1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17
18 #include "./vpx_dsp_rtcd.h"
19 #include "vpx_dsp/vpx_dsp_common.h"
20 #include "vpx_mem/vpx_mem.h"
21 #include "vpx_ports/mem.h"
22 #include "vpx_ports/system_state.h"
23
24 #include "vp9/common/vp9_alloccommon.h"
25 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
26 #include "vp9/common/vp9_common.h"
27 #include "vp9/common/vp9_entropymode.h"
28 #include "vp9/common/vp9_quant_common.h"
29 #include "vp9/common/vp9_seg_common.h"
30
31 #include "vp9/encoder/vp9_encodemv.h"
32 #include "vp9/encoder/vp9_ratectrl.h"
33
34 // Max rate per frame for 1080P and below encodes if no level requirement given.
35 // For larger formats limit to MAX_MB_RATE bits per MB
36 // 4Mbits is derived from the level requirement for level 4 (1080P 30) which
37 // requires that HW can sustain a rate of 16Mbits over a 4 frame group.
38 // If a lower level requirement is specified then this may over ride this value.
39 #define MAX_MB_RATE 250
40 #define MAXRATE_1080P 4000000
41
42 #define DEFAULT_KF_BOOST 2000
43 #define DEFAULT_GF_BOOST 2000
44
45 #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
46
47 #define MIN_BPB_FACTOR 0.005
48 #define MAX_BPB_FACTOR 50
49
50 #if CONFIG_VP9_HIGHBITDEPTH
51 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
52 do { \
53 switch (bit_depth) { \
54 case VPX_BITS_8: name = name##_8; break; \
55 case VPX_BITS_10: name = name##_10; break; \
56 default: \
57 assert(bit_depth == VPX_BITS_12); \
58 name = name##_12; \
59 break; \
60 } \
61 } while (0)
62 #else
63 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
64 do { \
65 (void)bit_depth; \
66 name = name##_8; \
67 } while (0)
68 #endif
69
70 // Tables relating active max Q to active min Q
71 static int kf_low_motion_minq_8[QINDEX_RANGE];
72 static int kf_high_motion_minq_8[QINDEX_RANGE];
73 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
74 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
75 static int inter_minq_8[QINDEX_RANGE];
76 static int rtc_minq_8[QINDEX_RANGE];
77
78 #if CONFIG_VP9_HIGHBITDEPTH
79 static int kf_low_motion_minq_10[QINDEX_RANGE];
80 static int kf_high_motion_minq_10[QINDEX_RANGE];
81 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
82 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
83 static int inter_minq_10[QINDEX_RANGE];
84 static int rtc_minq_10[QINDEX_RANGE];
85 static int kf_low_motion_minq_12[QINDEX_RANGE];
86 static int kf_high_motion_minq_12[QINDEX_RANGE];
87 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
88 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
89 static int inter_minq_12[QINDEX_RANGE];
90 static int rtc_minq_12[QINDEX_RANGE];
91 #endif
92
93 #ifdef AGGRESSIVE_VBR
94 static int gf_high = 2400;
95 static int gf_low = 400;
96 static int kf_high = 4000;
97 static int kf_low = 400;
98 #else
99 static int gf_high = 2000;
100 static int gf_low = 400;
101 static int kf_high = 4800;
102 static int kf_low = 300;
103 #endif
104
105 // Functions to compute the active minq lookup table entries based on a
106 // formulaic approach to facilitate easier adjustment of the Q tables.
107 // The formulae were derived from computing a 3rd order polynomial best
108 // fit to the original data (after plotting real maxq vs minq (not q index))
get_minq_index(double maxq,double x3,double x2,double x1,vpx_bit_depth_t bit_depth)109 static int get_minq_index(double maxq, double x3, double x2, double x1,
110 vpx_bit_depth_t bit_depth) {
111 int i;
112 const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
113
114 // Special case handling to deal with the step from q2.0
115 // down to lossless mode represented by q 1.0.
116 if (minqtarget <= 2.0) return 0;
117
118 for (i = 0; i < QINDEX_RANGE; i++) {
119 if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth)) return i;
120 }
121
122 return QINDEX_RANGE - 1;
123 }
124
init_minq_luts(int * kf_low_m,int * kf_high_m,int * arfgf_low,int * arfgf_high,int * inter,int * rtc,vpx_bit_depth_t bit_depth)125 static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
126 int *arfgf_high, int *inter, int *rtc,
127 vpx_bit_depth_t bit_depth) {
128 int i;
129 for (i = 0; i < QINDEX_RANGE; i++) {
130 const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
131 kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
132 kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
133 #ifdef AGGRESSIVE_VBR
134 arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.275, bit_depth);
135 inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.80, bit_depth);
136 #else
137 arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
138 inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
139 #endif
140 arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
141 rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
142 }
143 }
144
vp9_rc_init_minq_luts(void)145 void vp9_rc_init_minq_luts(void) {
146 init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
147 arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
148 inter_minq_8, rtc_minq_8, VPX_BITS_8);
149 #if CONFIG_VP9_HIGHBITDEPTH
150 init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
151 arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
152 inter_minq_10, rtc_minq_10, VPX_BITS_10);
153 init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
154 arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
155 inter_minq_12, rtc_minq_12, VPX_BITS_12);
156 #endif
157 }
158
159 // These functions use formulaic calculations to make playing with the
160 // quantizer tables easier. If necessary they can be replaced by lookup
161 // tables if and when things settle down in the experimental bitstream
vp9_convert_qindex_to_q(int qindex,vpx_bit_depth_t bit_depth)162 double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
163 // Convert the index to a real Q value (scaled down to match old Q values)
164 #if CONFIG_VP9_HIGHBITDEPTH
165 switch (bit_depth) {
166 case VPX_BITS_8: return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
167 case VPX_BITS_10: return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
168 default:
169 assert(bit_depth == VPX_BITS_12);
170 return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
171 }
172 #else
173 return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
174 #endif
175 }
176
vp9_convert_q_to_qindex(double q_val,vpx_bit_depth_t bit_depth)177 int vp9_convert_q_to_qindex(double q_val, vpx_bit_depth_t bit_depth) {
178 int i;
179
180 for (i = 0; i < QINDEX_RANGE; ++i)
181 if (vp9_convert_qindex_to_q(i, bit_depth) >= q_val) break;
182
183 if (i == QINDEX_RANGE) i--;
184
185 return i;
186 }
187
vp9_rc_bits_per_mb(FRAME_TYPE frame_type,int qindex,double correction_factor,vpx_bit_depth_t bit_depth)188 int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
189 double correction_factor, vpx_bit_depth_t bit_depth) {
190 const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
191 int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
192
193 assert(correction_factor <= MAX_BPB_FACTOR &&
194 correction_factor >= MIN_BPB_FACTOR);
195
196 // q based adjustment to baseline enumerator
197 enumerator += (int)(enumerator * q) >> 12;
198 return (int)(enumerator * correction_factor / q);
199 }
200
vp9_estimate_bits_at_q(FRAME_TYPE frame_type,int q,int mbs,double correction_factor,vpx_bit_depth_t bit_depth)201 int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
202 double correction_factor,
203 vpx_bit_depth_t bit_depth) {
204 const int bpm =
205 (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
206 return VPXMAX(FRAME_OVERHEAD_BITS,
207 (int)(((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS));
208 }
209
vp9_rc_clamp_pframe_target_size(const VP9_COMP * const cpi,int target)210 int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
211 const RATE_CONTROL *rc = &cpi->rc;
212 const VP9EncoderConfig *oxcf = &cpi->oxcf;
213
214 if (cpi->oxcf.pass != 2) {
215 const int min_frame_target =
216 VPXMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
217 if (target < min_frame_target) target = min_frame_target;
218 if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
219 // If there is an active ARF at this location use the minimum
220 // bits on this frame even if it is a constructed arf.
221 // The active maximum quantizer insures that an appropriate
222 // number of bits will be spent if needed for constructed ARFs.
223 target = min_frame_target;
224 }
225 }
226
227 // Clip the frame target to the maximum allowed value.
228 if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
229
230 if (oxcf->rc_max_inter_bitrate_pct) {
231 const int max_rate =
232 rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
233 target = VPXMIN(target, max_rate);
234 }
235 return target;
236 }
237
vp9_rc_clamp_iframe_target_size(const VP9_COMP * const cpi,int target)238 int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
239 const RATE_CONTROL *rc = &cpi->rc;
240 const VP9EncoderConfig *oxcf = &cpi->oxcf;
241 if (oxcf->rc_max_intra_bitrate_pct) {
242 const int max_rate =
243 rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
244 target = VPXMIN(target, max_rate);
245 }
246 if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
247 return target;
248 }
249
250 // Update the buffer level before encoding with the per-frame-bandwidth,
update_buffer_level_preencode(VP9_COMP * cpi)251 static void update_buffer_level_preencode(VP9_COMP *cpi) {
252 RATE_CONTROL *const rc = &cpi->rc;
253 rc->bits_off_target += rc->avg_frame_bandwidth;
254 // Clip the buffer level to the maximum specified buffer size.
255 rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
256 rc->buffer_level = rc->bits_off_target;
257 }
258
259 // Update the buffer level before encoding with the per-frame-bandwidth
260 // for SVC. The current and all upper temporal layers are updated, needed
261 // for the layered rate control which involves cumulative buffer levels for
262 // the temporal layers. Allow for using the timestamp(pts) delta for the
263 // framerate when the set_ref_frame_config is used.
update_buffer_level_svc_preencode(VP9_COMP * cpi)264 static void update_buffer_level_svc_preencode(VP9_COMP *cpi) {
265 SVC *const svc = &cpi->svc;
266 int i;
267 // Set this to 1 to use timestamp delta for "framerate" under
268 // ref_frame_config usage.
269 int use_timestamp = 1;
270 const int64_t ts_delta =
271 svc->time_stamp_superframe - svc->time_stamp_prev[svc->spatial_layer_id];
272 for (i = svc->temporal_layer_id; i < svc->number_temporal_layers; ++i) {
273 const int layer =
274 LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
275 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
276 RATE_CONTROL *const lrc = &lc->rc;
277 if (use_timestamp && cpi->svc.use_set_ref_frame_config &&
278 svc->number_temporal_layers == 1 && ts_delta > 0 &&
279 svc->current_superframe > 0) {
280 // TODO(marpan): This may need to be modified for temporal layers.
281 const double framerate_pts = 10000000.0 / ts_delta;
282 lrc->bits_off_target += (int)(lc->target_bandwidth / framerate_pts);
283 } else {
284 lrc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate);
285 }
286 // Clip buffer level to maximum buffer size for the layer.
287 lrc->bits_off_target =
288 VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
289 lrc->buffer_level = lrc->bits_off_target;
290 if (i == svc->temporal_layer_id) {
291 cpi->rc.bits_off_target = lrc->bits_off_target;
292 cpi->rc.buffer_level = lrc->buffer_level;
293 }
294 }
295 }
296
297 // Update the buffer level for higher temporal layers, given the encoded current
298 // temporal layer.
update_layer_buffer_level_postencode(SVC * svc,int encoded_frame_size)299 static void update_layer_buffer_level_postencode(SVC *svc,
300 int encoded_frame_size) {
301 int i = 0;
302 const int current_temporal_layer = svc->temporal_layer_id;
303 for (i = current_temporal_layer + 1; i < svc->number_temporal_layers; ++i) {
304 const int layer =
305 LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers);
306 LAYER_CONTEXT *lc = &svc->layer_context[layer];
307 RATE_CONTROL *lrc = &lc->rc;
308 lrc->bits_off_target -= encoded_frame_size;
309 // Clip buffer level to maximum buffer size for the layer.
310 lrc->bits_off_target =
311 VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size);
312 lrc->buffer_level = lrc->bits_off_target;
313 }
314 }
315
316 // Update the buffer level after encoding with encoded frame size.
update_buffer_level_postencode(VP9_COMP * cpi,int encoded_frame_size)317 static void update_buffer_level_postencode(VP9_COMP *cpi,
318 int encoded_frame_size) {
319 RATE_CONTROL *const rc = &cpi->rc;
320 rc->bits_off_target -= encoded_frame_size;
321 // Clip the buffer level to the maximum specified buffer size.
322 rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
323 // For screen-content mode, and if frame-dropper is off, don't let buffer
324 // level go below threshold, given here as -rc->maximum_ buffer_size.
325 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
326 cpi->oxcf.drop_frames_water_mark == 0)
327 rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size);
328
329 rc->buffer_level = rc->bits_off_target;
330
331 if (is_one_pass_cbr_svc(cpi)) {
332 update_layer_buffer_level_postencode(&cpi->svc, encoded_frame_size);
333 }
334 }
335
vp9_rc_get_default_min_gf_interval(int width,int height,double framerate)336 int vp9_rc_get_default_min_gf_interval(int width, int height,
337 double framerate) {
338 // Assume we do not need any constraint lower than 4K 20 fps
339 static const double factor_safe = 3840 * 2160 * 20.0;
340 const double factor = width * height * framerate;
341 const int default_interval =
342 clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
343
344 if (factor <= factor_safe)
345 return default_interval;
346 else
347 return VPXMAX(default_interval,
348 (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
349 // Note this logic makes:
350 // 4K24: 5
351 // 4K30: 6
352 // 4K60: 12
353 }
354
vp9_rc_get_default_max_gf_interval(double framerate,int min_gf_interval)355 int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
356 int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
357 interval += (interval & 0x01); // Round to even value
358 return VPXMAX(interval, min_gf_interval);
359 }
360
vp9_rc_init(const VP9EncoderConfig * oxcf,int pass,RATE_CONTROL * rc)361 void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
362 int i;
363
364 if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
365 rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
366 rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
367 } else {
368 rc->avg_frame_qindex[KEY_FRAME] =
369 (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
370 rc->avg_frame_qindex[INTER_FRAME] =
371 (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
372 }
373
374 rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
375 rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
376
377 rc->buffer_level = rc->starting_buffer_level;
378 rc->bits_off_target = rc->starting_buffer_level;
379
380 rc->rolling_target_bits = rc->avg_frame_bandwidth;
381 rc->rolling_actual_bits = rc->avg_frame_bandwidth;
382 rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
383 rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
384
385 rc->total_actual_bits = 0;
386 rc->total_target_bits = 0;
387 rc->total_target_vs_actual = 0;
388 rc->avg_frame_low_motion = 0;
389 rc->count_last_scene_change = 0;
390 rc->af_ratio_onepass_vbr = 10;
391 rc->prev_avg_source_sad_lag = 0;
392 rc->high_source_sad = 0;
393 rc->reset_high_source_sad = 0;
394 rc->high_source_sad_lagindex = -1;
395 rc->high_num_blocks_with_motion = 0;
396 rc->hybrid_intra_scene_change = 0;
397 rc->re_encode_maxq_scene_change = 0;
398 rc->alt_ref_gf_group = 0;
399 rc->last_frame_is_src_altref = 0;
400 rc->fac_active_worst_inter = 150;
401 rc->fac_active_worst_gf = 100;
402 rc->force_qpmin = 0;
403 for (i = 0; i < MAX_LAG_BUFFERS; ++i) rc->avg_source_sad[i] = 0;
404 rc->frames_since_key = 8; // Sensible default for first frame.
405 rc->this_key_frame_forced = 0;
406 rc->next_key_frame_forced = 0;
407 rc->source_alt_ref_pending = 0;
408 rc->source_alt_ref_active = 0;
409
410 rc->frames_till_gf_update_due = 0;
411 rc->ni_av_qi = oxcf->worst_allowed_q;
412 rc->ni_tot_qi = 0;
413 rc->ni_frames = 0;
414
415 rc->tot_q = 0.0;
416 rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
417
418 for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
419 rc->rate_correction_factors[i] = 1.0;
420 rc->damped_adjustment[i] = 0;
421 }
422
423 rc->min_gf_interval = oxcf->min_gf_interval;
424 rc->max_gf_interval = oxcf->max_gf_interval;
425 if (rc->min_gf_interval == 0)
426 rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
427 oxcf->width, oxcf->height, oxcf->init_framerate);
428 if (rc->max_gf_interval == 0)
429 rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
430 oxcf->init_framerate, rc->min_gf_interval);
431 rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
432
433 rc->force_max_q = 0;
434 rc->last_post_encode_dropped_scene_change = 0;
435 rc->use_post_encode_drop = 0;
436 rc->ext_use_post_encode_drop = 0;
437 }
438
check_buffer_above_thresh(VP9_COMP * cpi,int drop_mark)439 static int check_buffer_above_thresh(VP9_COMP *cpi, int drop_mark) {
440 SVC *svc = &cpi->svc;
441 if (!cpi->use_svc || cpi->svc.framedrop_mode != FULL_SUPERFRAME_DROP) {
442 RATE_CONTROL *const rc = &cpi->rc;
443 return (rc->buffer_level > drop_mark);
444 } else {
445 int i;
446 // For SVC in the FULL_SUPERFRAME_DROP): the condition on
447 // buffer (if its above threshold, so no drop) is checked on current and
448 // upper spatial layers. If any spatial layer is not above threshold then
449 // we return 0.
