• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6  <title>LLVM Bitcode File Format</title>
7  <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10<h1> LLVM Bitcode File Format</h1>
11<ol>
12  <li><a href="#abstract">Abstract</a></li>
13  <li><a href="#overview">Overview</a></li>
14  <li><a href="#bitstream">Bitstream Format</a>
15    <ol>
16    <li><a href="#magic">Magic Numbers</a></li>
17    <li><a href="#primitives">Primitives</a></li>
18    <li><a href="#abbrevid">Abbreviation IDs</a></li>
19    <li><a href="#blocks">Blocks</a></li>
20    <li><a href="#datarecord">Data Records</a></li>
21    <li><a href="#abbreviations">Abbreviations</a></li>
22    <li><a href="#stdblocks">Standard Blocks</a></li>
23    </ol>
24  </li>
25  <li><a href="#wrapper">Bitcode Wrapper Format</a>
26  </li>
27  <li><a href="#llvmir">LLVM IR Encoding</a>
28    <ol>
29    <li><a href="#basics">Basics</a></li>
30    <li><a href="#MODULE_BLOCK">MODULE_BLOCK Contents</a></li>
31    <li><a href="#PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents</a></li>
32    <li><a href="#TYPE_BLOCK">TYPE_BLOCK Contents</a></li>
33    <li><a href="#CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents</a></li>
34    <li><a href="#FUNCTION_BLOCK">FUNCTION_BLOCK Contents</a></li>
35    <li><a href="#TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents</a></li>
36    <li><a href="#VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents</a></li>
37    <li><a href="#METADATA_BLOCK">METADATA_BLOCK Contents</a></li>
38    <li><a href="#METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents</a></li>
39    </ol>
40  </li>
41</ol>
42<div class="doc_author">
43  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
44  <a href="http://www.reverberate.org">Joshua Haberman</a>,
45  and <a href="mailto:housel@acm.org">Peter S. Housel</a>.
46</p>
47</div>
48
49<!-- *********************************************************************** -->
50<h2><a name="abstract">Abstract</a></h2>
51<!-- *********************************************************************** -->
52
53<div>
54
55<p>This document describes the LLVM bitstream file format and the encoding of
56the LLVM IR into it.</p>
57
58</div>
59
60<!-- *********************************************************************** -->
61<h2><a name="overview">Overview</a></h2>
62<!-- *********************************************************************** -->
63
64<div>
65
66<p>
67What is commonly known as the LLVM bitcode file format (also, sometimes
68anachronistically known as bytecode) is actually two things: a <a
69href="#bitstream">bitstream container format</a>
70and an <a href="#llvmir">encoding of LLVM IR</a> into the container format.</p>
71
72<p>
73The bitstream format is an abstract encoding of structured data, very
74similar to XML in some ways.  Like XML, bitstream files contain tags, and nested
75structures, and you can parse the file without having to understand the tags.
76Unlike XML, the bitstream format is a binary encoding, and unlike XML it
77provides a mechanism for the file to self-describe "abbreviations", which are
78effectively size optimizations for the content.</p>
79
80<p>LLVM IR files may be optionally embedded into a <a
81href="#wrapper">wrapper</a> structure that makes it easy to embed extra data
82along with LLVM IR files.</p>
83
84<p>This document first describes the LLVM bitstream format, describes the
85wrapper format, then describes the record structure used by LLVM IR files.
86</p>
87
88</div>
89
90<!-- *********************************************************************** -->
91<h2><a name="bitstream">Bitstream Format</a></h2>
92<!-- *********************************************************************** -->
93
94<div>
95
96<p>
97The bitstream format is literally a stream of bits, with a very simple
98structure.  This structure consists of the following concepts:
99</p>
100
101<ul>
102<li>A "<a href="#magic">magic number</a>" that identifies the contents of
103    the stream.</li>
104<li>Encoding <a href="#primitives">primitives</a> like variable bit-rate
105    integers.</li>
106<li><a href="#blocks">Blocks</a>, which define nested content.</li>
107<li><a href="#datarecord">Data Records</a>, which describe entities within the
108    file.</li>
109<li>Abbreviations, which specify compression optimizations for the file.</li>
110</ul>
111
112<p>Note that the <a
113href="CommandGuide/html/llvm-bcanalyzer.html">llvm-bcanalyzer</a> tool can be
114used to dump and inspect arbitrary bitstreams, which is very useful for
115understanding the encoding.</p>
116
117<!-- ======================================================================= -->
118<h3>
119  <a name="magic">Magic Numbers</a>
120</h3>
121
122<div>
123
124<p>The first two bytes of a bitcode file are 'BC' (0x42, 0x43).
125The second two bytes are an application-specific magic number.  Generic
126bitcode tools can look at only the first two bytes to verify the file is
127bitcode, while application-specific programs will want to look at all four.</p>
128
129</div>
130
131<!-- ======================================================================= -->
132<h3>
133  <a name="primitives">Primitives</a>
134</h3>
135
136<div>
137
138<p>
139A bitstream literally consists of a stream of bits, which are read in order
140starting with the least significant bit of each byte.  The stream is made up of a
141number of primitive values that encode a stream of unsigned integer values.
142These integers are encoded in two ways: either as <a href="#fixedwidth">Fixed
143Width Integers</a> or as <a href="#variablewidth">Variable Width
144Integers</a>.
145</p>
146
147<!-- _______________________________________________________________________ -->
148<h4>
149  <a name="fixedwidth">Fixed Width Integers</a>
150</h4>
151
152<div>
153
154<p>Fixed-width integer values have their low bits emitted directly to the file.
