1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
18 #define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
19
20 namespace android {
21
22 // depends on AudioResamplerFirOps.h
23
24 /* variant for input type TI = int16_t input samples */
25 template<typename TC>
26 static inline
mac(int32_t & l,int32_t & r,TC coef,const int16_t * samples)27 void mac(int32_t& l, int32_t& r, TC coef, const int16_t* samples)
28 {
29 uint32_t rl = *reinterpret_cast<const uint32_t*>(samples);
30 l = mulAddRL(1, rl, coef, l);
31 r = mulAddRL(0, rl, coef, r);
32 }
33
34 template<typename TC>
35 static inline
mac(int32_t & l,TC coef,const int16_t * samples)36 void mac(int32_t& l, TC coef, const int16_t* samples)
37 {
38 l = mulAdd(samples[0], coef, l);
39 }
40
41 /* variant for input type TI = float input samples */
42 template<typename TC>
43 static inline
mac(float & l,float & r,TC coef,const float * samples)44 void mac(float& l, float& r, TC coef, const float* samples)
45 {
46 l += *samples++ * coef;
47 r += *samples * coef;
48 }
49
50 template<typename TC>
51 static inline
mac(float & l,TC coef,const float * samples)52 void mac(float& l, TC coef, const float* samples)
53 {
54 l += *samples * coef;
55 }
56
57 /* variant for output type TO = int32_t output samples */
58 static inline
volumeAdjust(int32_t value,int32_t volume)59 int32_t volumeAdjust(int32_t value, int32_t volume)
60 {
61 return 2 * mulRL(0, value, volume); // Note: only use top 16b
62 }
63
64 /* variant for output type TO = float output samples */
65 static inline
volumeAdjust(float value,float volume)66 float volumeAdjust(float value, float volume)
67 {
68 return value * volume;
69 }
70
71 /*
72 * Helper template functions for loop unrolling accumulator operations.
73 *
74 * Unrolling the loops achieves about 2x gain.
75 * Using a recursive template rather than an array of TO[] for the accumulator
76 * values is an additional 10-20% gain.
77 */
78
79 template<int CHANNELS, typename TO>
80 class Accumulator : public Accumulator<CHANNELS-1, TO> // recursive
81 {
82 public:
clear()83 inline void clear() {
84 value = 0;
85 Accumulator<CHANNELS-1, TO>::clear();
86 }
87 template<typename TC, typename TI>
acc(TC coef,const TI * & data)88 inline void acc(TC coef, const TI*& data) {
89 mac(value, coef, data++);
90 Accumulator<CHANNELS-1, TO>::acc(coef, data);
91 }
volume(TO * & out,TO gain)92 inline void volume(TO*& out, TO gain) {
93 *out++ += volumeAdjust(value, gain);
94 Accumulator<CHANNELS-1, TO>::volume(out, gain);
95 }
96
97 TO value; // one per recursive inherited base class
98 };
99
100 template<typename TO>
101 class Accumulator<0, TO> {
102 public:
clear()103 inline void clear() {
104 }
105 template<typename TC, typename TI>
acc(TC coef __unused,const TI * & data __unused)106 inline void acc(TC coef __unused, const TI*& data __unused) {
107 }
volume(TO * & out __unused,TO gain __unused)108 inline void volume(TO*& out __unused, TO gain __unused) {
109 }
110 };
111
112 template<typename TC, typename TINTERP>
113 inline
interpolate(TC coef_0,TC coef_1,TINTERP lerp)114 TC interpolate(TC coef_0, TC coef_1, TINTERP lerp)
115 {
116 return lerp * (coef_1 - coef_0) + coef_0;
117 }
118
119 template<>
120 inline
121 int16_t interpolate<int16_t, uint32_t>(int16_t coef_0, int16_t coef_1, uint32_t lerp)
122 { // in some CPU architectures 16b x 16b multiplies are faster.