450 for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
451 const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
452 svc->number_temporal_layers);
453 LAYER_CONTEXT *lc = &svc->layer_context[layer];
454 RATE_CONTROL *lrc = &lc->rc;
455 // Exclude check for layer whose bitrate is 0.
456 if (lc->target_bandwidth > 0) {
457 const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
458 lrc->optimal_buffer_level / 100);
459 if (!(lrc->buffer_level > drop_mark_layer)) return 0;
460 }
461 }
462 return 1;
463 }
464 }
465
check_buffer_below_thresh(VP9_COMP * cpi,int drop_mark)466 static int check_buffer_below_thresh(VP9_COMP *cpi, int drop_mark) {
467 SVC *svc = &cpi->svc;
468 if (!cpi->use_svc || cpi->svc.framedrop_mode == LAYER_DROP) {
469 RATE_CONTROL *const rc = &cpi->rc;
470 return (rc->buffer_level <= drop_mark);
471 } else {
472 int i;
473 // For SVC in the constrained framedrop mode (svc->framedrop_mode =
474 // CONSTRAINED_LAYER_DROP or FULL_SUPERFRAME_DROP): the condition on
475 // buffer (if its below threshold, so drop frame) is checked on current
476 // and upper spatial layers. For FULL_SUPERFRAME_DROP mode if any
477 // spatial layer is <= threshold, then we return 1 (drop).
478 for (i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) {
479 const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
480 svc->number_temporal_layers);
481 LAYER_CONTEXT *lc = &svc->layer_context[layer];
482 RATE_CONTROL *lrc = &lc->rc;
483 // Exclude check for layer whose bitrate is 0.
484 if (lc->target_bandwidth > 0) {
485 const int drop_mark_layer = (int)(cpi->svc.framedrop_thresh[i] *
486 lrc->optimal_buffer_level / 100);
487 if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP) {
488 if (lrc->buffer_level <= drop_mark_layer) return 1;
489 } else {
490 if (!(lrc->buffer_level <= drop_mark_layer)) return 0;
491 }
492 }
493 }
494 if (cpi->svc.framedrop_mode == FULL_SUPERFRAME_DROP)
495 return 0;
496 else
497 return 1;
498 }
499 }
500
drop_frame(VP9_COMP * cpi)501 static int drop_frame(VP9_COMP *cpi) {
502 const VP9EncoderConfig *oxcf = &cpi->oxcf;
503 RATE_CONTROL *const rc = &cpi->rc;
504 SVC *svc = &cpi->svc;
505 int drop_frames_water_mark = oxcf->drop_frames_water_mark;
506 if (cpi->use_svc) {
507 // If we have dropped max_consec_drop frames, then we don't
508 // drop this spatial layer, and reset counter to 0.
509 if (svc->drop_count[svc->spatial_layer_id] == svc->max_consec_drop) {
510 svc->drop_count[svc->spatial_layer_id] = 0;
511 return 0;
512 } else {
513 drop_frames_water_mark = svc->framedrop_thresh[svc->spatial_layer_id];
514 }
515 }
516 if (!drop_frames_water_mark ||
517 (svc->spatial_layer_id > 0 &&
518 svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
519 return 0;
520 } else {
521 if ((rc->buffer_level < 0 && svc->framedrop_mode != FULL_SUPERFRAME_DROP) ||
522 (check_buffer_below_thresh(cpi, -1) &&
523 svc->framedrop_mode == FULL_SUPERFRAME_DROP)) {
524 // Always drop if buffer is below 0.
525 return 1;
526 } else {
527 // If buffer is below drop_mark, for now just drop every other frame
528 // (starting with the next frame) until it increases back over drop_mark.
529 int drop_mark =
530 (int)(drop_frames_water_mark * rc->optimal_buffer_level / 100);
531 if (check_buffer_above_thresh(cpi, drop_mark) &&
532 (rc->decimation_factor > 0)) {
533 --rc->decimation_factor;
534 } else if (check_buffer_below_thresh(cpi, drop_mark) &&
535 rc->decimation_factor == 0) {
536 rc->decimation_factor = 1;
537 }
538 if (rc->decimation_factor > 0) {
539 if (rc->decimation_count > 0) {
540 --rc->decimation_count;
541 return 1;
542 } else {
543 rc->decimation_count = rc->decimation_factor;
544 return 0;
545 }
546 } else {
547 rc->decimation_count = 0;
548 return 0;
549 }
550 }
551 }
552 }
553
post_encode_drop_cbr(VP9_COMP * cpi,size_t * size)554 int post_encode_drop_cbr(VP9_COMP *cpi, size_t *size) {
555 size_t frame_size = *size << 3;
556 int64_t new_buffer_level =
557 cpi->rc.buffer_level + cpi->rc.avg_frame_bandwidth - (int64_t)frame_size;
558
559 // For now we drop if new buffer level (given the encoded frame size) goes
560 // below 0.
561 if (new_buffer_level < 0) {
562 *size = 0;
563 vp9_rc_postencode_update_drop_frame(cpi);
564 // Update flag to use for next frame.
565 if (cpi->rc.high_source_sad ||
566 (cpi->use_svc && cpi->svc.high_source_sad_superframe))
567 cpi->rc.last_post_encode_dropped_scene_change = 1;
568 // Force max_q on next fame.
569 cpi->rc.force_max_q = 1;
570 cpi->rc.avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
571 cpi->last_frame_dropped = 1;
572 cpi->ext_refresh_frame_flags_pending = 0;
573 if (cpi->use_svc) {
574 SVC *svc = &cpi->svc;
575 int sl = 0;
576 int tl = 0;
577 svc->last_layer_dropped[svc->spatial_layer_id] = 1;
578 svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
579 svc->drop_count[svc->spatial_layer_id]++;
580 svc->skip_enhancement_layer = 1;
581 // Postencode drop is only checked on base spatial layer,
582 // for now if max-q is set on base we force it on all layers.
583 for (sl = 0; sl < svc->number_spatial_layers; ++sl) {
584 for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
585 const int layer =
586 LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
587 LAYER_CONTEXT *lc = &svc->layer_context[layer];
588 RATE_CONTROL *lrc = &lc->rc;
589 lrc->force_max_q = 1;
590 lrc->avg_frame_qindex[INTER_FRAME] = cpi->rc.worst_quality;
591 }
592 }
593 }
594 return 1;
595 }
596
597 cpi->rc.force_max_q = 0;
598 cpi->rc.last_post_encode_dropped_scene_change = 0;
599 return 0;
600 }
601
vp9_rc_drop_frame(VP9_COMP * cpi)602 int vp9_rc_drop_frame(VP9_COMP *cpi) {
603 SVC *svc = &cpi->svc;
604 int svc_prev_layer_dropped = 0;
605 // In the constrained or full_superframe framedrop mode for svc
606 // (framedrop_mode != LAYER_DROP), if the previous spatial layer was
607 // dropped, drop the current spatial layer.
608 if (cpi->use_svc && svc->spatial_layer_id > 0 &&
609 svc->drop_spatial_layer[svc->spatial_layer_id - 1])
610 svc_prev_layer_dropped = 1;
611 if ((svc_prev_layer_dropped && svc->framedrop_mode != LAYER_DROP) ||
612 drop_frame(cpi)) {
613 vp9_rc_postencode_update_drop_frame(cpi);
614 cpi->ext_refresh_frame_flags_pending = 0;
615 cpi->last_frame_dropped = 1;
616 if (cpi->use_svc) {
617 svc->last_layer_dropped[svc->spatial_layer_id] = 1;
618 svc->drop_spatial_layer[svc->spatial_layer_id] = 1;
619 svc->drop_count[svc->spatial_layer_id]++;
620 svc->skip_enhancement_layer = 1;
621 if (svc->framedrop_mode == LAYER_DROP ||
622 svc->drop_spatial_layer[0] == 0) {
623 // For the case of constrained drop mode where the base is dropped
624 // (drop_spatial_layer[0] == 1), which means full superframe dropped,
625 // we don't increment the svc frame counters. In particular temporal
626 // layer counter (which is incremented in vp9_inc_frame_in_layer())
627 // won't be incremented, so on a dropped frame we try the same
628 // temporal_layer_id on next incoming frame. This is to avoid an
629 // issue with temporal alignement with full superframe dropping.
630 vp9_inc_frame_in_layer(cpi);
631 }
632 if (svc->spatial_layer_id == svc->number_spatial_layers - 1) {
633 int i;
634 int all_layers_drop = 1;
635 for (i = 0; i < svc->spatial_layer_id; i++) {
636 if (svc->drop_spatial_layer[i] == 0) {
637 all_layers_drop = 0;
638 break;
639 }
640 }
641 if (all_layers_drop == 1) svc->skip_enhancement_layer = 0;
642 }
643 }
644 return 1;
645 }
646 return 0;
647 }
648
adjust_q_cbr(const VP9_COMP * cpi,int q)649 static int adjust_q_cbr(const VP9_COMP *cpi, int q) {
650 // This makes sure q is between oscillating Qs to prevent resonance.
651 if (!cpi->rc.reset_high_source_sad &&
652 (!cpi->oxcf.gf_cbr_boost_pct ||
653 !(cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)) &&
654 (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
655 cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
656 int qclamp = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
657 VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
658 // If the previous frame had overshoot and the current q needs to increase
659 // above the clamped value, reduce the clamp for faster reaction to
660 // overshoot.
661 if (cpi->rc.rc_1_frame == -1 && q > qclamp)
662 q = (q + qclamp) >> 1;
663 else
664 q = qclamp;
665 }
666 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN)
667 vp9_cyclic_refresh_limit_q(cpi, &q);
668 return q;
669 }
670
get_rate_correction_factor(const VP9_COMP * cpi)671 static double get_rate_correction_factor(const VP9_COMP *cpi) {
672 const RATE_CONTROL *const rc = &cpi->rc;
673 const VP9_COMMON *const cm = &cpi->common;
674 double rcf;
675
676 if (frame_is_intra_only(cm)) {
677 rcf = rc->rate_correction_factors[KF_STD];
678 } else if (cpi->oxcf.pass == 2) {
679 RATE_FACTOR_LEVEL rf_lvl =
680 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
681 rcf = rc->rate_correction_factors[rf_lvl];
682 } else {
683 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
684 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
685 (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
686 rcf = rc->rate_correction_factors[GF_ARF_STD];
687 else
688 rcf = rc->rate_correction_factors[INTER_NORMAL];
689 }
690 rcf *= rcf_mult[rc->frame_size_selector];
691 return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
692 }
693
set_rate_correction_factor(VP9_COMP * cpi,double factor)694 static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
695 RATE_CONTROL *const rc = &cpi->rc;
696 const VP9_COMMON *const cm = &cpi->common;
697
698 // Normalize RCF to account for the size-dependent scaling factor.
699 factor /= rcf_mult[cpi->rc.frame_size_selector];
700
701 factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
702
703 if (frame_is_intra_only(cm)) {
704 rc->rate_correction_factors[KF_STD] = factor;
705 } else if (cpi->oxcf.pass == 2) {
706 RATE_FACTOR_LEVEL rf_lvl =
707 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
708 rc->rate_correction_factors[rf_lvl] = factor;
709 } else {
710 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
711 !rc->is_src_frame_alt_ref && !cpi->use_svc &&
712 (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 100))
713 rc->rate_correction_factors[GF_ARF_STD] = factor;
714 else
715 rc->rate_correction_factors[INTER_NORMAL] = factor;
716 }
717 }
718
vp9_rc_update_rate_correction_factors(VP9_COMP * cpi)719 void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) {
720 const VP9_COMMON *const cm = &cpi->common;
721 int correction_factor = 100;
722 double rate_correction_factor = get_rate_correction_factor(cpi);
723 double adjustment_limit;
724 RATE_FACTOR_LEVEL rf_lvl =
725 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
726
727 int projected_size_based_on_q = 0;
728
729 // Do not update the rate factors for arf overlay frames.
730 if (cpi->rc.is_src_frame_alt_ref) return;
731
732 // Clear down mmx registers to allow floating point in what follows
733 vpx_clear_system_state();
734
735 // Work out how big we would have expected the frame to be at this Q given
736 // the current correction factor.
737 // Stay in double to avoid int overflow when values are large
738 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
739 projected_size_based_on_q =
740 vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
741 } else {
742 FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
743 projected_size_based_on_q =
744 vp9_estimate_bits_at_q(frame_type, cm->base_qindex, cm->MBs,
745 rate_correction_factor, cm->bit_depth);
746 }
747 // Work out a size correction factor.
748 if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
749 correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
750 projected_size_based_on_q);
751
752 // Do not use damped adjustment for the first frame of each frame type
753 if (!cpi->rc.damped_adjustment[rf_lvl]) {
754 adjustment_limit = 1.0;
755 cpi->rc.damped_adjustment[rf_lvl] = 1;
756 } else {
757 // More heavily damped adjustment used if we have been oscillating either
758 // side of target.
759 adjustment_limit =
760 0.25 + 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor)));
761 }
762
763 cpi->rc.q_2_frame = cpi->rc.q_1_frame;
764 cpi->rc.q_1_frame = cm->base_qindex;
765 cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
766 if (correction_factor > 110)
767 cpi->rc.rc_1_frame = -1;
768 else if (correction_factor < 90)
769 cpi->rc.rc_1_frame = 1;
770 else
771 cpi->rc.rc_1_frame = 0;
772
773 // Turn off oscilation detection in the case of massive overshoot.
774 if (cpi->rc.rc_1_frame == -1 && cpi->rc.rc_2_frame == 1 &&
775 correction_factor > 1000) {
776 cpi->rc.rc_2_frame = 0;
777 }
778
779 if (correction_factor > 102) {
780 // We are not already at the worst allowable quality
781 correction_factor =
782 (int)(100 + ((correction_factor - 100) * adjustment_limit));
783 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
784 // Keep rate_correction_factor within limits
785 if (rate_correction_factor > MAX_BPB_FACTOR)
786 rate_correction_factor = MAX_BPB_FACTOR;
787 } else if (correction_factor < 99) {
788 // We are not already at the best allowable quality
789 correction_factor =
790 (int)(100 - ((100 - correction_factor) * adjustment_limit));
791 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
792
793 // Keep rate_correction_factor within limits
794 if (rate_correction_factor < MIN_BPB_FACTOR)
795 rate_correction_factor = MIN_BPB_FACTOR;
796 }
797
798 set_rate_correction_factor(cpi, rate_correction_factor);
799 }
800
vp9_rc_regulate_q(const VP9_COMP * cpi,int target_bits_per_frame,int active_best_quality,int active_worst_quality)801 int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
802 int active_best_quality, int active_worst_quality) {
803 const VP9_COMMON *const cm = &cpi->common;
804 CYCLIC_REFRESH *const cr = cpi->cyclic_refresh;
805 int q = active_worst_quality;
806 int last_error = INT_MAX;
807 int i, target_bits_per_mb, bits_per_mb_at_this_q;
808 const double correction_factor = get_rate_correction_factor(cpi);
809
810 // Calculate required scaling factor based on target frame size and size of
811 // frame produced using previous Q.
812 target_bits_per_mb =
813 (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs);
814
815 i = active_best_quality;
816
817 do {
818 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
819 cr->apply_cyclic_refresh &&
820 (!cpi->oxcf.gf_cbr_boost_pct || !cpi->refresh_golden_frame)) {
821 bits_per_mb_at_this_q =
822 (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor);
823 } else {
824 FRAME_TYPE frame_type = cm->intra_only ? KEY_FRAME : cm->frame_type;
825 bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(
826 frame_type, i, correction_factor, cm->bit_depth);
827 }
828
829 if (bits_per_mb_at_this_q <= target_bits_per_mb) {
830 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
831 q = i;
832 else
833 q = i - 1;
834
835 break;
836 } else {
837 last_error = bits_per_mb_at_this_q - target_bits_per_mb;
838 }
839 } while (++i <= active_worst_quality);
840
841 // Adjustment to q for CBR mode.