155   For example, a 3-bit integer value encodes 1 as 001.  Fixed width integers
156   are used when there are a well-known number of options for a field.  For
157   example, boolean values are usually encoded with a 1-bit wide integer.
158</p>
159
160</div>
161
162<!-- _______________________________________________________________________ -->
163<h4>
164  <a name="variablewidth">Variable Width Integers</a>
165</h4>
166
167<div>
168
169<p>Variable-width integer (VBR) values encode values of arbitrary size,
170optimizing for the case where the values are small.  Given a 4-bit VBR field,
171any 3-bit value (0 through 7) is encoded directly, with the high bit set to
172zero.  Values larger than N-1 bits emit their bits in a series of N-1 bit
173chunks, where all but the last set the high bit.</p>
174
175<p>For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a
176vbr4 value.  The first set of four bits indicates the value 3 (011) with a
177continuation piece (indicated by a high bit of 1).  The next word indicates a
178value of 24 (011 << 3) with no continuation.  The sum (3+24) yields the value
17927.
180</p>
181
182</div>
183
184<!-- _______________________________________________________________________ -->
185<h4><a name="char6">6-bit characters</a></h4>
186
187<div>
188
189<p>6-bit characters encode common characters into a fixed 6-bit field.  They
190represent the following characters with the following 6-bit values:</p>
191
192<div class="doc_code">
193<pre>
194'a' .. 'z' &mdash;  0 .. 25
195'A' .. 'Z' &mdash; 26 .. 51
196'0' .. '9' &mdash; 52 .. 61
197       '.' &mdash; 62
198       '_' &mdash; 63
199</pre>
200</div>
201
202<p>This encoding is only suitable for encoding characters and strings that
203consist only of the above characters.  It is completely incapable of encoding
204characters not in the set.</p>
205
206</div>
207
208<!-- _______________________________________________________________________ -->
209<h4><a name="wordalign">Word Alignment</a></h4>
210
211<div>
212
213<p>Occasionally, it is useful to emit zero bits until the bitstream is a
214multiple of 32 bits.  This ensures that the bit position in the stream can be
215represented as a multiple of 32-bit words.</p>
216
217</div>
218
219</div>
220
221<!-- ======================================================================= -->
222<h3>
223  <a name="abbrevid">Abbreviation IDs</a>
224</h3>
225
226<div>
227
228<p>
229A bitstream is a sequential series of <a href="#blocks">Blocks</a> and
230<a href="#datarecord">Data Records</a>.  Both of these start with an
231abbreviation ID encoded as a fixed-bitwidth field.  The width is specified by
232the current block, as described below.  The value of the abbreviation ID
233specifies either a builtin ID (which have special meanings, defined below) or
234one of the abbreviation IDs defined for the current block by the stream itself.
235</p>
236
237<p>
238The set of builtin abbrev IDs is:
239</p>
240
241<ul>
242<li><tt>0 - <a href="#END_BLOCK">END_BLOCK</a></tt> &mdash; This abbrev ID marks
243    the end of the current block.</li>
244<li><tt>1 - <a href="#ENTER_SUBBLOCK">ENTER_SUBBLOCK</a></tt> &mdash; This
245    abbrev ID marks the beginning of a new block.</li>
246<li><tt>2 - <a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt> &mdash; This defines
247    a new abbreviation.</li>
248<li><tt>3 - <a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> &mdash; This ID
249    specifies the definition of an unabbreviated record.</li>
250</ul>
251
252<p>Abbreviation IDs 4 and above are defined by the stream itself, and specify
253an <a href="#abbrev_records">abbreviated record encoding</a>.</p>
254
255</div>
256
257<!-- ======================================================================= -->
258<h3>
259  <a name="blocks">Blocks</a>
260</h3>
261
262<div>
263
264<p>
265Blocks in a bitstream denote nested regions of the stream, and are identified by
266a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
267function bodies).  Block IDs 0-7 are reserved for <a href="#stdblocks">standard blocks</a>
268whose meaning is defined by Bitcode; block IDs 8 and greater are
269application specific. Nested blocks capture the hierarchical structure of the data
270encoded in it, and various properties are associated with blocks as the file is
271parsed.  Block definitions allow the reader to efficiently skip blocks
272in constant time if the reader wants a summary of blocks, or if it wants to
273efficiently skip data it does not understand.  The LLVM IR reader uses this
274mechanism to skip function bodies, lazily reading them on demand.
275</p>
276
277<p>
278When reading and encoding the stream, several properties are maintained for the
279block.  In particular, each block maintains:
280</p>
281
282<ol>
283<li>A current abbrev id width.  This value starts at 2 at the beginning of
284    the stream, and is set every time a
285    block record is entered.  The block entry specifies the abbrev id width for
286    the body of the block.</li>
287
288<li>A set of abbreviations.  Abbreviations may be defined within a block, in
289    which case they are only defined in that block (neither subblocks nor
290    enclosing blocks see the abbreviation).  Abbreviations can also be defined
291    inside a <tt><a href="#BLOCKINFO">BLOCKINFO</a></tt> block, in which case
292    they are defined in all blocks that match the ID that the BLOCKINFO block is
293    describing.
294</li>
295</ol>
296
297<p>
298As sub blocks are entered, these properties are saved and the new sub-block has
299its own set of abbreviations, and its own abbrev id width.  When a sub-block is
300popped, the saved values are restored.
