• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1
2
3
4
5<!DOCTYPE html>
6<html lang="en">
7<head>
8  <meta charset="utf-8"  />
9  <meta name="viewport" content="width=device-width,minimum-scale=1,initial-scale=1,shrink-to-fit=no"  />
10  <title>Architecture @ ImageMagick</title>
11  <meta name="application-name" content="ImageMagick" />
12  <meta name="description" content="Use ImageMagick® to create, edit, compose, or convert bitmap images. You can resize your image, crop it, change its shades and colors, add captions, among other operations." />
13  <meta name="application-url" content="https://imagemagick.org" />
14  <meta name="generator" content="PHP" />
15  <meta name="keywords" content="architecture, ImageMagick, PerlMagick, image processing, image, photo, software, Magick++, OpenMP, convert" />
16  <meta name="rating" content="GENERAL" />
17  <meta name="robots" content="INDEX, FOLLOW" />
18  <meta name="generator" content="ImageMagick Studio LLC" />
19  <meta name="author" content="ImageMagick Studio LLC" />
20  <meta name="revisit-after" content="2 DAYS" />
21  <meta name="resource-type" content="document" />
22  <meta name="copyright" content="Copyright (c) 1999-2019 ImageMagick Studio LLC" />
23  <meta name="distribution" content="Global" />
24  <meta name="magick-serial" content="P131-S030410-R485315270133-P82224-A6668-G1245-1" />
25  <meta name="google-site-verification" content="_bMOCDpkx9ZAzBwb2kF3PRHbfUUdFj2uO8Jd1AXArz4" />
26  <link href="../www/architecture.html" rel="canonical" />
27  <link href="../images/wand.png" rel="icon" />
28  <link href="../images/wand.ico" rel="shortcut icon" />
29  <link href="assets/magick.css" rel="stylesheet" />
30</head>
31<body>
32  <header>
33  <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark">
34    <a class="navbar-brand" href="../index.html"><img class="d-block" id="icon" alt="ImageMagick" width="32" height="32" src="../images/wand.ico"/></a>
35    <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarsMagick" aria-controls="navbarsMagick" aria-expanded="false" aria-label="Toggle navigation">
36      <span class="navbar-toggler-icon"></span>
37    </button>
38
39    <div class="navbar-collapse collapse" id="navbarsMagick" style="">
40    <ul class="navbar-nav mr-auto">
41      <li class="nav-item ">
42        <a class="nav-link" href="../index.html">Home <span class="sr-only">(current)</span></a>
43      </li>
44      <li class="nav-item ">
45        <a class="nav-link" href="download.html">Download</a>
46      </li>
47      <li class="nav-item ">
48        <a class="nav-link" href="command-line-tools.html">Tools</a>
49      </li>
50      <li class="nav-item ">
51        <a class="nav-link" href="command-line-processing.html">Command-line</a>
52      </li>
53      <li class="nav-item ">
54        <a class="nav-link" href="resources.html">Resources</a>
55      </li>
56      <li class="nav-item ">
57        <a class="nav-link" href="develop.html">Develop</a>
58      </li>
59      <li class="nav-item">
60        <a class="nav-link" target="_blank" href="https://imagemagick.org/discourse-server/">Community</a>
61      </li>
62    </ul>
63    <form class="form-inline my-2 my-lg-0" action="https://imagemagick.org/script/search.php">
64      <input class="form-control mr-sm-2" type="text" name="q" placeholder="Search" aria-label="Search">
65      <button class="btn btn-outline-success my-2 my-sm-0" type="submit" name="sa">Search</button>
66    </form>
67    </div>
68  </nav>
69  <div class="container">
70   <script async="async" src="http://localhost/pagead/js/adsbygoogle.js"></script>    <ins class="adsbygoogle"
71         style="display:block"
72         data-ad-client="ca-pub-3129977114552745"
73         data-ad-slot="6345125851"
74         data-ad-format="auto"></ins>
75    <script>
76      (adsbygoogle = window.adsbygoogle || []).push({});
77    </script>
78
79  </div>
80  </header>
81  <main class="container">
82    <div class="magick-template">
83<div class="magick-header">
84<p class="text-center"><a href="architecture.html#cache">The Pixel Cache</a> • <a href="architecture.html#stream">Streaming Pixels</a> • <a href="architecture.html#properties">Image Properties and Profiles</a> • <a href="architecture.html#tera-pixel">Large Image Support</a> • <a href="architecture.html#threads">Threads of Execution</a> • <a href="architecture.html#distributed">Heterogeneous Distributed Processing</a> • <a href="architecture.html#coders">Custom Image Coders</a> • <a href="architecture.html#filters">Custom Image Filters</a></p>
85
86<p class="lead magick-description">The citizens of Oz were quite content with their benefactor, the all-powerful Wizard.  They accepted his wisdom and benevolence without ever questioning the who, why, and where of his power.  Like the citizens of Oz, if you feel comfortable that ImageMagick can help you convert, edit, or compose your images without knowing what goes on behind the curtain, feel free to skip this section.  However, if you want to know more about the software and algorithms behind ImageMagick, read on.  To fully benefit from this discussion, you should be comfortable with image nomenclature and be familiar with computer programming.</p>
87
88<h2><a class="anchor" id="overview"></a>Architecture Overview</h2>
89
90<p>An image typically consists of a rectangular region of pixels and metadata.  To convert, edit, or compose an image in an efficient manner, we need convenient access to any pixel anywhere within the region (and sometimes outside the region).  And in the case of an image sequence, we need access to any pixel of any region of any image in the sequence.  However, there are hundreds of image formats such JPEG, TIFF, PNG, GIF, etc., that makes it difficult to access pixels on demand.  Within these formats we find differences in:</p>
91
92<ul>
93  <li>colorspace (e.g sRGB, linear RGB, linear GRAY, CMYK, YUV, Lab, etc.)</li>
94  <li>bit depth (.e.g 1, 4, 8, 12, 16, etc.)</li>
95  <li>storage format (e.g. unsigned, signed, float, double, etc.)</li>
96  <li>compression (e.g. uncompressed, RLE, Zip, BZip, etc.)</li>
97  <li>orientation (i.e. top-to-bottom, right-to-left, etc.),</li>
98  <li>layout (.e.g. raw, interspersed with opcodes, etc.)</li>
99</ul>
100
101<p>In addition, some image pixels may require attenuation, some formats permit more than one frame, and some formats contain vector graphics that must first be rasterized (converted from vector to pixels).</p>
102
103<p>An efficient implementation of an image processing algorithm may require we get or set:</p>
104
105<ul>
106  <li>one pixel a time (e.g. pixel at location 10,3)</li>
107  <li>a single scanline (e.g. all pixels from row 4)</li>
108  <li>a few scanlines at once (e.g. pixel rows 4-7)</li>
109  <li>a single column or columns of pixels (e.g. all pixels from column 11)</li>
110  <li>an arbitrary region of pixels from the image (e.g. pixels defined at 10,7 to 10,19)</li>
111  <li>a pixel in random order (e.g. pixel at 14,15 and 640,480)</li>
112  <li>pixels from two different images (e.g. pixel at 5,1 from image 1 and pixel at 5,1 from image 2)</li>
113  <li>pixels outside the boundaries of the image (e.g. pixel at -1,-3)</li>
114  <li>a pixel component that is unsigned (65311) or in a floating-point representation (e.g. 0.17836)</li>
115  <li>a high-dynamic range pixel that can include negative values (e.g. -0.00716) as well as values that exceed the quantum depth (e.g. 65931)</li>
116  <li>one or more pixels simultaneously in different threads of execution</li>
117  <li>all the pixels in memory to take advantage of speed-ups offered by executing in concert across heterogeneous platforms consisting of CPUs, GPUs, and other processors</li>
118  <li>traits associated with each channel to specify whether the pixel channel is copied, updated, or blended</li>
119  <li>masks that define which pixels are eligible to be updated</li>
120  <li>extra channels that benefits the user but otherwise remain untouched by ImageMagick image processing algorithms</li>
121</ul>
122
123<p>Given the varied image formats and image processing requirements, we implemented the ImageMagick <a href="architecture.html#cache">pixel cache</a> to provide convenient sequential or parallel access to any pixel on demand anywhere inside the image region (i.e. <a href="architecture.html#authentic-pixels">authentic pixels</a>)  and from any image in a sequence.  In addition, the pixel cache permits access to pixels outside the boundaries defined by the image (i.e. <a href="architecture.html#virtual-pixels">virtual pixels</a>).</p>
124
125<p>In addition to pixels, images have a plethora of <a href="architecture.html#properties">image properties and profiles</a>.  Properties include the well known attributes such as width, height, depth, and colorspace.  An image may have optional properties which might include the image author, a comment, a create date, and others.  Some images also include profiles for color management, or EXIF, IPTC, 8BIM, or XMP informational profiles.  ImageMagick provides command line options and programming methods to get, set, or view image properties or profiles or apply profiles.</p>
126
127<p>ImageMagick consists of nearly a half million lines of C code and optionally depends on several million lines of code in dependent libraries (e.g. JPEG, PNG, TIFF libraries).  Given that, one might expect a huge architecture document.  However, a great majority of image processing is simply accessing pixels and its metadata and our simple, elegant, and efficient implementation makes this easy for the ImageMagick developer.  We discuss the implementation of the pixel cache and getting and setting image properties and profiles in the next few sections. Next, we discuss using ImageMagick within a <a href="architecture.html#threads">thread</a> of execution.  In the final sections, we discuss <a href="architecture.html#coders">image coders</a> to read or write a particular image format followed by a few words on creating a <a href="architecture.html#filters">filter</a> to access or update pixels based on your custom requirements.</p>
128
129<h2><a class="anchor" id="cache"></a>The Pixel Cache</h2>
130
131<p>The ImageMagick pixel cache is a repository for image pixels with up to 32 channels.  The channels are stored contiguously at the depth specified when ImageMagick was built.  The channel depths are 8 bits-per-pixel component for the Q8 version of ImageMagick, 16 bits-per-pixel component for the Q16 version, and 32 bits-per-pixel component for the Q32 version.  By default pixel components are 32-bit floating-bit <a href="high-dynamic-range.html">high dynamic-range</a> quantities. The channels can hold any value but typically contain red, green, blue, and alpha intensities or cyan, magenta, yellow, black and alpha intensities.  A channel might contain the colormap indexes for colormapped images or the black channel for CMYK images.  The pixel cache storage may be heap memory, disk-backed memory mapped, or on disk.  The pixel cache is reference-counted.  Only the cache properties are copied when the cache is cloned.  The cache pixels are subsequently copied only when you signal your intention to update any of the pixels.</p>