842 if (cpi->oxcf.rc_mode == VPX_CBR) return adjust_q_cbr(cpi, q);
843
844 return q;
845 }
846
get_active_quality(int q,int gfu_boost,int low,int high,int * low_motion_minq,int * high_motion_minq)847 static int get_active_quality(int q, int gfu_boost, int low, int high,
848 int *low_motion_minq, int *high_motion_minq) {
849 if (gfu_boost > high) {
850 return low_motion_minq[q];
851 } else if (gfu_boost < low) {
852 return high_motion_minq[q];
853 } else {
854 const int gap = high - low;
855 const int offset = high - gfu_boost;
856 const int qdiff = high_motion_minq[q] - low_motion_minq[q];
857 const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
858 return low_motion_minq[q] + adjustment;
859 }
860 }
861
get_kf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)862 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
863 vpx_bit_depth_t bit_depth) {
864 int *kf_low_motion_minq;
865 int *kf_high_motion_minq;
866 ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
867 ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
868 return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
869 kf_low_motion_minq, kf_high_motion_minq);
870 }
871
get_gf_active_quality(const VP9_COMP * const cpi,int q,vpx_bit_depth_t bit_depth)872 static int get_gf_active_quality(const VP9_COMP *const cpi, int q,
873 vpx_bit_depth_t bit_depth) {
874 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
875 const RATE_CONTROL *const rc = &cpi->rc;
876
877 int *arfgf_low_motion_minq;
878 int *arfgf_high_motion_minq;
879 const int gfu_boost = cpi->multi_layer_arf
880 ? gf_group->gfu_boost[gf_group->index]
881 : rc->gfu_boost;
882 ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
883 ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
884 return get_active_quality(q, gfu_boost, gf_low, gf_high,
885 arfgf_low_motion_minq, arfgf_high_motion_minq);
886 }
887
calc_active_worst_quality_one_pass_vbr(const VP9_COMP * cpi)888 static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
889 const RATE_CONTROL *const rc = &cpi->rc;
890 const unsigned int curr_frame = cpi->common.current_video_frame;
891 int active_worst_quality;
892
893 if (cpi->common.frame_type == KEY_FRAME) {
894 active_worst_quality =
895 curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] << 1;
896 } else {
897 if (!rc->is_src_frame_alt_ref &&
898 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
899 active_worst_quality =
900 curr_frame == 1
901 ? rc->last_q[KEY_FRAME] * 5 >> 2
902 : rc->last_q[INTER_FRAME] * rc->fac_active_worst_gf / 100;
903 } else {
904 active_worst_quality = curr_frame == 1
905 ? rc->last_q[KEY_FRAME] << 1
906 : rc->avg_frame_qindex[INTER_FRAME] *
907 rc->fac_active_worst_inter / 100;
908 }
909 }
910 return VPXMIN(active_worst_quality, rc->worst_quality);
911 }
912
913 // Adjust active_worst_quality level based on buffer level.
calc_active_worst_quality_one_pass_cbr(const VP9_COMP * cpi)914 static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
915 // Adjust active_worst_quality: If buffer is above the optimal/target level,
916 // bring active_worst_quality down depending on fullness of buffer.
917 // If buffer is below the optimal level, let the active_worst_quality go from
918 // ambient Q (at buffer = optimal level) to worst_quality level
919 // (at buffer = critical level).
920 const VP9_COMMON *const cm = &cpi->common;
921 const RATE_CONTROL *rc = &cpi->rc;
922 // Buffer level below which we push active_worst to worst_quality.
923 int64_t critical_level = rc->optimal_buffer_level >> 3;
924 int64_t buff_lvl_step = 0;
925 int adjustment = 0;
926 int active_worst_quality;
927 int ambient_qp;
928 unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers;
929 if (frame_is_intra_only(cm) || rc->reset_high_source_sad || rc->force_max_q)
930 return rc->worst_quality;
931 // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
932 // for the first few frames following key frame. These are both initialized
933 // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
934 // So for first few frames following key, the qp of that key frame is weighted
935 // into the active_worst_quality setting.
936 ambient_qp = (cm->current_video_frame < num_frames_weight_key)
937 ? VPXMIN(rc->avg_frame_qindex[INTER_FRAME],
938 rc->avg_frame_qindex[KEY_FRAME])
939 : rc->avg_frame_qindex[INTER_FRAME];
940 active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 5) >> 2);
941 // For SVC if the current base spatial layer was key frame, use the QP from
942 // that base layer for ambient_qp.
943 if (cpi->use_svc && cpi->svc.spatial_layer_id > 0) {
944 int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
945 cpi->svc.number_temporal_layers);
946 const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
947 if (lc->is_key_frame) {
948 const RATE_CONTROL *lrc = &lc->rc;
949 ambient_qp = VPXMIN(ambient_qp, lrc->last_q[KEY_FRAME]);
950 active_worst_quality = VPXMIN(rc->worst_quality, (ambient_qp * 9) >> 3);
951 }
952 }
953 if (rc->buffer_level > rc->optimal_buffer_level) {
954 // Adjust down.
955 // Maximum limit for down adjustment ~30%; make it lower for screen content.
956 int max_adjustment_down = active_worst_quality / 3;
957 if (cpi->oxcf.content == VP9E_CONTENT_SCREEN)
958 max_adjustment_down = active_worst_quality >> 3;
959 if (max_adjustment_down) {
960 buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
961 max_adjustment_down);
962 if (buff_lvl_step)
963 adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
964 buff_lvl_step);
965 active_worst_quality -= adjustment;
966 }
967 } else if (rc->buffer_level > critical_level) {
968 // Adjust up from ambient Q.
969 if (critical_level) {
970 buff_lvl_step = (rc->optimal_buffer_level - critical_level);
971 if (buff_lvl_step) {
972 adjustment = (int)((rc->worst_quality - ambient_qp) *
973 (rc->optimal_buffer_level - rc->buffer_level) /
974 buff_lvl_step);
975 }
976 active_worst_quality = ambient_qp + adjustment;
977 }
978 } else {
979 // Set to worst_quality if buffer is below critical level.
980 active_worst_quality = rc->worst_quality;
981 }
982 return active_worst_quality;
983 }
984
rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)985 static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
986 int *bottom_index,
987 int *top_index) {
988 const VP9_COMMON *const cm = &cpi->common;
989 const RATE_CONTROL *const rc = &cpi->rc;
990 int active_best_quality;
991 int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
992 int q;
993 int *rtc_minq;
994 ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
995
996 if (frame_is_intra_only(cm)) {
997 active_best_quality = rc->best_quality;
998 // Handle the special case for key frames forced when we have reached
999 // the maximum key frame interval. Here force the Q to a range
1000 // based on the ambient Q to reduce the risk of popping.
1001 if (rc->this_key_frame_forced) {
1002 int qindex = rc->last_boosted_qindex;
1003 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1004 int delta_qindex = vp9_compute_qdelta(
1005 rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth);
1006 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1007 } else if (cm->current_video_frame > 0) {
1008 // not first frame of one pass and kf_boost is set
1009 double q_adj_factor = 1.0;
1010 double q_val;
1011
1012 active_best_quality = get_kf_active_quality(
1013 rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
1014
1015 // Allow somewhat lower kf minq with small image formats.
1016 if ((cm->width * cm->height) <= (352 * 288)) {
1017 q_adj_factor -= 0.25;
1018 }
1019
1020 // Convert the adjustment factor to a qindex delta
1021 // on active_best_quality.
1022 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1023 active_best_quality +=
1024 vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
1025 }
1026 } else if (!rc->is_src_frame_alt_ref && !cpi->use_svc &&
1027 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1028 // Use the lower of active_worst_quality and recent
1029 // average Q as basis for GF/ARF best Q limit unless last frame was
1030 // a key frame.
1031 if (rc->frames_since_key > 1 &&
1032 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1033 q = rc->avg_frame_qindex[INTER_FRAME];
1034 } else {
1035 q = active_worst_quality;
1036 }
1037 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1038 } else {
1039 // Use the lower of active_worst_quality and recent/average Q.
1040 if (cm->current_video_frame > 1) {
1041 if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
1042 active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
1043 else
1044 active_best_quality = rtc_minq[active_worst_quality];
1045 } else {
1046 if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
1047 active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
1048 else
1049 active_best_quality = rtc_minq[active_worst_quality];
1050 }
1051 }
1052
1053 // Clip the active best and worst quality values to limits
1054 active_best_quality =
1055 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1056 active_worst_quality =
1057 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1058
1059 *top_index = active_worst_quality;
1060 *bottom_index = active_best_quality;
1061
1062 // Special case code to try and match quality with forced key frames
1063 if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
1064 q = rc->last_boosted_qindex;
1065 } else {
1066 q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1067 active_worst_quality);
1068 if (q > *top_index) {
1069 // Special case when we are targeting the max allowed rate
1070 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1071 *top_index = q;
1072 else
1073 q = *top_index;
1074 }
1075 }
1076 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1077 assert(*bottom_index <= rc->worst_quality &&
1078 *bottom_index >= rc->best_quality);
1079 assert(q <= rc->worst_quality && q >= rc->best_quality);
1080 return q;
1081 }
1082
get_active_cq_level_one_pass(const RATE_CONTROL * rc,const VP9EncoderConfig * const oxcf)1083 static int get_active_cq_level_one_pass(const RATE_CONTROL *rc,
1084 const VP9EncoderConfig *const oxcf) {
1085 static const double cq_adjust_threshold = 0.1;
1086 int active_cq_level = oxcf->cq_level;
1087 if (oxcf->rc_mode == VPX_CQ && rc->total_target_bits > 0) {
1088 const double x = (double)rc->total_actual_bits / rc->total_target_bits;
1089 if (x < cq_adjust_threshold) {
1090 active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
1091 }
1092 }
1093 return active_cq_level;
1094 }
1095
1096 #define SMOOTH_PCT_MIN 0.1
1097 #define SMOOTH_PCT_DIV 0.05
get_active_cq_level_two_pass(const TWO_PASS * twopass,const RATE_CONTROL * rc,const VP9EncoderConfig * const oxcf)1098 static int get_active_cq_level_two_pass(const TWO_PASS *twopass,
1099 const RATE_CONTROL *rc,
1100 const VP9EncoderConfig *const oxcf) {
1101 static const double cq_adjust_threshold = 0.1;
1102 int active_cq_level = oxcf->cq_level;
1103 if (oxcf->rc_mode == VPX_CQ) {
1104 if (twopass->mb_smooth_pct > SMOOTH_PCT_MIN) {
1105 active_cq_level -=
1106 (int)((twopass->mb_smooth_pct - SMOOTH_PCT_MIN) / SMOOTH_PCT_DIV);
1107 active_cq_level = VPXMAX(active_cq_level, 0);
1108 }
1109 if (rc->total_target_bits > 0) {
1110 const double x = (double)rc->total_actual_bits / rc->total_target_bits;
1111 if (x < cq_adjust_threshold) {
1112 active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
1113 }
1114 }
1115 }
1116 return active_cq_level;
1117 }
1118
rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)1119 static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
1120 int *bottom_index,
1121 int *top_index) {
1122 const VP9_COMMON *const cm = &cpi->common;
1123 const RATE_CONTROL *const rc = &cpi->rc;
1124 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1125 const int cq_level = get_active_cq_level_one_pass(rc, oxcf);
1126 int active_best_quality;
1127 int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
1128 int q;
1129 int *inter_minq;
1130 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
1131
1132 if (frame_is_intra_only(cm)) {
1133 if (oxcf->rc_mode == VPX_Q) {
1134 int qindex = cq_level;
1135 double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1136 int delta_qindex = vp9_compute_qdelta(rc, q, q * 0.25, cm->bit_depth);
1137 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1138 } else if (rc->this_key_frame_forced) {
1139 // Handle the special case for key frames forced when we have reached
1140 // the maximum key frame interval. Here force the Q to a range
1141 // based on the ambient Q to reduce the risk of popping.
1142 int qindex = rc->last_boosted_qindex;
1143 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1144 int delta_qindex = vp9_compute_qdelta(
1145 rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth);
1146 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1147 } else {
1148 // not first frame of one pass and kf_boost is set
1149 double q_adj_factor = 1.0;
1150 double q_val;
1151
1152 active_best_quality = get_kf_active_quality(
1153 rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth);
1154
1155 // Allow somewhat lower kf minq with small image formats.
1156 if ((cm->width * cm->height) <= (352 * 288)) {
1157 q_adj_factor -= 0.25;
1158 }
1159
1160 // Convert the adjustment factor to a qindex delta
1161 // on active_best_quality.
1162 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1163 active_best_quality +=
1164 vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
1165 }
1166 } else if (!rc->is_src_frame_alt_ref &&
1167 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1168 // Use the lower of active_worst_quality and recent
1169 // average Q as basis for GF/ARF best Q limit unless last frame was
1170 // a key frame.
1171 if (rc->frames_since_key > 1) {
1172 if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1173 q = rc->avg_frame_qindex[INTER_FRAME];
1174 } else {
1175 q = active_worst_quality;
1176 }
1177 } else {
1178 q = rc->avg_frame_qindex[KEY_FRAME];
1179 }
1180 // For constrained quality dont allow Q less than the cq level
1181 if (oxcf->rc_mode == VPX_CQ) {
1182 if (q < cq_level) q = cq_level;
1183
1184 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1185
1186 // Constrained quality use slightly lower active best.
1187 active_best_quality = active_best_quality * 15 / 16;
1188
1189 } else if (oxcf->rc_mode == VPX_Q) {
1190 int qindex = cq_level;
1191 double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1192 int delta_qindex;
1193 if (cpi->refresh_alt_ref_frame)
1194 delta_qindex = vp9_compute_qdelta(rc, q, q * 0.40, cm->bit_depth);
1195 else
1196 delta_qindex = vp9_compute_qdelta(rc, q, q * 0.50, cm->bit_depth);
1197 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1198 } else {
1199 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1200 }
1201 } else {
1202 if (oxcf->rc_mode == VPX_Q) {
1203 int qindex = cq_level;
1204 double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1205 double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
1206 0.70, 1.0, 0.85, 1.0 };
1207 int delta_qindex = vp9_compute_qdelta(
1208 rc, q, q * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL],
1209 cm->bit_depth);
1210 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1211 } else {
1212 // Use the min of the average Q and active_worst_quality as basis for
1213 // active_best.
1214 if (cm->current_video_frame > 1) {
1215 q = VPXMIN(rc->avg_frame_qindex[INTER_FRAME], active_worst_quality);
1216 active_best_quality = inter_minq[q];
1217 } else {
1218 active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
1219 }
1220 // For the constrained quality mode we don't want
1221 // q to fall below the cq level.
1222 if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
1223 active_best_quality = cq_level;
1224 }
1225 }
1226 }
1227
1228 // Clip the active best and worst quality values to limits
1229 active_best_quality =
1230 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1231 active_worst_quality =
1232 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1233
1234 *top_index = active_worst_quality;
1235 *bottom_index = active_best_quality;
1236
1237 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
1238 {
1239 int qdelta = 0;
1240 vpx_clear_system_state();
1241
1242 // Limit Q range for the adaptive loop.
1243 if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
1244 !(cm->current_video_frame == 0)) {
1245 qdelta = vp9_compute_qdelta_by_rate(
1246 &cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth);
1247 } else if (!rc->is_src_frame_alt_ref &&
1248 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
1249 qdelta = vp9_compute_qdelta_by_rate(
1250 &cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth);
1251 }
1252 if (rc->high_source_sad && cpi->sf.use_altref_onepass) qdelta = 0;
1253 *top_index = active_worst_quality + qdelta;
1254 *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
1255 }
1256 #endif
1257
1258 if (oxcf->rc_mode == VPX_Q) {
1259 q = active_best_quality;
1260 // Special case code to try and match quality with forced key frames
1261 } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
1262 q = rc->last_boosted_qindex;
1263 } else {
1264 q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1265 active_worst_quality);
1266 if (q > *top_index) {
1267 // Special case when we are targeting the max allowed rate
1268 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1269 *top_index = q;
1270 else
1271 q = *top_index;
1272 }
1273 }
1274
1275 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1276 assert(*bottom_index <= rc->worst_quality &&
1277 *bottom_index >= rc->best_quality);
1278 assert(q <= rc->worst_quality && q >= rc->best_quality);
1279 return q;
1280 }
1281
vp9_frame_type_qdelta(const VP9_COMP * cpi,int rf_level,int q)1282 int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) {
1283 static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
1284 1.00, // INTER_NORMAL
1285 1.00, // INTER_HIGH
1286 1.50, // GF_ARF_LOW
1287 1.75, // GF_ARF_STD
1288 2.00, // KF_STD
1289 };
1290 const VP9_COMMON *const cm = &cpi->common;
1291
1292 int qdelta = vp9_compute_qdelta_by_rate(
1293 &cpi->rc, cm->frame_type, q, rate_factor_deltas[rf_level], cm->bit_depth);
1294 return qdelta;
1295 }
1296
1297 #define STATIC_MOTION_THRESH 95
1298
pick_kf_q_bound_two_pass(const VP9_COMP * cpi,int * bottom_index,int * top_index)1299 static void pick_kf_q_bound_two_pass(const VP9_COMP *cpi, int *bottom_index,
1300 int *top_index) {
1301 const VP9_COMMON *const cm = &cpi->common;
1302 const RATE_CONTROL *const rc = &cpi->rc;
1303 int active_best_quality;
1304 int active_worst_quality = cpi->twopass.active_worst_quality;
1305
1306 if (rc->this_key_frame_forced) {
1307 // Handle the special case for key frames forced when we have reached
1308 // the maximum key frame interval. Here force the Q to a range
1309 // based on the ambient Q to reduce the risk of popping.
