1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <tmmintrin.h> // SSSE3
13
14 #include "./vp9_rtcd.h"
15 #include "./vpx_config.h"
16 #include "vpx_dsp/vpx_dsp_common.h"
17 #include "vpx_dsp/x86/bitdepth_conversion_sse2.h"
18 #include "vpx_dsp/x86/inv_txfm_sse2.h"
19 #include "vpx_dsp/x86/txfm_common_sse2.h"
20
vp9_fdct8x8_quant_ssse3(const int16_t * input,int stride,tran_low_t * coeff_ptr,intptr_t n_coeffs,int skip_block,const int16_t * round_ptr,const int16_t * quant_ptr,tran_low_t * qcoeff_ptr,tran_low_t * dqcoeff_ptr,const int16_t * dequant_ptr,uint16_t * eob_ptr,const int16_t * scan,const int16_t * iscan)21 void vp9_fdct8x8_quant_ssse3(const int16_t *input, int stride,
22 tran_low_t *coeff_ptr, intptr_t n_coeffs,
23 int skip_block, const int16_t *round_ptr,
24 const int16_t *quant_ptr, tran_low_t *qcoeff_ptr,
25 tran_low_t *dqcoeff_ptr,
26 const int16_t *dequant_ptr, uint16_t *eob_ptr,
27 const int16_t *scan, const int16_t *iscan) {
28 __m128i zero;
29 int pass;
30
31 // Constants
32 // When we use them, in one case, they are all the same. In all others
33 // it's a pair of them that we need to repeat four times. This is done
34 // by constructing the 32 bit constant corresponding to that pair.
35 const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170);
36 const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
37 const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
38 const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
39 const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
40 const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
41 const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
42 const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
43 const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
44 const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
45 // Load input
46 __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
47 __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
48 __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
49 __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
50 __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
51 __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
52 __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
53 __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
54 __m128i *in[8];
55 int index = 0;
56
57 (void)scan;
58 (void)coeff_ptr;
59
60 // Pre-condition input (shift by two)
61 in0 = _mm_slli_epi16(in0, 2);
62 in1 = _mm_slli_epi16(in1, 2);
63 in2 = _mm_slli_epi16(in2, 2);
64 in3 = _mm_slli_epi16(in3, 2);
65 in4 = _mm_slli_epi16(in4, 2);
66 in5 = _mm_slli_epi16(in5, 2);
67 in6 = _mm_slli_epi16(in6, 2);
68 in7 = _mm_slli_epi16(in7, 2);
69
70 in[0] = &in0;
71 in[1] = &in1;
72 in[2] = &in2;
73 in[3] = &in3;
74 in[4] = &in4;
75 in[5] = &in5;
76 in[6] = &in6;
77 in[7] = &in7;
78
79 // We do two passes, first the columns, then the rows. The results of the
80 // first pass are transposed so that the same column code can be reused. The
81 // results of the second pass are also transposed so that the rows (processed
82 // as columns) are put back in row positions.
83 for (pass = 0; pass < 2; pass++) {
84 // To store results of each pass before the transpose.