132
133<h3>Create the Pixel Cache</h3>
134
135<p>The pixel cache is associated with an image when it is created and it is initialized when you try to get or put pixels.  Here are three common methods to associate a pixel cache with an image:</p>
136
137<dl>
138<dt class="col-md-8">Create an image canvas initialized to the background color:</dt><br/>
139<dd class="col-md-8"><pre class="highlight"><code>image=AllocateImage(image_info);
140if (SetImageExtent(image,640,480) == MagickFalse)
141  { /* an exception was thrown */ }
142(void) QueryMagickColor("red",&amp;image-&gt;background_color,&amp;image-&gt;exception);
143SetImageBackgroundColor(image);
144</code></pre></dd>
145
146<dt class="col-md-8">Create an image from a JPEG image on disk:</dt><br/>
147<dd class="col-md-8"><pre class="highlight"><code>(void) strcpy(image_info-&gt;filename,"image.jpg"):
148image=ReadImage(image_info,exception);
149if (image == (Image *) NULL)
150  { /* an exception was thrown */ }
151</code></pre></dd>
152<dt class="col-md-8">Create an image from a memory based image:</dt><br/>
153<dd class="col-md-8"><pre class="highlight"><code>image=BlobToImage(blob_info,blob,extent,exception);
154if (image == (Image *) NULL)
155  { /* an exception was thrown */ }
156</code></pre></dd>
157</dl>
158
159<p>In our discussion of the pixel cache, we use the <a href="../www/magick-core.html">MagickCore API</a> to illustrate our points, however, the principles are the same for other program interfaces to ImageMagick.</p>
160
161<p>When the pixel cache is initialized, pixels are scaled from whatever bit depth they originated from to that required by the pixel cache.  For example, a 1-channel 1-bit monochrome PBM image is scaled to 8-bit gray image, if you are using the Q8 version of ImageMagick, and 16-bit RGBA for the Q16 version.  You can determine which version you have with the <a href="command-line-options.html#version">&#x2011;version</a> option: </p>
162
163<pre class="highlight"><span class="crtprompt">$ </span><span class='crtin'>identify -version</span><span class='crtout'><br/></span><span class="crtprompt">$ </span><span class='crtin'>Version: ImageMagick 7.0.8-23 2018-12-25 Q16 https://imagemagick.org</span></pre>
164<p>As you can see, the convenience of the pixel cache sometimes comes with a trade-off in storage (e.g. storing a 1-bit monochrome image as 16-bit is wasteful) and speed (i.e. storing the entire image in memory is generally slower than accessing one scanline of pixels at a time).  In most cases, the benefits of the pixel cache typically outweigh any disadvantages.</p>
165
166<h3><a class="anchor" id="authentic-pixels"></a>Access the Pixel Cache</h3>
167
168<p>Once the pixel cache is associated with an image, you typically want to get, update, or put pixels into it.  We refer to pixels inside the image region as <a href="architecture.html#authentic-pixels">authentic pixels</a> and outside the region as <a href="architecture.html#virtual-pixels">virtual pixels</a>.  Use these methods to access the pixels in the cache:</p>
169<ul>
170  <li><a href="api/cache.html#GetVirtualPixels">GetVirtualPixels()</a>: gets pixels that you do not intend to modify or pixels that lie outside the image region (e.g. pixel @ -1,-3)</li>
171  <li><a href="api/cache.html#GetAuthenticPixels">GetAuthenticPixels()</a>: gets pixels that you intend to modify</li>
172  <li><a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a>: queue pixels that you intend to set</li>
173  <li><a href="api/cache.html#SyncAuthenticPixels">SyncAuthenticPixels()</a>: update the pixel cache with any modified pixels</li>
174</ul>
175
176<p>Here is a typical <a href="../www/magick-core.html">MagickCore</a> code snippet for manipulating pixels in the pixel cache.  In our example, we copy pixels from the input image to the output image and decrease the intensity by 10%:</p>
177
178<pre class="pre-scrollable"><code>const Quantum
179  *p;
180
181Quantum
182  *q;
183
184ssize_t
185  x,
186  y;
187
188destination=CloneImage(source,source->columns,source->rows,MagickTrue,
189  exception);
190if (destination == (Image *) NULL)
191  { /* an exception was thrown */ }
192for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
193{
194  p=GetVirtualPixels(source,0,y,source-&gt;columns,1,exception);
195  q=GetAuthenticPixels(destination,0,y,destination-&gt;columns,1,exception);
196  if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)
197    break;
198  for (x=0; x &lt; (ssize_t) source-&gt;columns; x++)
199  {
200    SetPixelRed(image,90*p-&gt;red/100,q);
201    SetPixelGreen(image,90*p-&gt;green/100,q);
202    SetPixelBlue(image,90*p-&gt;blue/100,q);
203    SetPixelAlpha(image,90*p-&gt;opacity/100,q);
204    p+=GetPixelChannels(source);
205    q+=GetPixelChannels(destination);
206  }
207  if (SyncAuthenticPixels(destination,exception) == MagickFalse)
208    break;
209}
210if (y &lt; (ssize_t) source-&gt;rows)
211  { /* an exception was thrown */ }
212</code></pre>
213
214<p>When we first create the destination image by cloning the source image, the pixel cache pixels are not copied.  They are only copied when you signal your intentions to modify or set the pixel cache by calling <a href="api/cache.html#GetAuthenticPixels">GetAuthenticPixels()</a> or <a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a>. Use <a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a> if you want to set new pixel values rather than update existing ones.  You could use GetAuthenticPixels() to set pixel values but it is slightly more efficient to use QueueAuthenticPixels() instead. Finally, use <a href="api/cache.html#SyncAuthenticPixels">SyncAuthenticPixels()</a> to ensure any updated pixels are pushed to the pixel cache.</p>
215
216<p>You can associate arbitrary content with each pixel, called <em>meta</em> content.  Use  <a href="api/cache.html#GetVirtualMetacontent">GetVirtualMetacontent()</a> (to read the content) or <a href="api/cache.html#GetAuthenticMetacontent">GetAuthenticMetacontent()</a> (to update the content) to gain access to this content.  For example, to print the metacontent, use:</p>
217
218<pre class="highlight"><code>const void
219  *metacontent;
220
221for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
222{
223  p=GetVirtualPixels(source,0,y,source-&gt;columns,1);
224  if (p == (const Quantum *) NULL)
225    break;
226  metacontent=GetVirtualMetacontent(source);
227  /* print meta content here */
228}
229if (y &lt; (ssize_t) source-&gt;rows)
230  /* an exception was thrown */
231</code></pre>
232
233<p>The pixel cache manager decides whether to give you direct or indirect access to the image pixels.  In some cases the pixels are staged to an intermediate buffer-- and that is why you must call SyncAuthenticPixels() to ensure this buffer is <var>pushed</var> out to the pixel cache to guarantee the corresponding pixels in the cache are updated.  For this reason we recommend that you only read or update a scanline or a few scanlines of pixels at a time.  However, you can get any rectangular region of pixels you want.  GetAuthenticPixels() requires that the region you request is within the bounds of the image area.  For a 640 by 480 image, you can get a scanline of 640 pixels at row 479 but if you ask for a scanline at row 480, an exception is returned (rows are numbered starting at 0).  GetVirtualPixels() does not have this constraint.  For example,</p>
234
235<pre class="highlight"><code>p=GetVirtualPixels(source,-3,-3,source-&gt;columns+3,6,exception);
236</code></pre>
237
238<p>gives you the pixels you asked for without complaint, even though some are not within the confines of the image region.</p>
239
240<h3><a class="anchor" id="virtual-pixels"></a>Virtual Pixels</h3>
241
242<p>There are a plethora of image processing algorithms that require a neighborhood of pixels about a pixel of interest.  The algorithm typically includes a caveat concerning how to handle pixels around the image boundaries, known as edge pixels.  With virtual pixels, you do not need to concern yourself about special edge processing other than choosing  which virtual pixel method is most appropriate for your algorithm.</p>
243 <p>Access to the virtual pixels are controlled by the <a href="api/cache.html#SetImageVirtualPixelMethod">SetImageVirtualPixelMethod()</a> method from the MagickCore API or the <a href="command-line-options.html#virtual-pixel">&#x2011;virtual&#x2011;pixel</a> option from the command line.  The methods include:</p>
244
245<dl class="row">
246<dt class="col-md-4">background</dt>
247<dd class="col-md-8">the area surrounding the image is the background color</dd>
248<dt class="col-md-4">black</dt>
249<dd class="col-md-8">the area surrounding the image is black</dd>
250<dt class="col-md-4">checker-tile</dt>
251<dd class="col-md-8">alternate squares with image and background color</dd>
252<dt class="col-md-4">dither</dt>
253<dd class="col-md-8">non-random 32x32 dithered pattern</dd>
254<dt class="col-md-4">edge</dt>
255<dd class="col-md-8">extend the edge pixel toward infinity (default)</dd>
256<dt class="col-md-4">gray</dt>
257<dd class="col-md-8">the area surrounding the image is gray</dd>
258<dt class="col-md-4">horizontal-tile</dt>
259<dd class="col-md-8">horizontally tile the image, background color above/below</dd>
260<dt class="col-md-4">horizontal-tile-edge</dt>
261<dd class="col-md-8">horizontally tile the image and replicate the side edge pixels</dd>
262<dt class="col-md-4">mirror</dt>
263<dd class="col-md-8">mirror tile the image</dd>
264<dt class="col-md-4">random</dt>
265<dd class="col-md-8">choose a random pixel from the image</dd>
266<dt class="col-md-4">tile</dt>
267<dd class="col-md-8">tile the image</dd>
268<dt class="col-md-4">transparent</dt>
269<dd class="col-md-8">the area surrounding the image is transparent blackness</dd>
270<dt class="col-md-4">vertical-tile</dt>
271<dd class="col-md-8">vertically tile the image, sides are background color</dd>
272<dt class="col-md-4">vertical-tile-edge</dt>
273<dd class="col-md-8">vertically tile the image and replicate the side edge pixels</dd>
274<dt class="col-md-4">white</dt>
275<dd class="col-md-8">the area surrounding the image is white</dd>
276</dl>
277
278
279<h3>Cache Storage and Resource Requirements</h3>
280
