1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3<html> 4<head> 5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> 6 <title>LLVM Bitcode File Format</title> 7 <link rel="stylesheet" href="llvm.css" type="text/css"> 8</head> 9<body> 10<h1> LLVM Bitcode File Format</h1> 11<ol> 12 <li><a href="#abstract">Abstract</a></li> 13 <li><a href="#overview">Overview</a></li> 14 <li><a href="#bitstream">Bitstream Format</a> 15 <ol> 16 <li><a href="#magic">Magic Numbers</a></li> 17 <li><a href="#primitives">Primitives</a></li> 18 <li><a href="#abbrevid">Abbreviation IDs</a></li> 19 <li><a href="#blocks">Blocks</a></li> 20 <li><a href="#datarecord">Data Records</a></li> 21 <li><a href="#abbreviations">Abbreviations</a></li> 22 <li><a href="#stdblocks">Standard Blocks</a></li> 23 </ol> 24 </li> 25 <li><a href="#wrapper">Bitcode Wrapper Format</a> 26 </li> 27 <li><a href="#llvmir">LLVM IR Encoding</a> 28 <ol> 29 <li><a href="#basics">Basics</a></li> 30 <li><a href="#MODULE_BLOCK">MODULE_BLOCK Contents</a></li> 31 <li><a href="#PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents</a></li> 32 <li><a href="#TYPE_BLOCK">TYPE_BLOCK Contents</a></li> 33 <li><a href="#CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents</a></li> 34 <li><a href="#FUNCTION_BLOCK">FUNCTION_BLOCK Contents</a></li> 35 <li><a href="#TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents</a></li> 36 <li><a href="#VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents</a></li> 37 <li><a href="#METADATA_BLOCK">METADATA_BLOCK Contents</a></li> 38 <li><a href="#METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents</a></li> 39 </ol> 40 </li> 41</ol> 42<div class="doc_author"> 43 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>, 44 <a href="http://www.reverberate.org">Joshua Haberman</a>, 45 and <a href="mailto:housel@acm.org">Peter S. Housel</a>. 46</p> 47</div> 48 49<!-- *********************************************************************** --> 50<h2><a name="abstract">Abstract</a></h2> 51<!-- *********************************************************************** --> 52 53<div> 54 55<p>This document describes the LLVM bitstream file format and the encoding of 56the LLVM IR into it.</p> 57 58</div> 59 60<!-- *********************************************************************** --> 61<h2><a name="overview">Overview</a></h2> 62<!-- *********************************************************************** --> 63 64<div> 65 66<p> 67What is commonly known as the LLVM bitcode file format (also, sometimes 68anachronistically known as bytecode) is actually two things: a <a 69href="#bitstream">bitstream container format</a> 70and an <a href="#llvmir">encoding of LLVM IR</a> into the container format.</p> 71 72<p> 73The bitstream format is an abstract encoding of structured data, very 74similar to XML in some ways. Like XML, bitstream files contain tags, and nested 75structures, and you can parse the file without having to understand the tags. 76Unlike XML, the bitstream format is a binary encoding, and unlike XML it 77provides a mechanism for the file to self-describe "abbreviations", which are 78effectively size optimizations for the content.</p> 79 80<p>LLVM IR files may be optionally embedded into a <a 81href="#wrapper">wrapper</a> structure that makes it easy to embed extra data 82along with LLVM IR files.</p> 83 84<p>This document first describes the LLVM bitstream format, describes the 85wrapper format, then describes the record structure used by LLVM IR files. 86</p> 87 88</div> 89 90<!-- *********************************************************************** --> 91<h2><a name="bitstream">Bitstream Format</a></h2> 92<!-- *********************************************************************** --> 93 94<div> 95 96<p> 97The bitstream format is literally a stream of bits, with a very simple 98structure. This structure consists of the following concepts: 99</p> 100 101<ul> 102<li>A "<a href="#magic">magic number</a>" that identifies the contents of 103 the stream.</li> 104<li>Encoding <a href="#primitives">primitives</a> like variable bit-rate 105 integers.</li> 106<li><a href="#blocks">Blocks</a>, which define nested content.</li> 107<li><a href="#datarecord">Data Records</a>, which describe entities within the 108 file.</li> 109<li>Abbreviations, which specify compression optimizations for the file.</li> 110</ul> 111 112<p>Note that the <a 113href="CommandGuide/html/llvm-bcanalyzer.html">llvm-bcanalyzer</a> tool can be 114used to dump and inspect arbitrary bitstreams, which is very useful for 115understanding the encoding.</p> 116 117<!-- ======================================================================= --> 118<h3> 119 <a name="magic">Magic Numbers</a> 120</h3> 121 122<div> 123 124<p>The first two bytes of a bitcode file are 'BC' (0x42, 0x43). 125The second two bytes are an application-specific magic number. Generic 126bitcode tools can look at only the first two bytes to verify the file is 127bitcode, while application-specific programs will want to look at all four.</p> 128 129</div> 130 131<!-- ======================================================================= --> 132<h3> 133 <a name="primitives">Primitives</a> 134</h3> 135 136<div> 137 138<p> 139A bitstream literally consists of a stream of bits, which are read in order 140starting with the least significant bit of each byte. The stream is made up of a 141number of primitive values that encode a stream of unsigned integer values. 142These integers are encoded in two ways: either as <a href="#fixedwidth">Fixed 143Width Integers</a> or as <a href="#variablewidth">Variable Width 144Integers</a>. 145</p> 146 147<!-- _______________________________________________________________________ --> 148<h4> 149 <a name="fixedwidth">Fixed Width Integers</a> 150</h4> 151 152<div> 153 154<p>Fixed-width integer values have their low bits emitted directly to the file. 155 For example, a 3-bit integer value encodes 1 as 001. Fixed width integers 156 are used when there are a well-known number of options for a field. For 157 example, boolean values are usually encoded with a 1-bit wide integer. 158</p> 159 160</div> 161 162<!-- _______________________________________________________________________ --> 163<h4> 164 <a name="variablewidth">Variable Width Integers</a> 165</h4> 166 167<div> 168 169<p>Variable-width integer (VBR) values encode values of arbitrary size, 170optimizing for the case where the values are small. Given a 4-bit VBR field, 171any 3-bit value (0 through 7) is encoded directly, with the high bit set to 172zero. Values larger than N-1 bits emit their bits in a series of N-1 bit 173chunks, where all but the last set the high bit.