301</p>
302
303<!-- _______________________________________________________________________ -->
304<h4><a name="ENTER_SUBBLOCK">ENTER_SUBBLOCK Encoding</a></h4>
305
306<div>
307
308<p><tt>[ENTER_SUBBLOCK, blockid<sub>vbr8</sub>, newabbrevlen<sub>vbr4</sub>,
309     &lt;align32bits&gt;, blocklen<sub>32</sub>]</tt></p>
310
311<p>
312The <tt>ENTER_SUBBLOCK</tt> abbreviation ID specifies the start of a new block
313record.  The <tt>blockid</tt> value is encoded as an 8-bit VBR identifier, and
314indicates the type of block being entered, which can be
315a <a href="#stdblocks">standard block</a> or an application-specific block.
316The <tt>newabbrevlen</tt> value is a 4-bit VBR, which specifies the abbrev id
317width for the sub-block.  The <tt>blocklen</tt> value is a 32-bit aligned value
318that specifies the size of the subblock in 32-bit words. This value allows the
319reader to skip over the entire block in one jump.
320</p>
321
322</div>
323
324<!-- _______________________________________________________________________ -->
325<h4><a name="END_BLOCK">END_BLOCK Encoding</a></h4>
326
327<div>
328
329<p><tt>[END_BLOCK, &lt;align32bits&gt;]</tt></p>
330
331<p>
332The <tt>END_BLOCK</tt> abbreviation ID specifies the end of the current block
333record.  Its end is aligned to 32-bits to ensure that the size of the block is
334an even multiple of 32-bits.
335</p>
336
337</div>
338
339</div>
340
341<!-- ======================================================================= -->
342<h3>
343  <a name="datarecord">Data Records</a>
344</h3>
345
346<div>
347<p>
348Data records consist of a record code and a number of (up to) 64-bit
349integer values.  The interpretation of the code and values is
350application specific and may vary between different block types.
351Records can be encoded either using an unabbrev record, or with an
352abbreviation.  In the LLVM IR format, for example, there is a record
353which encodes the target triple of a module.  The code is
354<tt>MODULE_CODE_TRIPLE</tt>, and the values of the record are the
355ASCII codes for the characters in the string.
356</p>
357
358<!-- _______________________________________________________________________ -->
359<h4><a name="UNABBREV_RECORD">UNABBREV_RECORD Encoding</a></h4>
360
361<div>
362
363<p><tt>[UNABBREV_RECORD, code<sub>vbr6</sub>, numops<sub>vbr6</sub>,
364       op0<sub>vbr6</sub>, op1<sub>vbr6</sub>, ...]</tt></p>
365
366<p>
367An <tt>UNABBREV_RECORD</tt> provides a default fallback encoding, which is both
368completely general and extremely inefficient.  It can describe an arbitrary
369record by emitting the code and operands as VBRs.
370</p>
371
372<p>
373For example, emitting an LLVM IR target triple as an unabbreviated record
374requires emitting the <tt>UNABBREV_RECORD</tt> abbrevid, a vbr6 for the
375<tt>MODULE_CODE_TRIPLE</tt> code, a vbr6 for the length of the string, which is
376equal to the number of operands, and a vbr6 for each character.  Because there
377are no letters with values less than 32, each letter would need to be emitted as
378at least a two-part VBR, which means that each letter would require at least 12
379bits.  This is not an efficient encoding, but it is fully general.
380</p>
381
382</div>
383
384<!-- _______________________________________________________________________ -->
385<h4><a name="abbrev_records">Abbreviated Record Encoding</a></h4>
386
387<div>
388
389<p><tt>[&lt;abbrevid&gt;, fields...]</tt></p>
390
391<p>
392An abbreviated record is a abbreviation id followed by a set of fields that are
393encoded according to the <a href="#abbreviations">abbreviation definition</a>.
394This allows records to be encoded significantly more densely than records
395encoded with the <tt><a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> type,
396and allows the abbreviation types to be specified in the stream itself, which
397allows the files to be completely self describing.  The actual encoding of
398abbreviations is defined below.
399</p>
400
401<p>The record code, which is the first field of an abbreviated record,
402may be encoded in the abbreviation definition (as a literal
403operand) or supplied in the abbreviated record (as a Fixed or VBR
404operand value).</p>
405
406</div>
407
408</div>
409
410<!-- ======================================================================= -->
411<h3>
412  <a name="abbreviations">Abbreviations</a>
413</h3>
414
415<div>
416<p>
417Abbreviations are an important form of compression for bitstreams.  The idea is
418to specify a dense encoding for a class of records once, then use that encoding
419to emit many records.  It takes space to emit the encoding into the file, but
420the space is recouped (hopefully plus some) when the records that use it are
421emitted.
422</p>
423
424<p>
425Abbreviations can be determined dynamically per client, per file. Because the
426abbreviations are stored in the bitstream itself, different streams of the same
427format can contain different sets of abbreviations according to the needs
428of the specific stream.
429As a concrete example, LLVM IR files usually emit an abbreviation
430for binary operators.  If a specific LLVM module contained no or few binary
431operators, the abbreviation does not need to be emitted.
432</p>
433
434<!-- _______________________________________________________________________ -->
435<h4><a name="DEFINE_ABBREV">DEFINE_ABBREV  Encoding</a></h4>
436
437<div>
438
439<p><tt>[DEFINE_ABBREV, numabbrevops<sub>vbr5</sub>, abbrevop0, abbrevop1,
440 ...]</tt></p>
441
442<p>
443A <tt>DEFINE_ABBREV</tt> record adds an abbreviation to the list of currently
444defined abbreviations in the scope of this block.  This definition only exists
445inside this immediate block &mdash; it is not visible in subblocks or enclosing
446blocks.  Abbreviations are implicitly assigned IDs sequentially starting from 4
447(the first application-defined abbreviation ID).  Any abbreviations defined in a
448<tt>BLOCKINFO</tt> record for the particular block type
449receive IDs first, in order, followed by any
450abbreviations defined within the block itself.  Abbreviated data records
451reference this ID to indicate what abbreviation they are invoking.