85 __m128i res0, res1, res2, res3, res4, res5, res6, res7;
86 // Add/subtract
87 const __m128i q0 = _mm_add_epi16(in0, in7);
88 const __m128i q1 = _mm_add_epi16(in1, in6);
89 const __m128i q2 = _mm_add_epi16(in2, in5);
90 const __m128i q3 = _mm_add_epi16(in3, in4);
91 const __m128i q4 = _mm_sub_epi16(in3, in4);
92 const __m128i q5 = _mm_sub_epi16(in2, in5);
93 const __m128i q6 = _mm_sub_epi16(in1, in6);
94 const __m128i q7 = _mm_sub_epi16(in0, in7);
95 // Work on first four results
96 {
97 // Add/subtract
98 const __m128i r0 = _mm_add_epi16(q0, q3);
99 const __m128i r1 = _mm_add_epi16(q1, q2);
100 const __m128i r2 = _mm_sub_epi16(q1, q2);
101 const __m128i r3 = _mm_sub_epi16(q0, q3);
102 // Interleave to do the multiply by constants which gets us into 32bits
103 const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
104 const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
105 const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
106 const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
107
108 const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
109 const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
110 const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
111 const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
112
113 const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
114 const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
115 const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
116 const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
117 // dct_const_round_shift
118
119 const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
120 const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
121 const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
122 const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
123
124 const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
125 const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
126 const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
127 const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
128
129 const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
130 const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
131 const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
132 const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
133
134 const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
135 const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
136 const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
137 const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
138 // Combine
139
140 res0 = _mm_packs_epi32(w0, w1);
141 res4 = _mm_packs_epi32(w2, w3);
142 res2 = _mm_packs_epi32(w4, w5);
143 res6 = _mm_packs_epi32(w6, w7);
144 }
145 // Work on next four results
146 {
147 // Interleave to do the multiply by constants which gets us into 32bits
148 const __m128i d0 = _mm_sub_epi16(q6, q5);
149 const __m128i d1 = _mm_add_epi16(q6, q5);
150 const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16);
151 const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16);
152
153 // Add/subtract
154 const __m128i x0 = _mm_add_epi16(q4, r0);
155 const __m128i x1 = _mm_sub_epi16(q4, r0);
156 const __m128i x2 = _mm_sub_epi16(q7, r1);
157 const __m128i x3 = _mm_add_epi16(q7, r1);
158 // Interleave to do the multiply by constants which gets us into 32bits
159 const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
160 const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
161 const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
162 const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
163 const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
164 const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
165 const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
166 const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
167 const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
168 const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
169 const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
170 const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
171 // dct_const_round_shift
172 const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
173 const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
174 const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
175 const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
176 const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
177 const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
178 const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
179 const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
180 const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
181 const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
182 const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
183 const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
184 const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
185 const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
186 const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
187 const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
188 // Combine
189 res1 = _mm_packs_epi32(w0, w1);