</p> 174 175<p>For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a 176vbr4 value. The first set of four bits indicates the value 3 (011) with a 177continuation piece (indicated by a high bit of 1). The next word indicates a 178value of 24 (011 << 3) with no continuation. The sum (3+24) yields the value 17927. 180</p> 181 182</div> 183 184<!-- _______________________________________________________________________ --> 185<h4><a name="char6">6-bit characters</a></h4> 186 187<div> 188 189<p>6-bit characters encode common characters into a fixed 6-bit field. They 190represent the following characters with the following 6-bit values:</p> 191 192<div class="doc_code"> 193<pre> 194'a' .. 'z' — 0 .. 25 195'A' .. 'Z' — 26 .. 51 196'0' .. '9' — 52 .. 61 197 '.' — 62 198 '_' — 63 199</pre> 200</div> 201 202<p>This encoding is only suitable for encoding characters and strings that 203consist only of the above characters. It is completely incapable of encoding 204characters not in the set.</p> 205 206</div> 207 208<!-- _______________________________________________________________________ --> 209<h4><a name="wordalign">Word Alignment</a></h4> 210 211<div> 212 213<p>Occasionally, it is useful to emit zero bits until the bitstream is a 214multiple of 32 bits. This ensures that the bit position in the stream can be 215represented as a multiple of 32-bit words.</p> 216 217</div> 218 219</div> 220 221<!-- ======================================================================= --> 222<h3> 223 <a name="abbrevid">Abbreviation IDs</a> 224</h3> 225 226<div> 227 228<p> 229A bitstream is a sequential series of <a href="#blocks">Blocks</a> and 230<a href="#datarecord">Data Records</a>. Both of these start with an 231abbreviation ID encoded as a fixed-bitwidth field. The width is specified by 232the current block, as described below. The value of the abbreviation ID 233specifies either a builtin ID (which have special meanings, defined below) or 234one of the abbreviation IDs defined for the current block by the stream itself. 235</p> 236 237<p> 238The set of builtin abbrev IDs is: 239</p> 240 241<ul> 242<li><tt>0 - <a href="#END_BLOCK">END_BLOCK</a></tt> — This abbrev ID marks 243 the end of the current block.</li> 244<li><tt>1 - <a href="#ENTER_SUBBLOCK">ENTER_SUBBLOCK</a></tt> — This 245 abbrev ID marks the beginning of a new block.</li> 246<li><tt>2 - <a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt> — This defines 247 a new abbreviation.</li> 248<li><tt>3 - <a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> — This ID 249 specifies the definition of an unabbreviated record.</li> 250</ul> 251 252<p>Abbreviation IDs 4 and above are defined by the stream itself, and specify 253an <a href="#abbrev_records">abbreviated record encoding</a>.</p> 254 255</div> 256 257<!-- ======================================================================= --> 258<h3> 259 <a name="blocks">Blocks</a> 260</h3> 261 262<div> 263 264<p> 265Blocks in a bitstream denote nested regions of the stream, and are identified by 266a content-specific id number (for example, LLVM IR uses an ID of 12 to represent 267function bodies). Block IDs 0-7 are reserved for <a href="#stdblocks">standard blocks</a> 268whose meaning is defined by Bitcode; block IDs 8 and greater are 269application specific. Nested blocks capture the hierarchical structure of the data 270encoded in it, and various properties are associated with blocks as the file is 271parsed. Block definitions allow the reader to efficiently skip blocks 272in constant time if the reader wants a summary of blocks, or if it wants to 273efficiently skip data it does not understand. The LLVM IR reader uses this 274mechanism to skip function bodies, lazily reading them on demand. 275</p> 276 277<p> 278When reading and encoding the stream, several properties are maintained for the 279block. In particular, each block maintains: 280</p> 281 282<ol> 283<li>A current abbrev id width. This value starts at 2 at the beginning of 284 the stream, and is set every time a 285 block record is entered. The block entry specifies the abbrev id width for 286 the body of the block.</li> 287 288<li>A set of abbreviations. Abbreviations may be defined within a block, in 289 which case they are only defined in that block (neither subblocks nor 290 enclosing blocks see the abbreviation). Abbreviations can also be defined 291 inside a <tt><a href="#BLOCKINFO">BLOCKINFO</a></tt> block, in which case 292 they are defined in all blocks that match the ID that the BLOCKINFO block is 293 describing. 294</li> 295</ol> 296 297<p> 298As sub blocks are entered, these properties are saved and the new sub-block has 299its own set of abbreviations, and its own abbrev id width. When a sub-block is 300popped, the saved values are restored. 301</p> 302 303<!-- _______________________________________________________________________ --> 304<h4><a name="ENTER_SUBBLOCK">ENTER_SUBBLOCK Encoding</a></h4> 305 306<div> 307 308<p><tt>[ENTER_SUBBLOCK, blockid<sub>vbr8</sub>, newabbrevlen<sub>vbr4</sub>, 309 <align32bits>, blocklen<sub>32</sub>]</tt></p> 310 311<p> 312The <tt>ENTER_SUBBLOCK</tt> abbreviation ID specifies the start of a new block 313record. The <tt>blockid</tt> value is encoded as an 8-bit VBR identifier, and 314indicates the type of block being entered, which can be 315a <a href="#stdblocks">standard block</a> or an application-specific block. 316The <tt>newabbrevlen</tt> value is a 4-bit VBR, which specifies the abbrev id 317width for the sub-block. The <tt>blocklen</tt> value is a 32-bit aligned value 318that specifies the size of the subblock in 32-bit words. This value allows the 319reader to skip over the entire block in one jump. 320</p> 321 322</div> 323 324<!-- _______________________________________________________________________ --> 325<h4><a name="END_BLOCK">END_BLOCK Encoding</a></h4> 326 327<div> 328 329<p><tt>[END_BLOCK, <align32bits>]</tt></p> 330 331<p> 332The <tt>END_BLOCK</tt> abbreviation ID specifies the end of the current block 333record. Its end is aligned to 32-bits to ensure that the size of the block is 334an even multiple of 32-bits. 335</p> 336 337</div> 338 339</div> 340 341<!-- ======================================================================= --> 342<h3> 343 <a name="datarecord">Data Records</a> 344</h3> 345 346<div> 347<p> 348Data records consist of a record code and a number of (up to) 64-bit 349integer values. The interpretation of the code and values is 350application specific and may vary between different block types. 351Records can be encoded either using an unabbrev record, or with an 352abbreviation. In the LLVM IR format, for example, there is a record 353which encodes the target triple of a module. The code is 354<tt>MODULE_CODE_TRIPLE</tt>, and the values of the record are the 355ASCII codes for the characters in the string. 