452</p>
453
454<p>
455An abbreviation definition consists of the <tt>DEFINE_ABBREV</tt> abbrevid
456followed by a VBR that specifies the number of abbrev operands, then the abbrev
457operands themselves.  Abbreviation operands come in three forms.  They all start
458with a single bit that indicates whether the abbrev operand is a literal operand
459(when the bit is 1) or an encoding operand (when the bit is 0).
460</p>
461
462<ol>
463<li>Literal operands &mdash; <tt>[1<sub>1</sub>, litvalue<sub>vbr8</sub>]</tt>
464&mdash; Literal operands specify that the value in the result is always a single
465specific value.  This specific value is emitted as a vbr8 after the bit
466indicating that it is a literal operand.</li>
467<li>Encoding info without data &mdash; <tt>[0<sub>1</sub>,
468 encoding<sub>3</sub>]</tt> &mdash; Operand encodings that do not have extra
469 data are just emitted as their code.
470</li>
471<li>Encoding info with data &mdash; <tt>[0<sub>1</sub>, encoding<sub>3</sub>,
472value<sub>vbr5</sub>]</tt> &mdash; Operand encodings that do have extra data are
473emitted as their code, followed by the extra data.
474</li>
475</ol>
476
477<p>The possible operand encodings are:</p>
478
479<ul>
480<li>Fixed (code 1): The field should be emitted as
481    a <a href="#fixedwidth">fixed-width value</a>, whose width is specified by
482    the operand's extra data.</li>
483<li>VBR (code 2): The field should be emitted as
484    a <a href="#variablewidth">variable-width value</a>, whose width is
485    specified by the operand's extra data.</li>
486<li>Array (code 3): This field is an array of values.  The array operand
487    has no extra data, but expects another operand to follow it, indicating
488    the element type of the array.  When reading an array in an abbreviated
489    record, the first integer is a vbr6 that indicates the array length,
490    followed by the encoded elements of the array.  An array may only occur as
491    the last operand of an abbreviation (except for the one final operand that
492    gives the array's type).</li>
493<li>Char6 (code 4): This field should be emitted as
494    a <a href="#char6">char6-encoded value</a>.  This operand type takes no
495    extra data. Char6 encoding is normally used as an array element type.
496    </li>
497<li>Blob (code 5): This field is emitted as a vbr6, followed by padding to a
498    32-bit boundary (for alignment) and an array of 8-bit objects.  The array of
499    bytes is further followed by tail padding to ensure that its total length is
500    a multiple of 4 bytes.  This makes it very efficient for the reader to
501    decode the data without having to make a copy of it: it can use a pointer to
502    the data in the mapped in file and poke directly at it.  A blob may only
503    occur as the last operand of an abbreviation.</li>
504</ul>
505
506<p>
507For example, target triples in LLVM modules are encoded as a record of the
508form <tt>[TRIPLE, 'a', 'b', 'c', 'd']</tt>.  Consider if the bitstream emitted
509the following abbrev entry:
510</p>
511
512<div class="doc_code">
513<pre>
514[0, Fixed, 4]
515[0, Array]
516[0, Char6]
517</pre>
518</div>
519
520<p>
521When emitting a record with this abbreviation, the above entry would be emitted
522as:
523</p>
524
525<div class="doc_code">
526<p>
527<tt>[4<sub>abbrevwidth</sub>, 2<sub>4</sub>, 4<sub>vbr6</sub>, 0<sub>6</sub>,
5281<sub>6</sub>, 2<sub>6</sub>, 3<sub>6</sub>]</tt>
529</p>
530</div>
531
532<p>These values are:</p>
533
534<ol>
535<li>The first value, 4, is the abbreviation ID for this abbreviation.</li>
536<li>The second value, 2, is the record code for <tt>TRIPLE</tt> records within LLVM IR file <tt>MODULE_BLOCK</tt> blocks.</li>
537<li>The third value, 4, is the length of the array.</li>
538<li>The rest of the values are the char6 encoded values
539    for <tt>"abcd"</tt>.</li>
540</ol>
541
542<p>
543With this abbreviation, the triple is emitted with only 37 bits (assuming a
544abbrev id width of 3).  Without the abbreviation, significantly more space would
545be required to emit the target triple.  Also, because the <tt>TRIPLE</tt> value
546is not emitted as a literal in the abbreviation, the abbreviation can also be
547used for any other string value.
548</p>
549
550</div>
551
552</div>
553
554<!-- ======================================================================= -->
555<h3>
556  <a name="stdblocks">Standard Blocks</a>
557</h3>
558
559<div>
560
561<p>
562In addition to the basic block structure and record encodings, the bitstream
563also defines specific built-in block types.  These block types specify how the
564stream is to be decoded or other metadata.  In the future, new standard blocks
565may be added.  Block IDs 0-7 are reserved for standard blocks.
566</p>
567
568<!-- _______________________________________________________________________ -->
569<h4><a name="BLOCKINFO">#0 - BLOCKINFO Block</a></h4>
570
571<div>
572
573<p>
574The <tt>BLOCKINFO</tt> block allows the description of metadata for other
575blocks.  The currently specified records are:
576</p>
577
578<div class="doc_code">
579<pre>
580[SETBID (#1), blockid]
581[DEFINE_ABBREV, ...]
582[BLOCKNAME, ...name...]
583[SETRECORDNAME, RecordID, ...name...]
584</pre>
585</div>
586
587<p>
588The <tt>SETBID</tt> record (code 1) indicates which block ID is being
589described.  <tt>SETBID</tt> records can occur multiple times throughout the
590block to change which block ID is being described.  There must be
591a <tt>SETBID</tt> record prior to any other records.
