1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <stdio.h>
13 #include <limits.h>
14
15 #include "vpx/vpx_encoder.h"
16 #include "vpx_dsp/bitwriter_buffer.h"
17 #include "vpx_dsp/vpx_dsp_common.h"
18 #include "vpx_mem/vpx_mem.h"
19 #include "vpx_ports/mem_ops.h"
20 #include "vpx_ports/system_state.h"
21
22 #include "vp9/common/vp9_entropy.h"
23 #include "vp9/common/vp9_entropymode.h"
24 #include "vp9/common/vp9_entropymv.h"
25 #include "vp9/common/vp9_mvref_common.h"
26 #include "vp9/common/vp9_pred_common.h"
27 #include "vp9/common/vp9_seg_common.h"
28 #include "vp9/common/vp9_tile_common.h"
29
30 #include "vp9/encoder/vp9_cost.h"
31 #include "vp9/encoder/vp9_bitstream.h"
32 #include "vp9/encoder/vp9_encodemv.h"
33 #include "vp9/encoder/vp9_mcomp.h"
34 #include "vp9/encoder/vp9_segmentation.h"
35 #include "vp9/encoder/vp9_subexp.h"
36 #include "vp9/encoder/vp9_tokenize.h"
37
38 static const struct vp9_token intra_mode_encodings[INTRA_MODES] = {
39 { 0, 1 }, { 6, 3 }, { 28, 5 }, { 30, 5 }, { 58, 6 },
40 { 59, 6 }, { 126, 7 }, { 127, 7 }, { 62, 6 }, { 2, 2 }
41 };
42 static const struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS] =
43 { { 0, 1 }, { 2, 2 }, { 3, 2 } };
44 static const struct vp9_token partition_encodings[PARTITION_TYPES] = {
45 { 0, 1 }, { 2, 2 }, { 6, 3 }, { 7, 3 }
46 };
47 static const struct vp9_token inter_mode_encodings[INTER_MODES] = {
48 { 2, 2 }, { 6, 3 }, { 0, 1 }, { 7, 3 }
49 };
50
write_intra_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)51 static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode,
52 const vpx_prob *probs) {
53 vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
54 }
55
write_inter_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)56 static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode,
57 const vpx_prob *probs) {
58 assert(is_inter_mode(mode));
59 vp9_write_token(w, vp9_inter_mode_tree, probs,
60 &inter_mode_encodings[INTER_OFFSET(mode)]);
61 }
62
encode_unsigned_max(struct vpx_write_bit_buffer * wb,int data,int max)63 static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data,
64 int max) {
65 vpx_wb_write_literal(wb, data, get_unsigned_bits(max));
66 }
67
prob_diff_update(const vpx_tree_index * tree,vpx_prob probs[],const unsigned int counts[],int n,vpx_writer * w)68 static void prob_diff_update(const vpx_tree_index *tree,
69 vpx_prob probs[/*n - 1*/],
70 const unsigned int counts[/*n - 1*/], int n,
71 vpx_writer *w) {
72 int i;
73 unsigned int branch_ct[32][2];
74
75 // Assuming max number of probabilities <= 32
76 assert(n <= 32);
77
78 vp9_tree_probs_from_distribution(tree, branch_ct, counts);
79 for (i = 0; i < n - 1; ++i)
80 vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
81 }
82
write_selected_tx_size(const VP9_COMMON * cm,const MACROBLOCKD * const xd,vpx_writer * w)83 static void write_selected_tx_size(const VP9_COMMON *cm,
84 const MACROBLOCKD *const xd, vpx_writer *w) {
85 TX_SIZE tx_size = xd->mi[0]->tx_size;
86 BLOCK_SIZE bsize = xd->mi[0]->sb_type;
87 const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
88 const vpx_prob *const tx_probs =
89 get_tx_probs(max_tx_size, get_tx_size_context(xd), &cm->fc->tx_probs);
90 vpx_write(w, tx_size != TX_4X4, tx_probs[0]);
91 if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
92 vpx_write(w, tx_size != TX_8X8, tx_probs[1]);
93 if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
94 vpx_write(w, tx_size != TX_16X16, tx_probs[2]);
95 }
96 }
97
write_skip(const VP9_COMMON * cm,const MACROBLOCKD * const xd,int segment_id,const MODE_INFO * mi,vpx_writer * w)98 static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *const xd,
99 int segment_id, const MODE_INFO *mi, vpx_writer *w) {
100 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
101 return 1;
102 } else {
103 const int skip = mi->skip;
104 vpx_write(w, skip, vp9_get_skip_prob(cm, xd));
105 return skip;
106 }
107 }
108
update_skip_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)109 static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w,
110 FRAME_COUNTS *counts) {
111 int k;
112
113 for (k = 0; k < SKIP_CONTEXTS; ++k)
114 vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
115 }
116
update_switchable_interp_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)117 static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w,
118 FRAME_COUNTS *counts) {
119 int j;
120 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
121 prob_diff_update(vp9_switchable_interp_tree,
122 cm->fc->switchable_interp_prob[j],
123 counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
124 }
125
pack_mb_tokens(vpx_writer * w,TOKENEXTRA ** tp,const TOKENEXTRA * const stop,vpx_bit_depth_t bit_depth)126 static void pack_mb_tokens(vpx_writer *w, TOKENEXTRA **tp,
127 const TOKENEXTRA *const stop,
128 vpx_bit_depth_t bit_depth) {
129 const TOKENEXTRA *p;
130 const vp9_extra_bit *const extra_bits =
131 #if CONFIG_VP9_HIGHBITDEPTH
132 (bit_depth == VPX_BITS_12)
133 ? vp9_extra_bits_high12
134 : (bit_depth == VPX_BITS_10) ? vp9_extra_bits_high10 : vp9_extra_bits;
135 #else
136 vp9_extra_bits;
137 (void)bit_depth;
138 #endif // CONFIG_VP9_HIGHBITDEPTH
139
140 for (p = *tp; p < stop && p->token != EOSB_TOKEN; ++p) {
141 if (p->token == EOB_TOKEN) {
142 vpx_write(w, 0, p->context_tree[0]);
143 continue;
144 }
145 vpx_write(w, 1, p->context_tree[0]);
146 while (p->token == ZERO_TOKEN) {