356</p> 357 358<!-- _______________________________________________________________________ --> 359<h4><a name="UNABBREV_RECORD">UNABBREV_RECORD Encoding</a></h4> 360 361<div> 362 363<p><tt>[UNABBREV_RECORD, code<sub>vbr6</sub>, numops<sub>vbr6</sub>, 364 op0<sub>vbr6</sub>, op1<sub>vbr6</sub>, ...]</tt></p> 365 366<p> 367An <tt>UNABBREV_RECORD</tt> provides a default fallback encoding, which is both 368completely general and extremely inefficient. It can describe an arbitrary 369record by emitting the code and operands as VBRs. 370</p> 371 372<p> 373For example, emitting an LLVM IR target triple as an unabbreviated record 374requires emitting the <tt>UNABBREV_RECORD</tt> abbrevid, a vbr6 for the 375<tt>MODULE_CODE_TRIPLE</tt> code, a vbr6 for the length of the string, which is 376equal to the number of operands, and a vbr6 for each character. Because there 377are no letters with values less than 32, each letter would need to be emitted as 378at least a two-part VBR, which means that each letter would require at least 12 379bits. This is not an efficient encoding, but it is fully general. 380</p> 381 382</div> 383 384<!-- _______________________________________________________________________ --> 385<h4><a name="abbrev_records">Abbreviated Record Encoding</a></h4> 386 387<div> 388 389<p><tt>[<abbrevid>, fields...]</tt></p> 390 391<p> 392An abbreviated record is a abbreviation id followed by a set of fields that are 393encoded according to the <a href="#abbreviations">abbreviation definition</a>. 394This allows records to be encoded significantly more densely than records 395encoded with the <tt><a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> type, 396and allows the abbreviation types to be specified in the stream itself, which 397allows the files to be completely self describing. The actual encoding of 398abbreviations is defined below. 399</p> 400 401<p>The record code, which is the first field of an abbreviated record, 402may be encoded in the abbreviation definition (as a literal 403operand) or supplied in the abbreviated record (as a Fixed or VBR 404operand value).</p> 405 406</div> 407 408</div> 409 410<!-- ======================================================================= --> 411<h3> 412 <a name="abbreviations">Abbreviations</a> 413</h3> 414 415<div> 416<p> 417Abbreviations are an important form of compression for bitstreams. The idea is 418to specify a dense encoding for a class of records once, then use that encoding 419to emit many records. It takes space to emit the encoding into the file, but 420the space is recouped (hopefully plus some) when the records that use it are 421emitted. 422</p> 423 424<p> 425Abbreviations can be determined dynamically per client, per file. Because the 426abbreviations are stored in the bitstream itself, different streams of the same 427format can contain different sets of abbreviations according to the needs 428of the specific stream. 429As a concrete example, LLVM IR files usually emit an abbreviation 430for binary operators. If a specific LLVM module contained no or few binary 431operators, the abbreviation does not need to be emitted. 432</p> 433 434<!-- _______________________________________________________________________ --> 435<h4><a name="DEFINE_ABBREV">DEFINE_ABBREV Encoding</a></h4> 436 437<div> 438 439<p><tt>[DEFINE_ABBREV, numabbrevops<sub>vbr5</sub>, abbrevop0, abbrevop1, 440 ...]</tt></p> 441 442<p> 443A <tt>DEFINE_ABBREV</tt> record adds an abbreviation to the list of currently 444defined abbreviations in the scope of this block. This definition only exists 445inside this immediate block — it is not visible in subblocks or enclosing 446blocks. Abbreviations are implicitly assigned IDs sequentially starting from 4 447(the first application-defined abbreviation ID). Any abbreviations defined in a 448<tt>BLOCKINFO</tt> record for the particular block type 449receive IDs first, in order, followed by any 450abbreviations defined within the block itself. Abbreviated data records 451reference this ID to indicate what abbreviation they are invoking. 452</p> 453 454<p> 455An abbreviation definition consists of the <tt>DEFINE_ABBREV</tt> abbrevid 456followed by a VBR that specifies the number of abbrev operands, then the abbrev 457operands themselves. Abbreviation operands come in three forms. They all start 458with a single bit that indicates whether the abbrev operand is a literal operand 459(when the bit is 1) or an encoding operand (when the bit is 0). 460</p> 461 462<ol> 463<li>Literal operands — <tt>[1<sub>1</sub>, litvalue<sub>vbr8</sub>]</tt> 464— Literal operands specify that the value in the result is always a single 465specific value. This specific value is emitted as a vbr8 after the bit 466indicating that it is a literal operand.</li> 467<li>Encoding info without data — <tt>[0<sub>1</sub>, 468 encoding<sub>3</sub>]</tt> — Operand encodings that do not have extra 469 data are just emitted as their code. 470</li> 471<li>Encoding info with data — <tt>[0<sub>1</sub>, encoding<sub>3</sub>, 472value<sub>vbr5</sub>]</tt> — Operand encodings that do have extra data are 473emitted as their code, followed by the extra data. 474</li> 475</ol> 476 477<p>The possible operand encodings are:</p> 478 479<ul> 480<li>Fixed (code 1): The field should be emitted as 481 a <a href="#fixedwidth">fixed-width value</a>, whose width is specified by 482 the operand's extra data.</li> 483<li>VBR (code 2): The field should be emitted as 484 a <a href="#variablewidth">variable-width value</a>, whose width is 485 specified by the operand's extra data.</li> 486<li>Array (code 3): This field is an array of values. The array operand 487 has no extra data, but expects another operand to follow it, indicating 488 the element type of the array. When reading an array in an abbreviated 489 record, the first integer is a vbr6 that indicates the array length, 490 followed by the encoded elements of the array. An array may only occur as 491 the last operand of an abbreviation (except for the one final operand that 492 gives the array's type).</li> 493<li>Char6 (code 4): This field should be emitted as 494 a <a href="#char6">char6-encoded value</a>. This operand type takes no 495 extra data. Char6 encoding is normally used as an array element type. 496 </li> 497<li>Blob (code 5): This field is emitted as a vbr6, followed by padding to a 498 32-bit boundary (for alignment) and an array of 8-bit objects. The array of 499 bytes is further followed by tail padding to ensure that its total length is 500 a multiple of 4 bytes. This makes it very efficient for the reader to 501 decode the data without having to make a copy of it: it can use a pointer to 502 the data in the mapped in file and poke directly at it. A blob may only 503 occur as the last operand of an abbreviation.