592</p>
593
594<p>
595Standard <tt>DEFINE_ABBREV</tt> records can occur inside <tt>BLOCKINFO</tt>
596blocks, but unlike their occurrence in normal blocks, the abbreviation is
597defined for blocks matching the block ID we are describing, <i>not</i> the
598<tt>BLOCKINFO</tt> block itself.  The abbreviations defined
599in <tt>BLOCKINFO</tt> blocks receive abbreviation IDs as described
600in <tt><a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt>.
601</p>
602
603<p>The <tt>BLOCKNAME</tt> record (code 2) can optionally occur in this block.  The elements of
604the record are the bytes of the string name of the block.  llvm-bcanalyzer can use
605this to dump out bitcode files symbolically.</p>
606
607<p>The <tt>SETRECORDNAME</tt> record (code 3) can also optionally occur in this block.  The
608first operand value is a record ID number, and the rest of the elements of the record are
609the bytes for the string name of the record.  llvm-bcanalyzer can use
610this to dump out bitcode files symbolically.</p>
611
612<p>
613Note that although the data in <tt>BLOCKINFO</tt> blocks is described as
614"metadata," the abbreviations they contain are essential for parsing records
615from the corresponding blocks.  It is not safe to skip them.
616</p>
617
618</div>
619
620</div>
621
622</div>
623
624<!-- *********************************************************************** -->
625<h2><a name="wrapper">Bitcode Wrapper Format</a></h2>
626<!-- *********************************************************************** -->
627
628<div>
629
630<p>
631Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
632structure.  This structure contains a simple header that indicates the offset
633and size of the embedded BC file.  This allows additional information to be
634stored alongside the BC file.  The structure of this file header is:
635</p>
636
637<div class="doc_code">
638<p>
639<tt>[Magic<sub>32</sub>, Version<sub>32</sub>, Offset<sub>32</sub>,
640Size<sub>32</sub>, CPUType<sub>32</sub>]</tt>
641</p>
642</div>
643
644<p>
645Each of the fields are 32-bit fields stored in little endian form (as with
646the rest of the bitcode file fields).  The Magic number is always
647<tt>0x0B17C0DE</tt> and the version is currently always <tt>0</tt>.  The Offset
648field is the offset in bytes to the start of the bitcode stream in the file, and
649the Size field is the size in bytes of the stream. CPUType is a target-specific
650value that can be used to encode the CPU of the target.
651</p>
652
653</div>
654
655<!-- *********************************************************************** -->
656<h2><a name="llvmir">LLVM IR Encoding</a></h2>
657<!-- *********************************************************************** -->
658
659<div>
660
661<p>
662LLVM IR is encoded into a bitstream by defining blocks and records.  It uses
663blocks for things like constant pools, functions, symbol tables, etc.  It uses
664records for things like instructions, global variable descriptors, type
665descriptions, etc.  This document does not describe the set of abbreviations
666that the writer uses, as these are fully self-described in the file, and the
667reader is not allowed to build in any knowledge of this.
668</p>
669
670<!-- ======================================================================= -->
671<h3>
672  <a name="basics">Basics</a>
673</h3>
674
675<div>
676
677<!-- _______________________________________________________________________ -->
678<h4><a name="ir_magic">LLVM IR Magic Number</a></h4>
679
680<div>
681
682<p>
683The magic number for LLVM IR files is:
684</p>
685
686<div class="doc_code">
687<p>
688<tt>[0x0<sub>4</sub>, 0xC<sub>4</sub>, 0xE<sub>4</sub>, 0xD<sub>4</sub>]</tt>
689</p>
690</div>
691
692<p>
693When combined with the bitcode magic number and viewed as bytes, this is
694<tt>"BC&nbsp;0xC0DE"</tt>.
695</p>
696
697</div>
698
699<!-- _______________________________________________________________________ -->
700<h4><a name="ir_signed_vbr">Signed VBRs</a></h4>
701
702<div>
703
704<p>
705<a href="#variablewidth">Variable Width Integer</a> encoding is an efficient way to
706encode arbitrary sized unsigned values, but is an extremely inefficient for
707encoding signed values, as signed values are otherwise treated as maximally large
708unsigned values.
709</p>
710
711<p>
712As such, signed VBR values of a specific width are emitted as follows:
713</p>
714
715<ul>
716<li>Positive values are emitted as VBRs of the specified width, but with their
717    value shifted left by one.</li>
718<li>Negative values are emitted as VBRs of the specified width, but the negated
719    value is shifted left by one, and the low bit is set.</li>
720</ul>
721
722<p>
723With this encoding, small positive and small negative values can both
724be emitted efficiently. Signed VBR encoding is used in
725<tt>CST_CODE_INTEGER</tt> and <tt>CST_CODE_WIDE_INTEGER</tt> records
726within <tt>CONSTANTS_BLOCK</tt> blocks.