190 res7 = _mm_packs_epi32(w2, w3);
191 res5 = _mm_packs_epi32(w4, w5);
192 res3 = _mm_packs_epi32(w6, w7);
193 }
194 // Transpose the 8x8.
195 {
196 // 00 01 02 03 04 05 06 07
197 // 10 11 12 13 14 15 16 17
198 // 20 21 22 23 24 25 26 27
199 // 30 31 32 33 34 35 36 37
200 // 40 41 42 43 44 45 46 47
201 // 50 51 52 53 54 55 56 57
202 // 60 61 62 63 64 65 66 67
203 // 70 71 72 73 74 75 76 77
204 const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
205 const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
206 const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
207 const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
208 const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
209 const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
210 const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
211 const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
212 // 00 10 01 11 02 12 03 13
213 // 20 30 21 31 22 32 23 33
214 // 04 14 05 15 06 16 07 17
215 // 24 34 25 35 26 36 27 37
216 // 40 50 41 51 42 52 43 53
217 // 60 70 61 71 62 72 63 73
218 // 54 54 55 55 56 56 57 57
219 // 64 74 65 75 66 76 67 77
220 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
221 const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
222 const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
223 const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
224 const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
225 const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
226 const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
227 const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
228 // 00 10 20 30 01 11 21 31
229 // 40 50 60 70 41 51 61 71
230 // 02 12 22 32 03 13 23 33
231 // 42 52 62 72 43 53 63 73
232 // 04 14 24 34 05 15 21 36
233 // 44 54 64 74 45 55 61 76
234 // 06 16 26 36 07 17 27 37
235 // 46 56 66 76 47 57 67 77
236 in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
237 in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
238 in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
239 in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
240 in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
241 in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
242 in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
243 in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
244 // 00 10 20 30 40 50 60 70
245 // 01 11 21 31 41 51 61 71
246 // 02 12 22 32 42 52 62 72
247 // 03 13 23 33 43 53 63 73
248 // 04 14 24 34 44 54 64 74
249 // 05 15 25 35 45 55 65 75
250 // 06 16 26 36 46 56 66 76
251 // 07 17 27 37 47 57 67 77
252 }
253 }
254 // Post-condition output and store it
255 {
256 // Post-condition (division by two)
257 // division of two 16 bits signed numbers using shifts
258 // n / 2 = (n - (n >> 15)) >> 1
259 const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
260 const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
261 const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
262 const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
263 const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
264 const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
265 const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
266 const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
267 in0 = _mm_sub_epi16(in0, sign_in0);
268 in1 = _mm_sub_epi16(in1, sign_in1);
269 in2 = _mm_sub_epi16(in2, sign_in2);
270 in3 = _mm_sub_epi16(in3, sign_in3);
271 in4 = _mm_sub_epi16(in4, sign_in4);
272 in5 = _mm_sub_epi16(in5, sign_in5);
273 in6 = _mm_sub_epi16(in6, sign_in6);
274 in7 = _mm_sub_epi16(in7, sign_in7);
275 in0 = _mm_srai_epi16(in0, 1);
276 in1 = _mm_srai_epi16(in1, 1);
277 in2 = _mm_srai_epi16(in2, 1);
278 in3 = _mm_srai_epi16(in3, 1);
279 in4 = _mm_srai_epi16(in4, 1);
280 in5 = _mm_srai_epi16(in5, 1);
281 in6 = _mm_srai_epi16(in6, 1);
282 in7 = _mm_srai_epi16(in7, 1);
283 }
284
285 iscan += n_coeffs;
286 qcoeff_ptr += n_coeffs;
287 dqcoeff_ptr += n_coeffs;
288 n_coeffs = -n_coeffs;
289 zero = _mm_setzero_si128();
290
291 if (!skip_block) {
292 __m128i eob;
293 __m128i round, quant, dequant, thr;
294 int16_t nzflag;
295 {
296 __m128i coeff0, coeff1;
297
298 // Setup global values
299 {
300 round = _mm_load_si128((const __m128i *)round_ptr);
301 quant = _mm_load_si128((const __m128i *)quant_ptr);
302 dequant = _mm_load_si128((const __m128i *)dequant_ptr);
303 }
304
305 {
306 __m128i coeff0_sign, coeff1_sign;
307 __m128i qcoeff0, qcoeff1;
308 __m128i qtmp0, qtmp1;
309 // Do DC and first 15 AC
310 coeff0 = *in[0];
311 coeff1 = *in[1];
312
313 // Poor man's sign extract
314 coeff0_sign = _mm_srai_epi16(coeff0, 15);
315 coeff1_sign = _mm_srai_epi16(coeff1, 15);
316 qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
317 qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
318 qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
319 qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
320
321 qcoeff0 = _mm_adds_epi16(qcoeff0, round);
322 round = _mm_unpackhi_epi64(round, round);
323 qcoeff1 = _mm_adds_epi16(qcoeff1, round);
324 qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
325 quant = _mm_unpackhi_epi64(quant, quant);