147 vpx_write(w, 0, p->context_tree[1]);
148 ++p;
149 if (p == stop || p->token == EOSB_TOKEN) {
150 *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN);
151 return;
152 }
153 }
154
155 {
156 const int t = p->token;
157 const vpx_prob *const context_tree = p->context_tree;
158 assert(t != ZERO_TOKEN);
159 assert(t != EOB_TOKEN);
160 assert(t != EOSB_TOKEN);
161 vpx_write(w, 1, context_tree[1]);
162 if (t == ONE_TOKEN) {
163 vpx_write(w, 0, context_tree[2]);
164 vpx_write_bit(w, p->extra & 1);
165 } else { // t >= TWO_TOKEN && t < EOB_TOKEN
166 const struct vp9_token *const a = &vp9_coef_encodings[t];
167 const int v = a->value;
168 const int n = a->len;
169 const int e = p->extra;
170 vpx_write(w, 1, context_tree[2]);
171 vp9_write_tree(w, vp9_coef_con_tree,
172 vp9_pareto8_full[context_tree[PIVOT_NODE] - 1], v,
173 n - UNCONSTRAINED_NODES, 0);
174 if (t >= CATEGORY1_TOKEN) {
175 const vp9_extra_bit *const b = &extra_bits[t];
176 const unsigned char *pb = b->prob;
177 int v = e >> 1;
178 int n = b->len; // number of bits in v, assumed nonzero
179 do {
180 const int bb = (v >> --n) & 1;
181 vpx_write(w, bb, *pb++);
182 } while (n);
183 }
184 vpx_write_bit(w, e & 1);
185 }
186 }
187 }
188 *tp = (TOKENEXTRA *)(uintptr_t)p + (p->token == EOSB_TOKEN);
189 }
190
write_segment_id(vpx_writer * w,const struct segmentation * seg,int segment_id)191 static void write_segment_id(vpx_writer *w, const struct segmentation *seg,
192 int segment_id) {
193 if (seg->enabled && seg->update_map)
194 vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
195 }
196
197 // This function encodes the reference frame
write_ref_frames(const VP9_COMMON * cm,const MACROBLOCKD * const xd,vpx_writer * w)198 static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *const xd,
199 vpx_writer *w) {
200 const MODE_INFO *const mi = xd->mi[0];
201 const int is_compound = has_second_ref(mi);
202 const int segment_id = mi->segment_id;
203
204 // If segment level coding of this signal is disabled...
205 // or the segment allows multiple reference frame options
206 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
207 assert(!is_compound);
208 assert(mi->ref_frame[0] ==
209 get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
210 } else {
211 // does the feature use compound prediction or not
212 // (if not specified at the frame/segment level)
213 if (cm->reference_mode == REFERENCE_MODE_SELECT) {
214 vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
215 } else {
216 assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE));
217 }
218
219 if (is_compound) {
220 const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
221 vpx_write(w, mi->ref_frame[!idx] == cm->comp_var_ref[1],
222 vp9_get_pred_prob_comp_ref_p(cm, xd));
223 } else {
224 const int bit0 = mi->ref_frame[0] != LAST_FRAME;
225 vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
226 if (bit0) {
227 const int bit1 = mi->ref_frame[0] != GOLDEN_FRAME;
228 vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
229 }
230 }
231 }
232 }
233
pack_inter_mode_mvs(VP9_COMP * cpi,const MACROBLOCKD * const xd,const MB_MODE_INFO_EXT * const mbmi_ext,vpx_writer * w,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])234 static void pack_inter_mode_mvs(
235 VP9_COMP *cpi, const MACROBLOCKD *const xd,
236 const MB_MODE_INFO_EXT *const mbmi_ext, vpx_writer *w,
237 unsigned int *const max_mv_magnitude,
238 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
239 VP9_COMMON *const cm = &cpi->common;
240 const nmv_context *nmvc = &cm->fc->nmvc;
241 const struct segmentation *const seg = &cm->seg;
242 const MODE_INFO *const mi = xd->mi[0];
243 const PREDICTION_MODE mode = mi->mode;
244 const int segment_id = mi->segment_id;
245 const BLOCK_SIZE bsize = mi->sb_type;
246 const int allow_hp = cm->allow_high_precision_mv;
247 const int is_inter = is_inter_block(mi);
248 const int is_compound = has_second_ref(mi);
249 int skip, ref;
250
251 if (seg->update_map) {
252 if (seg->temporal_update) {
253 const int pred_flag = mi->seg_id_predicted;
254 vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
255 vpx_write(w, pred_flag, pred_prob);
256 if (!pred_flag) write_segment_id(w, seg, segment_id);
257 } else {
258 write_segment_id(w, seg, segment_id);
259 }
260 }
261
262 skip = write_skip(cm, xd, segment_id, mi, w);
263
264 if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
265 vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
266
267 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
268 !(is_inter && skip)) {
269 write_selected_tx_size(cm, xd, w);
270 }
271
272 if (!is_inter) {
273 if (bsize >= BLOCK_8X8) {
274 write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
275 } else {
276 int idx, idy;
277 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
278 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
279 for (idy = 0; idy < 2; idy += num_4x4_h) {
280 for (idx = 0; idx < 2; idx += num_4x4_w) {
281 const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
282 write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
283 }
284 }
285 }
286 write_intra_mode(w, mi->uv_mode, cm->fc->uv_mode_prob[mode]);
287 } else {
288 const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
289 const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
290 write_ref_frames(cm, xd, w);
291
292 // If segment skip is not enabled code the mode.