281<p>Recall that this simple and elegant design of the ImageMagick pixel cache comes at a cost in terms of storage and processing speed.  The pixel cache storage requirements scales with the area of the image and the bit depth of the pixel components.  For example, if we have a 640 by 480 image and we are using the non-HDRI Q16 version of ImageMagick, the pixel cache consumes image <var>width * height * bit-depth / 8 * channels</var> bytes or approximately 2.3 mebibytes (i.e. 640 * 480 * 2 * 4).  Not too bad, but what if your image is 25000 by 25000 pixels?  The pixel cache requires approximately 4.7 gibibytes of storage.  Ouch.  ImageMagick accounts for possible huge storage requirements by caching large images to disk rather than memory.  Typically the pixel cache is stored in memory using heap memory. If heap memory is exhausted, we create the pixel cache on disk and attempt to memory-map it. If memory-map memory is exhausted, we simply use standard disk I/O.  Disk storage is cheap but it is also very slow, upwards of 1000 times slower than memory.  We can get some speed improvements, up to 5 times, if we use memory mapping to the disk-based cache.  These decisions about storage are made <var>automagically</var> by the pixel cache manager negotiating with the operating system.  However, you can influence how the pixel cache manager allocates the pixel cache with <var>cache resource limits</var>.  The limits include:</p>
282
283<dl class="row">
284  <dt class="col-md-4">width</dt>
285  <dd class="col-md-8">maximum width of an image.  Exceed this limit and an exception is thrown and processing stops.</dd>
286  <dt class="col-md-4">height</dt>
287  <dd class="col-md-8">maximum height of an image.  Exceed this limit and an exception is thrown and processing stops.</dd>
288  <dt class="col-md-4">area</dt>
289  <dd class="col-md-8">maximum area in bytes of any one image that can reside in the pixel cache memory.  If this limit is exceeded, the image is automagically cached to disk and optionally memory-mapped.</dd>
290  <dt class="col-md-4">memory</dt>
291  <dd class="col-md-8">maximum amount of memory in bytes to allocate for the pixel cache from the heap.</dd>
292  <dt class="col-md-4">map</dt>
293  <dd class="col-md-8">maximum amount of memory map in bytes to allocate for the pixel cache.</dd>
294  <dt class="col-md-4">disk</dt>
295  <dd class="col-md-8">maximum amount of disk space in bytes permitted for use by the pixel cache.  If this limit is exceeded, the pixel cache is not created and a fatal exception is thrown.</dd>
296  <dt class="col-md-4">files</dt>
297  <dd class="col-md-8">maximum number of open pixel cache files.  When this limit is exceeded, any subsequent pixels cached to disk are closed and reopened on demand. This behavior permits a large number of images to be accessed simultaneously on disk, but without a speed penalty due to repeated open/close calls.</dd>
298  <dt class="col-md-4">thread</dt>
299  <dd class="col-md-8">maximum number of threads that are permitted to run in parallel.</dd>
300  <dt class="col-md-4">time</dt>
301  <dd class="col-md-8">maximum number of seconds that the process is permitted to execute.  Exceed this limit and an exception is thrown and processing stops.</dd>
302</dl>
303
304<p>Note, these limits pertain to the ImageMagick pixel cache.  Certain algorithms within ImageMagick do not respect these limits nor does any of the external delegate libraries (e.g. JPEG, TIFF, etc.).</p>
305
306<p>To determine the current setting of these limits, use this command:</p>
307<pre class="highlight">-> identify -list resource
308Resource limits:
309  Width: 100MP
310  Height: 100MP
311  Area: 25.181GB
312  Memory: 11.726GiB
313  Map: 23.452GiB
314  Disk: unlimited
315  File: 768
316  Thread: 12
317  Throttle: 0
318  Time: unlimited
319</pre>
320
321<p>You can set these limits either as a <a href="security-policy.html">security policy</a> (see <a href="https://imagemagick.org/source/policy.xml">policy.xml</a>), with an <a href="resources.html#environment">environment variable</a>, with the <a href="command-line-options.html#limit">-limit</a> command line option, or with the <a href="api/resource.html#SetMagickResourceLimit">SetMagickResourceLimit()</a> MagickCore API method. As an example, our online web interface to ImageMagick, <a href="../MagickStudio/scripts/MagickStudio.cgi">ImageMagick Studio</a>, includes these policy limits to help prevent a denial-of-service:</p>
322<pre class="highlight"><code>&lt;policymap>
323  &lt;policy domain="resource" name="temporary-path" value="/tmp"/>
324  &lt;policy domain="resource" name="memory" value="256MiB"/>
325  &lt;policy domain="resource" name="map" value="512MiB"/>
326  &lt;policy domain="resource" name="width" value="8KP"/>
327  &lt;policy domain="resource" name="height" value="8KP"/>
328  &lt;policy domain="resource" name="area" value="128MB"/>
329  &lt;policy domain="resource" name="disk" value="1GiB"/>
330  &lt;policy domain="resource" name="file" value="768"/>
331  &lt;policy domain="resource" name="thread" value="2"/>
332  &lt;policy domain="resource" name="throttle" value="0"/>
333  &lt;policy domain="resource" name="time" value="120"/>
334  &lt;policy domain="system" name="precision" value="6"/>
335  &lt;policy domain="cache" name="shared-secret" value="replace with your secret phrase" stealth="true"/>
336  &lt;policy domain="delegate" rights="none" pattern="HTTPS" />
337  &lt;policy domain="path" rights="none" pattern="@*"/>  &lt;!-- indirect reads not permitted -->
338&lt;/policymap>
339</code></pre>
340<p>Since we process multiple simultaneous sessions, we don't want any one session consuming all the available memory.With this policy, large images are cached to disk. If the image is too large and exceeds the pixel cache disk limit, the program exits. In addition, we place a time limit to prevent any run-away processing tasks. If any one image has a width or height that exceeds 8192 pixels, an exception is thrown and processing stops. As of ImageMagick 7.0.1-8 you can prevent the use of any delegate or all delegates (set the pattern to "*"). Note, prior to this release, use a domain of "coder" to prevent delegate usage (e.g. domain="coder" rights="none" pattern="HTTPS"). The policy also prevents indirect reads.  If you want to, for example, read text from a file (e.g. caption:@myCaption.txt), you'll need to remove this policy.</p>
341
342<p>Note, the cache limits are global to each invocation of ImageMagick, meaning if you create several images, the combined resource requirements are compared to the limit to determine the pixel cache storage disposition.</p>
343
344<p>To determine which type and how much resources are consumed by the pixel cache, add the <a href="command-line-options.html#debug">-debug cache</a> option to the command-line:</p>
345<pre class="highlight">-> convert -debug cache logo: -sharpen 3x2 null:
3462016-12-17T13:33:42-05:00 0:00.000 0.000u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
347  destroy
3482016-12-17T13:33:42-05:00 0:00.000 0.000u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
349  open LOGO[0] (Heap Memory, 640x480x4 4.688MiB)
3502016-12-17T13:33:42-05:00 0:00.010 0.000u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
351  open LOGO[0] (Heap Memory, 640x480x3 3.516MiB)
3522016-12-17T13:33:42-05:00 0:00.010 0.000u 7.0.0 Cache convert: cache.c/ClonePixelCachePixels/1044/Cache
353  Memory => Memory
3542016-12-17T13:33:42-05:00 0:00.020 0.010u 7.0.0 Cache convert: cache.c/ClonePixelCachePixels/1044/Cache
355  Memory => Memory
3562016-12-17T13:33:42-05:00 0:00.020 0.010u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
357  open LOGO[0] (Heap Memory, 640x480x3 3.516MiB)
3582016-12-17T13:33:42-05:00 0:00.050 0.100u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
359  destroy LOGO[0]
3602016-12-17T13:33:42-05:00 0:00.050 0.100u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
361  destroy LOGO[0]
362</pre>
363<p>This command utilizes a pixel cache in memory.  The logo consumed 4.688MiB and after it was sharpened, 3.516MiB.</p>
364
365
366<h3>Distributed Pixel Cache</h3>
367<p>A distributed pixel cache is an extension of the traditional pixel cache available on a single host.  The distributed pixel cache may span multiple servers so that it can grow in size and transactional capacity to support very large images.  Start up the pixel cache server on one or more machines.  When you read or operate on an image and the local pixel cache resources are exhausted, ImageMagick contacts one or more of these remote pixel servers to store or retrieve pixels.  The distributed pixel cache relies on network bandwidth to marshal pixels to and from the remote server.  As such, it will likely be significantly slower than a pixel cache utilizing local storage (e.g. memory, disk, etc.).</p>
368<pre class="highlight"><code>convert -distribute-cache 6668 &amp;  // start on 192.168.100.50
369convert -define registry:cache:hosts=192.168.100.50:6668 myimage.jpg -sharpen 5x2 mimage.png
370</code></pre>
371
372<h3>Cache Views</h3>
373
374<p>GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), and SyncAuthenticPixels(), from the MagickCore API, can only deal with one pixel cache area per image at a time.  Suppose you want to access the first and last scanline from the same image at the same time?  The solution is to use a <var>cache view</var>.  A cache view permits you to access as many areas simultaneously in the pixel cache as you require.  The cache view <a href="api/cache-view.html">methods</a> are analogous to the previous methods except you must first open a view and close it when you are finished with it. Here is a snippet of MagickCore code that permits us to access the first and last pixel row of the image simultaneously:</p>
375<pre class="pre-scrollable"><code>CacheView
376  *view_1,
377  *view_2;
378
379view_1=AcquireVirtualCacheView(source,exception);
380view_2=AcquireVirtualCacheView(source,exception);
381for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
382{
383  u=GetCacheViewVirtualPixels(view_1,0,y,source-&gt;columns,1,exception);
384  v=GetCacheViewVirtualPixels(view_2,0,source-&gt;rows-y-1,source-&gt;columns,1,exception);
385  if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL))
386    break;
387  for (x=0; x &lt; (ssize_t) source-&gt;columns; x++)
388  {
389    /* do something with u &amp; v here */
390  }
391}
392view_2=DestroyCacheView(view_2);
393view_1=DestroyCacheView(view_1);
394if (y &lt; (ssize_t) source-&gt;rows)
395  { /* an exception was thrown */ }
396</code></pre>
397
398<h3>Magick Persistent Cache Format</h3>
399