326 qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
327
328 // Reinsert signs
329 qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
330 qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
331 qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
332 qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
333
334 store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs);
335 store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8);
336
337 coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
338 dequant = _mm_unpackhi_epi64(dequant, dequant);
339 coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
340
341 store_tran_low(coeff0, dqcoeff_ptr + n_coeffs);
342 store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8);
343 }
344
345 {
346 // Scan for eob
347 __m128i zero_coeff0, zero_coeff1;
348 __m128i nzero_coeff0, nzero_coeff1;
349 __m128i iscan0, iscan1;
350 __m128i eob1;
351 zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
352 zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
353 nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
354 nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
355 iscan0 = _mm_load_si128((const __m128i *)(iscan + n_coeffs));
356 iscan1 = _mm_load_si128((const __m128i *)(iscan + n_coeffs) + 1);
357 // Add one to convert from indices to counts
358 iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
359 iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
360 eob = _mm_and_si128(iscan0, nzero_coeff0);
361 eob1 = _mm_and_si128(iscan1, nzero_coeff1);
362 eob = _mm_max_epi16(eob, eob1);
363 }
364 n_coeffs += 8 * 2;
365 }
366
367 // AC only loop
368 index = 2;
369 thr = _mm_srai_epi16(dequant, 1);
370 while (n_coeffs < 0) {
371 __m128i coeff0, coeff1;
372 {
373 __m128i coeff0_sign, coeff1_sign;
374 __m128i qcoeff0, qcoeff1;
375 __m128i qtmp0, qtmp1;
376
377 assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
378 coeff0 = *in[index];
379 coeff1 = *in[index + 1];
380
381 // Poor man's sign extract
382 coeff0_sign = _mm_srai_epi16(coeff0, 15);
383 coeff1_sign = _mm_srai_epi16(coeff1, 15);
384 qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
385 qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
386 qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
387 qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
388
389 nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
390 _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
391
392 if (nzflag) {
393 qcoeff0 = _mm_adds_epi16(qcoeff0, round);
394 qcoeff1 = _mm_adds_epi16(qcoeff1, round);
395 qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
396 qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
397
398 // Reinsert signs
399 qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
400 qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
401 qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
402 qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
403
404 store_tran_low(qcoeff0, qcoeff_ptr + n_coeffs);
405 store_tran_low(qcoeff1, qcoeff_ptr + n_coeffs + 8);
406
407 coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
408 coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
409
410 store_tran_low(coeff0, dqcoeff_ptr + n_coeffs);
411 store_tran_low(coeff1, dqcoeff_ptr + n_coeffs + 8);
412 } else {
413 // Maybe a more efficient way to store 0?
414 store_zero_tran_low(qcoeff_ptr + n_coeffs);
415 store_zero_tran_low(qcoeff_ptr + n_coeffs + 8);
416
417 store_zero_tran_low(dqcoeff_ptr + n_coeffs);
418 store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8);
419 }
420 }
421
422 if (nzflag) {
423 // Scan for eob
424 __m128i zero_coeff0, zero_coeff1;
425 __m128i nzero_coeff0, nzero_coeff1;
426 __m128i iscan0, iscan1;
427 __m128i eob0, eob1;
428 zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
429 zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
430 nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
431 nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
432 iscan0 = _mm_load_si128((const __m128i *)(iscan + n_coeffs));
433 iscan1 = _mm_load_si128((const __m128i *)(iscan + n_coeffs) + 1);
434 // Add one to convert from indices to counts
435 iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
436 iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
437 eob0 = _mm_and_si128(iscan0, nzero_coeff0);
438 eob1 = _mm_and_si128(iscan1, nzero_coeff1);
439 eob0 = _mm_max_epi16(eob0, eob1);
440 eob = _mm_max_epi16(eob, eob0);
441 }
442 n_coeffs += 8 * 2;
443 index += 2;
444 }
445
446 // Accumulate EOB
447 {
448 __m128i eob_shuffled;
449 eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
450 eob = _mm_max_epi16(eob, eob_shuffled);
451 eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
452 eob = _mm_max_epi16(eob, eob_shuffled);
453 eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
454 eob = _mm_max_epi16(eob, eob_shuffled);
455 *eob_ptr = _mm_extract_epi16(eob, 1);
456 }
457 } else {
458 do {
459 store_zero_tran_low(dqcoeff_ptr + n_coeffs);
460 store_zero_tran_low(dqcoeff_ptr + n_coeffs + 8);
461 store_zero_tran_low(qcoeff_ptr + n_coeffs);
462 store_zero_tran_low(qcoeff_ptr + n_coeffs + 8);
463 n_coeffs += 8 * 2;
464 } while (n_coeffs < 0);
465 *eob_ptr = 0;
466 }
467 }
468