</li> 504</ul> 505 506<p> 507For example, target triples in LLVM modules are encoded as a record of the 508form <tt>[TRIPLE, 'a', 'b', 'c', 'd']</tt>. Consider if the bitstream emitted 509the following abbrev entry: 510</p> 511 512<div class="doc_code"> 513<pre> 514[0, Fixed, 4] 515[0, Array] 516[0, Char6] 517</pre> 518</div> 519 520<p> 521When emitting a record with this abbreviation, the above entry would be emitted 522as: 523</p> 524 525<div class="doc_code"> 526<p> 527<tt>[4<sub>abbrevwidth</sub>, 2<sub>4</sub>, 4<sub>vbr6</sub>, 0<sub>6</sub>, 5281<sub>6</sub>, 2<sub>6</sub>, 3<sub>6</sub>]</tt> 529</p> 530</div> 531 532<p>These values are:</p> 533 534<ol> 535<li>The first value, 4, is the abbreviation ID for this abbreviation.</li> 536<li>The second value, 2, is the record code for <tt>TRIPLE</tt> records within LLVM IR file <tt>MODULE_BLOCK</tt> blocks.</li> 537<li>The third value, 4, is the length of the array.</li> 538<li>The rest of the values are the char6 encoded values 539 for <tt>"abcd"</tt>.</li> 540</ol> 541 542<p> 543With this abbreviation, the triple is emitted with only 37 bits (assuming a 544abbrev id width of 3). Without the abbreviation, significantly more space would 545be required to emit the target triple. Also, because the <tt>TRIPLE</tt> value 546is not emitted as a literal in the abbreviation, the abbreviation can also be 547used for any other string value. 548</p> 549 550</div> 551 552</div> 553 554<!-- ======================================================================= --> 555<h3> 556 <a name="stdblocks">Standard Blocks</a> 557</h3> 558 559<div> 560 561<p> 562In addition to the basic block structure and record encodings, the bitstream 563also defines specific built-in block types. These block types specify how the 564stream is to be decoded or other metadata. In the future, new standard blocks 565may be added. Block IDs 0-7 are reserved for standard blocks. 566</p> 567 568<!-- _______________________________________________________________________ --> 569<h4><a name="BLOCKINFO">#0 - BLOCKINFO Block</a></h4> 570 571<div> 572 573<p> 574The <tt>BLOCKINFO</tt> block allows the description of metadata for other 575blocks. The currently specified records are: 576</p> 577 578<div class="doc_code"> 579<pre> 580[SETBID (#1), blockid] 581[DEFINE_ABBREV, ...] 582[BLOCKNAME, ...name...] 583[SETRECORDNAME, RecordID, ...name...] 584</pre> 585</div> 586 587<p> 588The <tt>SETBID</tt> record (code 1) indicates which block ID is being 589described. <tt>SETBID</tt> records can occur multiple times throughout the 590block to change which block ID is being described. There must be 591a <tt>SETBID</tt> record prior to any other records. 592</p> 593 594<p> 595Standard <tt>DEFINE_ABBREV</tt> records can occur inside <tt>BLOCKINFO</tt> 596blocks, but unlike their occurrence in normal blocks, the abbreviation is 597defined for blocks matching the block ID we are describing, <i>not</i> the 598<tt>BLOCKINFO</tt> block itself. The abbreviations defined 599in <tt>BLOCKINFO</tt> blocks receive abbreviation IDs as described 600in <tt><a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt>. 601</p> 602 603<p>The <tt>BLOCKNAME</tt> record (code 2) can optionally occur in this block. The elements of 604the record are the bytes of the string name of the block. llvm-bcanalyzer can use 605this to dump out bitcode files symbolically.</p> 606 607<p>The <tt>SETRECORDNAME</tt> record (code 3) can also optionally occur in this block. The 608first operand value is a record ID number, and the rest of the elements of the record are 609the bytes for the string name of the record. llvm-bcanalyzer can use 610this to dump out bitcode files symbolically.</p> 611 612<p> 613Note that although the data in <tt>BLOCKINFO</tt> blocks is described as 614"metadata," the abbreviations they contain are essential for parsing records 615from the corresponding blocks. It is not safe to skip them. 616</p> 617 618</div> 619 620</div> 621 622</div> 623 624<!-- *********************************************************************** --> 625<h2><a name="wrapper">Bitcode Wrapper Format</a></h2> 626<!-- *********************************************************************** --> 627 628<div> 629 630<p> 631Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper 632structure. This structure contains a simple header that indicates the offset 633and size of the embedded BC file. This allows additional information to be 634stored alongside the BC file. The structure of this file header is: 635</p> 636 637<div class="doc_code"> 638<p> 639<tt>[Magic<sub>32</sub>, Version<sub>32</sub>, Offset<sub>32</sub>, 640Size<sub>32</sub>, CPUType<sub>32</sub>]</tt> 641</p> 642</div> 643 644<p> 645Each of the fields are 32-bit fields stored in little endian form (as with 646the rest of the bitcode file fields). The Magic number is always 647<tt>0x0B17C0DE</tt> and the version is currently always <tt>0</tt>. The Offset 648field is the offset in bytes to the start of the bitcode stream in the file, and 649the Size field is the size in bytes of the stream. CPUType is a target-specific 650value that can be used to encode the CPU of the target. 651</p> 652 653</div> 654 655<!-- *********************************************************************** --> 656<h2><a name="llvmir">LLVM IR Encoding</a></h2> 657<!-- *********************************************************************** --> 658 659<div> 660 661<p> 662LLVM IR is encoded into a bitstream by defining blocks and records. It uses 663blocks for things like constant pools, functions, symbol tables, etc. It uses 664records for things like instructions, global variable descriptors, type 665descriptions, etc. This document does not describe the set of abbreviations 666that the writer uses, as these are fully self-described in the file, and the 667reader is not allowed to build in any knowledge of this. 668</p> 669 670<!-- ======================================================================= --> 671<h3> 672 <a name="basics">Basics</a> 673</h3> 674 675<div> 676 677<!-- _______________________________________________________________________ --> 678<h4><a name="ir_magic">LLVM IR Magic Number</a></h4> 679 680<div> 681 682<p> 683The magic number for LLVM IR files is: 684</p> 685 686<div class="doc_code"> 687<p> 688<tt>[0x0<sub>4</sub>, 0xC<sub>4</sub>, 0xE<sub>4</sub>, 0xD<sub>4</sub>]</tt> 689</p> 690</div> 691 692<p> 693When combined with the bitcode magic number and viewed as bytes, this is 694<tt>"BC 0xC0DE"</tt>. 