293 if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
294 if (bsize >= BLOCK_8X8) {
295 write_inter_mode(w, mode, inter_probs);
296 }
297 }
298
299 if (cm->interp_filter == SWITCHABLE) {
300 const int ctx = get_pred_context_switchable_interp(xd);
301 vp9_write_token(w, vp9_switchable_interp_tree,
302 cm->fc->switchable_interp_prob[ctx],
303 &switchable_interp_encodings[mi->interp_filter]);
304 ++interp_filter_selected[0][mi->interp_filter];
305 } else {
306 assert(mi->interp_filter == cm->interp_filter);
307 }
308
309 if (bsize < BLOCK_8X8) {
310 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
311 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
312 int idx, idy;
313 for (idy = 0; idy < 2; idy += num_4x4_h) {
314 for (idx = 0; idx < 2; idx += num_4x4_w) {
315 const int j = idy * 2 + idx;
316 const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
317 write_inter_mode(w, b_mode, inter_probs);
318 if (b_mode == NEWMV) {
319 for (ref = 0; ref < 1 + is_compound; ++ref)
320 vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
321 &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv,
322 nmvc, allow_hp, max_mv_magnitude);
323 }
324 }
325 }
326 } else {
327 if (mode == NEWMV) {
328 for (ref = 0; ref < 1 + is_compound; ++ref)
329 vp9_encode_mv(cpi, w, &mi->mv[ref].as_mv,
330 &mbmi_ext->ref_mvs[mi->ref_frame[ref]][0].as_mv, nmvc,
331 allow_hp, max_mv_magnitude);
332 }
333 }
334 }
335 }
336
write_mb_modes_kf(const VP9_COMMON * cm,const MACROBLOCKD * xd,vpx_writer * w)337 static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
338 vpx_writer *w) {
339 const struct segmentation *const seg = &cm->seg;
340 const MODE_INFO *const mi = xd->mi[0];
341 const MODE_INFO *const above_mi = xd->above_mi;
342 const MODE_INFO *const left_mi = xd->left_mi;
343 const BLOCK_SIZE bsize = mi->sb_type;
344
345 if (seg->update_map) write_segment_id(w, seg, mi->segment_id);
346
347 write_skip(cm, xd, mi->segment_id, mi, w);
348
349 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
350 write_selected_tx_size(cm, xd, w);
351
352 if (bsize >= BLOCK_8X8) {
353 write_intra_mode(w, mi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
354 } else {
355 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
356 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
357 int idx, idy;
358
359 for (idy = 0; idy < 2; idy += num_4x4_h) {
360 for (idx = 0; idx < 2; idx += num_4x4_w) {
361 const int block = idy * 2 + idx;
362 write_intra_mode(w, mi->bmi[block].as_mode,
363 get_y_mode_probs(mi, above_mi, left_mi, block));
364 }
365 }
366 }
367
368 write_intra_mode(w, mi->uv_mode, vp9_kf_uv_mode_prob[mi->mode]);
369 }
370
write_modes_b(VP9_COMP * cpi,MACROBLOCKD * const xd,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])371 static void write_modes_b(
372 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile,
373 vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
374 int mi_row, int mi_col, unsigned int *const max_mv_magnitude,
375 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
376 const VP9_COMMON *const cm = &cpi->common;
377 const MB_MODE_INFO_EXT *const mbmi_ext =
378 cpi->td.mb.mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
379 MODE_INFO *m;
380
381 xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
382 m = xd->mi[0];
383
384 set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->sb_type],
385 mi_col, num_8x8_blocks_wide_lookup[m->sb_type], cm->mi_rows,
386 cm->mi_cols);
387 if (frame_is_intra_only(cm)) {
388 write_mb_modes_kf(cm, xd, w);
389 } else {
390 pack_inter_mode_mvs(cpi, xd, mbmi_ext, w, max_mv_magnitude,
391 interp_filter_selected);
392 }
393
394 assert(*tok < tok_end);
395 pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
396 }
397
write_partition(const VP9_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,vpx_writer * w)398 static void write_partition(const VP9_COMMON *const cm,
399 const MACROBLOCKD *const xd, int hbs, int mi_row,
400 int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize,
401 vpx_writer *w) {
402 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
403 const vpx_prob *const probs = xd->partition_probs[ctx];
404 const int has_rows = (mi_row + hbs) < cm->mi_rows;
405 const int has_cols = (mi_col + hbs) < cm->mi_cols;
406
407 if (has_rows && has_cols) {
408 vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
409 } else if (!has_rows && has_cols) {
410 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
411 vpx_write(w, p == PARTITION_SPLIT, probs[1]);
412 } else if (has_rows && !has_cols) {
413 assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
414 vpx_write(w, p == PARTITION_SPLIT, probs[2]);
415 } else {
416 assert(p == PARTITION_SPLIT);
417 }
418 }
419
write_modes_sb(VP9_COMP * cpi,MACROBLOCKD * const xd,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])420 static void write_modes_sb(
421 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile,
422 vpx_writer *w, TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
423 int mi_row, int mi_col, BLOCK_SIZE bsize,
424 unsigned int *const max_mv_magnitude,
425 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
426 const VP9_COMMON *const cm = &cpi->common;
427 const int bsl = b_width_log2_lookup[bsize];
428 const int bs = (1 << bsl) / 4;
429 PARTITION_TYPE partition;
430 BLOCK_SIZE subsize;
431 const MODE_INFO *m = NULL;
432
433 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
434
435 m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
436
437 partition = partition_lookup[bsl][m->sb_type];
438 write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
439 subsize = get_subsize(bsize, partition);
440 if (subsize < BLOCK_8X8) {
441 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
442 max_mv_magnitude, interp_filter_selected);
443 } else {
444 switch (partition) {
445 case PARTITION_NONE:
446 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
447 max_mv_magnitude, interp_filter_selected);
448 break;
449 case PARTITION_HORZ:
450 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
451 max_mv_magnitude, interp_filter_selected);
452 if (mi_row + bs < cm->mi_rows)
453 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col,
454 max_mv_magnitude, interp_filter_selected);
455 break;
456 case PARTITION_VERT:
457 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col,
458 max_mv_magnitude, interp_filter_selected);
459 if (mi_col + bs < cm->mi_cols)
460 write_modes_b(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs,
461 max_mv_magnitude, interp_filter_selected);
462 break;
463 default:
464 assert(partition == PARTITION_SPLIT);
465 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col, subsize,
466 max_mv_magnitude, interp_filter_selected);
467 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row, mi_col + bs,
468 subsize, max_mv_magnitude, interp_filter_selected);
469 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col,
470 subsize, max_mv_magnitude, interp_filter_selected);
471 write_modes_sb(cpi, xd, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
472 subsize, max_mv_magnitude, interp_filter_selected);
473 break;
474 }
475 }
476
477 // update partition context
478 if (bsize >= BLOCK_8X8 &&
479 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
480 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
481 }
482
write_modes(VP9_COMP * cpi,MACROBLOCKD * const xd,const TileInfo * const tile,vpx_writer * w,int tile_row,int tile_col,unsigned int * const max_mv_magnitude,int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE])483 static void write_modes(