727</p>
728
729</div>
730
731
732<!-- _______________________________________________________________________ -->
733<h4><a name="ir_blocks">LLVM IR Blocks</a></h4>
734
735<div>
736
737<p>
738LLVM IR is defined with the following blocks:
739</p>
740
741<ul>
742<li>8  &mdash; <a href="#MODULE_BLOCK"><tt>MODULE_BLOCK</tt></a> &mdash; This is the top-level block that
743    contains the entire module, and describes a variety of per-module
744    information.</li>
745<li>9  &mdash; <a href="#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK</tt></a> &mdash; This enumerates the parameter
746    attributes.</li>
747<li>10 &mdash; <a href="#TYPE_BLOCK"><tt>TYPE_BLOCK</tt></a> &mdash; This describes all of the types in
748    the module.</li>
749<li>11 &mdash; <a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a> &mdash; This describes constants for a
750    module or function.</li>
751<li>12 &mdash; <a href="#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK</tt></a> &mdash; This describes a function
752    body.</li>
753<li>13 &mdash; <a href="#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK</tt></a> &mdash; This describes the type symbol
754    table.</li>
755<li>14 &mdash; <a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a> &mdash; This describes a value symbol
756    table.</li>
757<li>15 &mdash; <a href="#METADATA_BLOCK"><tt>METADATA_BLOCK</tt></a> &mdash; This describes metadata items.</li>
758<li>16 &mdash; <a href="#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT</tt></a> &mdash; This contains records associating metadata with function instruction values.</li>
759</ul>
760
761</div>
762
763</div>
764
765<!-- ======================================================================= -->
766<h3>
767  <a name="MODULE_BLOCK">MODULE_BLOCK Contents</a>
768</h3>
769
770<div>
771
772<p>The <tt>MODULE_BLOCK</tt> block (id 8) is the top-level block for LLVM
773bitcode files, and each bitcode file must contain exactly one. In
774addition to records (described below) containing information
775about the module, a <tt>MODULE_BLOCK</tt> block may contain the
776following sub-blocks:
777</p>
778
779<ul>
780<li><a href="#BLOCKINFO"><tt>BLOCKINFO</tt></a></li>
781<li><a href="#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK</tt></a></li>
782<li><a href="#TYPE_BLOCK"><tt>TYPE_BLOCK</tt></a></li>
783<li><a href="#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK</tt></a></li>
784<li><a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a></li>
785<li><a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a></li>
786<li><a href="#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK</tt></a></li>
787<li><a href="#METADATA_BLOCK"><tt>METADATA_BLOCK</tt></a></li>
788</ul>
789
790<!-- _______________________________________________________________________ -->
791<h4><a name="MODULE_CODE_VERSION">MODULE_CODE_VERSION Record</a></h4>
792
793<div>
794
795<p><tt>[VERSION, version#]</tt></p>
796
797<p>The <tt>VERSION</tt> record (code 1) contains a single value
798indicating the format version. Only version 0 is supported at this
799time.</p>
800</div>
801
802<!-- _______________________________________________________________________ -->
803<h4><a name="MODULE_CODE_TRIPLE">MODULE_CODE_TRIPLE Record</a></h4>
804
805<div>
806<p><tt>[TRIPLE, ...string...]</tt></p>
807
808<p>The <tt>TRIPLE</tt> record (code 2) contains a variable number of
809values representing the bytes of the <tt>target triple</tt>
810specification string.</p>
811</div>
812
813<!-- _______________________________________________________________________ -->
814<h4><a name="MODULE_CODE_DATALAYOUT">MODULE_CODE_DATALAYOUT Record</a></h4>
815
816<div>
817<p><tt>[DATALAYOUT, ...string...]</tt></p>
818
819<p>The <tt>DATALAYOUT</tt> record (code 3) contains a variable number of
820values representing the bytes of the <tt>target datalayout</tt>
821specification string.</p>
822</div>
823
824<!-- _______________________________________________________________________ -->
825<h4><a name="MODULE_CODE_ASM">MODULE_CODE_ASM Record</a></h4>
826
827<div>
828<p><tt>[ASM, ...string...]</tt></p>
829
830<p>The <tt>ASM</tt> record (code 4) contains a variable number of
831values representing the bytes of <tt>module asm</tt> strings, with
832individual assembly blocks separated by newline (ASCII 10) characters.</p>
833</div>
834
835<!-- _______________________________________________________________________ -->
836<h4><a name="MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME Record</a></h4>
837
838<div>
839<p><tt>[SECTIONNAME, ...string...]</tt></p>
840
841<p>The <tt>SECTIONNAME</tt> record (code 5) contains a variable number
842of values representing the bytes of a single section name
843string. There should be one <tt>SECTIONNAME</tt> record for each
844section name referenced (e.g., in global variable or function
845<tt>section</tt> attributes) within the module. These records can be
846referenced by the 1-based index in the <i>section</i> fields of
847<tt>GLOBALVAR</tt> or <tt>FUNCTION</tt> records.</p>
848</div>
849
850<!-- _______________________________________________________________________ -->
851<h4><a name="MODULE_CODE_DEPLIB">MODULE_CODE_DEPLIB Record</a></h4>
852
853<div>
854<p><tt>[DEPLIB, ...string...]</tt></p>
855
856<p>The <tt>DEPLIB</tt> record (code 6) contains a variable number of
857values representing the bytes of a single dependent library name