400<p>Recall that each image format is decoded by ImageMagick and the pixels are deposited in the pixel cache.  If you write an image, the pixels are read from the pixel cache and encoded as required by the format you are writing (e.g. GIF, PNG, etc.).  The Magick Persistent Cache (MPC) format is designed to eliminate the overhead of decoding and encoding pixels to and from an image format.  MPC writes two files.  One, with the extension <code>.mpc</code>, retains all the properties associated with the image or image sequence (e.g. width, height, colorspace, etc.) and the second, with the extension <code>.cache</code>, is the pixel cache in the native raw format.  When reading an MPC image file, ImageMagick reads the image properties and memory maps the pixel cache on disk eliminating the need for decoding the image pixels.  The tradeoff is in disk space.  MPC is generally larger in file size than most other image formats.</p>
401<p>The most efficient use of MPC image files is a write-once, read-many-times pattern.  For example, your workflow requires extracting random blocks of pixels from the source image.  Rather than re-reading and possibly decompressing the source image each time, we use MPC and map the image directly to memory.</p>
402
403<h3>Best Practices</h3>
404
405<p>Although you can request any pixel from the pixel cache, any block of pixels, any scanline, multiple scanlines, any row, or multiple rows with the GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels, GetCacheViewVirtualPixels(), GetCacheViewAuthenticPixels(), and QueueCacheViewAuthenticPixels() methods, ImageMagick is optimized to return a few pixels or a few pixels rows at time.  There are additional optimizations if you request a single scanline or a few scanlines at a time.  These methods also permit random access to the pixel cache, however, ImageMagick is optimized for sequential access.  Although you can access scanlines of pixels sequentially from the last row of the image to the first, you may get a performance boost if you access scanlines from the first row of the image to the last, in sequential order.</p>
406
407<p>You can get, modify, or set pixels in row or column order.  However, it is more efficient to access the pixels by row rather than by column.</p>
408
409<p>If you update pixels returned from GetAuthenticPixels() or GetCacheViewAuthenticPixels(), don't forget to call SyncAuthenticPixels() or SyncCacheViewAuthenticPixels() respectively to ensure your changes are synchronized with the pixel cache.</p>
410
411<p>Use QueueAuthenticPixels() or QueueCacheViewAuthenticPixels() if you are setting an initial pixel value.  The GetAuthenticPixels() or GetCacheViewAuthenticPixels() method reads pixels from the cache and if you are setting an initial pixel value, this read is unnecessary. Don't forget to call SyncAuthenticPixels() or SyncCacheViewAuthenticPixels() respectively to push any pixel changes to the pixel cache.</p>
412
413<p>GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), and SyncAuthenticPixels() are slightly more efficient than their cache view counter-parts.  However, cache views are required if you need access to more than one region of the image simultaneously or if more than one <a href="architecture.html#threads">thread of execution</a> is accessing the image.</p>
414
415<p>You can request pixels outside the bounds of the image with GetVirtualPixels() or GetCacheViewVirtualPixels(), however, it is more efficient to request pixels within the confines of the image region.</p>
416
417<p>Although you can force the pixel cache to disk using appropriate resource limits, disk access can be upwards of 1000 times slower than memory access.  For fast, efficient, access to the pixel cache, try to keep the pixel cache in heap memory.</p>
418
419<p>The ImageMagick Q16 version of ImageMagick permits you to read and write 16 bit images without scaling but the pixel cache consumes twice as many resources as the Q8 version.  If your system has constrained memory or disk resources, consider the Q8 version of ImageMagick.  In addition, the Q8 version typically executes faster than the Q16 version.</p>
420
421<p>A great majority of image formats and algorithms restrict themselves to a fixed range of pixel values from 0 to some maximum value, for example, the Q16 version of ImageMagick permit intensities from 0 to 65535.  High dynamic-range imaging (HDRI), however, permits a far greater dynamic range of exposures (i.e. a large difference between light and dark areas) than standard digital imaging techniques. HDRI accurately represents the wide range of intensity levels found in real scenes ranging from the brightest direct sunlight to the deepest darkest shadows.  Enable <a href="high-dynamic-range.html">HDRI</a> at ImageMagick build time to deal with high dynamic-range images, but be mindful that each pixel component is a 32-bit floating point value. In addition, pixel values are not clamped by default so some algorithms may have unexpected results due to out-of-band pixel values than the non-HDRI version.</p>
422
423<p>If you are dealing with large images, make sure the pixel cache is written to a disk area with plenty of free space.  Under Unix, this is typically <code>/tmp</code> and for Windows, <code>c:/temp</code>.  You can tell ImageMagick to write the pixel cache to an alternate location and conserve memory with these options:</p>
424<pre class="highlight"><code>convert -limit memory 2GB -limit map 4GB -define registry:temporary-path=/data/tmp ...
425</code></pre>
426
427<p>Set global resource limits for your environment in the <code>policy.xml</code> configuration file.</p>
428
429<p>If you plan on processing the same image many times, consider the MPC format.  Reading a MPC image has near-zero overhead because its in the native pixel cache format eliminating the need for decoding the image pixels.  Here is an example:</p>
430<pre class="highlight"><code>convert image.tif image.mpc
431convert image.mpc -crop 100x100+0+0 +repage 1.png
432convert image.mpc -crop 100x100+100+0 +repage 2.png
433convert image.mpc -crop 100x100+200+0 +repage 3.png
434</code></pre>
435
436<p>MPC is ideal for web sites.  It reduces the overhead of reading and writing an image.  We use it exclusively at our <a href="../MagickStudio/scripts/MagickStudio.cgi">online image studio</a>.</p>
437
438<h2><a class="anchor" id="stream"></a>Streaming Pixels</h2>
439
440<p>ImageMagick provides for streaming pixels as they are read from or written to an image.  This has several advantages over the pixel cache.  The time and resources consumed by the pixel cache scale with the area of an image, whereas the pixel stream resources scale with the width of an image.  The disadvantage is the pixels must be consumed as they are streamed so there is no persistence.</p>
441
442<p>Use <a href="api/stream.html#ReadStream">ReadStream()</a> or <a href="api/stream.html#WriteStream">WriteStream()</a> with an appropriate callback method in your MagickCore program to consume the pixels as they are streaming.  Here's an abbreviated example of using ReadStream:</p>
443<pre class="pre-scrollable"><code>static size_t StreamPixels(const Image *image,const void *pixels,const size_t columns)
444{
445  register const Quantum
446    *p;
447
448  MyData
449    *my_data;
450
451  my_data=(MyData *) image->client_data;
452  p=(Quantum *) pixels;
453  if (p != (const Quantum *) NULL)
454    {
455      /* process pixels here */
456    }
457  return(columns);
458}
459
460...
461
462/* invoke the pixel stream here */
463image_info->client_data=(void *) MyData;
464image=ReadStream(image_info,&amp;StreamPixels,exception);
465</code></pre>
466
467<p>We also provide a lightweight tool, <a href="../www/stream.html">stream</a>, to stream one or more pixel components of the image or portion of the image to your choice of storage formats.  It writes the pixel components as they are read from the input image a row at a time making <a href="../www/stream.html">stream</a> desirable when working with large images or when you require raw pixel components.  A majority of the image formats stream pixels (red, green, and blue) from left to right and top to bottom.  However, a few formats do not support this common ordering (e.g. the PSD format).</p>
468
469<h2><a class="anchor" id="properties"></a>Image Properties and Profiles</h2>
470
471<p>Images have metadata associated with them in the form of properties (e.g. width, height, description, etc.) and profiles (e.g. EXIF, IPTC, color management).  ImageMagick provides convenient methods to get, set, or update image properties and get, set, update, or apply profiles.  Some of the more popular image properties are associated with the Image structure in the MagickCore API.  For example:</p>
472<pre class="highlight"><code>(void) printf("image width: %lu, height: %lu\n",image-&gt;columns,image-&gt;rows);
473</code></pre>
474
475<p>For a great majority of image properties, such as an image comment or description, we use the <a href="api/property.html#GetImageProperty">GetImageProperty()</a> and <a href="api/property.html#SetImageProperty">SetImageProperty()</a> methods.  Here we set a property and fetch it right back:</p>
476<pre class="highlight"><code>const char
477  *comment;
478
479(void) SetImageProperty(image,"comment","This space for rent");
480comment=GetImageProperty(image,"comment");
481if (comment == (const char *) NULL)
482  (void) printf("Image comment: %s\n",comment);
483</code></pre>
484
485<p>ImageMagick supports artifacts with the GetImageArtifact() and SetImageArtifact() methods.  Artifacts are stealth properties that are not exported to image formats (e.g. PNG).</p>
486
487<p>Image profiles are handled with <a href="api/profile.html#GetImageProfile">GetImageProfile()</a>, <a href="api/profile.html#SetImageProfile">SetImageProfile()</a>, and <a href="api/profile.html#ProfileImage">ProfileImage()</a> methods.  Here we set a profile and fetch it right back:</p>
488<pre class="highlight"><code>StringInfo
489  *profile;
490
491profile=AcquireStringInfo(length);
492SetStringInfoDatum(profile,my_exif_profile);
493(void) SetImageProfile(image,"EXIF",profile);
494DestroyStringInfo(profile);
495profile=GetImageProfile(image,"EXIF");
496if (profile != (StringInfo *) NULL)
497  (void) PrintStringInfo(stdout,"EXIF",profile);
498</code></pre>
499
500<h2><a class="anchor" id="tera-pixel"></a>Large Image Support</h2>
501<p>ImageMagick can read, process, or write mega-, giga-, or tera-pixel image sizes.  An image width or height can range from 1 to 2 giga-pixels on a 32 bit OS and up to 9 exa-pixels on a 64-bit OS.  Note, that some image formats have restrictions on image size.  For example, Photoshop images are limited to 300,000 pixels for width or height.  Here we resize an image to a quarter million pixels square:</p>
502<pre class="highlight"><code>convert logo: -resize 250000x250000 logo.miff
503</code></pre>
504
505<p>For large images, memory resources will likely be exhausted and ImageMagick will instead create a pixel cache on disk.  Make sure you have plenty of temporary disk space.  If your default temporary disk partition is too small, tell ImageMagick to use another partition with plenty of free space.  For example:</p>