123 return (static_cast<int16_t>(lerp) * static_cast<int16_t>(coef_1 - coef_0) >> 15) + coef_0;
124 }
125
126 template<>
127 inline
128 int32_t interpolate<int32_t, uint32_t>(int32_t coef_0, int32_t coef_1, uint32_t lerp)
129 {
130 return (lerp * static_cast<int64_t>(coef_1 - coef_0) >> 31) + coef_0;
131 }
132
133 /* class scope for passing in functions into templates */
134 struct InterpCompute {
135 template<typename TC, typename TINTERP>
136 static inline
interpolatepInterpCompute137 TC interpolatep(TC coef_0, TC coef_1, TINTERP lerp) {
138 return interpolate(coef_0, coef_1, lerp);
139 }
140
141 template<typename TC, typename TINTERP>
142 static inline
interpolatenInterpCompute143 TC interpolaten(TC coef_0, TC coef_1, TINTERP lerp) {
144 return interpolate(coef_0, coef_1, lerp);
145 }
146 };
147
148 struct InterpNull {
149 template<typename TC, typename TINTERP>
150 static inline
interpolatepInterpNull151 TC interpolatep(TC coef_0, TC coef_1 __unused, TINTERP lerp __unused) {
152 return coef_0;
153 }
154
155 template<typename TC, typename TINTERP>
156 static inline
interpolatenInterpNull157 TC interpolaten(TC coef_0 __unused, TC coef_1, TINTERP lerp __unused) {
158 return coef_1;
159 }
160 };
161
162 /*
163 * Calculates a single output frame (two samples).
164 *
165 * The Process*() functions compute both the positive half FIR dot product and
166 * the negative half FIR dot product, accumulates, and then applies the volume.
167 *
168 * Use fir() to compute the proper coefficient pointers for a polyphase
169 * filter bank.
170 *
171 * ProcessBase() is the fundamental processing template function.
172 *
173 * ProcessL() calls ProcessBase() with TFUNC = InterpNull, for fixed/locked phase.
174 * Process() calls ProcessBase() with TFUNC = InterpCompute, for interpolated phase.
175 */
176
177 template <int CHANNELS, int STRIDE, typename TFUNC, typename TC, typename TI, typename TO,
178 typename TINTERP>
179 static inline
ProcessBase(TO * const out,size_t count,const TC * coefsP,const TC * coefsN,const TI * sP,const TI * sN,TINTERP lerpP,const TO * const volumeLR)180 void ProcessBase(TO* const out,
181 size_t count,
182 const TC* coefsP,
183 const TC* coefsN,
184 const TI* sP,
185 const TI* sN,
186 TINTERP lerpP,
187 const TO* const volumeLR)
188 {
189 static_assert(CHANNELS > 0, "CHANNELS must be > 0");
190
191 if (CHANNELS > 2) {
192 // TO accum[CHANNELS];
193 Accumulator<CHANNELS, TO> accum;
194
195 // for (int j = 0; j < CHANNELS; ++j) accum[j] = 0;
196 accum.clear();
197 for (size_t i = 0; i < count; ++i) {
198 TC c = TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP);
199
200 // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sP + j);
201 const TI *tmp_data = sP; // tmp_ptr seems to work better
202 accum.acc(c, tmp_data);
203
204 coefsP++;
205 sP -= CHANNELS;
206 c = TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP);
207
208 // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sN + j);
209 tmp_data = sN; // tmp_ptr seems faster than directly using sN
210 accum.acc(c, tmp_data);
211
212 coefsN++;
213 sN += CHANNELS;
214 }
215 // for (int j = 0; j < CHANNELS; ++j) out[j] += volumeAdjust(accum[j], volumeLR[0]);
216 TO *tmp_out = out; // may remove if const out definition changes.
217 accum.volume(tmp_out, volumeLR[0]);
218 } else if (CHANNELS == 2) {
219 TO l = 0;
220 TO r = 0;
221 for (size_t i = 0; i < count; ++i) {
222 mac(l, r, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
223 coefsP++;
224 sP -= CHANNELS;
225 mac(l, r, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
226 coefsN++;
227 sN += CHANNELS;
228 }
229 out[0] += volumeAdjust(l, volumeLR[0]);
230 out[1] += volumeAdjust(r, volumeLR[1]);
231 } else { /* CHANNELS == 1 */
232 TO l = 0;
233 for (size_t i = 0; i < count; ++i) {
234 mac(l, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
235 coefsP++;
236 sP -= CHANNELS;
237 mac(l, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
238 coefsN++;
239 sN += CHANNELS;
240 }
241 out[0] += volumeAdjust(l, volumeLR[0]);
242 out[1] += volumeAdjust(l, volumeLR[1]);
243 }
244 }
245
246 /* Calculates a single output frame from a polyphase resampling filter.
247 * See Process() for parameter details.
248 */
249 template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO>
250 static inline
ProcessL(TO * const out,int count,const TC * coefsP,const TC * coefsN,const TI * sP,const TI * sN,const TO * const volumeLR)251 void ProcessL(TO* const out,
252 int count,
253 const TC* coefsP,
254 const TC* coefsN,
255 const TI* sP,
256 const TI* sN,
257 const TO* const volumeLR)
258 {
259 ProcessBase<CHANNELS, STRIDE, InterpNull>(out, count, coefsP, coefsN, sP, sN, 0, volumeLR);
260 }
261
262 /*
263 * Calculates a single output frame from a polyphase resampling filter,
264 * with filter phase interpolation.