695</p> 696 697</div> 698 699<!-- _______________________________________________________________________ --> 700<h4><a name="ir_signed_vbr">Signed VBRs</a></h4> 701 702<div> 703 704<p> 705<a href="#variablewidth">Variable Width Integer</a> encoding is an efficient way to 706encode arbitrary sized unsigned values, but is an extremely inefficient for 707encoding signed values, as signed values are otherwise treated as maximally large 708unsigned values. 709</p> 710 711<p> 712As such, signed VBR values of a specific width are emitted as follows: 713</p> 714 715<ul> 716<li>Positive values are emitted as VBRs of the specified width, but with their 717 value shifted left by one.</li> 718<li>Negative values are emitted as VBRs of the specified width, but the negated 719 value is shifted left by one, and the low bit is set.</li> 720</ul> 721 722<p> 723With this encoding, small positive and small negative values can both 724be emitted efficiently. Signed VBR encoding is used in 725<tt>CST_CODE_INTEGER</tt> and <tt>CST_CODE_WIDE_INTEGER</tt> records 726within <tt>CONSTANTS_BLOCK</tt> blocks. 727</p> 728 729</div> 730 731 732<!-- _______________________________________________________________________ --> 733<h4><a name="ir_blocks">LLVM IR Blocks</a></h4> 734 735<div> 736 737<p> 738LLVM IR is defined with the following blocks: 739</p> 740 741<ul> 742<li>8 — <a href="#MODULE_BLOCK"><tt>MODULE_BLOCK</tt></a> — This is the top-level block that 743 contains the entire module, and describes a variety of per-module 744 information.</li> 745<li>9 — <a href="#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK</tt></a> — This enumerates the parameter 746 attributes.</li> 747<li>10 — <a href="#TYPE_BLOCK"><tt>TYPE_BLOCK</tt></a> — This describes all of the types in 748 the module.</li> 749<li>11 — <a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a> — This describes constants for a 750 module or function.</li> 751<li>12 — <a href="#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK</tt></a> — This describes a function 752 body.</li> 753<li>13 — <a href="#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK</tt></a> — This describes the type symbol 754 table.</li> 755<li>14 — <a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a> — This describes a value symbol 756 table.</li> 757<li>15 — <a href="#METADATA_BLOCK"><tt>METADATA_BLOCK</tt></a> — This describes metadata items.</li> 758<li>16 — <a href="#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT</tt></a> — This contains records associating metadata with function instruction values.</li> 759</ul> 760 761</div> 762 763</div> 764 765<!-- ======================================================================= --> 766<h3> 767 <a name="MODULE_BLOCK">MODULE_BLOCK Contents</a> 768</h3> 769 770<div> 771 772<p>The <tt>MODULE_BLOCK</tt> block (id 8) is the top-level block for LLVM 773bitcode files, and each bitcode file must contain exactly one. In 774addition to records (described below) containing information 775about the module, a <tt>MODULE_BLOCK</tt> block may contain the 776following sub-blocks: 777</p> 778 779<ul> 780<li><a href="#BLOCKINFO"><tt>BLOCKINFO</tt></a></li> 781<li><a href="#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK</tt></a></li> 782<li><a href="#TYPE_BLOCK"><tt>TYPE_BLOCK</tt></a></li> 783<li><a href="#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK</tt></a></li> 784<li><a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a></li> 785<li><a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a></li> 786<li><a href="#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK</tt></a></li> 787<li><a href="#METADATA_BLOCK"><tt>METADATA_BLOCK</tt></a></li> 788</ul> 789 790<!-- _______________________________________________________________________ --> 791<h4><a name="MODULE_CODE_VERSION">MODULE_CODE_VERSION Record</a></h4> 792 793<div> 794 795<p><tt>[VERSION, version#]</tt></p> 796 797<p>The <tt>VERSION</tt> record (code 1) contains a single value 798indicating the format version. Only version 0 is supported at this 799time.</p> 800</div> 801 802<!-- _______________________________________________________________________ --> 803<h4><a name="MODULE_CODE_TRIPLE">MODULE_CODE_TRIPLE Record</a></h4> 804 805<div> 806<p><tt>[TRIPLE, ...string...]</tt></p> 807 808<p>The <tt>TRIPLE</tt> record (code 2) contains a variable number of 809values representing the bytes of the <tt>target triple</tt> 810specification string.</p> 811</div> 812 813<!-- _______________________________________________________________________ --> 814<h4><a name="MODULE_CODE_DATALAYOUT">MODULE_CODE_DATALAYOUT Record</a></h4> 815 816<div> 817<p><tt>[DATALAYOUT, ...string...]</tt></p> 818 819<p>The <tt>DATALAYOUT</tt> record (code 3) contains a variable number of 820values representing the bytes of the <tt>target datalayout</tt> 821specification string.</p> 822</div> 823 824<!-- _______________________________________________________________________ --> 825<h4><a name="MODULE_CODE_ASM">MODULE_CODE_ASM Record</a></h4> 826 827<div> 828<p><tt>[ASM, ...string...]</tt></p> 829 830<p>The <tt>ASM</tt> record (code 4) contains a variable number of 831values representing the bytes of <tt>module asm</tt> strings, with 832individual assembly blocks separated by newline (ASCII 10) characters.</p> 833</div> 834 835<!-- _______________________________________________________________________ --> 836<h4><a name="MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME Record</a></h4> 837 838<div> 839<p><tt>[SECTIONNAME, ...string...]</tt></p> 840 841<p>The <tt>SECTIONNAME</tt> record (code 5) contains a variable number 842of values representing the bytes of a single section name 843string. There should be one <tt>SECTIONNAME</tt> record for each 844section name referenced (e.g., in global variable or function 845<tt>section</tt> attributes) within the module. These records can be 846referenced by the 1-based index in the <i>section</i> fields of 847<tt>GLOBALVAR</tt> or <tt>FUNCTION</tt> records.</p> 848</div> 849 850<!-- _______________________________________________________________________ --> 851<h4><a name="MODULE_CODE_DEPLIB">MODULE_CODE_DEPLIB Record</a></h4> 852 853<div> 854<p><tt>[DEPLIB, ...string...]</tt></p> 855 856<p>The <tt>DEPLIB</tt> record (code 6) contains a variable number of 857values representing the bytes of a single dependent library name 858string, one of the libraries mentioned in a <tt>deplibs</tt> 859declaration. There should be one <tt>DEPLIB</tt> record for each 860library name referenced.</p> 861</div> 862 863<!