506<pre class="highlight"><code>convert -define registry:temporary-path=/data/tmp logo:  \ <br/>     -resize 250000x250000 logo.miff
507</code></pre>
508
509<p>To ensure large images do not consume all the memory on your system, force the image pixels to memory-mapped disk with resource limits:</p>
510<pre class="highlight"><code>convert -define registry:temporary-path=/data/tmp -limit memory 16mb \
511  logo: -resize 250000x250000 logo.miff
512</code></pre>
513
514<p>Here we force all image pixels to disk:</p>
515<pre class="highlight"><code>convert -define registry:temporary-path=/data/tmp -limit area 0 \
516  logo: -resize 250000x250000 logo.miff
517</code></pre>
518
519<p>Caching pixels to disk is about 1000 times slower than memory.  Expect long run times when processing large images on disk with ImageMagick.  You can monitor progress with this command:</p>
520<pre class="highlight"><code>convert -monitor -limit memory 2GiB -limit map 4GiB -define registry:temporary-path=/data/tmp \
521  logo: -resize 250000x250000 logo.miff
522</code></pre>
523
524<p>For really large images, or if there is limited resources on your host, you can utilize a distributed pixel cache on one or more remote hosts:</p>
525<pre class="highlight"><code>convert -distribute-cache 6668 &amp;  // start on 192.168.100.50
526convert -distribute-cache 6668 &amp;  // start on 192.168.100.51
527convert -limit memory 2mb -limit map 2mb -limit disk 2gb \
528  -define registry:cache:hosts=192.168.100.50:6668,192.168.100.51:6668 \
529  myhugeimage.jpg -sharpen 5x2 myhugeimage.png
530</code></pre>
531<p>Due to network latency, expect a substantial slow-down in processing your workflow.</p>
532
533<h2><a class="anchor" id="threads"></a>Threads of Execution</h2>
534
535<p>Many of ImageMagick's internal algorithms are threaded to take advantage of speed-ups offered by the multicore processor chips. However, you are welcome to use ImageMagick algorithms in your threads of execution with the exception of the MagickCore's GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), or SyncAuthenticPixels() pixel cache methods.  These methods are intended for one thread of execution only with the exception of an OpenMP parallel section.  To access the pixel cache with more than one thread of execution, use a cache view.  We do this for the <a href="api/composite.html#CompositeImage">CompositeImage()</a> method, for example.  Suppose we want to composite a single source image over a different destination image in each thread of execution.  If we use GetVirtualPixels(), the results are unpredictable because multiple threads would likely be asking for different areas of the pixel cache simultaneously.  Instead we use GetCacheViewVirtualPixels() which creates a unique view for each thread of execution ensuring our program behaves properly regardless of how many threads are invoked.  The other program interfaces, such as the <a href="../www/magick-wand.html">MagickWand API</a>, are completely thread safe so there are no special precautions for threads of execution.</p>
536
537<p>Here is an MagickCore code snippet that takes advantage of threads of execution with the <a href="../www/openmp.html">OpenMP</a> programming paradigm:</p>
538<pre class="pre-scrollable"><code>CacheView
539  *image_view;
540
541MagickBooleanType
542  status;
543
544ssize_t
545  y;
546
547status=MagickTrue;
548image_view=AcquireVirtualCacheView(image,exception);
549#pragma omp parallel for schedule(static,4) shared(status)
550for (y=0; y &lt; (ssize_t) image-&gt;rows; y++)
551{
552  register Quantum
553    *q;
554
555  register ssize_t
556    x;
557
558  register void
559    *metacontent;
560
561  if (status == MagickFalse)
562    continue;
563  q=GetCacheViewAuthenticPixels(image_view,0,y,image-&gt;columns,1,exception);
564  if (q == (Quantum *) NULL)
565    {
566      status=MagickFalse;
567      continue;
568    }
569  metacontent=GetCacheViewAuthenticMetacontent(image_view);
570  for (x=0; x &lt; (ssize_t) image-&gt;columns; x++)
571  {
572    SetPixelRed(image,...,q);
573    SetPixelGreen(image,...,q);
574    SetPixelBlue(image,...,q);
575    SetPixelAlpha(image,...,q);
576    if (metacontent != NULL)
577      metacontent[indexes+x]=...;
578    q+=GetPixelChannels(image);
579  }
580  if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
581    status=MagickFalse;
582}
583image_view=DestroyCacheView(image_view);
584if (status == MagickFalse)
585  perror("something went wrong");
586</code></pre>
587
588<p>This code snippet converts an uncompressed Windows bitmap to a Magick++ image:</p>
589<pre class="pre-scrollable"><code>#include "Magick++.h"
590#include &lt;assert.h&gt;
591#include "omp.h"
592
593void ConvertBMPToImage(const BITMAPINFOHEADER *bmp_info,
594  const unsigned char *restrict pixels,Magick::Image *image)
595{
596  /*
597    Prepare the image so that we can modify the pixels directly.
598  */
599  assert(bmp_info->biCompression == BI_RGB);
600  assert(bmp_info->biWidth == image->columns());
601  assert(abs(bmp_info->biHeight) == image->rows());
602  image->modifyImage();
603  if (bmp_info->biBitCount == 24)
604    image->type(MagickCore::TrueColorType);
605  else
606    image->type(MagickCore::TrueColorMatteType);
607  register unsigned int bytes_per_row=bmp_info->biWidth*bmp_info->biBitCount/8;
608  if (bytes_per_row % 4 != 0) {
609    bytes_per_row=bytes_per_row+(4-bytes_per_row % 4);  // divisible by 4.
610  }
611  /*
612    Copy all pixel data, row by row.
613  */
614  #pragma omp parallel for
615  for (int y=0; y &lt; int(image->rows()); y++)
616  {
617    int
618      row;
619
620    register const unsigned char
621      *restrict p;
622
623    register MagickCore::Quantum
624      *restrict q;
625
626    row=(bmp_info->biHeight > 0) ? (image->rows()-y-1) : y;
627    p=pixels+row*bytes_per_row;
628    q=image->setPixels(0,y,image->columns(),1);
629    for (int x=0; x &lt; int(image->columns()); x++)
630    {
631      SetPixelBlue(image,p[0],q);
632      SetPixelGreen(image,p[1],q);
633      SetPixelRed(image,p[2],q);
634      if (bmp_info->biBitCount == 32) {
635        SetPixelAlpha(image,p[3],q);
636      }
637      q+=GetPixelChannels(image);
638      p+=bmp_info->biBitCount/8;
639    }
640    image->syncPixels();  // sync pixels to pixel cache.
641  }
642  return;
643}</code></pre>
644
645<p>If you call the ImageMagick API from your OpenMP-enabled application and you intend to dynamically increase the number of threads available in subsequent parallel regions, be sure to perform the increase <var>before</var> you call the API otherwise ImageMagick may fault.</p>
646
647<p><a href="api/wand-view.html">MagickWand</a> supports wand views.  A view iterates over the entire, or portion, of the image in parallel and for each row of pixels, it invokes a callback method you provide.  This limits most of your parallel programming activity to just that one module.  There are similar methods in <a href="api/image-view.html">MagickCore</a>.  For an example, see the same sigmoidal contrast algorithm implemented in both <a href="../www/magick-wand.html#wand-view">MagickWand</a> and <a href="../www/magick-core.html#image-view">MagickCore</a>.</p>
648
649<p>In most circumstances, the default number of threads is set to the number of processor cores on your system for optimal performance.  However, if your system is hyperthreaded or if you are running on a virtual host and only a subset of the processors are available to your server instance, you might get an increase in performance by setting the thread <a href="resources.html#configure">policy</a> or the <a href="resources.html#environment">MAGICK_THREAD_LIMIT</a> environment variable.  For example, your virtual host has 8 processors but only 2 are assigned to your server instance.  The default of 8 threads can cause severe performance problems.  One solution is to limit the number of threads to the available processors in your <a href="https://imagemagick.org/source/policy.xml">policy.xml</a> configuration file:</p>
650<pre class="highlight"><code>&lt;policy domain="resource" name="thread" value="2"/>
651</code></pre>
652
653<p>Or suppose your 12 core hyperthreaded computer defaults to 24 threads.  Set the MAGICK_THREAD_LIMIT environment variable and you will likely get improved performance:</p>
654<pre class="highlight"><code>export MAGICK_THREAD_LIMIT=12
655</code></pre>
656
657<p>The OpenMP committee has not defined the behavior of mixing OpenMP with other threading models such as Posix threads.  However, using modern releases of Linux, OpenMP and Posix threads appear to interoperate without complaint.  If you want to use Posix threads from a program module that calls one of the ImageMagick application programming interfaces (e.g. MagickCore, MagickWand, Magick++, etc.) from Mac OS X or an older Linux release, you may need to disable OpenMP support within ImageMagick.  Add the <code>--disable-openmp</code> option to the configure script command line and rebuild and reinstall ImageMagick.</p>
658
659<h5>Threading Performance</h5>
660<p>It can be difficult to predict behavior in a parallel environment.   Performance might depend on a number of factors including the compiler, the version of the OpenMP library, the processor type, the number of cores, the amount of memory, whether hyperthreading is enabled, the mix of applications that are executing concurrently with ImageMagick, or the particular image-processing algorithm you utilize.  The only way to be certain of optimal performance, in terms of the number of threads, is to benchmark.   ImageMagick includes progressive threading when benchmarking a command and returns the elapsed time and efficiency for one or more threads.  This can help you identify how many threads is the most efficient in your environment.  For this benchmark we sharpen a 1920x1080 image of a model 10 times with 1 to 12 threads:</p>
661<pre class="highlight">-> convert -bench 10 model.png -sharpen 5x2 null:
662Performance[1]: 10i 1.135ips 1.000e 8.760u 0:08.810
663Performance[2]: 10i 2.020ips 0.640e 9.190u 0:04.950
664Performance[3]: 10i 2.786ips 0.710e 9.400u 0:03.590
665Performance[4]: 10i 3.378ips 0.749e 9.580u 0:02.960
666Performance[5]: 10i 4.032ips 0.780e 9.580u 0:02.480
667Performance[6]: 10i 4.566ips 0.801e 9.640u 0:02.190
668Performance[7]: 10i 3.788ips 0.769e 10.980u 0:02.640
669Performance[8]: 10i 4.115ips 0.784e 12.030u 0:02.430
670Performance[9]: 10i 4.484ips 0.798e 12.860u 0:02.230
671Performance[10]: 10i 4.274ips 0.790e 14.830u 0:02.340
672Performance[11]: 10i 4.348ips 0.793e 16.500u 0:02.300
673Performance[12]: 10i 4.525ips 0.799e 18.320u 0:02.210
674</pre>
675<p>The sweet spot for this example is 6 threads. This makes sense since there are 6 physical cores.  The other 6 are hyperthreads. It appears that sharpening does not benefit from hyperthreading.</p>