1310 double last_boosted_q;
1311 int delta_qindex;
1312 int qindex;
1313
1314 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1315 qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1316 active_best_quality = qindex;
1317 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1318 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1319 last_boosted_q * 1.25, cm->bit_depth);
1320 active_worst_quality =
1321 VPXMIN(qindex + delta_qindex, active_worst_quality);
1322 } else {
1323 qindex = rc->last_boosted_qindex;
1324 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1325 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
1326 last_boosted_q * 0.75, cm->bit_depth);
1327 active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality);
1328 }
1329 } else {
1330 // Not forced keyframe.
1331 double q_adj_factor = 1.0;
1332 double q_val;
1333 // Baseline value derived from cpi->active_worst_quality and kf boost.
1334 active_best_quality =
1335 get_kf_active_quality(rc, active_worst_quality, cm->bit_depth);
1336 if (cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
1337 active_best_quality /= 4;
1338 }
1339
1340 // Dont allow the active min to be lossless (q0) unlesss the max q
1341 // already indicates lossless.
1342 active_best_quality =
1343 VPXMIN(active_worst_quality, VPXMAX(1, active_best_quality));
1344
1345 // Allow somewhat lower kf minq with small image formats.
1346 if ((cm->width * cm->height) <= (352 * 288)) {
1347 q_adj_factor -= 0.25;
1348 }
1349
1350 // Make a further adjustment based on the kf zero motion measure.
1351 q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
1352
1353 // Convert the adjustment factor to a qindex delta
1354 // on active_best_quality.
1355 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
1356 active_best_quality +=
1357 vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth);
1358 }
1359 *top_index = active_worst_quality;
1360 *bottom_index = active_best_quality;
1361 }
1362
rc_constant_q(const VP9_COMP * cpi,int * bottom_index,int * top_index,int gf_group_index)1363 static int rc_constant_q(const VP9_COMP *cpi, int *bottom_index, int *top_index,
1364 int gf_group_index) {
1365 const VP9_COMMON *const cm = &cpi->common;
1366 const RATE_CONTROL *const rc = &cpi->rc;
1367 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1368 const GF_GROUP *gf_group = &cpi->twopass.gf_group;
1369 const int is_intra_frame = frame_is_intra_only(cm);
1370
1371 const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
1372
1373 int q = cq_level;
1374 int active_best_quality = cq_level;
1375 int active_worst_quality = cq_level;
1376
1377 // Key frame qp decision
1378 if (is_intra_frame && rc->frames_to_key > 1)
1379 pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
1380
1381 // ARF / GF qp decision
1382 if (!is_intra_frame && !rc->is_src_frame_alt_ref &&
1383 cpi->refresh_alt_ref_frame) {
1384 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1385
1386 // Modify best quality for second level arfs. For mode VPX_Q this
1387 // becomes the baseline frame q.
1388 if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
1389 const int layer_depth = gf_group->layer_depth[gf_group_index];
1390 // linearly fit the frame q depending on the layer depth index from
1391 // the base layer ARF.
1392 active_best_quality = ((layer_depth - 1) * cq_level +
1393 active_best_quality + layer_depth / 2) /
1394 layer_depth;
1395 }
1396 }
1397
1398 q = active_best_quality;
1399 *top_index = active_worst_quality;
1400 *bottom_index = active_best_quality;
1401 return q;
1402 }
1403
rc_pick_q_and_bounds_two_pass(const VP9_COMP * cpi,int * bottom_index,int * top_index,int gf_group_index)1404 static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, int *bottom_index,
1405 int *top_index, int gf_group_index) {
1406 const VP9_COMMON *const cm = &cpi->common;
1407 const RATE_CONTROL *const rc = &cpi->rc;
1408 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1409 const GF_GROUP *gf_group = &cpi->twopass.gf_group;
1410 const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf);
1411 int active_best_quality;
1412 int active_worst_quality = cpi->twopass.active_worst_quality;
1413 int q;
1414 int *inter_minq;
1415 const int boost_frame =
1416 !rc->is_src_frame_alt_ref &&
1417 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame);
1418
1419 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
1420
1421 if (oxcf->rc_mode == VPX_Q)
1422 return rc_constant_q(cpi, bottom_index, top_index, gf_group_index);
1423
1424 if (frame_is_intra_only(cm)) {
1425 pick_kf_q_bound_two_pass(cpi, &active_best_quality, &active_worst_quality);
1426 } else if (boost_frame) {
1427 // Use the lower of active_worst_quality and recent
1428 // average Q as basis for GF/ARF best Q limit unless last frame was
1429 // a key frame.
1430 if (rc->frames_since_key > 1 &&
1431 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
1432 q = rc->avg_frame_qindex[INTER_FRAME];
1433 } else {
1434 q = active_worst_quality;
1435 }
1436 // For constrained quality dont allow Q less than the cq level
1437 if (oxcf->rc_mode == VPX_CQ) {
1438 if (q < cq_level) q = cq_level;
1439
1440 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1441
1442 // Constrained quality use slightly lower active best.
1443 active_best_quality = active_best_quality * 15 / 16;
1444
1445 // Modify best quality for second level arfs. For mode VPX_Q this
1446 // becomes the baseline frame q.
1447 if (gf_group->rf_level[gf_group_index] == GF_ARF_LOW) {
1448 const int layer_depth = gf_group->layer_depth[gf_group_index];
1449 // linearly fit the frame q depending on the layer depth index from
1450 // the base layer ARF.
1451 active_best_quality =
1452 ((layer_depth - 1) * q + active_best_quality + layer_depth / 2) /
1453 layer_depth;
1454 }
1455 } else {
1456 active_best_quality = get_gf_active_quality(cpi, q, cm->bit_depth);
1457 }
1458 } else {
1459 active_best_quality = inter_minq[active_worst_quality];
1460
1461 // For the constrained quality mode we don't want
1462 // q to fall below the cq level.
1463 if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) {
1464 active_best_quality = cq_level;
1465 }
1466 }
1467
1468 // Extension to max or min Q if undershoot or overshoot is outside
1469 // the permitted range.
1470 if (frame_is_intra_only(cm) || boost_frame) {
1471 active_best_quality -=
1472 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
1473 active_worst_quality += (cpi->twopass.extend_maxq / 2);
1474 } else {
1475 active_best_quality -=
1476 (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
1477 active_worst_quality += cpi->twopass.extend_maxq;
1478
1479 // For normal frames do not allow an active minq lower than the q used for
1480 // the last boosted frame.
1481 active_best_quality = VPXMAX(active_best_quality, rc->last_boosted_qindex);
1482 }
1483
1484 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
1485 vpx_clear_system_state();
1486 // Static forced key frames Q restrictions dealt with elsewhere.
1487 if (!frame_is_intra_only(cm) || !rc->this_key_frame_forced ||
1488 cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH) {
1489 int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group_index],
1490 active_worst_quality);
1491 active_worst_quality =
1492 VPXMAX(active_worst_quality + qdelta, active_best_quality);
1493 }
1494 #endif
1495
1496 // Modify active_best_quality for downscaled normal frames.
1497 if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) {
1498 int qdelta = vp9_compute_qdelta_by_rate(
1499 rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth);
1500 active_best_quality =
1501 VPXMAX(active_best_quality + qdelta, rc->best_quality);
1502 }
1503
1504 active_best_quality =
1505 clamp(active_best_quality, rc->best_quality, rc->worst_quality);
1506 active_worst_quality =
1507 clamp(active_worst_quality, active_best_quality, rc->worst_quality);
1508
1509 if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
1510 // If static since last kf use better of last boosted and last kf q.
1511 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1512 q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1513 } else {
1514 q = rc->last_boosted_qindex;
1515 }
1516 } else {
1517 q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
1518 active_worst_quality);
1519 if (q > active_worst_quality) {
1520 // Special case when we are targeting the max allowed rate.
1521 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1522 active_worst_quality = q;
1523 else
1524 q = active_worst_quality;
1525 }
1526 }
1527 clamp(q, active_best_quality, active_worst_quality);
1528
1529 *top_index = active_worst_quality;
1530 *bottom_index = active_best_quality;
1531
1532 assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
1533 assert(*bottom_index <= rc->worst_quality &&
1534 *bottom_index >= rc->best_quality);
1535 assert(q <= rc->worst_quality && q >= rc->best_quality);
1536 return q;
1537 }
1538
vp9_rc_pick_q_and_bounds(const VP9_COMP * cpi,int * bottom_index,int * top_index)1539 int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, int *bottom_index,
1540 int *top_index) {
1541 int q;
1542 const int gf_group_index = cpi->twopass.gf_group.index;
1543 if (cpi->oxcf.pass == 0) {
1544 if (cpi->oxcf.rc_mode == VPX_CBR)
1545 q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
1546 else
1547 q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
1548 } else {
1549 q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index,
1550 gf_group_index);
1551 }
1552 if (cpi->sf.use_nonrd_pick_mode) {
1553 if (cpi->sf.force_frame_boost == 1) q -= cpi->sf.max_delta_qindex;
1554
1555 if (q < *bottom_index)
1556 *bottom_index = q;
1557 else if (q > *top_index)
1558 *top_index = q;
1559 }
1560 return q;
1561 }
1562
vp9_configure_buffer_updates(VP9_COMP * cpi,int gf_group_index)1563 void vp9_configure_buffer_updates(VP9_COMP *cpi, int gf_group_index) {
1564 VP9_COMMON *cm = &cpi->common;
1565 TWO_PASS *const twopass = &cpi->twopass;
1566
1567 cpi->rc.is_src_frame_alt_ref = 0;
1568 cm->show_existing_frame = 0;
1569 switch (twopass->gf_group.update_type[gf_group_index]) {
1570 case KF_UPDATE:
1571 cpi->refresh_last_frame = 1;
1572 cpi->refresh_golden_frame = 1;
1573 cpi->refresh_alt_ref_frame = 1;
1574 break;
1575 case LF_UPDATE:
1576 cpi->refresh_last_frame = 1;
1577 cpi->refresh_golden_frame = 0;
1578 cpi->refresh_alt_ref_frame = 0;
1579 break;
1580 case GF_UPDATE:
1581 cpi->refresh_last_frame = 1;
1582 cpi->refresh_golden_frame = 1;
1583 cpi->refresh_alt_ref_frame = 0;
1584 break;
1585 case OVERLAY_UPDATE:
1586 cpi->refresh_last_frame = 0;
1587 cpi->refresh_golden_frame = 1;
1588 cpi->refresh_alt_ref_frame = 0;
1589 cpi->rc.is_src_frame_alt_ref = 1;
1590 break;
1591 case MID_OVERLAY_UPDATE:
1592 cpi->refresh_last_frame = 1;
1593 cpi->refresh_golden_frame = 0;
1594 cpi->refresh_alt_ref_frame = 0;
1595 cpi->rc.is_src_frame_alt_ref = 1;
1596 break;
1597 case USE_BUF_FRAME:
1598 cpi->refresh_last_frame = 0;
1599 cpi->refresh_golden_frame = 0;
1600 cpi->refresh_alt_ref_frame = 0;
1601 cpi->rc.is_src_frame_alt_ref = 1;
1602 cm->show_existing_frame = 1;
1603 cm->refresh_frame_context = 0;
1604 break;
1605 default:
1606 assert(twopass->gf_group.update_type[gf_group_index] == ARF_UPDATE);
1607 cpi->refresh_last_frame = 0;
1608 cpi->refresh_golden_frame = 0;
1609 cpi->refresh_alt_ref_frame = 1;
1610 break;
1611 }
1612 }
1613
vp9_estimate_qp_gop(VP9_COMP * cpi)1614 void vp9_estimate_qp_gop(VP9_COMP *cpi) {
1615 int gop_length = cpi->twopass.gf_group.gf_group_size;
1616 int bottom_index, top_index;
1617 int idx;
1618 const int gf_index = cpi->twopass.gf_group.index;
1619 const int is_src_frame_alt_ref = cpi->rc.is_src_frame_alt_ref;
1620 const int refresh_frame_context = cpi->common.refresh_frame_context;
1621
1622 for (idx = 1; idx <= gop_length; ++idx) {
1623 TplDepFrame *tpl_frame = &cpi->tpl_stats[idx];
1624 int target_rate = cpi->twopass.gf_group.bit_allocation[idx];
1625 cpi->twopass.gf_group.index = idx;
1626 vp9_rc_set_frame_target(cpi, target_rate);
1627 vp9_configure_buffer_updates(cpi, idx);
1628 tpl_frame->base_qindex =
1629 rc_pick_q_and_bounds_two_pass(cpi, &bottom_index, &top_index, idx);
1630 tpl_frame->base_qindex = VPXMAX(tpl_frame->base_qindex, 1);
1631 }
1632 // Reset the actual index and frame update
1633 cpi->twopass.gf_group.index = gf_index;
1634 cpi->rc.is_src_frame_alt_ref = is_src_frame_alt_ref;
1635 cpi->common.refresh_frame_context = refresh_frame_context;
1636 vp9_configure_buffer_updates(cpi, gf_index);
1637 }
1638
vp9_rc_compute_frame_size_bounds(const VP9_COMP * cpi,int frame_target,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1639 void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, int frame_target,
1640 int *frame_under_shoot_limit,
1641 int *frame_over_shoot_limit) {
1642 if (cpi->oxcf.rc_mode == VPX_Q) {
1643 *frame_under_shoot_limit = 0;
1644 *frame_over_shoot_limit = INT_MAX;
1645 } else {
1646 // For very small rate targets where the fractional adjustment
1647 // may be tiny make sure there is at least a minimum range.
1648 const int tol_low = (cpi->sf.recode_tolerance_low * frame_target) / 100;
1649 const int tol_high = (cpi->sf.recode_tolerance_high * frame_target) / 100;
1650 *frame_under_shoot_limit = VPXMAX(frame_target - tol_low - 100, 0);
1651 *frame_over_shoot_limit =
1652 VPXMIN(frame_target + tol_high + 100, cpi->rc.max_frame_bandwidth);
1653 }
1654 }
1655
vp9_rc_set_frame_target(VP9_COMP * cpi,int target)1656 void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
1657 const VP9_COMMON *const cm = &cpi->common;
1658 RATE_CONTROL *const rc = &cpi->rc;
1659
1660 rc->this_frame_target = target;
1661
1662 // Modify frame size target when down-scaling.
1663 if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
1664 rc->frame_size_selector != UNSCALED)
1665 rc->this_frame_target = (int)(rc->this_frame_target *
1666 rate_thresh_mult[rc->frame_size_selector]);
1667
1668 // Target rate per SB64 (including partial SB64s.
1669 rc->sb64_target_rate = (int)(((int64_t)rc->this_frame_target * 64 * 64) /
1670 (cm->width * cm->height));
1671 }
1672
update_alt_ref_frame_stats(VP9_COMP * cpi)1673 static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
1674 // this frame refreshes means next frames don't unless specified by user
1675 RATE_CONTROL *const rc = &cpi->rc;
1676 rc->frames_since_golden = 0;
1677
1678 // Mark the alt ref as done (setting to 0 means no further alt refs pending).
1679 rc->source_alt_ref_pending = 0;
1680
1681 // Set the alternate reference frame active flag
1682 rc->source_alt_ref_active = 1;
1683 }
1684
update_golden_frame_stats(VP9_COMP * cpi)1685 static void update_golden_frame_stats(VP9_COMP *cpi) {
1686 RATE_CONTROL *const rc = &cpi->rc;
1687
1688 // Update the Golden frame usage counts.
1689 if (cpi->refresh_golden_frame) {
1690 // this frame refreshes means next frames don't unless specified by user
1691 rc->frames_since_golden = 0;
1692
1693 // If we are not using alt ref in the up and coming group clear the arf
1694 // active flag. In multi arf group case, if the index is not 0 then
1695 // we are overlaying a mid group arf so should not reset the flag.