-- _______________________________________________________________________ --> 864<h4><a name="MODULE_CODE_GLOBALVAR">MODULE_CODE_GLOBALVAR Record</a></h4> 865 866<div> 867<p><tt>[GLOBALVAR, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal]</tt></p> 868 869<p>The <tt>GLOBALVAR</tt> record (code 7) marks the declaration or 870definition of a global variable. The operand fields are:</p> 871 872<ul> 873<li><i>pointer type</i>: The type index of the pointer type used to point to 874this global variable</li> 875 876<li><i>isconst</i>: Non-zero if the variable is treated as constant within 877the module, or zero if it is not</li> 878 879<li><i>initid</i>: If non-zero, the value index of the initializer for this 880variable, plus 1.</li> 881 882<li><a name="linkage"><i>linkage</i></a>: An encoding of the linkage 883type for this variable: 884 <ul> 885 <li><tt>external</tt>: code 0</li> 886 <li><tt>weak</tt>: code 1</li> 887 <li><tt>appending</tt>: code 2</li> 888 <li><tt>internal</tt>: code 3</li> 889 <li><tt>linkonce</tt>: code 4</li> 890 <li><tt>dllimport</tt>: code 5</li> 891 <li><tt>dllexport</tt>: code 6</li> 892 <li><tt>extern_weak</tt>: code 7</li> 893 <li><tt>common</tt>: code 8</li> 894 <li><tt>private</tt>: code 9</li> 895 <li><tt>weak_odr</tt>: code 10</li> 896 <li><tt>linkonce_odr</tt>: code 11</li> 897 <li><tt>available_externally</tt>: code 12</li> 898 <li><tt>linker_private</tt>: code 13</li> 899 </ul> 900</li> 901 902<li><i>alignment</i>: The logarithm base 2 of the variable's requested 903alignment, plus 1</li> 904 905<li><i>section</i>: If non-zero, the 1-based section index in the 906table of <a href="#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME</a> 907entries.</li> 908 909<li><a name="visibility"><i>visibility</i></a>: If present, an 910encoding of the visibility of this variable: 911 <ul> 912 <li><tt>default</tt>: code 0</li> 913 <li><tt>hidden</tt>: code 1</li> 914 <li><tt>protected</tt>: code 2</li> 915 </ul> 916</li> 917 918<li><i>threadlocal</i>: If present and non-zero, indicates that the variable 919is <tt>thread_local</tt></li> 920 921<li><i>unnamed_addr</i>: If present and non-zero, indicates that the variable 922has <tt>unnamed_addr</tt></li> 923 924</ul> 925</div> 926 927<!-- _______________________________________________________________________ --> 928<h4><a name="MODULE_CODE_FUNCTION">MODULE_CODE_FUNCTION Record</a></h4> 929 930<div> 931 932<p><tt>[FUNCTION, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc]</tt></p> 933 934<p>The <tt>FUNCTION</tt> record (code 8) marks the declaration or 935definition of a function. The operand fields are:</p> 936 937<ul> 938<li><i>type</i>: The type index of the function type describing this function</li> 939 940<li><i>callingconv</i>: The calling convention number: 941 <ul> 942 <li><tt>ccc</tt>: code 0</li> 943 <li><tt>fastcc</tt>: code 8</li> 944 <li><tt>coldcc</tt>: code 9</li> 945 <li><tt>x86_stdcallcc</tt>: code 64</li> 946 <li><tt>x86_fastcallcc</tt>: code 65</li> 947 <li><tt>arm_apcscc</tt>: code 66</li> 948 <li><tt>arm_aapcscc</tt>: code 67</li> 949 <li><tt>arm_aapcs_vfpcc</tt>: code 68</li> 950 </ul> 951</li> 952 953<li><i>isproto</i>: Non-zero if this entry represents a declaration 954rather than a definition</li> 955 956<li><i>linkage</i>: An encoding of the <a href="#linkage">linkage type</a> 957for this function</li> 958 959<li><i>paramattr</i>: If nonzero, the 1-based parameter attribute index 960into the table of <a href="#PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY</a> 961entries.</li> 962 963<li><i>alignment</i>: The logarithm base 2 of the function's requested 964alignment, plus 1</li> 965 966<li><i>section</i>: If non-zero, the 1-based section index in the 967table of <a href="#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME</a> 968entries.</li> 969 970<li><i>visibility</i>: An encoding of the <a href="#visibility">visibility</a> 971 of this function</li> 972 973<li><i>gc</i>: If present and nonzero, the 1-based garbage collector 974index in the table of 975<a href="#MODULE_CODE_GCNAME">MODULE_CODE_GCNAME</a> entries.</li> 976 977<li><i>unnamed_addr</i>: If present and non-zero, indicates that the function 978has <tt>unnamed_addr</tt></li> 979 980</ul> 981</div> 982 983<!-- _______________________________________________________________________ --> 984<h4><a name="MODULE_CODE_ALIAS">MODULE_CODE_ALIAS Record</a></h4> 985 986<div> 987 988<p><tt>[ALIAS, alias type, aliasee val#, linkage, visibility]</tt></p> 989 990<p>The <tt>ALIAS</tt> record (code 9) marks the definition of an 991alias. The operand fields are</p> 992 993<ul> 994<li><i>alias type</i>: The type index of the alias</li> 995 996<li><i>aliasee val#</i>: The value index of the aliased value</li> 997 998<li><i>linkage</i>: An encoding of the <a href="#linkage">linkage type</a> 999for this alias</li> 1000 1001<li><i>visibility</i>: If present, an encoding of the 1002<a href="#visibility">visibility</a> of the alias</li> 1003 1004</ul> 1005</div> 1006 1007<!-- _______________________________________________________________________ --> 1008<h4><a name="MODULE_CODE_PURGEVALS">MODULE_CODE_PURGEVALS Record</a></h4> 1009 1010<div> 1011<p><tt>[PURGEVALS, numvals]</tt></p> 1012 1013<p>The <tt>PURGEVALS</tt> record (code 10) resets the module-level 1014value list to the size given by the single operand value. Module-level 1015value list items are added by <tt>GLOBALVAR</tt>, <tt>FUNCTION</tt>, 1016and <tt>ALIAS</tt> records. After a <tt>PURGEVALS</tt> record is seen, 1017new value indices will start from the given <i>numvals</i> value.</p> 1018</div> 1019 1020<!-- _______________________________________________________________________ --> 1021<h4><a name="MODULE_CODE_GCNAME">MODULE_CODE_GCNAME Record</a></h4> 1022 1023<div> 1024<p><tt>[GCNAME, ...string...]</tt></p> 1025 1026<p>The <tt>GCNAME</tt> record (code 11) contains a variable number of 1027values representing the bytes of a single garbage collector name 1028string. There should be one <tt>GCNAME</tt> record for each garbage 1029collector name referenced in function <tt>gc</tt> attributes within 1030the module. These records can be referenced by 1-based index in the <i>gc</i> 1031fields of <tt>FUNCTION</tt> records.</p> 1032</div> 1033 1034</div> 1035 1036<!-- ======================================================================= --> 1037<h3> 1038 <a name="PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents</a> 1039</h3> 1040 1041<div> 1042 1043<p>The <tt>PARAMATTR_BLOCK</tt> block (id 9) contains a table of 1044entries describing the attributes of function parameters. These 1045entries are referenced by 1-based index in the <i>paramattr</i> field 1046of module block <a name="MODULE_CODE_FUNCTION"><tt>FUNCTION</tt></a> 1047records, or within the <i>attr</i> field of function block <a 1048href="#FUNC_CODE_INST_INVOKE"><tt>INST_INVOKE</tt></a> and <a 1049href="#FUNC_CODE_INST_CALL"><tt>INST_CALL</tt></a> records.