484 VP9_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile,
485 vpx_writer *w, int tile_row, int tile_col,
486 unsigned int *const max_mv_magnitude,
487 int interp_filter_selected[MAX_REF_FRAMES][SWITCHABLE]) {
488 const VP9_COMMON *const cm = &cpi->common;
489 int mi_row, mi_col, tile_sb_row;
490 TOKENEXTRA *tok = NULL;
491 TOKENEXTRA *tok_end = NULL;
492
493 set_partition_probs(cm, xd);
494
495 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
496 mi_row += MI_BLOCK_SIZE) {
497 tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile->mi_row_start) >>
498 MI_BLOCK_SIZE_LOG2;
499 tok = cpi->tplist[tile_row][tile_col][tile_sb_row].start;
500 tok_end = tok + cpi->tplist[tile_row][tile_col][tile_sb_row].count;
501
502 vp9_zero(xd->left_seg_context);
503 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
504 mi_col += MI_BLOCK_SIZE)
505 write_modes_sb(cpi, xd, tile, w, &tok, tok_end, mi_row, mi_col,
506 BLOCK_64X64, max_mv_magnitude, interp_filter_selected);
507
508 assert(tok == cpi->tplist[tile_row][tile_col][tile_sb_row].stop);
509 }
510 }
511
build_tree_distribution(VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * coef_branch_ct,vp9_coeff_probs_model * coef_probs)512 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
513 vp9_coeff_stats *coef_branch_ct,
514 vp9_coeff_probs_model *coef_probs) {
515 vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
516 unsigned int(*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
517 cpi->common.counts.eob_branch[tx_size];
518 int i, j, k, l, m;
519
520 for (i = 0; i < PLANE_TYPES; ++i) {
521 for (j = 0; j < REF_TYPES; ++j) {
522 for (k = 0; k < COEF_BANDS; ++k) {
523 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
524 vp9_tree_probs_from_distribution(vp9_coef_tree,
525 coef_branch_ct[i][j][k][l],
526 coef_counts[i][j][k][l]);
527 coef_branch_ct[i][j][k][l][0][1] =
528 eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0];
529 for (m = 0; m < UNCONSTRAINED_NODES; ++m)
530 coef_probs[i][j][k][l][m] =
531 get_binary_prob(coef_branch_ct[i][j][k][l][m][0],
532 coef_branch_ct[i][j][k][l][m][1]);
533 }
534 }
535 }
536 }
537 }
538
update_coef_probs_common(vpx_writer * const bc,VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * frame_branch_ct,vp9_coeff_probs_model * new_coef_probs)539 static void update_coef_probs_common(vpx_writer *const bc, VP9_COMP *cpi,
540 TX_SIZE tx_size,
541 vp9_coeff_stats *frame_branch_ct,
542 vp9_coeff_probs_model *new_coef_probs) {
543 vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
544 const vpx_prob upd = DIFF_UPDATE_PROB;
545 const int entropy_nodes_update = UNCONSTRAINED_NODES;
546 int i, j, k, l, t;
547 int stepsize = cpi->sf.coeff_prob_appx_step;
548
549 switch (cpi->sf.use_fast_coef_updates) {
550 case TWO_LOOP: {
551 /* dry run to see if there is any update at all needed */
552 int savings = 0;
553 int update[2] = { 0, 0 };
554 for (i = 0; i < PLANE_TYPES; ++i) {
555 for (j = 0; j < REF_TYPES; ++j) {
556 for (k = 0; k < COEF_BANDS; ++k) {
557 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
558 for (t = 0; t < entropy_nodes_update; ++t) {
559 vpx_prob newp = new_coef_probs[i][j][k][l][t];
560 const vpx_prob oldp = old_coef_probs[i][j][k][l][t];
561 int s;
562 int u = 0;
563 if (t == PIVOT_NODE)
564 s = vp9_prob_diff_update_savings_search_model(
565 frame_branch_ct[i][j][k][l][0], oldp, &newp, upd,
566 stepsize);
567 else
568 s = vp9_prob_diff_update_savings_search(
569 frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
570 if (s > 0 && newp != oldp) u = 1;
571 if (u)
572 savings += s - (int)(vp9_cost_zero(upd));
573 else
574 savings -= (int)(vp9_cost_zero(upd));
575 update[u]++;
576 }
577 }
578 }
579 }
580 }
581
582 // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
583 /* Is coef updated at all */
584 if (update[1] == 0 || savings < 0) {
585 vpx_write_bit(bc, 0);
586 return;
587 }
588 vpx_write_bit(bc, 1);
589 for (i = 0; i < PLANE_TYPES; ++i) {
590 for (j = 0; j < REF_TYPES; ++j) {
591 for (k = 0; k < COEF_BANDS; ++k) {
592 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
593 // calc probs and branch cts for this frame only
594 for (t = 0; t < entropy_nodes_update; ++t) {
595 vpx_prob newp = new_coef_probs[i][j][k][l][t];
596 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
597 const vpx_prob upd = DIFF_UPDATE_PROB;
598 int s;
599 int u = 0;
600 if (t == PIVOT_NODE)
601 s = vp9_prob_diff_update_savings_search_model(
602 frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
603 stepsize);
604 else
605 s = vp9_prob_diff_update_savings_search(
606 frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
607 if (s > 0 && newp != *oldp) u = 1;
608 vpx_write(bc, u, upd);
609 if (u) {
610 /* send/use new probability */
611 vp9_write_prob_diff_update(bc, newp, *oldp);
612 *oldp = newp;
613 }
614 }
615 }
616 }
617 }
618 }
619 return;
620 }
621
622 default: {
623 int updates = 0;
624 int noupdates_before_first = 0;
625 assert(cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED);
626 for (i = 0; i < PLANE_TYPES; ++i) {
627 for (j = 0; j < REF_TYPES; ++j) {
628 for (k = 0; k < COEF_BANDS; ++k) {
629 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
630 // calc probs and branch cts for this frame only
631 for (t = 0; t < entropy_nodes_update; ++t) {
632 vpx_prob newp = new_coef_probs[i][j][k][l][t];
633 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
634 int s;
635 int u = 0;
636
637 if (t == PIVOT_NODE) {
638 s = vp9_prob_diff_update_savings_search_model(
639 frame_branch_ct[i][j][k][l][0], *oldp, &newp, upd,
640 stepsize);
641 } else {
642 s = vp9_prob_diff_update_savings_search(
643 frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd);
644 }
645
646 if (s > 0 && newp != *oldp) u = 1;
647 updates += u;
648 if (u == 0 && updates == 0) {
649 noupdates_before_first++;
650 continue;
651 }
652 if (u == 1 && updates == 1) {
653 int v;
654 // first update
655 vpx_write_bit(bc, 1);
656 for (v = 0; v < noupdates_before_first; ++v)
657 vpx_write(bc, 0, upd);
658 }
659 vpx_write(bc, u, upd);
660 if (u) {
661 /* send/use new probability */
662 vp9_write_prob_diff_update(bc, newp, *oldp);
663 *oldp = newp;
664 }
665 }
666 }
667 }
668 }
669 }
670 if (updates == 0) {
671 vpx_write_bit(bc, 0); // no updates
672 }
673 return;
674 }
675 }
676 }
677
update_coef_probs(VP9_COMP * cpi,vpx_writer * w)678 static void update_coef_probs(VP9_COMP *cpi, vpx_writer *w) {
679 const TX_MODE tx_mode = cpi->common.tx_mode;
680 const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
681 TX_SIZE tx_size;
682 for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
683 vp9_coeff_stats frame_branch_ct[PLANE_TYPES];
684 vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES];
685 if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 ||
686 (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
687 vpx_write_bit(w, 0);
688 } else {
689 build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs);
690 update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
691 frame_coef_probs);
692 }
693 }
694 }
695
encode_loopfilter(struct loopfilter * lf,struct vpx_write_bit_buffer * wb)696 static void encode_loopfilter(struct loopfilter *lf,
697 struct vpx_write_bit_buffer *wb) {
698 int i;
699
700 // Encode the loop filter level and type
701 vpx_wb_write_literal(wb, lf->filter_level, 6);
702 vpx_wb_write_literal(wb, lf->sharpness_level, 3);
703
704 // Write out loop filter deltas applied at the MB level based on mode or
705 // ref frame (if they are enabled).