1696 if (cpi->oxcf.pass == 2) {
1697 if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
1698 rc->source_alt_ref_active = 0;
1699 } else if (!rc->source_alt_ref_pending) {
1700 rc->source_alt_ref_active = 0;
1701 }
1702
1703 // Decrement count down till next gf
1704 if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
1705
1706 } else if (!cpi->refresh_alt_ref_frame) {
1707 // Decrement count down till next gf
1708 if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
1709
1710 rc->frames_since_golden++;
1711 }
1712 }
1713
update_altref_usage(VP9_COMP * const cpi)1714 static void update_altref_usage(VP9_COMP *const cpi) {
1715 VP9_COMMON *const cm = &cpi->common;
1716 int sum_ref_frame_usage = 0;
1717 int arf_frame_usage = 0;
1718 int mi_row, mi_col;
1719 if (cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
1720 !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame)
1721 for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8) {
1722 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8) {
1723 int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
1724 sum_ref_frame_usage += cpi->count_arf_frame_usage[sboffset] +
1725 cpi->count_lastgolden_frame_usage[sboffset];
1726 arf_frame_usage += cpi->count_arf_frame_usage[sboffset];
1727 }
1728 }
1729 if (sum_ref_frame_usage > 0) {
1730 double altref_count = 100.0 * arf_frame_usage / sum_ref_frame_usage;
1731 cpi->rc.perc_arf_usage =
1732 0.75 * cpi->rc.perc_arf_usage + 0.25 * altref_count;
1733 }
1734 }
1735
compute_frame_low_motion(VP9_COMP * const cpi)1736 static void compute_frame_low_motion(VP9_COMP *const cpi) {
1737 VP9_COMMON *const cm = &cpi->common;
1738 int mi_row, mi_col;
1739 MODE_INFO **mi = cm->mi_grid_visible;
1740 RATE_CONTROL *const rc = &cpi->rc;
1741 const int rows = cm->mi_rows, cols = cm->mi_cols;
1742 int cnt_zeromv = 0;
1743 for (mi_row = 0; mi_row < rows; mi_row++) {
1744 for (mi_col = 0; mi_col < cols; mi_col++) {
1745 if (mi[0]->ref_frame[0] == LAST_FRAME &&
1746 abs(mi[0]->mv[0].as_mv.row) < 16 && abs(mi[0]->mv[0].as_mv.col) < 16)
1747 cnt_zeromv++;
1748 mi++;
1749 }
1750 mi += 8;
1751 }
1752 cnt_zeromv = 100 * cnt_zeromv / (rows * cols);
1753 rc->avg_frame_low_motion = (3 * rc->avg_frame_low_motion + cnt_zeromv) >> 2;
1754 }
1755
vp9_rc_postencode_update(VP9_COMP * cpi,uint64_t bytes_used)1756 void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
1757 const VP9_COMMON *const cm = &cpi->common;
1758 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1759 RATE_CONTROL *const rc = &cpi->rc;
1760 SVC *const svc = &cpi->svc;
1761 const int qindex = cm->base_qindex;
1762
1763 // Update rate control heuristics
1764 rc->projected_frame_size = (int)(bytes_used << 3);
1765
1766 // Post encode loop adjustment of Q prediction.
1767 vp9_rc_update_rate_correction_factors(cpi);
1768
1769 // Keep a record of last Q and ambient average Q.
1770 if (frame_is_intra_only(cm)) {
1771 rc->last_q[KEY_FRAME] = qindex;
1772 rc->avg_frame_qindex[KEY_FRAME] =
1773 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
1774 if (cpi->use_svc) {
1775 int i = 0;
1776 SVC *svc = &cpi->svc;
1777 for (i = 0; i < svc->number_temporal_layers; ++i) {
1778 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
1779 svc->number_temporal_layers);
1780 LAYER_CONTEXT *lc = &svc->layer_context[layer];
1781 RATE_CONTROL *lrc = &lc->rc;
1782 lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME];
1783 lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME];
1784 }
1785 }
1786 } else {
1787 if ((cpi->use_svc && oxcf->rc_mode == VPX_CBR) ||
1788 (!rc->is_src_frame_alt_ref &&
1789 !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
1790 rc->last_q[INTER_FRAME] = qindex;
1791 rc->avg_frame_qindex[INTER_FRAME] =
1792 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
1793 rc->ni_frames++;
1794 rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1795 rc->avg_q = rc->tot_q / rc->ni_frames;
1796 // Calculate the average Q for normal inter frames (not key or GFU
1797 // frames).
1798 rc->ni_tot_qi += qindex;
1799 rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
1800 }
1801 }
1802
1803 // Keep record of last boosted (KF/KF/ARF) Q value.
1804 // If the current frame is coded at a lower Q then we also update it.
1805 // If all mbs in this group are skipped only update if the Q value is
1806 // better than that already stored.
1807 // This is used to help set quality in forced key frames to reduce popping
1808 if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) ||
1809 (!rc->constrained_gf_group &&
1810 (cpi->refresh_alt_ref_frame ||
1811 (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1812 rc->last_boosted_qindex = qindex;
1813 }
1814 if (frame_is_intra_only(cm)) rc->last_kf_qindex = qindex;
1815
1816 update_buffer_level_postencode(cpi, rc->projected_frame_size);
1817
1818 // Rolling monitors of whether we are over or underspending used to help
1819 // regulate min and Max Q in two pass.
1820 if (!frame_is_intra_only(cm)) {
1821 rc->rolling_target_bits = ROUND_POWER_OF_TWO(
1822 rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
1823 rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
1824 rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
1825 rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
1826 rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
1827 rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
1828 rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
1829 }
1830
1831 // Actual bits spent
1832 rc->total_actual_bits += rc->projected_frame_size;
1833 rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
1834
1835 rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
1836
1837 if (!cpi->use_svc) {
1838 if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
1839 (!frame_is_intra_only(cm)))
1840 // Update the alternate reference frame stats as appropriate.
1841 update_alt_ref_frame_stats(cpi);
1842 else
1843 // Update the Golden frame stats as appropriate.
1844 update_golden_frame_stats(cpi);
1845 }
1846
1847 // If second (long term) temporal reference is used for SVC,
1848 // update the golden frame counter, only for base temporal layer.
1849 if (cpi->use_svc && svc->use_gf_temporal_ref_current_layer &&
1850 svc->temporal_layer_id == 0) {
1851 int i = 0;
1852 if (cpi->refresh_golden_frame)
1853 rc->frames_since_golden = 0;
1854 else
1855 rc->frames_since_golden++;
1856 // Decrement count down till next gf
1857 if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--;
1858 // Update the frames_since_golden for all upper temporal layers.
1859 for (i = 1; i < svc->number_temporal_layers; ++i) {
1860 const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i,
1861 svc->number_temporal_layers);
1862 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
1863 RATE_CONTROL *const lrc = &lc->rc;
1864 lrc->frames_since_golden = rc->frames_since_golden;
1865 }
1866 }
1867
1868 if (frame_is_intra_only(cm)) rc->frames_since_key = 0;
1869 if (cm->show_frame) {
1870 rc->frames_since_key++;
1871 rc->frames_to_key--;
1872 }
1873
1874 // Trigger the resizing of the next frame if it is scaled.
1875 if (oxcf->pass != 0) {
1876 cpi->resize_pending =
1877 rc->next_frame_size_selector != rc->frame_size_selector;
1878 rc->frame_size_selector = rc->next_frame_size_selector;
1879 }
1880
1881 if (oxcf->pass == 0) {
1882 if (!frame_is_intra_only(cm) &&
1883 (!cpi->use_svc ||
1884 (cpi->use_svc &&
1885 !svc->layer_context[svc->temporal_layer_id].is_key_frame &&
1886 svc->spatial_layer_id == svc->number_spatial_layers - 1))) {
1887 compute_frame_low_motion(cpi);
1888 if (cpi->sf.use_altref_onepass) update_altref_usage(cpi);
1889 }
1890 // For SVC: set avg_frame_low_motion (only computed on top spatial layer)
1891 // to all lower spatial layers.
1892 if (cpi->use_svc &&
1893 svc->spatial_layer_id == svc->number_spatial_layers - 1) {
1894 int i;
1895 for (i = 0; i < svc->number_spatial_layers - 1; ++i) {
1896 const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id,
1897 svc->number_temporal_layers);
1898 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
1899 RATE_CONTROL *const lrc = &lc->rc;
1900 lrc->avg_frame_low_motion = rc->avg_frame_low_motion;
1901 }
1902 }
1903 cpi->rc.last_frame_is_src_altref = cpi->rc.is_src_frame_alt_ref;
1904 }
1905 if (!frame_is_intra_only(cm)) rc->reset_high_source_sad = 0;
1906
1907 rc->last_avg_frame_bandwidth = rc->avg_frame_bandwidth;
1908 if (cpi->use_svc && svc->spatial_layer_id < svc->number_spatial_layers - 1)
1909 svc->lower_layer_qindex = cm->base_qindex;
1910 }
1911
vp9_rc_postencode_update_drop_frame(VP9_COMP * cpi)1912 void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
1913 cpi->common.current_video_frame++;
1914 cpi->rc.frames_since_key++;
1915 cpi->rc.frames_to_key--;
1916 cpi->rc.rc_2_frame = 0;
1917 cpi->rc.rc_1_frame = 0;
1918 cpi->rc.last_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth;
1919 // For SVC on dropped frame when framedrop_mode != LAYER_DROP:
1920 // in this mode the whole superframe may be dropped if only a single layer
1921 // has buffer underflow (below threshold). Since this can then lead to
1922 // increasing buffer levels/overflow for certain layers even though whole
1923 // superframe is dropped, we cap buffer level if its already stable.
1924 if (cpi->use_svc && cpi->svc.framedrop_mode != LAYER_DROP &&
1925 cpi->rc.buffer_level > cpi->rc.optimal_buffer_level)
1926 cpi->rc.buffer_level = cpi->rc.optimal_buffer_level;
1927 }
1928
calc_pframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1929 static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1930 const RATE_CONTROL *const rc = &cpi->rc;
1931 const int af_ratio = rc->af_ratio_onepass_vbr;
1932 int target =
1933 (!rc->is_src_frame_alt_ref &&
1934 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))
1935 ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
1936 (rc->baseline_gf_interval + af_ratio - 1)
1937 : (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
1938 (rc->baseline_gf_interval + af_ratio - 1);
1939 return vp9_rc_clamp_pframe_target_size(cpi, target);
1940 }
1941
calc_iframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1942 static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1943 static const int kf_ratio = 25;
1944 const RATE_CONTROL *rc = &cpi->rc;
1945 const int target = rc->avg_frame_bandwidth * kf_ratio;
1946 return vp9_rc_clamp_iframe_target_size(cpi, target);
1947 }
1948
adjust_gfint_frame_constraint(VP9_COMP * cpi,int frame_constraint)1949 static void adjust_gfint_frame_constraint(VP9_COMP *cpi, int frame_constraint) {
1950 RATE_CONTROL *const rc = &cpi->rc;
1951 rc->constrained_gf_group = 0;
1952 // Reset gf interval to make more equal spacing for frame_constraint.
1953 if ((frame_constraint <= 7 * rc->baseline_gf_interval >> 2) &&
1954 (frame_constraint > rc->baseline_gf_interval)) {
1955 rc->baseline_gf_interval = frame_constraint >> 1;
1956 if (rc->baseline_gf_interval < 5)
1957 rc->baseline_gf_interval = frame_constraint;
1958 rc->constrained_gf_group = 1;
1959 } else {
1960 // Reset to keep gf_interval <= frame_constraint.
1961 if (rc->baseline_gf_interval > frame_constraint) {
1962 rc->baseline_gf_interval = frame_constraint;
1963 rc->constrained_gf_group = 1;
1964 }
1965 }
1966 }
1967
vp9_rc_get_one_pass_vbr_params(VP9_COMP * cpi)1968 void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
1969 VP9_COMMON *const cm = &cpi->common;
1970 RATE_CONTROL *const rc = &cpi->rc;
1971 int target;
1972 if (!cpi->refresh_alt_ref_frame &&
1973 (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1974 rc->frames_to_key == 0)) {
1975 cm->frame_type = KEY_FRAME;
1976 rc->this_key_frame_forced =
1977 cm->current_video_frame != 0 && rc->frames_to_key == 0;
1978 rc->frames_to_key = cpi->oxcf.key_freq;
1979 rc->kf_boost = DEFAULT_KF_BOOST;
1980 rc->source_alt_ref_active = 0;
1981 } else {
1982 cm->frame_type = INTER_FRAME;
1983 }
1984 if (rc->frames_till_gf_update_due == 0) {
1985 double rate_err = 1.0;
1986 rc->gfu_boost = DEFAULT_GF_BOOST;
1987 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) {
1988 vp9_cyclic_refresh_set_golden_update(cpi);
1989 } else {
1990 rc->baseline_gf_interval = VPXMIN(
1991 20, VPXMAX(10, (rc->min_gf_interval + rc->max_gf_interval) / 2));
1992 }
1993 rc->af_ratio_onepass_vbr = 10;
1994 if (rc->rolling_target_bits > 0)
1995 rate_err =
1996 (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
1997 if (cm->current_video_frame > 30) {
1998 if (rc->avg_frame_qindex[INTER_FRAME] > (7 * rc->worst_quality) >> 3 &&
1999 rate_err > 3.5) {
2000 rc->baseline_gf_interval =
2001 VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
2002 } else if (rc->avg_frame_low_motion < 20) {
2003 // Decrease gf interval for high motion case.
2004 rc->baseline_gf_interval = VPXMAX(6, rc->baseline_gf_interval >> 1);
2005 }
2006 // Adjust boost and af_ratio based on avg_frame_low_motion, which varies
2007 // between 0 and 100 (stationary, 100% zero/small motion).
2008 rc->gfu_boost =
2009 VPXMAX(500, DEFAULT_GF_BOOST * (rc->avg_frame_low_motion << 1) /
2010 (rc->avg_frame_low_motion + 100));
2011 rc->af_ratio_onepass_vbr = VPXMIN(15, VPXMAX(5, 3 * rc->gfu_boost / 400));
2012 }
2013 adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
2014 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2015 cpi->refresh_golden_frame = 1;
2016 rc->source_alt_ref_pending = 0;
2017 rc->alt_ref_gf_group = 0;
2018 if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
2019 rc->source_alt_ref_pending = 1;
2020 rc->alt_ref_gf_group = 1;
2021 }
2022 }
2023 if (cm->frame_type == KEY_FRAME)
2024 target = calc_iframe_target_size_one_pass_vbr(cpi);
2025 else
2026 target = calc_pframe_target_size_one_pass_vbr(cpi);
2027 vp9_rc_set_frame_target(cpi, target);
2028 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0)
2029 vp9_cyclic_refresh_update_parameters(cpi);
2030 }
2031
calc_pframe_target_size_one_pass_cbr(const VP9_COMP * cpi)2032 static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
2033 const VP9EncoderConfig *oxcf = &cpi->oxcf;
2034 const RATE_CONTROL *rc = &cpi->rc;
2035 const SVC *const svc = &cpi->svc;
2036 const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
2037 const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
2038 int min_frame_target =
2039 VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
2040 int target;
2041
2042 if (oxcf->gf_cbr_boost_pct) {
2043 const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
2044 target = cpi->refresh_golden_frame
2045 ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval *
2046 af_ratio_pct) /
2047 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100)
2048 : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
2049 (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
2050 } else {
2051 target = rc->avg_frame_bandwidth;
2052 }
2053 if (is_one_pass_cbr_svc(cpi)) {
2054 // Note that for layers, avg_frame_bandwidth is the cumulative
2055 // per-frame-bandwidth. For the target size of this frame, use the
2056 // layer average frame size (i.e., non-cumulative per-frame-bw).
2057 int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2058 svc->number_temporal_layers);
2059 const LAYER_CONTEXT *lc = &svc->layer_context[layer];
2060 target = lc->avg_frame_size;
2061 min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
2062 }
2063 if (diff > 0) {
2064 // Lower the target bandwidth for this frame.
2065 const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
2066 target -= (target * pct_low) / 200;
2067 } else if (diff < 0) {
2068 // Increase the target bandwidth for this frame.