</p> 1050 1051<p>Entries within <tt>PARAMATTR_BLOCK</tt> are constructed to ensure 1052that each is unique (i.e., no two indicies represent equivalent 1053attribute lists). </p> 1054 1055<!-- _______________________________________________________________________ --> 1056<h4><a name="PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY Record</a></h4> 1057 1058<div> 1059 1060<p><tt>[ENTRY, paramidx0, attr0, paramidx1, attr1...]</tt></p> 1061 1062<p>The <tt>ENTRY</tt> record (code 1) contains an even number of 1063values describing a unique set of function parameter attributes. Each 1064<i>paramidx</i> value indicates which set of attributes is 1065represented, with 0 representing the return value attributes, 10660xFFFFFFFF representing function attributes, and other values 1067representing 1-based function parameters. Each <i>attr</i> value is a 1068bitmap with the following interpretation: 1069</p> 1070 1071<ul> 1072<li>bit 0: <tt>zeroext</tt></li> 1073<li>bit 1: <tt>signext</tt></li> 1074<li>bit 2: <tt>noreturn</tt></li> 1075<li>bit 3: <tt>inreg</tt></li> 1076<li>bit 4: <tt>sret</tt></li> 1077<li>bit 5: <tt>nounwind</tt></li> 1078<li>bit 6: <tt>noalias</tt></li> 1079<li>bit 7: <tt>byval</tt></li> 1080<li>bit 8: <tt>nest</tt></li> 1081<li>bit 9: <tt>readnone</tt></li> 1082<li>bit 10: <tt>readonly</tt></li> 1083<li>bit 11: <tt>noinline</tt></li> 1084<li>bit 12: <tt>alwaysinline</tt></li> 1085<li>bit 13: <tt>optsize</tt></li> 1086<li>bit 14: <tt>ssp</tt></li> 1087<li>bit 15: <tt>sspreq</tt></li> 1088<li>bits 16–31: <tt>align <var>n</var></tt></li> 1089<li>bit 32: <tt>nocapture</tt></li> 1090<li>bit 33: <tt>noredzone</tt></li> 1091<li>bit 34: <tt>noimplicitfloat</tt></li> 1092<li>bit 35: <tt>naked</tt></li> 1093<li>bit 36: <tt>inlinehint</tt></li> 1094<li>bits 37–39: <tt>alignstack <var>n</var></tt>, represented as 1095the logarithm base 2 of the requested alignment, plus 1</li> 1096</ul> 1097</div> 1098 1099</div> 1100 1101<!-- ======================================================================= --> 1102<h3> 1103 <a name="TYPE_BLOCK">TYPE_BLOCK Contents</a> 1104</h3> 1105 1106<div> 1107 1108<p>The <tt>TYPE_BLOCK</tt> block (id 10) contains records which 1109constitute a table of type operator entries used to represent types 1110referenced within an LLVM module. Each record (with the exception of 1111<a href="#TYPE_CODE_NUMENTRY"><tt>NUMENTRY</tt></a>) generates a 1112single type table entry, which may be referenced by 0-based index from 1113instructions, constants, metadata, type symbol table entries, or other 1114type operator records. 1115</p> 1116 1117<p>Entries within <tt>TYPE_BLOCK</tt> are constructed to ensure that 1118each entry is unique (i.e., no two indicies represent structurally 1119equivalent types). </p> 1120 1121<!-- _______________________________________________________________________ --> 1122<h4><a name="TYPE_CODE_NUMENTRY">TYPE_CODE_NUMENTRY Record</a></h4> 1123 1124<div> 1125 1126<p><tt>[NUMENTRY, numentries]</tt></p> 1127 1128<p>The <tt>NUMENTRY</tt> record (code 1) contains a single value which 1129indicates the total number of type code entries in the type table of 1130the module. If present, <tt>NUMENTRY</tt> should be the first record 1131in the block. 1132</p> 1133</div> 1134 1135<!-- _______________________________________________________________________ --> 1136<h4><a name="TYPE_CODE_VOID">TYPE_CODE_VOID Record</a></h4> 1137 1138<div> 1139 1140<p><tt>[VOID]</tt></p> 1141 1142<p>The <tt>VOID</tt> record (code 2) adds a <tt>void</tt> type to the 1143type table. 1144</p> 1145</div> 1146 1147<!-- _______________________________________________________________________ --> 1148<h4><a name="TYPE_CODE_FLOAT">TYPE_CODE_FLOAT Record</a></h4> 1149 1150<div> 1151 1152<p><tt>[FLOAT]</tt></p> 1153 1154<p>The <tt>FLOAT</tt> record (code 3) adds a <tt>float</tt> (32-bit 1155floating point) type to the type table. 1156</p> 1157</div> 1158 1159<!-- _______________________________________________________________________ --> 1160<h4><a name="TYPE_CODE_DOUBLE">TYPE_CODE_DOUBLE Record</a></h4> 1161 1162<div> 1163 1164<p><tt>[DOUBLE]</tt></p> 1165 1166<p>The <tt>DOUBLE</tt> record (code 4) adds a <tt>double</tt> (64-bit 1167floating point) type to the type table. 1168</p> 1169</div> 1170 1171<!-- _______________________________________________________________________ --> 1172<h4><a name="TYPE_CODE_LABEL">TYPE_CODE_LABEL Record</a></h4> 1173 1174<div> 1175 1176<p><tt>[LABEL]</tt></p> 1177 1178<p>The <tt>LABEL</tt> record (code 5) adds a <tt>label</tt> type to 1179the type table. 1180</p> 1181</div> 1182 1183<!-- _______________________________________________________________________ --> 1184<h4><a name="TYPE_CODE_OPAQUE">TYPE_CODE_OPAQUE Record</a></h4> 1185 1186<div> 1187 1188<p><tt>[OPAQUE]</tt></p> 1189 1190<p>The <tt>OPAQUE</tt> record (code 6) adds an <tt>opaque</tt> type to 1191the type table. Note that distinct <tt>opaque</tt> types are not 1192unified. 1193</p> 1194</div> 1195 1196<!-- _______________________________________________________________________ --> 1197<h4><a name="TYPE_CODE_INTEGER">TYPE_CODE_INTEGER Record</a></h4> 1198 1199<div> 1200 1201<p><tt>[INTEGER, width]</tt></p> 1202 1203<p>The <tt>INTEGER</tt> record (code 7) adds an integer type to the 1204type table. The single <i>width</i> field indicates the width of the 1205integer type. 1206</p> 1207</div> 1208 1209<!-- _______________________________________________________________________ --> 1210<h4><a name="TYPE_CODE_POINTER">TYPE_CODE_POINTER Record</a></h4> 1211 1212<div> 1213 1214<p><tt>[POINTER, pointee type, address space]</tt></p> 1215 1216<p>The <tt>POINTER</tt> record (code 8) adds a pointer type to the 1217type table. The operand fields are</p> 1218 1219<ul> 1220<li><i>pointee type</i>: The type index of the pointed-to type</li> 1221 1222<li><i>address space</i>: If supplied, the target-specific numbered 1223address space where the pointed-to object resides. Otherwise, the 1224default address space is zero. 1225</li> 1226</ul> 1227</div> 1228 1229<!-- _______________________________________________________________________ --> 1230<h4><a name="TYPE_CODE_FUNCTION">TYPE_CODE_FUNCTION Record</a></h4> 1231 1232<div> 1233 1234<p><tt>[FUNCTION, vararg, ignored, retty, ...paramty... ]</tt></p> 1235 1236<p>The <tt>FUNCTION</tt> record (code 9) adds a function type to the 1237type table. The operand fields are</p> 1238 1239<ul> 1240<li><i>vararg</i>: Non-zero if the type represents a varargs function</li> 1241 1242<li><i>ignored</i>: This value field is present for backward 1243compatibility only, and is ignored</li> 1244 1245<li><i>retty</i>: The type index of the function's return type</li> 1246 1247<li><i>paramty</i>: Zero or more type indices representing the 1248parameter types of the function</li> 1249</ul> 1250 1251</div> 1252 1253<!