706 vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled);
707
708 if (lf->mode_ref_delta_enabled) {
709 vpx_wb_write_bit(wb, lf->mode_ref_delta_update);
710 if (lf->mode_ref_delta_update) {
711 for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
712 const int delta = lf->ref_deltas[i];
713 const int changed = delta != lf->last_ref_deltas[i];
714 vpx_wb_write_bit(wb, changed);
715 if (changed) {
716 lf->last_ref_deltas[i] = delta;
717 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
718 vpx_wb_write_bit(wb, delta < 0);
719 }
720 }
721
722 for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
723 const int delta = lf->mode_deltas[i];
724 const int changed = delta != lf->last_mode_deltas[i];
725 vpx_wb_write_bit(wb, changed);
726 if (changed) {
727 lf->last_mode_deltas[i] = delta;
728 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
729 vpx_wb_write_bit(wb, delta < 0);
730 }
731 }
732 }
733 }
734 }
735
write_delta_q(struct vpx_write_bit_buffer * wb,int delta_q)736 static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) {
737 if (delta_q != 0) {
738 vpx_wb_write_bit(wb, 1);
739 vpx_wb_write_literal(wb, abs(delta_q), 4);
740 vpx_wb_write_bit(wb, delta_q < 0);
741 } else {
742 vpx_wb_write_bit(wb, 0);
743 }
744 }
745
encode_quantization(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)746 static void encode_quantization(const VP9_COMMON *const cm,
747 struct vpx_write_bit_buffer *wb) {
748 vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
749 write_delta_q(wb, cm->y_dc_delta_q);
750 write_delta_q(wb, cm->uv_dc_delta_q);
751 write_delta_q(wb, cm->uv_ac_delta_q);
752 }
753
encode_segmentation(VP9_COMMON * cm,MACROBLOCKD * xd,struct vpx_write_bit_buffer * wb)754 static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
755 struct vpx_write_bit_buffer *wb) {
756 int i, j;
757
758 const struct segmentation *seg = &cm->seg;
759
760 vpx_wb_write_bit(wb, seg->enabled);
761 if (!seg->enabled) return;
762
763 // Segmentation map
764 vpx_wb_write_bit(wb, seg->update_map);
765 if (seg->update_map) {
766 // Select the coding strategy (temporal or spatial)
767 vp9_choose_segmap_coding_method(cm, xd);
768 // Write out probabilities used to decode unpredicted macro-block segments
769 for (i = 0; i < SEG_TREE_PROBS; i++) {
770 const int prob = seg->tree_probs[i];
771 const int update = prob != MAX_PROB;
772 vpx_wb_write_bit(wb, update);
773 if (update) vpx_wb_write_literal(wb, prob, 8);
774 }
775
776 // Write out the chosen coding method.
777 vpx_wb_write_bit(wb, seg->temporal_update);
778 if (seg->temporal_update) {
779 for (i = 0; i < PREDICTION_PROBS; i++) {
780 const int prob = seg->pred_probs[i];
781 const int update = prob != MAX_PROB;
782 vpx_wb_write_bit(wb, update);
783 if (update) vpx_wb_write_literal(wb, prob, 8);
784 }
785 }
786 }
787
788 // Segmentation data
789 vpx_wb_write_bit(wb, seg->update_data);
790 if (seg->update_data) {
791 vpx_wb_write_bit(wb, seg->abs_delta);
792
793 for (i = 0; i < MAX_SEGMENTS; i++) {
794 for (j = 0; j < SEG_LVL_MAX; j++) {
795 const int active = segfeature_active(seg, i, j);
796 vpx_wb_write_bit(wb, active);
797 if (active) {
798 const int data = get_segdata(seg, i, j);
799 const int data_max = vp9_seg_feature_data_max(j);
800
801 if (vp9_is_segfeature_signed(j)) {
802 encode_unsigned_max(wb, abs(data), data_max);
803 vpx_wb_write_bit(wb, data < 0);
804 } else {
805 encode_unsigned_max(wb, data, data_max);
806 }
807 }
808 }
809 }
810 }
811 }
812
encode_txfm_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)813 static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w,
814 FRAME_COUNTS *counts) {
815 // Mode
816 vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2);
817 if (cm->tx_mode >= ALLOW_32X32)
818 vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
819
820 // Probabilities
821 if (cm->tx_mode == TX_MODE_SELECT) {
822 int i, j;
823 unsigned int ct_8x8p[TX_SIZES - 3][2];
824 unsigned int ct_16x16p[TX_SIZES - 2][2];
825 unsigned int ct_32x32p[TX_SIZES - 1][2];
826
827 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
828 tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p);
829 for (j = 0; j < TX_SIZES - 3; j++)
830 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]);
831 }
832
833 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
834 tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p);
835 for (j = 0; j < TX_SIZES - 2; j++)
836 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j],
837 ct_16x16p[j]);
838 }
839
840 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
841 tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p);
842 for (j = 0; j < TX_SIZES - 1; j++)
843 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j],
844 ct_32x32p[j]);
845 }
846 }
847 }
848
write_interp_filter(INTERP_FILTER filter,struct vpx_write_bit_buffer * wb)849 static void write_interp_filter(INTERP_FILTER filter,
850 struct vpx_write_bit_buffer *wb) {
851 const int filter_to_literal[] = { 1, 0, 2, 3 };
852
853 vpx_wb_write_bit(wb, filter == SWITCHABLE);
854 if (filter != SWITCHABLE)
855 vpx_wb_write_literal(wb, filter_to_literal[filter], 2);
856 }
857
fix_interp_filter(VP9_COMMON * cm,FRAME_COUNTS * counts)858 static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) {
859 if (cm->interp_filter == SWITCHABLE) {
860 // Check to see if only one of the filters is actually used
861 int count[SWITCHABLE_FILTERS];
862 int i, j, c = 0;
863 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
864 count[i] = 0;
865 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
866 count[i] += counts->switchable_interp[j][i];
867 c += (count[i] > 0);
868 }
869 if (c == 1) {
870 // Only one filter is used. So set the filter at frame level
871 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
872 if (count[i]) {
873 cm->interp_filter = i;
874 break;
875 }
876 }
877 }
878 }
879 }
880
write_tile_info(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)881 static void write_tile_info(const VP9_COMMON *const cm,
882 struct vpx_write_bit_buffer *wb) {
883 int min_log2_tile_cols, max_log2_tile_cols, ones;
884 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
885
886 // columns
887 ones = cm->log2_tile_cols - min_log2_tile_cols;
888 while (ones--) vpx_wb_write_bit(wb, 1);
889
890 if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0);
891
892 // rows
893 vpx_wb_write_bit(wb, cm->log2_tile_rows != 0);
894 if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1);
895 }
896
vp9_get_refresh_mask(VP9_COMP * cpi)897 int vp9_get_refresh_mask(VP9_COMP *cpi) {
898 if (vp9_preserve_existing_gf(cpi)) {
899 // We have decided to preserve the previously existing golden frame as our
900 // new ARF frame. However, in the short term we leave it in the GF slot and,
901 // if we're updating the GF with the current decoded frame, we save it
902 // instead to the ARF slot.
