFIAPI efi_query_variable_info(
450 u32 attributes,
451 u64 *maximum_variable_storage_size,
452 u64 *remaining_variable_storage_size,
453 u64 *maximum_variable_size)
454 {
455 return EFI_UNSUPPORTED;
456 }
457
458 struct efi_runtime_services __efi_runtime_data efi_runtime_services = {
459 .hdr = {
460 .signature = EFI_RUNTIME_SERVICES_SIGNATURE,
461 .revision = EFI_RUNTIME_SERVICES_REVISION,
462 .headersize = sizeof(struct efi_table_hdr),
463 },
464 .get_time = &efi_get_time_boottime,
465 .set_time = (void *)&efi_device_error,
466 .get_wakeup_time = (void *)&efi_unimplemented,
467 .set_wakeup_time = (void *)&efi_unimplemented,
468 .set_virtual_address_map = &efi_set_virtual_address_map,
469 .convert_pointer = (void *)&efi_invalid_parameter,
470 .get_variable = efi_get_variable,
471 .get_next_variable_name = efi_get_next_variable_name,
472 .set_variable = efi_set_variable,
473 .get_next_high_mono_count = (void *)&efi_device_error,
474 .reset_system = &efi_reset_system_boottime,
475 .update_capsule = efi_update_capsule,
476 .query_capsule_caps = efi_query_capsule_caps,
477 .query_variable_info = efi_query_variable_info,
478 };
479