676<p>In certain cases, it might be optimal to set the number of threads to 1 or to disable OpenMP completely with the <a href="resources.html#environment">MAGICK_THREAD_LIMIT</a> environment variable, <a href="command-line-options.html#limit">-limit</a> command line option,  or the  <a href="resources.html#configure">policy.xml</a> configuration file.</p>
677
678<h2><a class="anchor" id="distributed"></a>Heterogeneous Distributed Processing</h2>
679<p>ImageMagick includes support for heterogeneous distributed processing with the <a href="http://en.wikipedia.org/wiki/OpenCL">OpenCL</a> framework.  OpenCL kernels within ImageMagick permit image processing algorithms to execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors.  Depending on your platform, speed-ups can be an order of magnitude faster than the traditional single CPU.</p>
680
681<p>First verify that your version of ImageMagick includes support for the OpenCL feature:</p>
682<pre class="highlight"><code>identify -version
683Features: DPC Cipher Modules OpenCL OpenMP
684</code></pre>
685
686<p>If so, run this command to realize a significant speed-up for image convolution:</p>
687
688<pre class="highlight"><code>convert image.png -convolve '-1, -1, -1, -1, 9, -1, -1, -1, -1' convolve.png
689</code></pre>
690
691<p>If an accelerator is not available or if the accelerator fails to respond, ImageMagick reverts to the non-accelerated convolution algorithm.</p>
692
693<p>Here is an example OpenCL kernel that convolves an image:</p>
694<pre class="pre-scrollable"><code>static inline long ClampToCanvas(const long offset,const ulong range)
695{
696  if (offset &lt; 0L)
697    return(0L);
698  if (offset >= range)
699    return((long) (range-1L));
700  return(offset);
701}
702
703static inline CLQuantum ClampToQuantum(const float value)
704{
705  if (value &lt; 0.0)
706    return((CLQuantum) 0);
707  if (value >= (float) QuantumRange)
708    return((CLQuantum) QuantumRange);
709  return((CLQuantum) (value+0.5));
710}
711
712__kernel void Convolve(const __global CLPixelType *source,__constant float *filter,
713  const ulong width,const ulong height,__global CLPixelType *destination)
714{
715  const ulong columns = get_global_size(0);
716  const ulong rows = get_global_size(1);
717
718  const long x = get_global_id(0);
719  const long y = get_global_id(1);
720
721  const float scale = (1.0/QuantumRange);
722  const long mid_width = (width-1)/2;
723  const long mid_height = (height-1)/2;
724  float4 sum = { 0.0, 0.0, 0.0, 0.0 };
725  float gamma = 0.0;
726  register ulong i = 0;
727
728  for (long v=(-mid_height); v &lt;= mid_height; v++)
729  {
730    for (long u=(-mid_width); u &lt;= mid_width; u++)
731    {
732      register const ulong index=ClampToCanvas(y+v,rows)*columns+ClampToCanvas(x+u,
733        columns);
734      const float alpha=scale*(QuantumRange-source[index].w);
735      sum.x+=alpha*filter[i]*source[index].x;
736      sum.y+=alpha*filter[i]*source[index].y;
737      sum.z+=alpha*filter[i]*source[index].z;
738      sum.w+=filter[i]*source[index].w;
739      gamma+=alpha*filter[i];
740      i++;
741    }
742  }
743
744  gamma=1.0/(fabs(gamma) &lt;= MagickEpsilon ? 1.0 : gamma);
745  const ulong index=y*columns+x;
746  destination[index].x=ClampToQuantum(gamma*sum.x);
747  destination[index].y=ClampToQuantum(gamma*sum.y);
748  destination[index].z=ClampToQuantum(gamma*sum.z);
749  destination[index].w=ClampToQuantum(sum.w);
750};</code></pre>
751
752<p>See <a href="https://github.com/ImageMagick/ImageMagick/tree/ImageMagick-7/magick/accelerate.c">magick/accelerate.c</a> for a complete implementation of image convolution with an OpenCL kernel.</p>
753
754<p>Note, that under Windows, you might have an issue with TDR (Timeout Detection and Recovery of GPUs). Its purpose is to detect runaway tasks hanging the GPU by using an execution time threshold.  For some older low-end GPUs running the OpenCL filters in ImageMagick, longer execution times might trigger the TDR mechanism and pre-empt the GPU image filter.  When this happens, ImageMagick automatically falls back to the CPU code path and returns the expected results.  To avoid pre-emption, increase the <a href="http://msdn.microsoft.com/en-us/library/windows/hardware/gg487368.aspx">TdrDelay</a> registry key.</p>
755
756<h2><a class="anchor" id="coders"></a>Custom Image Coders</h2>
757
758<p>An image coder (i.e. encoder / decoder) is responsible for registering, optionally classifying, optionally reading, optionally writing, and unregistering one image format (e.g.  PNG, GIF, JPEG, etc.).  Registering an image coder alerts ImageMagick a particular format is available to read or write.  While unregistering tells ImageMagick the format is no longer available.  The classifying method looks at the first few bytes of an image and determines if the image is in the expected format.  The reader sets the image size, colorspace, and other properties and loads the pixel cache with the pixels.  The reader returns a single image or an image sequence (if the format supports multiple images per file), or if an error occurs, an exception and a null image.  The writer does the reverse.  It takes the image properties and unloads the pixel cache and writes them as required by the image format.</p>
759
760<p>Here is a listing of a sample <a href="https://imagemagick.org/source/mgk.c">custom coder</a>.  It reads and writes images in the MGK image format which is simply an ID followed by the image width and height followed by the RGB pixel values.</p>
761<pre class="pre-scrollable"><code>#include &lt;MagickCore/studio.h>
762#include &lt;MagickCore/blob.h>
763#include &lt;MagickCore/cache.h>
764#include &lt;MagickCore/colorspace.h>
765#include &lt;MagickCore/exception.h>
766#include &lt;MagickCore/image.h>
767#include &lt;MagickCore/list.h>
768#include &lt;MagickCore/magick.h>
769#include &lt;MagickCore/memory_.h>
770#include &lt;MagickCore/monitor.h>
771#include &lt;MagickCore/pixel-accessor.h>
772#include &lt;MagickCore/string_.h>
773#include &lt;MagickCore/module.h>
774#include "filter/blob-private.h"
775#include "filter/exception-private.h"
776#include "filter/image-private.h"
777#include "filter/monitor-private.h"
778#include "filter/quantum-private.h"
779
780/*
781  Forward declarations.
782*/
783static MagickBooleanType
784  WriteMGKImage(const ImageInfo *,Image *,ExceptionInfo *);
785
786/*
787%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
788%                                                                             %
789%                                                                             %
790%                                                                             %
791%   I s M G K                                                                 %
792%                                                                             %
793%                                                                             %
794%                                                                             %
795%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
796%
797%  IsMGK() returns MagickTrue if the image format type, identified by the
798%  magick string, is MGK.
799%
800%  The format of the IsMGK method is:
801%
802%      MagickBooleanType IsMGK(const unsigned char *magick,const size_t length)
803%
804%  A description of each parameter follows:
805%
806%    o magick: This string is generally the first few bytes of an image file
807%      or blob.
808%
809%    o length: Specifies the length of the magick string.
810%
811*/
812static MagickBooleanType IsMGK(const unsigned char *magick,const size_t length)
813{
814  if (length &lt; 7)
815    return(MagickFalse);
816  if (LocaleNCompare((char *) magick,"id=mgk",7) == 0)
817    return(MagickTrue);
818  return(MagickFalse);
819}
820
821/*
822%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
823%                                                                             %
824%                                                                             %
825%                                                                             %
826%   R e a d M G K I m a g e                                                   %
827%                                                                             %
828%                                                                             %
829%                                                                             %
830%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
831%
832%  ReadMGKImage() reads a MGK image file and returns it.  It allocates the
833%  memory necessary for the new Image structure and returns a pointer to the
834%  new image.
835%
836%  The format of the ReadMGKImage method is:
837%
838%      Image *ReadMGKImage(const ImageInfo *image_info,
839%        ExceptionInfo *exception)
840%
841%  A description of each parameter follows:
842%
843%    o image_info: the image info.
844%
845%    o exception: return any errors or warnings in this structure.
846%
847*/
848static Image *ReadMGKImage(const ImageInfo *image_info,ExceptionInfo *exception)
849{
850  char
851    buffer[MaxTextExtent];
852
853  Image
854    *image;
855
856  long
857    y;
858
859  MagickBooleanType
860    status;
861
862  register long
863    x;
864
865  register Quantum
866    *q;
867
868  register unsigned char
869    *p;
870
871  ssize_t
872    count;
873
874  unsigned char
875    *pixels;
876
877  unsigned long
878    columns,
879    rows;
880
881  /*
882    Open image file.
883  */
884  assert(image_info != (const ImageInfo *) NULL);
885  assert(image_info->signature == MagickCoreSignature);
886  if (image_info->debug != MagickFalse)
887    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
888      image_info->filename);
889  assert(exception != (ExceptionInfo *) NULL);
890  assert(exception->signature == MagickCoreSignature);
891  image=AcquireImage(image_info,exception);
892  status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
893  if (status == MagickFalse)
894    {
895      image=DestroyImageList(image);
896      return((Image *) NULL);
897    }
898  /*
899    Read MGK image.
900  */
901  (void) ReadBlobString(image,buffer);  /* read magic number */
902  if (IsMGK(buffer,7) == MagickFalse)
903    ThrowReaderException(CorruptImageError,"ImproperImageHeader");
904  (void) ReadBlobString(image,buffer);
905  count=(ssize_t) sscanf(buffer,"%lu %lu\n",&columns,&rows);
906  if (count &lt;= 0)
907    ThrowReaderException(CorruptImageError,"ImproperImageHeader");
908  do
909  {
910    /*
911      Initialize image structure.
912    */
913    image->columns=columns;
914    image->rows=rows;
915    image->depth=8;
916    if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0))
917      if (image->scene >= (image_info->scene+image_info->number_scenes-1))
918        break;