903 // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
904 // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
905 // there so that it can be done outside of the recode loop.
906 // Note: This is highly specific to the use of ARF as a forward reference,
907 // and this needs to be generalized as other uses are implemented
908 // (like RTC/temporal scalability).
909 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
910 (cpi->refresh_golden_frame << cpi->alt_fb_idx);
911 } else {
912 int arf_idx = cpi->alt_fb_idx;
913 GF_GROUP *const gf_group = &cpi->twopass.gf_group;
914
915 if (cpi->multi_layer_arf) {
916 for (arf_idx = 0; arf_idx < REF_FRAMES; ++arf_idx) {
917 if (arf_idx != cpi->alt_fb_idx && arf_idx != cpi->lst_fb_idx &&
918 arf_idx != cpi->gld_fb_idx) {
919 int idx;
920 for (idx = 0; idx < gf_group->stack_size; ++idx)
921 if (arf_idx == gf_group->arf_index_stack[idx]) break;
922 if (idx == gf_group->stack_size) break;
923 }
924 }
925 }
926 cpi->twopass.gf_group.top_arf_idx = arf_idx;
927
928 if (cpi->use_svc && cpi->svc.use_set_ref_frame_config &&
929 cpi->svc.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS)
930 return cpi->svc.update_buffer_slot[cpi->svc.spatial_layer_id];
931 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
932 (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
933 (cpi->refresh_alt_ref_frame << arf_idx);
934 }
935 }
936
encode_tile_worker(void * arg1,void * arg2)937 static int encode_tile_worker(void *arg1, void *arg2) {
938 VP9_COMP *cpi = (VP9_COMP *)arg1;
939 VP9BitstreamWorkerData *data = (VP9BitstreamWorkerData *)arg2;
940 MACROBLOCKD *const xd = &data->xd;
941 const int tile_row = 0;
942 vpx_start_encode(&data->bit_writer, data->dest);
943 write_modes(cpi, xd, &cpi->tile_data[data->tile_idx].tile_info,
944 &data->bit_writer, tile_row, data->tile_idx,
945 &data->max_mv_magnitude, data->interp_filter_selected);
946 vpx_stop_encode(&data->bit_writer);
947 return 1;
948 }
949
vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP * const cpi)950 void vp9_bitstream_encode_tiles_buffer_dealloc(VP9_COMP *const cpi) {
951 if (cpi->vp9_bitstream_worker_data) {
952 int i;
953 for (i = 1; i < cpi->num_workers; ++i) {
954 vpx_free(cpi->vp9_bitstream_worker_data[i].dest);
955 }
956 vpx_free(cpi->vp9_bitstream_worker_data);
957 cpi->vp9_bitstream_worker_data = NULL;
958 }
959 }
960
encode_tiles_buffer_alloc(VP9_COMP * const cpi)961 static int encode_tiles_buffer_alloc(VP9_COMP *const cpi) {
962 int i;
963 const size_t worker_data_size =
964 cpi->num_workers * sizeof(*cpi->vp9_bitstream_worker_data);
965 cpi->vp9_bitstream_worker_data = vpx_memalign(16, worker_data_size);
966 memset(cpi->vp9_bitstream_worker_data, 0, worker_data_size);
967 if (!cpi->vp9_bitstream_worker_data) return 1;
968 for (i = 1; i < cpi->num_workers; ++i) {
969 cpi->vp9_bitstream_worker_data[i].dest_size =
970 cpi->oxcf.width * cpi->oxcf.height;
971 cpi->vp9_bitstream_worker_data[i].dest =
972 vpx_malloc(cpi->vp9_bitstream_worker_data[i].dest_size);
973 if (!cpi->vp9_bitstream_worker_data[i].dest) return 1;
974 }
975 return 0;
976 }
977
encode_tiles_mt(VP9_COMP * cpi,uint8_t * data_ptr)978 static size_t encode_tiles_mt(VP9_COMP *cpi, uint8_t *data_ptr) {
979 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
980 VP9_COMMON *const cm = &cpi->common;
981 const int tile_cols = 1 << cm->log2_tile_cols;
982 const int num_workers = cpi->num_workers;
983 size_t total_size = 0;
984 int tile_col = 0;
985
986 if (!cpi->vp9_bitstream_worker_data ||
987 cpi->vp9_bitstream_worker_data[1].dest_size >
988 (cpi->oxcf.width * cpi->oxcf.height)) {
989 vp9_bitstream_encode_tiles_buffer_dealloc(cpi);
990 if (encode_tiles_buffer_alloc(cpi)) return 0;
991 }
992
993 while (tile_col < tile_cols) {
994 int i, j;
995 for (i = 0; i < num_workers && tile_col < tile_cols; ++i) {
996 VPxWorker *const worker = &cpi->workers[i];
997 VP9BitstreamWorkerData *const data = &cpi->vp9_bitstream_worker_data[i];
998
999 // Populate the worker data.
1000 data->xd = cpi->td.mb.e_mbd;
1001 data->tile_idx = tile_col;
1002 data->max_mv_magnitude = cpi->max_mv_magnitude;
1003 memset(data->interp_filter_selected, 0,
1004 sizeof(data->interp_filter_selected[0][0]) * SWITCHABLE);
1005
1006 // First thread can directly write into the output buffer.