265 *
266 * @param out should point to the output buffer with space for at least one output frame.
267 *
268 * @param count should be half the size of the total filter length (halfNumCoefs), as we
269 * use symmetry in filter coefficients to evaluate two dot products.
270 *
271 * @param coefsP is one phase of the polyphase filter bank of size halfNumCoefs, corresponding
272 * to the positive sP.
273 *
274 * @param coefsN is one phase of the polyphase filter bank of size halfNumCoefs, corresponding
275 * to the negative sN.
276 *
277 * @param coefsP1 is the next phase of coefsP (used for interpolation).
278 *
279 * @param coefsN1 is the next phase of coefsN (used for interpolation).
280 *
281 * @param sP is the positive half of the coefficients (as viewed by a convolution),
282 * starting at the original samples pointer and decrementing (by CHANNELS).
283 *
284 * @param sN is the negative half of the samples (as viewed by a convolution),
285 * starting at the original samples pointer + CHANNELS and incrementing (by CHANNELS).
286 *
287 * @param lerpP The fractional siting between the polyphase indices is given by the bits
288 * below coefShift. See fir() for details.
289 *
290 * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel,
291 * expressed as a S32 integer or float. A negative value inverts the channel 180 degrees.
292 * The pointer volumeLR should be aligned to a minimum of 8 bytes.
293 * A typical value for volume is 0x1000 to align to a unity gain output of 20.12.
294 */
295 template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO, typename TINTERP>
296 static inline
Process(TO * const out,int count,const TC * coefsP,const TC * coefsN,const TC * coefsP1 __unused,const TC * coefsN1 __unused,const TI * sP,const TI * sN,TINTERP lerpP,const TO * const volumeLR)297 void Process(TO* const out,
298 int count,
299 const TC* coefsP,
300 const TC* coefsN,
301 const TC* coefsP1 __unused,
302 const TC* coefsN1 __unused,
303 const TI* sP,
304 const TI* sN,
305 TINTERP lerpP,
306 const TO* const volumeLR)
307 {
308 ProcessBase<CHANNELS, STRIDE, InterpCompute>(out, count, coefsP, coefsN, sP, sN, lerpP,
309 volumeLR);
310 }
311
312 /*
313 * Calculates a single output frame from input sample pointer.
314 *
315 * This sets up the params for the accelerated Process() and ProcessL()
316 * functions to do the appropriate dot products.
317 *
318 * @param out should point to the output buffer with space for at least one output frame.
319 *
320 * @param phase is the fractional distance between input frames for interpolation:
321 * phase >= 0 && phase < phaseWrapLimit. It can be thought of as a rational fraction
322 * of phase/phaseWrapLimit.
323 *
324 * @param phaseWrapLimit is #polyphases<<coefShift, where #polyphases is the number of polyphases
325 * in the polyphase filter. Likewise, #polyphases can be obtained as (phaseWrapLimit>>coefShift).
326 *
327 * @param coefShift gives the bit alignment of the polyphase index in the phase parameter.
328 *
329 * @param halfNumCoefs is the half the number of coefficients per polyphase filter. Since the
330 * overall filterbank is odd-length symmetric, only halfNumCoefs need be stored.
331 *
332 * @param coefs is the polyphase filter bank, starting at from polyphase index 0, and ranging to
333 * and including the #polyphases. Each polyphase of the filter has half-length halfNumCoefs
334 * (due to symmetry). The total size of the filter bank in coefficients is
335 * (#polyphases+1)*halfNumCoefs.
336 *
337 * The filter bank coefs should be aligned to a minimum of 16 bytes (preferrably to cache line).
338 *
339 * The coefs should be attenuated (to compensate for passband ripple)
340 * if storing back into the native format.
341 *
342 * @param samples are unaligned input samples. The position is in the "middle" of the
343 * sample array with respect to the FIR filter:
344 * the negative half of the filter is dot product from samples+1 to samples+halfNumCoefs;
345 * the positive half of the filter is dot product from samples to samples-halfNumCoefs+1.
346 *
347 * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel,
348 * expressed as a S32 integer or float. A negative value inverts the channel 180 degrees.
349 * The pointer volumeLR should be aligned to a minimum of 8 bytes.