858string, one of the libraries mentioned in a <tt>deplibs</tt>
859declaration.  There should be one <tt>DEPLIB</tt> record for each
860library name referenced.</p>
861</div>
862
863<!-- _______________________________________________________________________ -->
864<h4><a name="MODULE_CODE_GLOBALVAR">MODULE_CODE_GLOBALVAR Record</a></h4>
865
866<div>
867<p><tt>[GLOBALVAR, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal]</tt></p>
868
869<p>The <tt>GLOBALVAR</tt> record (code 7) marks the declaration or
870definition of a global variable. The operand fields are:</p>
871
872<ul>
873<li><i>pointer type</i>: The type index of the pointer type used to point to
874this global variable</li>
875
876<li><i>isconst</i>: Non-zero if the variable is treated as constant within
877the module, or zero if it is not</li>
878
879<li><i>initid</i>: If non-zero, the value index of the initializer for this
880variable, plus 1.</li>
881
882<li><a name="linkage"><i>linkage</i></a>: An encoding of the linkage
883type for this variable:
884  <ul>
885    <li><tt>external</tt>: code 0</li>
886    <li><tt>weak</tt>: code 1</li>
887    <li><tt>appending</tt>: code 2</li>
888    <li><tt>internal</tt>: code 3</li>
889    <li><tt>linkonce</tt>: code 4</li>
890    <li><tt>dllimport</tt>: code 5</li>
891    <li><tt>dllexport</tt>: code 6</li>
892    <li><tt>extern_weak</tt>: code 7</li>
893    <li><tt>common</tt>: code 8</li>
894    <li><tt>private</tt>: code 9</li>
895    <li><tt>weak_odr</tt>: code 10</li>
896    <li><tt>linkonce_odr</tt>: code 11</li>
897    <li><tt>available_externally</tt>: code 12</li>
898    <li><tt>linker_private</tt>: code 13</li>
899  </ul>
900</li>
901
902<li><i>alignment</i>: The logarithm base 2 of the variable's requested
903alignment, plus 1</li>
904
905<li><i>section</i>: If non-zero, the 1-based section index in the
906table of <a href="#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME</a>
907entries.</li>
908
909<li><a name="visibility"><i>visibility</i></a>: If present, an
910encoding of the visibility of this variable:
911  <ul>
912    <li><tt>default</tt>: code 0</li>
913    <li><tt>hidden</tt>: code 1</li>
914    <li><tt>protected</tt>: code 2</li>
915  </ul>
916</li>
917
918<li><i>threadlocal</i>: If present and non-zero, indicates that the variable
919is <tt>thread_local</tt></li>
920
921<li><i>unnamed_addr</i>: If present and non-zero, indicates that the variable
922has <tt>unnamed_addr</tt></li>
923
924</ul>
925</div>
926
927<!-- _______________________________________________________________________ -->
928<h4><a name="MODULE_CODE_FUNCTION">MODULE_CODE_FUNCTION Record</a></h4>
929
930<div>
931
932<p><tt>[FUNCTION, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc]</tt></p>
933
934<p>The <tt>FUNCTION</tt> record (code 8) marks the declaration or
935definition of a function. The operand fields are:</p>
936
937<ul>
938<li><i>type</i>: The type index of the function type describing this function</li>
939
940<li><i>callingconv</i>: The calling convention number:
941  <ul>
942    <li><tt>ccc</tt>: code 0</li>
943    <li><tt>fastcc</tt>: code 8</li>
944    <li><tt>coldcc</tt>: code 9</li>
945    <li><tt>x86_stdcallcc</tt>: code 64</li>
946    <li><tt>x86_fastcallcc</tt>: code 65</li>
947    <li><tt>arm_apcscc</tt>: code 66</li>
948    <li><tt>arm_aapcscc</tt>: code 67</li>
949    <li><tt>arm_aapcs_vfpcc</tt>: code 68</li>
950  </ul>
951</li>
952
953<li><i>isproto</i>: Non-zero if this entry represents a declaration
954rather than a definition</li>
955
956<li><i>linkage</i>: An encoding of the <a href="#linkage">linkage type</a>
957for this function</li>
958
959<li><i>paramattr</i>: If nonzero, the 1-based parameter attribute index
960into the table of <a href="#PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY</a>
961entries.</li>
962
963<li><i>alignment</i>: The logarithm base 2 of the function's requested
964alignment, plus 1</li>
965
966<li><i>section</i>: If non-zero, the 1-based section index in the
967table of <a href="#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME</a>
968entries.</li>
969
970<li><i>visibility</i>: An encoding of the <a href="#visibility">visibility</a>
971    of this function</li>
972
973<li><i>gc</i>: If present and nonzero, the 1-based garbage collector
974index in the table of
975<a href="#MODULE_CODE_GCNAME">MODULE_CODE_GCNAME</a> entries.</li>
976
977<li><i>unnamed_addr</i>: If present and non-zero, indicates that the function
978has <tt>unnamed_addr</tt></li>
979
980</ul>
981</div>
982
983<!-- _______________________________________________________________________ -->
984<h4><a name="MODULE_CODE_ALIAS">MODULE_CODE_ALIAS Record</a></h4>
985
986<div>
987
988<p><tt>[ALIAS, alias type, aliasee val#, linkage, visibility]</tt></p>
989
990<p>The <tt>ALIAS</tt> record (code 9) marks the definition of an
991alias. The operand fields are</p>
992
993<ul>
994<li><i>alias type</i>: The type index of the alias</li>
995
996<li><i>aliasee val#</i>: The value index of the aliased value</li>
997
998<li><i>linkage</i>: An encoding of the <a href="#linkage">linkage type</a>
999for this alias</li>
1000
1001<li><i>visibility</i>: If present, an encoding of the
1002<a href="#visibility">visibility</a> of the alias</li>
1003
1004</ul>
1005</div>
1006
1007<!-- _______________________________________________________________________ -->