1007 if (i == 0) {
1008 // If this worker happens to be for the last tile, then do not offset it
1009 // by 4 for the tile size.
1010 data->dest =
1011 data_ptr + total_size + (tile_col == tile_cols - 1 ? 0 : 4);
1012 }
1013 worker->data1 = cpi;
1014 worker->data2 = data;
1015 worker->hook = encode_tile_worker;
1016 worker->had_error = 0;
1017
1018 if (i < num_workers - 1) {
1019 winterface->launch(worker);
1020 } else {
1021 winterface->execute(worker);
1022 }
1023 ++tile_col;
1024 }
1025 for (j = 0; j < i; ++j) {
1026 VPxWorker *const worker = &cpi->workers[j];
1027 VP9BitstreamWorkerData *const data =
1028 (VP9BitstreamWorkerData *)worker->data2;
1029 uint32_t tile_size;
1030 int k;
1031
1032 if (!winterface->sync(worker)) return 0;
1033 tile_size = data->bit_writer.pos;
1034
1035 // Aggregate per-thread bitstream stats.
1036 cpi->max_mv_magnitude =
1037 VPXMAX(cpi->max_mv_magnitude, data->max_mv_magnitude);
1038 for (k = 0; k < SWITCHABLE; ++k) {
1039 cpi->interp_filter_selected[0][k] += data->interp_filter_selected[0][k];
1040 }
1041
1042 // Prefix the size of the tile on all but the last.
1043 if (tile_col != tile_cols || j < i - 1) {
1044 mem_put_be32(data_ptr + total_size, tile_size);
1045 total_size += 4;
1046 }
1047 if (j > 0) {
1048 memcpy(data_ptr + total_size, data->dest, tile_size);
1049 }
1050 total_size += tile_size;
1051 }
1052 }
1053 return total_size;
1054 }
1055
encode_tiles(VP9_COMP * cpi,uint8_t * data_ptr)1056 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
1057 VP9_COMMON *const cm = &cpi->common;
1058 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1059 vpx_writer residual_bc;
1060 int tile_row, tile_col;
1061 size_t total_size = 0;
1062 const int tile_cols = 1 << cm->log2_tile_cols;
1063 const int tile_rows = 1 << cm->log2_tile_rows;
1064
1065 memset(cm->above_seg_context, 0,
1066 sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols));
1067
1068 // Encoding tiles in parallel is done only for realtime mode now. In other
1069 // modes the speed up is insignificant and requires further testing to ensure
1070 // that it does not make the overall process worse in any case.
1071 if (cpi->oxcf.mode == REALTIME && cpi->num_workers > 1 && tile_rows == 1 &&
1072 tile_cols > 1) {
1073 return encode_tiles_mt(cpi, data_ptr);
1074 }
1075
1076 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
1077 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
1078 int tile_idx = tile_row * tile_cols + tile_col;
1079
1080 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
1081 vpx_start_encode(&residual_bc, data_ptr + total_size + 4);
1082 else
1083 vpx_start_encode(&residual_bc, data_ptr + total_size);
1084
1085 write_modes(cpi, xd, &cpi->tile_data[tile_idx].tile_info, &residual_bc,
1086 tile_row, tile_col, &cpi->max_mv_magnitude,
1087 cpi->interp_filter_selected);
1088
1089 vpx_stop_encode(&residual_bc);
1090 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
1091 // size of this tile
1092 mem_put_be32(data_ptr + total_size, residual_bc.pos);
1093 total_size += 4;
1094 }
1095
1096 total_size += residual_bc.pos;
1097 }
1098 }
1099 return total_size;
1100 }
1101
write_render_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)1102 static void write_render_size(const VP9_COMMON *cm,
1103 struct vpx_write_bit_buffer *wb) {
1104 const int scaling_active =
1105 cm->width != cm->render_width || cm->height != cm->render_height;
1106 vpx_wb_write_bit(wb, scaling_active);
1107 if (scaling_active) {
1108 vpx_wb_write_literal(wb, cm->render_width - 1, 16);
1109 vpx_wb_write_literal(wb, cm->render_height - 1, 16);
1110 }
1111 }
1112
write_frame_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)1113 static void write_frame_size(const VP9_COMMON *cm,
1114 struct vpx_write_bit_buffer *wb) {
1115 vpx_wb_write_literal(wb, cm->width - 1, 16);
1116 vpx_wb_write_literal(wb, cm->height - 1, 16);
1117
1118 write_render_size(cm, wb);
1119 }
1120
write_frame_size_with_refs(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)1121 static void write_frame_size_with_refs(VP9_COMP *cpi,
1122 struct vpx_write_bit_buffer *wb) {
1123 VP9_COMMON *const cm = &cpi->common;
1124 int found = 0;
1125
1126 MV_REFERENCE_FRAME ref_frame;
1127 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1128 YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
1129
1130 // Set "found" to 0 for temporal svc and for spatial svc key frame
1131 if (cpi->use_svc &&
1132 ((cpi->svc.number_temporal_layers > 1 &&
1133 cpi->oxcf.rc_mode == VPX_CBR) ||
1134 (cpi->svc.number_spatial_layers > 1 &&
1135 cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame))) {
1136 found = 0;
1137 } else if (cfg != NULL) {
1138 found =
1139 cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height;
1140 }
1141 vpx_wb_write_bit(wb, found);
1142 if (found) {
1143 break;
1144 }
1145 }
1146
1147 if (!found) {
1148 vpx_wb_write_literal(wb, cm->width - 1, 16);
1149 vpx_wb_write_literal(wb, cm->height - 1, 16);
1150 }
1151
1152 write_render_size(cm, wb);
1153 }
1154
write_sync_code(struct vpx_write_bit_buffer * wb)1155 static void write_sync_code(struct vpx_write_bit_buffer *wb) {
1156 vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1157 vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1158 vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1159 }
1160
write_profile(BITSTREAM_PROFILE profile,struct vpx_write_bit_buffer * wb)1161 static void write_profile(BITSTREAM_PROFILE profile,
1162 struct vpx_write_bit_buffer *wb) {
1163 switch (profile) {
1164 case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break;
1165 case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break;
1166 case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break;
1167 default:
1168 assert(profile == PROFILE_3);
1169 vpx_wb_write_literal(wb, 6, 3);
1170 break;
1171 }
1172 }
1173
write_bitdepth_colorspace_sampling(VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)1174 static void write_bitdepth_colorspace_sampling(
1175 VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) {
1176 if (cm->profile >= PROFILE_2) {
1177 assert(cm->bit_depth > VPX_BITS_8);
1178 vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
1179 }
1180 vpx_wb_write_literal(wb, cm->color_space, 3);
1181 if (cm->color_space != VPX_CS_SRGB) {
1182 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1183 vpx_wb_write_bit(wb, cm->color_range);
1184 if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1185 assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
1186 vpx_wb_write_bit(wb, cm->subsampling_x);
1187 vpx_wb_write_bit(wb, cm->subsampling_y);
1188 vpx_wb_write_bit(wb, 0); // unused
1189 } else {
1190 assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
1191 }
1192 } else {
1193 assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
1194 vpx_wb_write_bit(wb, 0); // unused
1195 }
1196 }
1197
write_uncompressed_header(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)1198 static void write_uncompressed_header(VP9_COMP *cpi,
1199 struct vpx_write_bit_buffer *wb) {
1200 VP9_COMMON *const cm = &cpi->common;
1201 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1202
1203 vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1204
1205 write_profile(cm->profile, wb);
1206
1207 // If to use show existing frame.