2069 const int pct_high =
2070 (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
2071 target += (target * pct_high) / 200;
2072 }
2073 if (oxcf->rc_max_inter_bitrate_pct) {
2074 const int max_rate =
2075 rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
2076 target = VPXMIN(target, max_rate);
2077 }
2078 return VPXMAX(min_frame_target, target);
2079 }
2080
calc_iframe_target_size_one_pass_cbr(const VP9_COMP * cpi)2081 static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
2082 const RATE_CONTROL *rc = &cpi->rc;
2083 const VP9EncoderConfig *oxcf = &cpi->oxcf;
2084 const SVC *const svc = &cpi->svc;
2085 int target;
2086 if (cpi->common.current_video_frame == 0) {
2087 target = ((rc->starting_buffer_level / 2) > INT_MAX)
2088 ? INT_MAX
2089 : (int)(rc->starting_buffer_level / 2);
2090 } else {
2091 int kf_boost = 32;
2092 double framerate = cpi->framerate;
2093 if (svc->number_temporal_layers > 1 && oxcf->rc_mode == VPX_CBR) {
2094 // Use the layer framerate for temporal layers CBR mode.
2095 const int layer =
2096 LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2097 svc->number_temporal_layers);
2098 const LAYER_CONTEXT *lc = &svc->layer_context[layer];
2099 framerate = lc->framerate;
2100 }
2101 kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16));
2102 if (rc->frames_since_key < framerate / 2) {
2103 kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
2104 }
2105 target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
2106 }
2107 return vp9_rc_clamp_iframe_target_size(cpi, target);
2108 }
2109
set_intra_only_frame(VP9_COMP * cpi)2110 static void set_intra_only_frame(VP9_COMP *cpi) {
2111 VP9_COMMON *const cm = &cpi->common;
2112 SVC *const svc = &cpi->svc;
2113 // Don't allow intra_only frame for bypass/flexible SVC mode, or if number
2114 // of spatial layers is 1 or if number of spatial or temporal layers > 3.
2115 // Also if intra-only is inserted on very first frame, don't allow if
2116 // if number of temporal layers > 1. This is because on intra-only frame
2117 // only 3 reference buffers can be updated, but for temporal layers > 1
2118 // we generally need to use buffer slots 4 and 5.
2119 if ((cm->current_video_frame == 0 && svc->number_temporal_layers > 1) ||
2120 svc->temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS ||
2121 svc->number_spatial_layers > 3 || svc->number_temporal_layers > 3 ||
2122 svc->number_spatial_layers == 1)
2123 return;
2124 cm->show_frame = 0;
2125 cm->intra_only = 1;
2126 cm->frame_type = INTER_FRAME;
2127 cpi->ext_refresh_frame_flags_pending = 1;
2128 cpi->ext_refresh_last_frame = 1;
2129 cpi->ext_refresh_golden_frame = 1;
2130 cpi->ext_refresh_alt_ref_frame = 1;
2131 if (cm->current_video_frame == 0) {
2132 cpi->lst_fb_idx = 0;
2133 cpi->gld_fb_idx = 1;
2134 cpi->alt_fb_idx = 2;
2135 } else {
2136 int i;
2137 int count = 0;
2138 cpi->lst_fb_idx = -1;
2139 cpi->gld_fb_idx = -1;
2140 cpi->alt_fb_idx = -1;
2141 // For intra-only frame we need to refresh all slots that were
2142 // being used for the base layer (fb_idx_base[i] == 1).
2143 // Start with assigning last first, then golden and then alt.
2144 for (i = 0; i < REF_FRAMES; ++i) {
2145 if (svc->fb_idx_base[i] == 1) count++;
2146 if (count == 1 && cpi->lst_fb_idx == -1) cpi->lst_fb_idx = i;
2147 if (count == 2 && cpi->gld_fb_idx == -1) cpi->gld_fb_idx = i;
2148 if (count == 3 && cpi->alt_fb_idx == -1) cpi->alt_fb_idx = i;
2149 }
2150 // If golden or alt is not being used for base layer, then set them
2151 // to the lst_fb_idx.
2152 if (cpi->gld_fb_idx == -1) cpi->gld_fb_idx = cpi->lst_fb_idx;
2153 if (cpi->alt_fb_idx == -1) cpi->alt_fb_idx = cpi->lst_fb_idx;
2154 }
2155 }
2156
vp9_rc_get_svc_params(VP9_COMP * cpi)2157 void vp9_rc_get_svc_params(VP9_COMP *cpi) {
2158 VP9_COMMON *const cm = &cpi->common;
2159 RATE_CONTROL *const rc = &cpi->rc;
2160 SVC *const svc = &cpi->svc;
2161 int target = rc->avg_frame_bandwidth;
2162 int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2163 svc->number_temporal_layers);
2164 if (svc->first_spatial_layer_to_encode)
2165 svc->layer_context[svc->temporal_layer_id].is_key_frame = 0;
2166 // Periodic key frames is based on the super-frame counter
2167 // (svc.current_superframe), also only base spatial layer is key frame.
2168 // Key frame is set for any of the following: very first frame, frame flags
2169 // indicates key, superframe counter hits key frequencey, or (non-intra) sync
2170 // flag is set for spatial layer 0.
2171 if ((cm->current_video_frame == 0 && !svc->previous_frame_is_intra_only) ||
2172 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
2173 (cpi->oxcf.auto_key &&
2174 (svc->current_superframe % cpi->oxcf.key_freq == 0) &&
2175 !svc->previous_frame_is_intra_only && svc->spatial_layer_id == 0) ||
2176 (svc->spatial_layer_sync[0] == 1 && svc->spatial_layer_id == 0)) {
2177 cm->frame_type = KEY_FRAME;
2178 rc->source_alt_ref_active = 0;
2179 if (is_one_pass_cbr_svc(cpi)) {
2180 if (cm->current_video_frame > 0) vp9_svc_reset_temporal_layers(cpi, 1);
2181 layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
2182 svc->number_temporal_layers);
2183 svc->layer_context[layer].is_key_frame = 1;
2184 cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
2185 // Assumption here is that LAST_FRAME is being updated for a keyframe.
2186 // Thus no change in update flags.
2187 target = calc_iframe_target_size_one_pass_cbr(cpi);
2188 }
2189 } else {
2190 cm->frame_type = INTER_FRAME;
2191 if (is_one_pass_cbr_svc(cpi)) {
2192 LAYER_CONTEXT *lc = &svc->layer_context[layer];
2193 // Add condition current_video_frame > 0 for the case where first frame
2194 // is intra only followed by overlay/copy frame. In this case we don't
2195 // want to reset is_key_frame to 0 on overlay/copy frame.
2196 lc->is_key_frame =
2197 (svc->spatial_layer_id == 0 && cm->current_video_frame > 0)
2198 ? 0
2199 : svc->layer_context[svc->temporal_layer_id].is_key_frame;
2200 target = calc_pframe_target_size_one_pass_cbr(cpi);
2201 }
2202 }
2203
2204 // Check if superframe contains a sync layer request.
2205 vp9_svc_check_spatial_layer_sync(cpi);
2206
2207 // If long term termporal feature is enabled, set the period of the update.
2208 // The update/refresh of this reference frame is always on base temporal
2209 // layer frame.
2210 if (svc->use_gf_temporal_ref_current_layer) {
2211 // Only use gf long-term prediction on non-key superframes.
2212 if (!svc->layer_context[svc->temporal_layer_id].is_key_frame) {
2213 // Use golden for this reference, which will be used for prediction.
2214 int index = svc->spatial_layer_id;
2215 if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
2216 assert(index >= 0);
2217 cpi->gld_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
2218 // Enable prediction off LAST (last reference) and golden (which will
2219 // generally be further behind/long-term reference).
2220 cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
2221 }
2222 // Check for update/refresh of reference: only refresh on base temporal
2223 // layer.
2224 if (svc->temporal_layer_id == 0) {
2225 if (svc->layer_context[svc->temporal_layer_id].is_key_frame) {
2226 // On key frame we update the buffer index used for long term reference.
2227 // Use the alt_ref since it is not used or updated on key frames.
2228 int index = svc->spatial_layer_id;
2229 if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
2230 assert(index >= 0);
2231 cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
2232 cpi->ext_refresh_alt_ref_frame = 1;
2233 } else if (rc->frames_till_gf_update_due == 0) {
2234 // Set perdiod of next update. Make it a multiple of 10, as the cyclic
2235 // refresh is typically ~10%, and we'd like the update to happen after
2236 // a few cylces of the refresh (so it better quality frame). Note the
2237 // cyclic refresh for SVC only operates on base temporal layer frames.
2238 // Choose 20 as perdiod for now (2 cycles).
2239 rc->baseline_gf_interval = 20;
2240 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2241 cpi->ext_refresh_golden_frame = 1;
2242 rc->gfu_boost = DEFAULT_GF_BOOST;
2243 }
2244 }
2245 } else if (!svc->use_gf_temporal_ref) {
2246 rc->frames_till_gf_update_due = INT_MAX;
2247 rc->baseline_gf_interval = INT_MAX;
2248 }
2249 if (svc->set_intra_only_frame) {
2250 set_intra_only_frame(cpi);
2251 target = calc_iframe_target_size_one_pass_cbr(cpi);
2252 }
2253 // Any update/change of global cyclic refresh parameters (amount/delta-qp)
2254 // should be done here, before the frame qp is selected.
2255 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2256 vp9_cyclic_refresh_update_parameters(cpi);
2257
2258 vp9_rc_set_frame_target(cpi, target);
2259 if (cm->show_frame) update_buffer_level_svc_preencode(cpi);
2260 }
2261
vp9_rc_get_one_pass_cbr_params(VP9_COMP * cpi)2262 void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
2263 VP9_COMMON *const cm = &cpi->common;
2264 RATE_CONTROL *const rc = &cpi->rc;
2265 int target;
2266 if ((cm->current_video_frame == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY) ||
2267 rc->frames_to_key == 0) {
2268 cm->frame_type = KEY_FRAME;
2269 rc->frames_to_key = cpi->oxcf.key_freq;
2270 rc->kf_boost = DEFAULT_KF_BOOST;
2271 rc->source_alt_ref_active = 0;
2272 } else {
2273 cm->frame_type = INTER_FRAME;
2274 }
2275 if (rc->frames_till_gf_update_due == 0) {
2276 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2277 vp9_cyclic_refresh_set_golden_update(cpi);
2278 else
2279 rc->baseline_gf_interval =
2280 (rc->min_gf_interval + rc->max_gf_interval) / 2;
2281 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2282 // NOTE: frames_till_gf_update_due must be <= frames_to_key.
2283 if (rc->frames_till_gf_update_due > rc->frames_to_key)
2284 rc->frames_till_gf_update_due = rc->frames_to_key;
2285 cpi->refresh_golden_frame = 1;
2286 rc->gfu_boost = DEFAULT_GF_BOOST;
2287 }
2288
2289 // Any update/change of global cyclic refresh parameters (amount/delta-qp)
2290 // should be done here, before the frame qp is selected.
2291 if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2292 vp9_cyclic_refresh_update_parameters(cpi);
2293
2294 if (frame_is_intra_only(cm))
2295 target = calc_iframe_target_size_one_pass_cbr(cpi);
2296 else
2297 target = calc_pframe_target_size_one_pass_cbr(cpi);
2298
2299 vp9_rc_set_frame_target(cpi, target);
2300
2301 if (cm->show_frame) update_buffer_level_preencode(cpi);
2302
2303 if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC)
2304 cpi->resize_pending = vp9_resize_one_pass_cbr(cpi);
2305 else
2306 cpi->resize_pending = 0;
2307 }
2308
vp9_compute_qdelta(const RATE_CONTROL * rc,double qstart,double qtarget,vpx_bit_depth_t bit_depth)2309 int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
2310 vpx_bit_depth_t bit_depth) {
2311 int start_index = rc->worst_quality;
2312 int target_index = rc->worst_quality;
2313 int i;
2314
2315 // Convert the average q value to an index.
2316 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
2317 start_index = i;
2318 if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart) break;
2319 }
2320
2321 // Convert the q target to an index
2322 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
2323 target_index = i;
2324 if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget) break;
2325 }
2326
2327 return target_index - start_index;
2328 }
2329
vp9_compute_qdelta_by_rate(const RATE_CONTROL * rc,FRAME_TYPE frame_type,int qindex,double rate_target_ratio,vpx_bit_depth_t bit_depth)2330 int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
2331 int qindex, double rate_target_ratio,
2332 vpx_bit_depth_t bit_depth) {
2333 int target_index = rc->worst_quality;
2334 int i;
2335
2336 // Look up the current projected bits per block for the base index
2337 const int base_bits_per_mb =
2338 vp9_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
2339
2340 // Find the target bits per mb based on the base value and given ratio.
2341 const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
2342
2343 // Convert the q target to an index
2344 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
2345 if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <=
2346 target_bits_per_mb) {
2347 target_index = i;
2348 break;
2349 }
2350 }
2351 return target_index - qindex;
2352 }
2353
vp9_rc_set_gf_interval_range(const VP9_COMP * const cpi,RATE_CONTROL * const rc)2354 void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi,
2355 RATE_CONTROL *const rc) {
2356 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2357
2358 // Special case code for 1 pass fixed Q mode tests
2359 if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
2360 rc->max_gf_interval = FIXED_GF_INTERVAL;
2361 rc->min_gf_interval = FIXED_GF_INTERVAL;
2362 rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
2363 } else {
2364 // Set Maximum gf/arf interval
2365 rc->max_gf_interval = oxcf->max_gf_interval;
2366 rc->min_gf_interval = oxcf->min_gf_interval;
2367 if (rc->min_gf_interval == 0)
2368 rc->min_gf_interval = vp9_rc_get_default_min_gf_interval(
2369 oxcf->width, oxcf->height, cpi->framerate);
2370 if (rc->max_gf_interval == 0)
2371 rc->max_gf_interval = vp9_rc_get_default_max_gf_interval(
2372 cpi->framerate, rc->min_gf_interval);
2373
2374 // Extended max interval for genuinely static scenes like slide shows.
2375 rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
2376
2377 if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
2378 rc->max_gf_interval = rc->static_scene_max_gf_interval;
2379
2380 // Clamp min to max
2381 rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval);
2382
2383 if (oxcf->target_level == LEVEL_AUTO) {
2384 const uint32_t pic_size = cpi->common.width * cpi->common.height;
2385 const uint32_t pic_breadth =
2386 VPXMAX(cpi->common.width, cpi->common.height);
2387 int i;
2388 for (i = LEVEL_1; i < LEVEL_MAX; ++i) {
2389 if (vp9_level_defs[i].max_luma_picture_size >= pic_size &&
2390 vp9_level_defs[i].max_luma_picture_breadth >= pic_breadth) {
2391 if (rc->min_gf_interval <=
2392 (int)vp9_level_defs[i].min_altref_distance) {
2393 rc->min_gf_interval =
2394 (int)vp9_level_defs[i].min_altref_distance + 1;
2395 rc->max_gf_interval =
2396 VPXMAX(rc->max_gf_interval, rc->min_gf_interval);
2397 }
2398 break;
2399 }
2400 }
2401 }
2402 }
2403 }
2404
vp9_rc_update_framerate(VP9_COMP * cpi)2405 void vp9_rc_update_framerate(VP9_COMP *cpi) {
2406 const VP9_COMMON *const cm = &cpi->common;
2407 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2408 RATE_CONTROL *const rc = &cpi->rc;
2409 int vbr_max_bits;
2410
2411 rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
2412 rc->min_frame_bandwidth =
2413 (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
2414
2415 rc->min_frame_bandwidth =
2416 VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
2417
2418 // A maximum bitrate for a frame is defined.
2419 // However this limit is extended if a very high rate is given on the command
2420 // line or the the rate cannnot be acheived because of a user specificed max q
2421 // (e.g. when the user specifies lossless encode).
2422 //
2423 // If a level is specified that requires a lower maximum rate then the level
2424 // value take precedence.
2425 vbr_max_bits =
2426 (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
2427 100);
2428 rc->max_frame_bandwidth =
2429 VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
2430
2431 vp9_rc_set_gf_interval_range(cpi, rc);
2432 }
2433
2434 #define VBR_PCT_ADJUSTMENT_LIMIT 50
2435 // For VBR...adjustment to the frame target based on error from previous frames
vbr_rate_correction(VP9_COMP * cpi,int * this_frame_target)2436 static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) {
2437 RATE_CONTROL *const rc = &cpi->rc;
2438 int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
2439 int max_delta;
2440 int frame_window = VPXMIN(16, ((int)cpi->twopass.total_stats.count -
2441 cpi->common.current_video_frame));
2442
2443 // Calcluate the adjustment to rate for this frame.