350 * A typical value for volume is 0x1000 to align to a unity gain output of 20.12.
351 *
352 * In between calls to filterCoefficient, the phase is incremented by phaseIncrement, where
353 * phaseIncrement is calculated as inputSampling * phaseWrapLimit / outputSampling.
354 *
355 * The filter polyphase index is given by indexP = phase >> coefShift. Due to
356 * odd length symmetric filter, the polyphase index of the negative half depends on
357 * whether interpolation is used.
358 *
359 * The fractional siting between the polyphase indices is given by the bits below coefShift:
360 *
361 * lerpP = phase << 32 - coefShift >> 1; // for 32 bit unsigned phase multiply
362 * lerpP = phase << 32 - coefShift >> 17; // for 16 bit unsigned phase multiply
363 *
364 * For integer types, this is expressed as:
365 *
366 * lerpP = phase << sizeof(phase)*8 - coefShift
367 * >> (sizeof(phase)-sizeof(*coefs))*8 + 1;
368 *
369 * For floating point, lerpP is the fractional phase scaled to [0.0, 1.0):
370 *
371 * lerpP = (phase << 32 - coefShift) / (1 << 32); // floating point equivalent
372 */
373
374 template<int CHANNELS, bool LOCKED, int STRIDE, typename TC, typename TI, typename TO>
375 static inline
fir(TO * const out,const uint32_t phase,const uint32_t phaseWrapLimit,const int coefShift,const int halfNumCoefs,const TC * const coefs,const TI * const samples,const TO * const volumeLR)376 void fir(TO* const out,
377 const uint32_t phase, const uint32_t phaseWrapLimit,
378 const int coefShift, const int halfNumCoefs, const TC* const coefs,
379 const TI* const samples, const TO* const volumeLR)
380 {
381 // NOTE: be very careful when modifying the code here. register
382 // pressure is very high and a small change might cause the compiler
383 // to generate far less efficient code.
384 // Always sanity check the result with objdump or test-resample.
385
386 if (LOCKED) {
387 // locked polyphase (no interpolation)
388 // Compute the polyphase filter index on the positive and negative side.
389 uint32_t indexP = phase >> coefShift;
390 uint32_t indexN = (phaseWrapLimit - phase) >> coefShift;
391 const TC* coefsP = coefs + indexP*halfNumCoefs;
392 const TC* coefsN = coefs + indexN*halfNumCoefs;
393 const TI* sP = samples;
394 const TI* sN = samples + CHANNELS;
395
396 // dot product filter.
397 ProcessL<CHANNELS, STRIDE>(out,
398 halfNumCoefs, coefsP, coefsN, sP, sN, volumeLR);
399 } else {
400 // interpolated polyphase
401 // Compute the polyphase filter index on the positive and negative side.
402 uint32_t indexP = phase >> coefShift;
403 uint32_t indexN = (phaseWrapLimit - phase - 1) >> coefShift; // one's complement.
404 const TC* coefsP = coefs + indexP*halfNumCoefs;
405 const TC* coefsN = coefs + indexN*halfNumCoefs;
406 const TC* coefsP1 = coefsP + halfNumCoefs;
407 const TC* coefsN1 = coefsN + halfNumCoefs;
408 const TI* sP = samples;
409 const TI* sN = samples + CHANNELS;
410
411 // Interpolation fraction lerpP derived by shifting all the way up and down
412 // to clear the appropriate bits and align to the appropriate level
413 // for the integer multiply. The constants should resolve in compile time.
414 //
415 // The interpolated filter coefficient is derived as follows for the pos/neg half:
416 //
417 // interpolated[P] = index[P]*lerpP + index[P+1]*(1-lerpP)
418 // interpolated[N] = index[N+1]*lerpP + index[N]*(1-lerpP)
419
420 // on-the-fly interpolated dot product filter
421 if (is_same<TC, float>::value || is_same<TC, double>::value) {
422 static const TC scale = 1. / (65536. * 65536.); // scale phase bits to [0.0, 1.0)
423 TC lerpP = TC(phase << (sizeof(phase)*8 - coefShift)) * scale;
424
425 Process<CHANNELS, STRIDE>(out,
426 halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
427 } else {
428 uint32_t lerpP = phase << (sizeof(phase)*8 - coefShift)
429 >> ((sizeof(phase)-sizeof(*coefs))*8 + 1);
430
431 Process<CHANNELS, STRIDE>(out,
432 halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
433 }
434 }
435 }
436
437 } // namespace android
438
439 #endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H*/
440