1208 vpx_wb_write_bit(wb, cm->show_existing_frame);
1209 if (cm->show_existing_frame) {
1210 vpx_wb_write_literal(wb, cpi->alt_fb_idx, 3);
1211 return;
1212 }
1213
1214 vpx_wb_write_bit(wb, cm->frame_type);
1215 vpx_wb_write_bit(wb, cm->show_frame);
1216 vpx_wb_write_bit(wb, cm->error_resilient_mode);
1217
1218 if (cm->frame_type == KEY_FRAME) {
1219 write_sync_code(wb);
1220 write_bitdepth_colorspace_sampling(cm, wb);
1221 write_frame_size(cm, wb);
1222 } else {
1223 if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only);
1224
1225 if (!cm->error_resilient_mode)
1226 vpx_wb_write_literal(wb, cm->reset_frame_context, 2);
1227
1228 if (cm->intra_only) {
1229 write_sync_code(wb);
1230
1231 // Note for profile 0, 420 8bpp is assumed.
1232 if (cm->profile > PROFILE_0) {
1233 write_bitdepth_colorspace_sampling(cm, wb);
1234 }
1235
1236 vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES);
1237 write_frame_size(cm, wb);
1238 } else {
1239 MV_REFERENCE_FRAME ref_frame;
1240 vpx_wb_write_literal(wb, vp9_get_refresh_mask(cpi), REF_FRAMES);
1241 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1242 assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
1243 vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
1244 REF_FRAMES_LOG2);
1245 vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1246 }
1247
1248 write_frame_size_with_refs(cpi, wb);
1249
1250 vpx_wb_write_bit(wb, cm->allow_high_precision_mv);
1251
1252 fix_interp_filter(cm, cpi->td.counts);
1253 write_interp_filter(cm->interp_filter, wb);
1254 }
1255 }
1256
1257 if (!cm->error_resilient_mode) {
1258 vpx_wb_write_bit(wb, cm->refresh_frame_context);
1259 vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1260 }
1261
1262 vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1263
1264 encode_loopfilter(&cm->lf, wb);
1265 encode_quantization(cm, wb);
1266 encode_segmentation(cm, xd, wb);
1267
1268 write_tile_info(cm, wb);
1269 }
1270
write_compressed_header(VP9_COMP * cpi,uint8_t * data)1271 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1272 VP9_COMMON *const cm = &cpi->common;
1273 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1274 FRAME_CONTEXT *const fc = cm->fc;
1275 FRAME_COUNTS *counts = cpi->td.counts;
1276 vpx_writer header_bc;
1277
1278 vpx_start_encode(&header_bc, data);
1279
1280 if (xd->lossless)
1281 cm->tx_mode = ONLY_4X4;
1282 else
1283 encode_txfm_probs(cm, &header_bc, counts);
1284
1285 update_coef_probs(cpi, &header_bc);
1286 update_skip_probs(cm, &header_bc, counts);
1287
1288 if (!frame_is_intra_only(cm)) {
1289 int i;
1290
1291 for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1292 prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i],
1293 counts->inter_mode[i], INTER_MODES, &header_bc);
1294
1295 if (cm->interp_filter == SWITCHABLE)
1296 update_switchable_interp_probs(cm, &header_bc, counts);
1297
1298 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1299 vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1300 counts->intra_inter[i]);
1301
1302 if (cpi->allow_comp_inter_inter) {
1303 const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1304 const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1305
1306 vpx_write_bit(&header_bc, use_compound_pred);
1307 if (use_compound_pred) {
1308 vpx_write_bit(&header_bc, use_hybrid_pred);
1309 if (use_hybrid_pred)
1310 for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1311 vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1312 counts->comp_inter[i]);
1313 }
1314 }
1315
1316 if (cm->reference_mode != COMPOUND_REFERENCE) {
1317 for (i = 0; i < REF_CONTEXTS; i++) {
1318 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1319 counts->single_ref[i][0]);
1320 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1321 counts->single_ref[i][1]);
1322 }
1323 }
1324
1325 if (cm->reference_mode != SINGLE_REFERENCE)
1326 for (i = 0; i < REF_CONTEXTS; i++)
1327 vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1328 counts->comp_ref[i]);
1329
1330 for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1331 prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i],
1332 counts->y_mode[i], INTRA_MODES, &header_bc);
1333
1334 for (i = 0; i < PARTITION_CONTEXTS; ++i)
1335 prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1336 counts->partition[i], PARTITION_TYPES, &header_bc);
1337
1338 vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc,
1339 &counts->mv);
1340 }
1341
1342 vpx_stop_encode(&header_bc);
1343 assert(header_bc.pos <= 0xffff);
1344
1345 return header_bc.pos;
1346 }
1347
vp9_pack_bitstream(VP9_COMP * cpi,uint8_t * dest,size_t * size)1348 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1349 uint8_t *data = dest;
1350 size_t first_part_size, uncompressed_hdr_size;
1351 struct vpx_write_bit_buffer wb = { data, 0 };
1352 struct vpx_write_bit_buffer saved_wb;
1353
1354 write_uncompressed_header(cpi, &wb);
1355
1356 // Skip the rest coding process if use show existing frame.
1357 if (cpi->common.show_existing_frame) return;
1358
1359 saved_wb = wb;
1360 vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
1361
1362 uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
1363 data += uncompressed_hdr_size;
1364
1365 vpx_clear_system_state();
1366
1367 first_part_size = write_compressed_header(cpi, data);
1368 data += first_part_size;
1369 // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1370 vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1371
1372 data += encode_tiles(cpi, data);
1373
1374 *size = data - dest;
1375 }
1376