2444 if (frame_window > 0) {
2445 max_delta = (vbr_bits_off_target > 0)
2446 ? (int)(vbr_bits_off_target / frame_window)
2447 : (int)(-vbr_bits_off_target / frame_window);
2448
2449 max_delta = VPXMIN(max_delta,
2450 ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
2451
2452 // vbr_bits_off_target > 0 means we have extra bits to spend
2453 if (vbr_bits_off_target > 0) {
2454 *this_frame_target += (vbr_bits_off_target > max_delta)
2455 ? max_delta
2456 : (int)vbr_bits_off_target;
2457 } else {
2458 *this_frame_target -= (vbr_bits_off_target < -max_delta)
2459 ? max_delta
2460 : (int)-vbr_bits_off_target;
2461 }
2462 }
2463
2464 // Fast redistribution of bits arising from massive local undershoot.
2465 // Dont do it for kf,arf,gf or overlay frames.
2466 if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
2467 rc->vbr_bits_off_target_fast) {
2468 int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target);
2469 int fast_extra_bits;
2470 fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
2471 fast_extra_bits = (int)VPXMIN(
2472 fast_extra_bits,
2473 VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
2474 *this_frame_target += (int)fast_extra_bits;
2475 rc->vbr_bits_off_target_fast -= fast_extra_bits;
2476 }
2477 }
2478
vp9_set_target_rate(VP9_COMP * cpi)2479 void vp9_set_target_rate(VP9_COMP *cpi) {
2480 RATE_CONTROL *const rc = &cpi->rc;
2481 int target_rate = rc->base_frame_target;
2482
2483 if (cpi->common.frame_type == KEY_FRAME)
2484 target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
2485 else
2486 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
2487
2488 if (!cpi->oxcf.vbr_corpus_complexity) {
2489 // Correction to rate target based on prior over or under shoot.
2490 if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ)
2491 vbr_rate_correction(cpi, &target_rate);
2492 }
2493 vp9_rc_set_frame_target(cpi, target_rate);
2494 }
2495
2496 // Check if we should resize, based on average QP from past x frames.
2497 // Only allow for resize at most one scale down for now, scaling factor is 2.
vp9_resize_one_pass_cbr(VP9_COMP * cpi)2498 int vp9_resize_one_pass_cbr(VP9_COMP *cpi) {
2499 const VP9_COMMON *const cm = &cpi->common;
2500 RATE_CONTROL *const rc = &cpi->rc;
2501 RESIZE_ACTION resize_action = NO_RESIZE;
2502 int avg_qp_thr1 = 70;
2503 int avg_qp_thr2 = 50;
2504 int min_width = 180;
2505 int min_height = 180;
2506 int down_size_on = 1;
2507 cpi->resize_scale_num = 1;
2508 cpi->resize_scale_den = 1;
2509 // Don't resize on key frame; reset the counters on key frame.
2510 if (cm->frame_type == KEY_FRAME) {
2511 cpi->resize_avg_qp = 0;
2512 cpi->resize_count = 0;
2513 return 0;
2514 }
2515 // Check current frame reslution to avoid generating frames smaller than
2516 // the minimum resolution.
2517 if (ONEHALFONLY_RESIZE) {
2518 if ((cm->width >> 1) < min_width || (cm->height >> 1) < min_height)
2519 down_size_on = 0;
2520 } else {
2521 if (cpi->resize_state == ORIG &&
2522 (cm->width * 3 / 4 < min_width || cm->height * 3 / 4 < min_height))
2523 return 0;
2524 else if (cpi->resize_state == THREE_QUARTER &&
2525 ((cpi->oxcf.width >> 1) < min_width ||
2526 (cpi->oxcf.height >> 1) < min_height))
2527 down_size_on = 0;
2528 }
2529
2530 #if CONFIG_VP9_TEMPORAL_DENOISING
2531 // If denoiser is on, apply a smaller qp threshold.
2532 if (cpi->oxcf.noise_sensitivity > 0) {
2533 avg_qp_thr1 = 60;
2534 avg_qp_thr2 = 40;
2535 }
2536 #endif
2537
2538 // Resize based on average buffer underflow and QP over some window.
2539 // Ignore samples close to key frame, since QP is usually high after key.
2540 if (cpi->rc.frames_since_key > 2 * cpi->framerate) {
2541 const int window = (int)(4 * cpi->framerate);
2542 cpi->resize_avg_qp += cm->base_qindex;
2543 if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100))
2544 ++cpi->resize_buffer_underflow;
2545 ++cpi->resize_count;
2546 // Check for resize action every "window" frames.
2547 if (cpi->resize_count >= window) {
2548 int avg_qp = cpi->resize_avg_qp / cpi->resize_count;
2549 // Resize down if buffer level has underflowed sufficient amount in past
2550 // window, and we are at original or 3/4 of original resolution.
2551 // Resize back up if average QP is low, and we are currently in a resized
2552 // down state, i.e. 1/2 or 3/4 of original resolution.
2553 // Currently, use a flag to turn 3/4 resizing feature on/off.
2554 if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) {
2555 if (cpi->resize_state == THREE_QUARTER && down_size_on) {
2556 resize_action = DOWN_ONEHALF;
2557 cpi->resize_state = ONE_HALF;
2558 } else if (cpi->resize_state == ORIG) {
2559 resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR;
2560 cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER;
2561 }
2562 } else if (cpi->resize_state != ORIG &&
2563 avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) {
2564 if (cpi->resize_state == THREE_QUARTER ||
2565 avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 ||
2566 ONEHALFONLY_RESIZE) {
2567 resize_action = UP_ORIG;
2568 cpi->resize_state = ORIG;
2569 } else if (cpi->resize_state == ONE_HALF) {
2570 resize_action = UP_THREEFOUR;
2571 cpi->resize_state = THREE_QUARTER;
2572 }
2573 }
2574 // Reset for next window measurement.
2575 cpi->resize_avg_qp = 0;
2576 cpi->resize_count = 0;
2577 cpi->resize_buffer_underflow = 0;
2578 }
2579 }
2580 // If decision is to resize, reset some quantities, and check is we should
2581 // reduce rate correction factor,
2582 if (resize_action != NO_RESIZE) {
2583 int target_bits_per_frame;
2584 int active_worst_quality;
2585 int qindex;
2586 int tot_scale_change;
2587 if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) {
2588 cpi->resize_scale_num = 3;
2589 cpi->resize_scale_den = 4;
2590 } else if (resize_action == DOWN_ONEHALF) {
2591 cpi->resize_scale_num = 1;
2592 cpi->resize_scale_den = 2;
2593 } else { // UP_ORIG or anything else
2594 cpi->resize_scale_num = 1;
2595 cpi->resize_scale_den = 1;
2596 }
2597 tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) /
2598 (cpi->resize_scale_num * cpi->resize_scale_num);
2599 // Reset buffer level to optimal, update target size.
2600 rc->buffer_level = rc->optimal_buffer_level;
2601 rc->bits_off_target = rc->optimal_buffer_level;
2602 rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi);
2603 // Get the projected qindex, based on the scaled target frame size (scaled
2604 // so target_bits_per_mb in vp9_rc_regulate_q will be correct target).
2605 target_bits_per_frame = (resize_action >= 0)
2606 ? rc->this_frame_target * tot_scale_change
2607 : rc->this_frame_target / tot_scale_change;
2608 active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
2609 qindex = vp9_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality,
2610 active_worst_quality);
2611 // If resize is down, check if projected q index is close to worst_quality,
2612 // and if so, reduce the rate correction factor (since likely can afford
2613 // lower q for resized frame).
2614 if (resize_action > 0 && qindex > 90 * cpi->rc.worst_quality / 100) {
2615 rc->rate_correction_factors[INTER_NORMAL] *= 0.85;
2616 }
2617 // If resize is back up, check if projected q index is too much above the
2618 // current base_qindex, and if so, reduce the rate correction factor
2619 // (since prefer to keep q for resized frame at least close to previous q).
2620 if (resize_action < 0 && qindex > 130 * cm->base_qindex / 100) {
2621 rc->rate_correction_factors[INTER_NORMAL] *= 0.9;
2622 }
2623 }
2624 return resize_action;
2625 }
2626
adjust_gf_boost_lag_one_pass_vbr(VP9_COMP * cpi,uint64_t avg_sad_current)2627 static void adjust_gf_boost_lag_one_pass_vbr(VP9_COMP *cpi,
2628 uint64_t avg_sad_current) {
2629 VP9_COMMON *const cm = &cpi->common;
2630 RATE_CONTROL *const rc = &cpi->rc;
2631 int target;
2632 int found = 0;
2633 int found2 = 0;
2634 int frame;
2635 int i;
2636 uint64_t avg_source_sad_lag = avg_sad_current;
2637 int high_source_sad_lagindex = -1;
2638 int steady_sad_lagindex = -1;
2639 uint32_t sad_thresh1 = 70000;
2640 uint32_t sad_thresh2 = 120000;
2641 int low_content = 0;
2642 int high_content = 0;
2643 double rate_err = 1.0;
2644 // Get measure of complexity over the future frames, and get the first
2645 // future frame with high_source_sad/scene-change.
2646 int tot_frames = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
2647 for (frame = tot_frames; frame >= 1; --frame) {
2648 const int lagframe_idx = tot_frames - frame + 1;
2649 uint64_t reference_sad = rc->avg_source_sad[0];
2650 for (i = 1; i < lagframe_idx; ++i) {
2651 if (rc->avg_source_sad[i] > 0)
2652 reference_sad = (3 * reference_sad + rc->avg_source_sad[i]) >> 2;
2653 }
2654 // Detect up-coming scene change.
2655 if (!found &&
2656 (rc->avg_source_sad[lagframe_idx] >
2657 VPXMAX(sad_thresh1, (unsigned int)(reference_sad << 1)) ||
2658 rc->avg_source_sad[lagframe_idx] >
2659 VPXMAX(3 * sad_thresh1 >> 2,
2660 (unsigned int)(reference_sad << 2)))) {
2661 high_source_sad_lagindex = lagframe_idx;
2662 found = 1;
2663 }
2664 // Detect change from motion to steady.
2665 if (!found2 && lagframe_idx > 1 && lagframe_idx < tot_frames &&
2666 rc->avg_source_sad[lagframe_idx - 1] > (sad_thresh1 >> 2)) {
2667 found2 = 1;
2668 for (i = lagframe_idx; i < tot_frames; ++i) {
2669 if (!(rc->avg_source_sad[i] > 0 &&
2670 rc->avg_source_sad[i] < (sad_thresh1 >> 2) &&
2671 rc->avg_source_sad[i] <
2672 (rc->avg_source_sad[lagframe_idx - 1] >> 1))) {
2673 found2 = 0;
2674 i = tot_frames;
2675 }
2676 }
2677 if (found2) steady_sad_lagindex = lagframe_idx;
2678 }
2679 avg_source_sad_lag += rc->avg_source_sad[lagframe_idx];
2680 }
2681 if (tot_frames > 0) avg_source_sad_lag = avg_source_sad_lag / tot_frames;
2682 // Constrain distance between detected scene cuts.
2683 if (high_source_sad_lagindex != -1 &&
2684 high_source_sad_lagindex != rc->high_source_sad_lagindex - 1 &&
2685 abs(high_source_sad_lagindex - rc->high_source_sad_lagindex) < 4)
2686 rc->high_source_sad_lagindex = -1;
2687 else
2688 rc->high_source_sad_lagindex = high_source_sad_lagindex;
2689 // Adjust some factors for the next GF group, ignore initial key frame,
2690 // and only for lag_in_frames not too small.
2691 if (cpi->refresh_golden_frame == 1 && cm->current_video_frame > 30 &&
2692 cpi->oxcf.lag_in_frames > 8) {
2693 int frame_constraint;
2694 if (rc->rolling_target_bits > 0)
2695 rate_err =
2696 (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits;
2697 high_content = high_source_sad_lagindex != -1 ||
2698 avg_source_sad_lag > (rc->prev_avg_source_sad_lag << 1) ||
2699 avg_source_sad_lag > sad_thresh2;
2700 low_content = high_source_sad_lagindex == -1 &&
2701 ((avg_source_sad_lag < (rc->prev_avg_source_sad_lag >> 1)) ||
2702 (avg_source_sad_lag < sad_thresh1));
2703 if (low_content) {
2704 rc->gfu_boost = DEFAULT_GF_BOOST;
2705 rc->baseline_gf_interval =
2706 VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1);
2707 } else if (high_content) {
2708 rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
2709 rc->baseline_gf_interval = (rate_err > 3.0)
2710 ? VPXMAX(10, rc->baseline_gf_interval >> 1)
2711 : VPXMAX(6, rc->baseline_gf_interval >> 1);
2712 }
2713 if (rc->baseline_gf_interval > cpi->oxcf.lag_in_frames - 1)
2714 rc->baseline_gf_interval = cpi->oxcf.lag_in_frames - 1;
2715 // Check for constraining gf_interval for up-coming scene/content changes,
2716 // or for up-coming key frame, whichever is closer.
2717 frame_constraint = rc->frames_to_key;
2718 if (rc->high_source_sad_lagindex > 0 &&
2719 frame_constraint > rc->high_source_sad_lagindex)
2720 frame_constraint = rc->high_source_sad_lagindex;
2721 if (steady_sad_lagindex > 3 && frame_constraint > steady_sad_lagindex)
2722 frame_constraint = steady_sad_lagindex;
2723 adjust_gfint_frame_constraint(cpi, frame_constraint);
2724 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2725 // Adjust factors for active_worst setting & af_ratio for next gf interval.
2726 rc->fac_active_worst_inter = 150; // corresponds to 3/2 (= 150 /100).
2727 rc->fac_active_worst_gf = 100;
2728 if (rate_err < 2.0 && !high_content) {
2729 rc->fac_active_worst_inter = 120;
2730 rc->fac_active_worst_gf = 90;
2731 } else if (rate_err > 8.0 && rc->avg_frame_qindex[INTER_FRAME] < 16) {
2732 // Increase active_worst faster at low Q if rate fluctuation is high.
2733 rc->fac_active_worst_inter = 200;
2734 if (rc->avg_frame_qindex[INTER_FRAME] < 8)
2735 rc->fac_active_worst_inter = 400;
2736 }
2737 if (low_content && rc->avg_frame_low_motion > 80) {
2738 rc->af_ratio_onepass_vbr = 15;
2739 } else if (high_content || rc->avg_frame_low_motion < 30) {
2740 rc->af_ratio_onepass_vbr = 5;
2741 rc->gfu_boost = DEFAULT_GF_BOOST >> 2;
2742 }
2743 if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf) {
2744 // Flag to disable usage of ARF based on past usage, only allow this
2745 // disabling if current frame/group does not start with key frame or
2746 // scene cut. Note perc_arf_usage is only computed for speed >= 5.
2747 int arf_usage_low =
2748 (cm->frame_type != KEY_FRAME && !rc->high_source_sad &&
2749 cpi->rc.perc_arf_usage < 15 && cpi->oxcf.speed >= 5);
2750 // Don't use alt-ref for this group under certain conditions.
2751 if (arf_usage_low ||
2752 (rc->high_source_sad_lagindex > 0 &&
2753 rc->high_source_sad_lagindex <= rc->frames_till_gf_update_due) ||
2754 (avg_source_sad_lag > 3 * sad_thresh1 >> 3)) {
2755 rc->source_alt_ref_pending = 0;
2756 rc->alt_ref_gf_group = 0;
2757 } else {
2758 rc->source_alt_ref_pending = 1;
2759 rc->alt_ref_gf_group = 1;
2760 // If alt-ref is used for this gf group, limit the interval.
2761 if (rc->baseline_gf_interval > 12) {
2762 rc->baseline_gf_interval = 12;
2763 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2764 }
2765 }
2766 }
2767 target = calc_pframe_target_size_one_pass_vbr(cpi);
2768 vp9_rc_set_frame_target(cpi, target);
2769 }
2770 rc->prev_avg_source_sad_lag = avg_source_sad_lag;
2771 }
2772
2773 // Compute average source sad (temporal sad: between current source and
2774 // previous source) over a subset of superblocks. Use this is detect big changes
2775 // in content and allow rate control to react.