-- _______________________________________________________________________ --> 1254<h4><a name="TYPE_CODE_STRUCT">TYPE_CODE_STRUCT Record</a></h4> 1255 1256<div> 1257 1258<p><tt>[STRUCT, ispacked, ...eltty...]</tt></p> 1259 1260<p>The <tt>STRUCT </tt> record (code 10) adds a struct type to the 1261type table. The operand fields are</p> 1262 1263<ul> 1264<li><i>ispacked</i>: Non-zero if the type represents a packed structure</li> 1265 1266<li><i>eltty</i>: Zero or more type indices representing the element 1267types of the structure</li> 1268</ul> 1269</div> 1270 1271<!-- _______________________________________________________________________ --> 1272<h4><a name="TYPE_CODE_ARRAY">TYPE_CODE_ARRAY Record</a></h4> 1273 1274<div> 1275 1276<p><tt>[ARRAY, numelts, eltty]</tt></p> 1277 1278<p>The <tt>ARRAY</tt> record (code 11) adds an array type to the type 1279table. The operand fields are</p> 1280 1281<ul> 1282<li><i>numelts</i>: The number of elements in arrays of this type</li> 1283 1284<li><i>eltty</i>: The type index of the array element type</li> 1285</ul> 1286</div> 1287 1288<!-- _______________________________________________________________________ --> 1289<h4><a name="TYPE_CODE_VECTOR">TYPE_CODE_VECTOR Record</a></h4> 1290 1291<div> 1292 1293<p><tt>[VECTOR, numelts, eltty]</tt></p> 1294 1295<p>The <tt>VECTOR</tt> record (code 12) adds a vector type to the type 1296table. The operand fields are</p> 1297 1298<ul> 1299<li><i>numelts</i>: The number of elements in vectors of this type</li> 1300 1301<li><i>eltty</i>: The type index of the vector element type</li> 1302</ul> 1303</div> 1304 1305<!-- _______________________________________________________________________ --> 1306<h4><a name="TYPE_CODE_X86_FP80">TYPE_CODE_X86_FP80 Record</a></h4> 1307 1308<div> 1309 1310<p><tt>[X86_FP80]</tt></p> 1311 1312<p>The <tt>X86_FP80</tt> record (code 13) adds an <tt>x86_fp80</tt> (80-bit 1313floating point) type to the type table. 1314</p> 1315</div> 1316 1317<!-- _______________________________________________________________________ --> 1318<h4><a name="TYPE_CODE_FP128">TYPE_CODE_FP128 Record</a></h4> 1319 1320<div> 1321 1322<p><tt>[FP128]</tt></p> 1323 1324<p>The <tt>FP128</tt> record (code 14) adds an <tt>fp128</tt> (128-bit 1325floating point) type to the type table. 1326</p> 1327</div> 1328 1329<!-- _______________________________________________________________________ --> 1330<h4><a name="TYPE_CODE_PPC_FP128">TYPE_CODE_PPC_FP128 Record</a></h4> 1331 1332<div> 1333 1334<p><tt>[PPC_FP128]</tt></p> 1335 1336<p>The <tt>PPC_FP128</tt> record (code 15) adds a <tt>ppc_fp128</tt> 1337(128-bit floating point) type to the type table. 1338</p> 1339</div> 1340 1341<!-- _______________________________________________________________________ --> 1342<h4><a name="TYPE_CODE_METADATA">TYPE_CODE_METADATA Record</a></h4> 1343 1344<div> 1345 1346<p><tt>[METADATA]</tt></p> 1347 1348<p>The <tt>METADATA</tt> record (code 16) adds a <tt>metadata</tt> 1349type to the type table. 1350</p> 1351</div> 1352 1353</div> 1354 1355<!-- ======================================================================= --> 1356<h3> 1357 <a name="CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents</a> 1358</h3> 1359 1360<div> 1361 1362<p>The <tt>CONSTANTS_BLOCK</tt> block (id 11) ... 1363</p> 1364 1365</div> 1366 1367 1368<!-- ======================================================================= --> 1369<h3> 1370 <a name="FUNCTION_BLOCK">FUNCTION_BLOCK Contents</a> 1371</h3> 1372 1373<div> 1374 1375<p>The <tt>FUNCTION_BLOCK</tt> block (id 12) ... 1376</p> 1377 1378<p>In addition to the record types described below, a 1379<tt>FUNCTION_BLOCK</tt> block may contain the following sub-blocks: 1380</p> 1381 1382<ul> 1383<li><a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a></li> 1384<li><a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a></li> 1385<li><a href="#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT</tt></a></li> 1386</ul> 1387 1388</div> 1389 1390 1391<!-- ======================================================================= --> 1392<h3> 1393 <a name="TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents</a> 1394</h3> 1395 1396<div> 1397 1398<p>The <tt>TYPE_SYMTAB_BLOCK</tt> block (id 13) contains entries which 1399map between module-level named types and their corresponding type 1400indices. 1401</p> 1402 1403<!-- _______________________________________________________________________ --> 1404<h4><a name="TST_CODE_ENTRY">TST_CODE_ENTRY Record</a></h4> 1405 1406<div> 1407 1408<p><tt>[ENTRY, typeid, ...string...]</tt></p> 1409 1410<p>The <tt>ENTRY</tt> record (code 1) contains a variable number of 1411values, with the first giving the type index of the designated type, 1412and the remaining values giving the character codes of the type 1413name. Each entry corresponds to a single named type. 1414</p> 1415</div> 1416 1417</div> 1418 1419<!-- ======================================================================= --> 1420<h3> 1421 <a name="VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents</a> 1422</h3> 1423 1424<div> 1425 1426<p>The <tt>VALUE_SYMTAB_BLOCK</tt> block (id 14) ... 1427</p> 1428 1429</div> 1430 1431 1432<!-- ======================================================================= --> 1433<h3> 1434 <a name="METADATA_BLOCK">METADATA_BLOCK Contents</a> 1435</h3> 1436 1437<div> 1438 1439<p>The <tt>METADATA_BLOCK</tt> block (id 15) ... 1440</p> 1441 1442</div> 1443 1444 1445<!-- ======================================================================= --> 1446<h3> 1447 <a name="METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents</a> 1448</h3> 1449 1450<div> 1451 1452<p>The <tt>METADATA_ATTACHMENT</tt> block (id 16) ... 1453</p> 1454 1455</div> 1456 1457</div> 1458 1459<!-- *********************************************************************** --> 1460<hr> 1461<address> <a href="http://jigsaw.w3.org/css-validator/check/referer"><img 1462 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> 1463<a href="http://validator.w3.org/check/referer"><img 1464 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> 1465 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> 1466<a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> 1467Last modified: $Date: 2011-04-22 20:30:22 -0400 (Fri, 22 Apr 2011) $ 1468</address> 1469</body> 1470</html> 1471