919    /*
920      Convert MGK raster image to pixel packets.
921    */
922    if (SetImageExtent(image,image->columns,image->rows,exception) == MagickFalse)
923      return(DestroyImageList(image));
924    pixels=(unsigned char *) AcquireQuantumMemory((size_t) image->columns,
925      3UL*sizeof(*pixels));
926    if (pixels == (unsigned char *) NULL)
927      ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
928    for (y=0; y &lt; (long) image->rows; y++)
929    {
930      count=(ssize_t) ReadBlob(image,(size_t) (3*image->columns),pixels);
931      if (count != (ssize_t) (3*image->columns))
932        ThrowReaderException(CorruptImageError,"UnableToReadImageData");
933      p=pixels;
934      q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
935      if (q == (Quantum *) NULL)
936        break;
937      for (x=0; x &lt; (long) image->columns; x++)
938      {
939        SetPixelRed(image,ScaleCharToQuantum(*p++),q);
940        SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
941        SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
942        q+=GetPixelChannels(image);
943      }
944      if (SyncAuthenticPixels(image,exception) == MagickFalse)
945        break;
946      if (image->previous == (Image *) NULL)
947        if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
948            (QuantumTick(y,image->rows) != MagickFalse))
949          {
950            status=image->progress_monitor(LoadImageTag,y,image->rows,
951              image->client_data);
952            if (status == MagickFalse)
953              break;
954          }
955    }
956    pixels=(unsigned char *) RelinquishMagickMemory(pixels);
957    if (EOFBlob(image) != MagickFalse)
958      {
959        ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",
960          image->filename);
961        break;
962      }
963    /*
964      Proceed to next image.
965    */
966    if (image_info->number_scenes != 0)
967      if (image->scene >= (image_info->scene+image_info->number_scenes-1))
968        break;
969    *buffer='\0';
970    (void) ReadBlobString(image,buffer);
971    count=(ssize_t) sscanf(buffer,"%lu %lu\n",&columns,&rows);
972    if (count > 0)
973      {
974        /*
975          Allocate next image structure.
976        */
977        AcquireNextImage(image_info,image,exception);
978        if (GetNextImageInList(image) == (Image *) NULL)
979          {
980            image=DestroyImageList(image);
981            return((Image *) NULL);
982          }
983        image=SyncNextImageInList(image);
984        if (image->progress_monitor != (MagickProgressMonitor) NULL)
985          {
986            status=SetImageProgress(image,LoadImageTag,TellBlob(image),
987              GetBlobSize(image));
988            if (status == MagickFalse)
989              break;
990          }
991      }
992  } while (count > 0);
993  (void) CloseBlob(image);
994  return(GetFirstImageInList(image));
995}
996
997/*
998%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
999%                                                                             %
1000%                                                                             %
1001%                                                                             %
1002%   R e g i s t e r M G K I m a g e                                           %
1003%                                                                             %
1004%                                                                             %
1005%                                                                             %
1006%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1007%
1008%  RegisterMGKImage() adds attributes for the MGK image format to
1009%  the list of supported formats.  The attributes include the image format
1010%  tag, a method to read and/or write the format, whether the format
1011%  supports the saving of more than one frame to the same file or blob,
1012%  whether the format supports native in-memory I/O, and a brief
1013%  description of the format.
1014%
1015%  The format of the RegisterMGKImage method is:
1016%
1017%      unsigned long RegisterMGKImage(void)
1018%
1019*/
1020ModuleExport unsigned long RegisterMGKImage(void)
1021{
1022  MagickInfo
1023    *entry;
1024
1025  entry=AcquireMagickInfo("MGK","MGK","MGK image");
1026  entry->decoder=(DecodeImageHandler *) ReadMGKImage;
1027  entry->encoder=(EncodeImageHandler *) WriteMGKImage;
1028  entry->magick=(IsImageFormatHandler *) IsMGK;
1029  (void) RegisterMagickInfo(entry);
1030  return(MagickImageCoderSignature);
1031}
1032
1033/*
1034%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1035%                                                                             %
1036%                                                                             %
1037%                                                                             %
1038%   U n r e g i s t e r M G K I m a g e                                       %
1039%                                                                             %
1040%                                                                             %
1041%                                                                             %
1042%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1043%
1044%  UnregisterMGKImage() removes format registrations made by the
1045%  MGK module from the list of supported formats.
1046%
1047%  The format of the UnregisterMGKImage method is:
1048%
1049%      UnregisterMGKImage(void)
1050%
1051*/
1052ModuleExport void UnregisterMGKImage(void)
1053{
1054  (void) UnregisterMagickInfo("MGK");
1055}
1056
1057/*
1058%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1059%                                                                             %
1060%                                                                             %
1061%                                                                             %
1062%   W r i t e M G K I m a g e                                                 %
1063%                                                                             %
1064%                                                                             %
1065%                                                                             %
1066%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1067%
1068%  WriteMGKImage() writes an image to a file in red, green, and blue MGK
1069%  rasterfile format.
1070%
1071%  The format of the WriteMGKImage method is:
1072%
1073%      MagickBooleanType WriteMGKImage(const ImageInfo *image_info,
1074%        Image *image)
1075%
1076%  A description of each parameter follows.
1077%
1078%    o image_info: the image info.
1079%
1080%    o image:  The image.
1081%
1082%    o exception:  return any errors or warnings in this structure.
1083%
1084*/
1085static MagickBooleanType WriteMGKImage(const ImageInfo *image_info,Image *image,
1086  ExceptionInfo *exception)
1087{
1088  char
1089    buffer[MaxTextExtent];
1090
1091  long
1092    y;
1093
1094  MagickBooleanType
1095    status;
1096
1097  MagickOffsetType
1098    scene;
1099
1100  register const Quantum
1101    *p;
1102
1103  register long
1104    x;
1105
1106  register unsigned char
1107    *q;
1108
1109  unsigned char
1110    *pixels;
1111
1112  /*
1113    Open output image file.
1114  */
1115  assert(image_info != (const ImageInfo *) NULL);
1116  assert(image_info->signature == MagickCoreSignature);
1117  assert(image != (Image *) NULL);
1118  assert(image->signature == MagickCoreSignature);
1119  if (image->debug != MagickFalse)
1120    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1121  status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception);
1122  if (status == MagickFalse)
1123    return(status);
1124  scene=0;
1125  do
1126  {
1127    /*
1128      Allocate memory for pixels.
1129    */
1130    if (image->colorspace != RGBColorspace)
1131      (void) SetImageColorspace(image,RGBColorspace,exception);
1132    pixels=(unsigned char *) AcquireQuantumMemory((size_t) image->columns,
1133      3UL*sizeof(*pixels));
1134    if (pixels == (unsigned char *) NULL)
1135      ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
1136    /*
1137      Initialize raster file header.
1138    */
1139    (void) WriteBlobString(image,"id=mgk\n");
1140    (void) FormatLocaleString(buffer,MaxTextExtent,"%lu %lu\n",image->columns,
1141       image->rows);
1142    (void) WriteBlobString(image,buffer);
1143    for (y=0; y &lt; (long) image->rows; y++)
1144    {
1145      p=GetVirtualPixels(image,0,y,image->columns,1,exception);
1146      if (p == (const Quantum *) NULL)
1147        break;
1148      q=pixels;
1149      for (x=0; x &lt; (long) image->columns; x++)
1150      {
1151        *q++=ScaleQuantumToChar(GetPixelRed(image,p));
1152        *q++=ScaleQuantumToChar(GetPixelGreen(image,p));
1153        *q++=ScaleQuantumToChar(GetPixelBlue(image,p));
1154        p+=GetPixelChannels(image);
1155      }
1156      (void) WriteBlob(image,(size_t) (q-pixels),pixels);
1157      if (image->previous == (Image *) NULL)
1158        if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
1159            (QuantumTick(y,image->rows) != MagickFalse))
1160          {
1161            status=image->progress_monitor(SaveImageTag,y,image->rows,
1162              image->client_data);
1163            if (status == MagickFalse)
1164              break;
1165          }
1166    }
1167    pixels=(unsigned char *) RelinquishMagickMemory(pixels);
1168    if (GetNextImageInList(image) == (Image *) NULL)
1169      break;
1170    image=SyncNextImageInList(image);
1171    status=SetImageProgress(image,SaveImagesTag,scene,
1172      GetImageListLength(image));
1173    if (status == MagickFalse)
1174      break;
1175    scene++;
1176  } while (image_info->adjoin != MagickFalse);
1177  (void) CloseBlob(image);
1178  return(MagickTrue);
1179}</code></pre>
1180
1181<p>To invoke the custom coder from the command line, use these commands:</p>
1182<pre class="highlight"><code>convert logo: logo.mgk
1183display logo.mgk
1184</code></pre>
1185
1186<p>We provide the <a href="https://imagemagick.org/download/kits/">Magick Coder Kit</a> to help you get started writing your own custom coder.</p>
1187
1188<h2><a class="anchor" id="filters"></a>Custom Image Filters</h2>
1189
1190<p>ImageMagick provides a convenient mechanism for adding your own custom image processing algorithms.  We call these image filters and they are invoked from the command line with the <a href="command-line-options.html#process">-process</a> option or from the MagickCore API method <a href="api/module.html#ExecuteModuleProcess">ExecuteModuleProcess()</a>.</p>
1191
1192<p>Here is a listing of a sample <a href="https://imagemagick.org/source/analyze.c">custom image filter</a>.  It computes a few statistics such as the pixel brightness and saturation mean and standard-deviation.</p>
1193<pre class="pre-scrollable"><code>#include &lt;stdio.h>
1194#include &lt;stdlib.h>
1195#include &lt;string.h>
1196#include &lt;time.h>
1197#include &lt;assert.h>
1198#include &lt;math.h>
1199#include &lt;MagickCore/MagickCore.h>
1200
1201/*
1202%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1203%                                                                             %
1204%                                                                             %
1205%                                                                             %
1206%   a n a l y z e I m a g e                                                   %
1207%                                                                             %
1208%                                                                             %
1209%                                                                             %
1210%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1211%
1212%  analyzeImage() computes the brightness and saturation mean,  standard
1213%  deviation, kurtosis and skewness and stores these values as attributes
1214%  of the image.
1215%
1216%  The format of the analyzeImage method is:
1217%
1218%      size_t analyzeImage(Image *images,const int argc,char **argv,
1219%        ExceptionInfo *exception)
1220%
1221%  A description of each parameter follows:
1222%
1223%    o image: the address of a structure of type Image.
1224%
1225%    o argc: Specifies a pointer to an integer describing the number of
1226%      elements in the argument vector.
1227%
1228%    o argv: Specifies a pointer to a text array containing the command line
1229%      arguments.