2776 // This function also handles special case of lag_in_frames, to measure content
2777 // level in #future frames set by the lag_in_frames.
vp9_scene_detection_onepass(VP9_COMP * cpi)2778 void vp9_scene_detection_onepass(VP9_COMP *cpi) {
2779 VP9_COMMON *const cm = &cpi->common;
2780 RATE_CONTROL *const rc = &cpi->rc;
2781 YV12_BUFFER_CONFIG const *unscaled_src = cpi->un_scaled_source;
2782 YV12_BUFFER_CONFIG const *unscaled_last_src = cpi->unscaled_last_source;
2783 uint8_t *src_y;
2784 int src_ystride;
2785 int src_width;
2786 int src_height;
2787 uint8_t *last_src_y;
2788 int last_src_ystride;
2789 int last_src_width;
2790 int last_src_height;
2791 if (cpi->un_scaled_source == NULL || cpi->unscaled_last_source == NULL ||
2792 (cpi->use_svc && cpi->svc.current_superframe == 0))
2793 return;
2794 src_y = unscaled_src->y_buffer;
2795 src_ystride = unscaled_src->y_stride;
2796 src_width = unscaled_src->y_width;
2797 src_height = unscaled_src->y_height;
2798 last_src_y = unscaled_last_src->y_buffer;
2799 last_src_ystride = unscaled_last_src->y_stride;
2800 last_src_width = unscaled_last_src->y_width;
2801 last_src_height = unscaled_last_src->y_height;
2802 #if CONFIG_VP9_HIGHBITDEPTH
2803 if (cm->use_highbitdepth) return;
2804 #endif
2805 rc->high_source_sad = 0;
2806 rc->high_num_blocks_with_motion = 0;
2807 // For SVC: scene detection is only checked on first spatial layer of
2808 // the superframe using the original/unscaled resolutions.
2809 if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode &&
2810 src_width == last_src_width && src_height == last_src_height) {
2811 YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL };
2812 int num_mi_cols = cm->mi_cols;
2813 int num_mi_rows = cm->mi_rows;
2814 int start_frame = 0;
2815 int frames_to_buffer = 1;
2816 int frame = 0;
2817 int scene_cut_force_key_frame = 0;
2818 int num_zero_temp_sad = 0;
2819 uint64_t avg_sad_current = 0;
2820 uint32_t min_thresh = 10000;
2821 float thresh = 8.0f;
2822 uint32_t thresh_key = 140000;
2823 if (cpi->oxcf.speed <= 5) thresh_key = 240000;
2824 if (cpi->oxcf.content != VP9E_CONTENT_SCREEN) min_thresh = 65000;
2825 if (cpi->oxcf.rc_mode == VPX_VBR) thresh = 2.1f;
2826 if (cpi->use_svc && cpi->svc.number_spatial_layers > 1) {
2827 const int aligned_width = ALIGN_POWER_OF_TWO(src_width, MI_SIZE_LOG2);
2828 const int aligned_height = ALIGN_POWER_OF_TWO(src_height, MI_SIZE_LOG2);
2829 num_mi_cols = aligned_width >> MI_SIZE_LOG2;
2830 num_mi_rows = aligned_height >> MI_SIZE_LOG2;
2831 }
2832 if (cpi->oxcf.lag_in_frames > 0) {
2833 frames_to_buffer = (cm->current_video_frame == 1)
2834 ? (int)vp9_lookahead_depth(cpi->lookahead) - 1
2835 : 2;
2836 start_frame = (int)vp9_lookahead_depth(cpi->lookahead) - 1;
2837 for (frame = 0; frame < frames_to_buffer; ++frame) {
2838 const int lagframe_idx = start_frame - frame;
2839 if (lagframe_idx >= 0) {
2840 struct lookahead_entry *buf =
2841 vp9_lookahead_peek(cpi->lookahead, lagframe_idx);
2842 frames[frame] = &buf->img;
2843 }
2844 }
2845 // The avg_sad for this current frame is the value of frame#1
2846 // (first future frame) from previous frame.
2847 avg_sad_current = rc->avg_source_sad[1];
2848 if (avg_sad_current >
2849 VPXMAX(min_thresh,
2850 (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
2851 cm->current_video_frame > (unsigned int)cpi->oxcf.lag_in_frames)
2852 rc->high_source_sad = 1;
2853 else
2854 rc->high_source_sad = 0;
2855 if (rc->high_source_sad && avg_sad_current > thresh_key)
2856 scene_cut_force_key_frame = 1;
2857 // Update recursive average for current frame.
2858 if (avg_sad_current > 0)
2859 rc->avg_source_sad[0] =
2860 (3 * rc->avg_source_sad[0] + avg_sad_current) >> 2;
2861 // Shift back data, starting at frame#1.
2862 for (frame = 1; frame < cpi->oxcf.lag_in_frames - 1; ++frame)
2863 rc->avg_source_sad[frame] = rc->avg_source_sad[frame + 1];
2864 }
2865 for (frame = 0; frame < frames_to_buffer; ++frame) {
2866 if (cpi->oxcf.lag_in_frames == 0 ||
2867 (frames[frame] != NULL && frames[frame + 1] != NULL &&
2868 frames[frame]->y_width == frames[frame + 1]->y_width &&
2869 frames[frame]->y_height == frames[frame + 1]->y_height)) {
2870 int sbi_row, sbi_col;
2871 const int lagframe_idx =
2872 (cpi->oxcf.lag_in_frames == 0) ? 0 : start_frame - frame + 1;
2873 const BLOCK_SIZE bsize = BLOCK_64X64;
2874 // Loop over sub-sample of frame, compute average sad over 64x64 blocks.
2875 uint64_t avg_sad = 0;
2876 uint64_t tmp_sad = 0;
2877 int num_samples = 0;
2878 int sb_cols = (num_mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
2879 int sb_rows = (num_mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE;
2880 if (cpi->oxcf.lag_in_frames > 0) {
2881 src_y = frames[frame]->y_buffer;
2882 src_ystride = frames[frame]->y_stride;
2883 last_src_y = frames[frame + 1]->y_buffer;
2884 last_src_ystride = frames[frame + 1]->y_stride;
2885 }
2886 num_zero_temp_sad = 0;
2887 for (sbi_row = 0; sbi_row < sb_rows; ++sbi_row) {
2888 for (sbi_col = 0; sbi_col < sb_cols; ++sbi_col) {
2889 // Checker-board pattern, ignore boundary.
2890 if (((sbi_row > 0 && sbi_col > 0) &&
2891 (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) &&
2892 ((sbi_row % 2 == 0 && sbi_col % 2 == 0) ||
2893 (sbi_row % 2 != 0 && sbi_col % 2 != 0)))) {
2894 tmp_sad = cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
2895 last_src_ystride);
2896 avg_sad += tmp_sad;
2897 num_samples++;
2898 if (tmp_sad == 0) num_zero_temp_sad++;
2899 }
2900 src_y += 64;
2901 last_src_y += 64;
2902 }
2903 src_y += (src_ystride << 6) - (sb_cols << 6);
2904 last_src_y += (last_src_ystride << 6) - (sb_cols << 6);
2905 }
2906 if (num_samples > 0) avg_sad = avg_sad / num_samples;
2907 // Set high_source_sad flag if we detect very high increase in avg_sad
2908 // between current and previous frame value(s). Use minimum threshold
2909 // for cases where there is small change from content that is completely
2910 // static.
2911 if (lagframe_idx == 0) {
2912 if (avg_sad >
2913 VPXMAX(min_thresh,
2914 (unsigned int)(rc->avg_source_sad[0] * thresh)) &&
2915 rc->frames_since_key > 1 + cpi->svc.number_spatial_layers &&
2916 num_zero_temp_sad < 3 * (num_samples >> 2))
2917 rc->high_source_sad = 1;
2918 else
2919 rc->high_source_sad = 0;
2920 if (rc->high_source_sad && avg_sad > thresh_key)
2921 scene_cut_force_key_frame = 1;
2922 if (avg_sad > 0 || cpi->oxcf.rc_mode == VPX_CBR)
2923 rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad) >> 2;
2924 } else {
2925 rc->avg_source_sad[lagframe_idx] = avg_sad;
2926 }
2927 if (num_zero_temp_sad < (num_samples >> 1))
2928 rc->high_num_blocks_with_motion = 1;
2929 }
2930 }
2931 // For CBR non-screen content mode, check if we should reset the rate
2932 // control. Reset is done if high_source_sad is detected and the rate
2933 // control is at very low QP with rate correction factor at min level.
2934 if (cpi->oxcf.rc_mode == VPX_CBR &&
2935 cpi->oxcf.content != VP9E_CONTENT_SCREEN && !cpi->use_svc) {
2936 if (rc->high_source_sad && rc->last_q[INTER_FRAME] == rc->best_quality &&
2937 rc->avg_frame_qindex[INTER_FRAME] < (rc->best_quality << 1) &&
2938 rc->rate_correction_factors[INTER_NORMAL] == MIN_BPB_FACTOR) {
2939 rc->rate_correction_factors[INTER_NORMAL] = 0.5;
2940 rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality;
2941 rc->buffer_level = rc->optimal_buffer_level;
2942 rc->bits_off_target = rc->optimal_buffer_level;
2943 rc->reset_high_source_sad = 1;
2944 }
2945 if (cm->frame_type != KEY_FRAME && rc->reset_high_source_sad)
2946 rc->this_frame_target = rc->avg_frame_bandwidth;
2947 }
2948 // For SVC the new (updated) avg_source_sad[0] for the current superframe
2949 // updates the setting for all layers.
2950 if (cpi->use_svc) {
2951 int sl, tl;
2952 SVC *const svc = &cpi->svc;
2953 for (sl = 0; sl < svc->number_spatial_layers; ++sl)
2954 for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
2955 int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
2956 LAYER_CONTEXT *const lc = &svc->layer_context[layer];
2957 RATE_CONTROL *const lrc = &lc->rc;
2958 lrc->avg_source_sad[0] = rc->avg_source_sad[0];
2959 }
2960 }
2961 // For VBR, under scene change/high content change, force golden refresh.
2962 if (cpi->oxcf.rc_mode == VPX_VBR && cm->frame_type != KEY_FRAME &&
2963 rc->high_source_sad && rc->frames_to_key > 3 &&
2964 rc->count_last_scene_change > 4 &&
2965 cpi->ext_refresh_frame_flags_pending == 0) {
2966 int target;
2967 cpi->refresh_golden_frame = 1;
2968 if (scene_cut_force_key_frame) cm->frame_type = KEY_FRAME;
2969 rc->source_alt_ref_pending = 0;
2970 if (cpi->sf.use_altref_onepass && cpi->oxcf.enable_auto_arf)
2971 rc->source_alt_ref_pending = 1;
2972 rc->gfu_boost = DEFAULT_GF_BOOST >> 1;
2973 rc->baseline_gf_interval =
2974 VPXMIN(20, VPXMAX(10, rc->baseline_gf_interval));
2975 adjust_gfint_frame_constraint(cpi, rc->frames_to_key);
2976 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2977 target = calc_pframe_target_size_one_pass_vbr(cpi);
2978 vp9_rc_set_frame_target(cpi, target);
2979 rc->count_last_scene_change = 0;
2980 } else {
2981 rc->count_last_scene_change++;
2982 }
2983 // If lag_in_frame is used, set the gf boost and interval.
2984 if (cpi->oxcf.lag_in_frames > 0)
2985 adjust_gf_boost_lag_one_pass_vbr(cpi, avg_sad_current);
2986 }
2987 }
2988
2989 // Test if encoded frame will significantly overshoot the target bitrate, and
2990 // if so, set the QP, reset/adjust some rate control parameters, and return 1.
2991 // frame_size = -1 means frame has not been encoded.
vp9_encodedframe_overshoot(VP9_COMP * cpi,int frame_size,int * q)2992 int vp9_encodedframe_overshoot(VP9_COMP *cpi, int frame_size, int *q) {
2993 VP9_COMMON *const cm = &cpi->common;
2994 RATE_CONTROL *const rc = &cpi->rc;
2995 SPEED_FEATURES *const sf = &cpi->sf;
2996 int thresh_qp = 7 * (rc->worst_quality >> 3);
2997 int thresh_rate = rc->avg_frame_bandwidth << 3;
2998 // Lower thresh_qp for video (more overshoot at lower Q) to be
2999 // more conservative for video.
3000 if (cpi->oxcf.content != VP9E_CONTENT_SCREEN)
3001 thresh_qp = rc->worst_quality >> 1;
3002 // If this decision is not based on an encoded frame size but just on
3003 // scene/slide change detection (i.e., re_encode_overshoot_cbr_rt ==
3004 // FAST_DETECTION_MAXQ), for now skip the (frame_size > thresh_rate)
3005 // condition in this case.
3006 // TODO(marpan): Use a better size/rate condition for this case and
3007 // adjust thresholds.
3008 if ((sf->overshoot_detection_cbr_rt == FAST_DETECTION_MAXQ ||
3009 frame_size > thresh_rate) &&
3010 cm->base_qindex < thresh_qp) {
3011 double rate_correction_factor =
3012 cpi->rc.rate_correction_factors[INTER_NORMAL];
3013 const int target_size = cpi->rc.avg_frame_bandwidth;
3014 double new_correction_factor;
3015 int target_bits_per_mb;
3016 double q2;
3017 int enumerator;
3018 // Force a re-encode, and for now use max-QP.
3019 *q = cpi->rc.worst_quality;
3020 cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0;
3021 cpi->rc.re_encode_maxq_scene_change = 1;
3022 // If the frame_size is much larger than the threshold (big content change)
3023 // and the encoded frame used alot of Intra modes, then force hybrid_intra
3024 // encoding for the re-encode on this scene change. hybrid_intra will
3025 // use rd-based intra mode selection for small blocks.
3026 if (sf->overshoot_detection_cbr_rt == RE_ENCODE_MAXQ &&
3027 frame_size > (thresh_rate << 1) && cpi->svc.spatial_layer_id == 0) {
3028 MODE_INFO **mi = cm->mi_grid_visible;
3029 int sum_intra_usage = 0;
3030 int mi_row, mi_col;
3031 int tot = 0;
3032 for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
3033 for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) {
3034 if (mi[0]->ref_frame[0] == INTRA_FRAME) sum_intra_usage++;
3035 tot++;
3036 mi++;
3037 }
3038 mi += 8;
3039 }
3040 sum_intra_usage = 100 * sum_intra_usage / (cm->mi_rows * cm->mi_cols);
3041 if (sum_intra_usage > 60) cpi->rc.hybrid_intra_scene_change = 1;
3042 }
3043 // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as
3044 // these parameters will affect QP selection for subsequent frames. If they
3045 // have settled down to a very different (low QP) state, then not adjusting
3046 // them may cause next frame to select low QP and overshoot again.
3047 cpi->rc.avg_frame_qindex[INTER_FRAME] = *q;
3048 rc->buffer_level = rc->optimal_buffer_level;
3049 rc->bits_off_target = rc->optimal_buffer_level;
3050 // Reset rate under/over-shoot flags.
3051 cpi->rc.rc_1_frame = 0;
3052 cpi->rc.rc_2_frame = 0;
3053 // Adjust rate correction factor.
3054 target_bits_per_mb =
3055 (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs);
3056 // Rate correction factor based on target_bits_per_mb and qp (==max_QP).
3057 // This comes from the inverse computation of vp9_rc_bits_per_mb().
3058 q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth);
3059 enumerator = 1800000; // Factor for inter frame.
3060 enumerator += (int)(enumerator * q2) >> 12;
3061 new_correction_factor = (double)target_bits_per_mb * q2 / enumerator;
3062 if (new_correction_factor > rate_correction_factor) {
3063 rate_correction_factor =
3064 VPXMIN(2.0 * rate_correction_factor, new_correction_factor);
3065 if (rate_correction_factor > MAX_BPB_FACTOR)
3066 rate_correction_factor = MAX_BPB_FACTOR;
3067 cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
3068 }
3069 // For temporal layers, reset the rate control parametes across all
3070 // temporal layers. If the first_spatial_layer_to_encode > 0, then this
3071 // superframe has skipped lower base layers. So in this case we should also
3072 // reset and force max-q for spatial layers < first_spatial_layer_to_encode.
3073 if (cpi->use_svc) {
3074 int tl = 0;
3075 int sl = 0;
3076 SVC *svc = &cpi->svc;
3077 for (sl = 0; sl < svc->first_spatial_layer_to_encode; ++sl) {
3078 for (tl = 0; tl < svc->number_temporal_layers; ++tl) {
3079 const int layer =
3080 LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers);
3081 LAYER_CONTEXT *lc = &svc->layer_context[layer];
3082 RATE_CONTROL *lrc = &lc->rc;
3083 lrc->avg_frame_qindex[INTER_FRAME] = *q;
3084 lrc->buffer_level = lrc->optimal_buffer_level;
3085 lrc->bits_off_target = lrc->optimal_buffer_level;
3086 lrc->rc_1_frame = 0;
3087 lrc->rc_2_frame = 0;
3088 lrc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor;
3089 lrc->force_max_q = 1;
3090 }
3091 }
3092 }
3093 return 1;
3094 } else {
3095 return 0;
3096 }
3097 }
3098