1230%
1231%    o exception: return any errors or warnings in this structure.
1232%
1233*/
1234
1235static void ConvertRGBToHSB(const double red,const double green,
1236  const double blue,double *hue,double *saturation,double *brightness)
1237{
1238  double
1239    delta,
1240    max,
1241    min;
1242
1243  /*
1244    Convert RGB to HSB colorspace.
1245  */
1246  assert(hue != (double *) NULL);
1247  assert(saturation != (double *) NULL);
1248  assert(brightness != (double *) NULL);
1249  *hue=0.0;
1250  *saturation=0.0;
1251  *brightness=0.0;
1252  min=red &lt; green ? red : green;
1253  if (blue &lt; min)
1254    min=blue;
1255  max=red > green ? red : green;
1256  if (blue > max)
1257    max=blue;
1258  if (fabs(max) &lt; MagickEpsilon)
1259    return;
1260  delta=max-min;
1261  *saturation=delta/max;
1262  *brightness=QuantumScale*max;
1263  if (fabs(delta) &lt; MagickEpsilon)
1264    return;
1265  if (fabs(red-max) &lt; MagickEpsilon)
1266    *hue=(green-blue)/delta;
1267  else
1268    if (fabs(green-max) &lt; MagickEpsilon)
1269      *hue=2.0+(blue-red)/delta;
1270    else
1271      *hue=4.0+(red-green)/delta;
1272  *hue/=6.0;
1273  if (*hue &lt; 0.0)
1274    *hue+=1.0;
1275}
1276
1277ModuleExport size_t analyzeImage(Image **images,const int argc,
1278  const char **argv,ExceptionInfo *exception)
1279{
1280  char
1281    text[MaxTextExtent];
1282
1283  double
1284    area,
1285    brightness,
1286    brightness_mean,
1287    brightness_standard_deviation,
1288    brightness_kurtosis,
1289    brightness_skewness,
1290    brightness_sum_x,
1291    brightness_sum_x2,
1292    brightness_sum_x3,
1293    brightness_sum_x4,
1294    hue,
1295    saturation,
1296    saturation_mean,
1297    saturation_standard_deviation,
1298    saturation_kurtosis,
1299    saturation_skewness,
1300    saturation_sum_x,
1301    saturation_sum_x2,
1302    saturation_sum_x3,
1303    saturation_sum_x4;
1304
1305  Image
1306    *image;
1307
1308  assert(images != (Image **) NULL);
1309  assert(*images != (Image *) NULL);
1310  assert((*images)->signature == MagickCoreSignature);
1311  (void) argc;
1312  (void) argv;
1313  image=(*images);
1314  for ( ; image != (Image *) NULL; image=GetNextImageInList(image))
1315  {
1316    CacheView
1317      *image_view;
1318
1319    long
1320      y;
1321
1322    MagickBooleanType
1323      status;
1324
1325    brightness_sum_x=0.0;
1326    brightness_sum_x2=0.0;
1327    brightness_sum_x3=0.0;
1328    brightness_sum_x4=0.0;
1329    brightness_mean=0.0;
1330    brightness_standard_deviation=0.0;
1331    brightness_kurtosis=0.0;
1332    brightness_skewness=0.0;
1333    saturation_sum_x=0.0;
1334    saturation_sum_x2=0.0;
1335    saturation_sum_x3=0.0;
1336    saturation_sum_x4=0.0;
1337    saturation_mean=0.0;
1338    saturation_standard_deviation=0.0;
1339    saturation_kurtosis=0.0;
1340    saturation_skewness=0.0;
1341    area=0.0;
1342    status=MagickTrue;
1343    image_view=AcquireVirtualCacheView(image,exception);
1344    for (y=0; y &lt; (long) image->rows; y++)
1345    {
1346      register const Quantum
1347        *p;
1348
1349      register long
1350        x;
1351
1352      if (status == MagickFalse)
1353        continue;
1354      p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1355      if (p == (const Quantum *) NULL)
1356        {
1357          status=MagickFalse;
1358          continue;
1359        }
1360      for (x=0; x &lt; (long) image->columns; x++)
1361      {
1362        ConvertRGBToHSB(GetPixelRed(image,p),GetPixelGreen(image,p),
1363          GetPixelBlue(image,p),&hue,&saturation,&brightness);
1364        brightness*=QuantumRange;
1365        brightness_sum_x+=brightness;
1366        brightness_sum_x2+=brightness*brightness;
1367        brightness_sum_x3+=brightness*brightness*brightness;
1368        brightness_sum_x4+=brightness*brightness*brightness*brightness;
1369        saturation*=QuantumRange;
1370        saturation_sum_x+=saturation;
1371        saturation_sum_x2+=saturation*saturation;
1372        saturation_sum_x3+=saturation*saturation*saturation;
1373        saturation_sum_x4+=saturation*saturation*saturation*saturation;
1374        area++;
1375        p+=GetPixelChannels(image);
1376      }
1377    }
1378    image_view=DestroyCacheView(image_view);
1379    if (area &lt;= 0.0)
1380      break;
1381    brightness_mean=brightness_sum_x/area;
1382    (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_mean);
1383    (void) SetImageProperty(image,"filter:brightness:mean",text,exception);
1384    brightness_standard_deviation=sqrt(brightness_sum_x2/area-(brightness_sum_x/
1385      area*brightness_sum_x/area));
1386    (void) FormatLocaleString(text,MaxTextExtent,"%g",
1387      brightness_standard_deviation);
1388    (void) SetImageProperty(image,"filter:brightness:standard-deviation",text,
1389      exception);
1390    if (brightness_standard_deviation != 0)
1391      brightness_kurtosis=(brightness_sum_x4/area-4.0*brightness_mean*
1392        brightness_sum_x3/area+6.0*brightness_mean*brightness_mean*
1393        brightness_sum_x2/area-3.0*brightness_mean*brightness_mean*
1394        brightness_mean*brightness_mean)/(brightness_standard_deviation*
1395        brightness_standard_deviation*brightness_standard_deviation*
1396        brightness_standard_deviation)-3.0;
1397    (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_kurtosis);
1398    (void) SetImageProperty(image,"filter:brightness:kurtosis",text,
1399      exception);
1400    if (brightness_standard_deviation != 0)
1401      brightness_skewness=(brightness_sum_x3/area-3.0*brightness_mean*
1402        brightness_sum_x2/area+2.0*brightness_mean*brightness_mean*
1403        brightness_mean)/(brightness_standard_deviation*
1404        brightness_standard_deviation*brightness_standard_deviation);
1405    (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_skewness);
1406    (void) SetImageProperty(image,"filter:brightness:skewness",text,exception);
1407    saturation_mean=saturation_sum_x/area;
1408    (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_mean);
1409    (void) SetImageProperty(image,"filter:saturation:mean",text,exception);
1410    saturation_standard_deviation=sqrt(saturation_sum_x2/area-(saturation_sum_x/
1411      area*saturation_sum_x/area));
1412    (void) FormatLocaleString(text,MaxTextExtent,"%g",
1413      saturation_standard_deviation);
1414    (void) SetImageProperty(image,"filter:saturation:standard-deviation",text,
1415      exception);
1416    if (saturation_standard_deviation != 0)
1417      saturation_kurtosis=(saturation_sum_x4/area-4.0*saturation_mean*
1418        saturation_sum_x3/area+6.0*saturation_mean*saturation_mean*
1419        saturation_sum_x2/area-3.0*saturation_mean*saturation_mean*
1420        saturation_mean*saturation_mean)/(saturation_standard_deviation*
1421        saturation_standard_deviation*saturation_standard_deviation*
1422        saturation_standard_deviation)-3.0;
1423    (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_kurtosis);
1424    (void) SetImageProperty(image,"filter:saturation:kurtosis",text,exception);
1425    if (saturation_standard_deviation != 0)
1426      saturation_skewness=(saturation_sum_x3/area-3.0*saturation_mean*
1427        saturation_sum_x2/area+2.0*saturation_mean*saturation_mean*
1428        saturation_mean)/(saturation_standard_deviation*
1429        saturation_standard_deviation*saturation_standard_deviation);
1430    (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_skewness);
1431    (void) SetImageProperty(image,"filter:saturation:skewness",text,exception);
1432  }
1433  return(MagickImageFilterSignature);
1434}
1435</code></pre>
1436
1437<p>To invoke the custom filter from the command line, use this command:</p>
1438
1439<pre class="highlight"><code>convert logo: -process \"analyze\" -verbose info:
1440  Image: logo:
1441    Format: LOGO (ImageMagick Logo)
1442    Class: PseudoClass
1443    Geometry: 640x480
1444    ...
1445    filter:brightness:kurtosis: 8.17947
1446    filter:brightness:mean: 60632.1
1447    filter:brightness:skewness: -2.97118
1448    filter:brightness:standard-deviation: 13742.1
1449    filter:saturation:kurtosis: 4.33554
1450    filter:saturation:mean: 5951.55
1451    filter:saturation:skewness: 2.42848
1452    filter:saturation:standard-deviation: 15575.9
1453</code></pre>
1454
1455
1456<p>We provide the <a href="https://imagemagick.org/download/kits/">Magick Filter Kit</a> to help you get started writing your own custom image filter.</p>
1457
1458</div>
1459    </div>
1460  </main><!-- /.container -->
1461  <footer class="magick-footer">
1462    <p><a href="security-policy.html">Security</a> •
1463    <a href="architecture.html">Architecture</a> •
1464    <a href="links.html">Related</a> •
1465     <a href="sitemap.html">Sitemap</a>
1466
1467    <a href="architecture.html#"><img class="d-inline" id="wand" alt="And Now a Touch of Magick" width="16" height="16" src="../images/wand.ico"/></a>
1468
1469    <a href="http://pgp.mit.edu/pks/lookup?op=get&amp;search=0x89AB63D48277377A">Public Key</a> •
1470    <a href="support.html">Donate</a> •
1471    <a href="https://imagemagick.org/script/contact.php">Contact Us</a>
1472    <br/>
1473    <small>© 1999-2019 ImageMagick Studio LLC</small></p>
1474  </footer>
1475
1476  <!-- Javascript assets -->
1477  <script src="assets/magick.js" crossorigin="anonymous"></script>
1478  <script>window.jQuery || document.write('<script src="https://localhost/ajax/libs/jquery/3.3.1/jquery.min.js"><\/script>')</script>
1479</body>
1480</html>
1481<!-- Magick Cache 5th January 2019 11:42 -->