1008<h4><a name="MODULE_CODE_PURGEVALS">MODULE_CODE_PURGEVALS Record</a></h4>
1009
1010<div>
1011<p><tt>[PURGEVALS, numvals]</tt></p>
1012
1013<p>The <tt>PURGEVALS</tt> record (code 10) resets the module-level
1014value list to the size given by the single operand value. Module-level
1015value list items are added by <tt>GLOBALVAR</tt>, <tt>FUNCTION</tt>,
1016and <tt>ALIAS</tt> records.  After a <tt>PURGEVALS</tt> record is seen,
1017new value indices will start from the given <i>numvals</i> value.</p>
1018</div>
1019
1020<!-- _______________________________________________________________________ -->
1021<h4><a name="MODULE_CODE_GCNAME">MODULE_CODE_GCNAME Record</a></h4>
1022
1023<div>
1024<p><tt>[GCNAME, ...string...]</tt></p>
1025
1026<p>The <tt>GCNAME</tt> record (code 11) contains a variable number of
1027values representing the bytes of a single garbage collector name
1028string. There should be one <tt>GCNAME</tt> record for each garbage
1029collector name referenced in function <tt>gc</tt> attributes within
1030the module. These records can be referenced by 1-based index in the <i>gc</i>
1031fields of <tt>FUNCTION</tt> records.</p>
1032</div>
1033
1034</div>
1035
1036<!-- ======================================================================= -->
1037<h3>
1038  <a name="PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents</a>
1039</h3>
1040
1041<div>
1042
1043<p>The <tt>PARAMATTR_BLOCK</tt> block (id 9) contains a table of
1044entries describing the attributes of function parameters. These
1045entries are referenced by 1-based index in the <i>paramattr</i> field
1046of module block <a name="MODULE_CODE_FUNCTION"><tt>FUNCTION</tt></a>
1047records, or within the <i>attr</i> field of function block <a
1048href="#FUNC_CODE_INST_INVOKE"><tt>INST_INVOKE</tt></a> and <a
1049href="#FUNC_CODE_INST_CALL"><tt>INST_CALL</tt></a> records.</p>
1050
1051<p>Entries within <tt>PARAMATTR_BLOCK</tt> are constructed to ensure
1052that each is unique (i.e., no two indicies represent equivalent
1053attribute lists). </p>
1054
1055<!-- _______________________________________________________________________ -->
1056<h4><a name="PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY Record</a></h4>
1057
1058<div>
1059
1060<p><tt>[ENTRY, paramidx0, attr0, paramidx1, attr1...]</tt></p>
1061
1062<p>The <tt>ENTRY</tt> record (code 1) contains an even number of
1063values describing a unique set of function parameter attributes. Each
1064<i>paramidx</i> value indicates which set of attributes is
1065represented, with 0 representing the return value attributes,
10660xFFFFFFFF representing function attributes, and other values
1067representing 1-based function parameters. Each <i>attr</i> value is a
1068bitmap with the following interpretation:
1069</p>
1070
1071<ul>
1072<li>bit 0: <tt>zeroext</tt></li>
1073<li>bit 1: <tt>signext</tt></li>
1074<li>bit 2: <tt>noreturn</tt></li>
1075<li>bit 3: <tt>inreg</tt></li>
1076<li>bit 4: <tt>sret</tt></li>
1077<li>bit 5: <tt>nounwind</tt></li>
1078<li>bit 6: <tt>noalias</tt></li>
1079<li>bit 7: <tt>byval</tt></li>
1080<li>bit 8: <tt>nest</tt></li>
1081<li>bit 9: <tt>readnone</tt></li>
1082<li>bit 10: <tt>readonly</tt></li>
1083<li>bit 11: <tt>noinline</tt></li>
1084<li>bit 12: <tt>alwaysinline</tt></li>
1085<li>bit 13: <tt>optsize</tt></li>
1086<li>bit 14: <tt>ssp</tt></li>
1087<li>bit 15: <tt>sspreq</tt></li>
1088<li>bits 16&ndash;31: <tt>align <var>n</var></tt></li>
1089<li>bit 32: <tt>nocapture</tt></li>
1090<li>bit 33: <tt>noredzone</tt></li>
1091<li>bit 34: <tt>noimplicitfloat</tt></li>
1092<li>bit 35: <tt>naked</tt></li>
1093<li>bit 36: <tt>inlinehint</tt></li>
1094<li>bits 37&ndash;39: <tt>alignstack <var>n</var></tt>, represented as
1095the logarithm base 2 of the requested alignment, plus 1</li>
1096</ul>
1097</div>
1098
1099</div>
1100
1101<!-- ======================================================================= -->
1102<h3>
1103  <a name="TYPE_BLOCK">TYPE_BLOCK Contents</a>
1104</h3>
1105
1106<div>
1107
1108<p>The <tt>TYPE_BLOCK</tt> block (id 10) contains records which
1109constitute a table of type operator entries used to represent types
1110referenced within an LLVM module. Each record (with the exception of
1111<a href="#TYPE_CODE_NUMENTRY"><tt>NUMENTRY</tt></a>) generates a
1112single type table entry, which may be referenced by 0-based index from
1113instructions, constants, metadata, type symbol table entries, or other
1114type operator records.
1115</p>
1116
1117<p>Entries within <tt>TYPE_BLOCK</tt> are constructed to ensure that
1118each entry is unique (i.e., no two indicies represent structurally
1119equivalent types). </p>
1120
1121<!-- _______________________________________________________________________ -->
1122<h4><a name="TYPE_CODE_NUMENTRY">TYPE_CODE_NUMENTRY Record</a></h4>
1123
1124<div>
1125
1126<p><tt>[NUMENTRY, numentries]</tt></p>
1127
1128<p>The <tt>NUMENTRY</tt> record (code 1) contains a single value which
1129indicates the total number of type code entries in the type table of
1130the module. If present, <tt>NUMENTRY</tt> should be the first record
1131in the block.
1132</p>
1133</div>
1134
1135<!-- _______________________________________________________________________ -->
1136<h4><a name="TYPE_CODE_VOID">TYPE_CODE_VOID Record</a></h4>
1137
1138<div>
1139
1140<p><tt>[VOID]</tt></p>
1141
1142<p>The <tt>VOID</tt> record (code 2) adds a <tt>void</tt> type to the
1143type table.
1144</p>
1145</div>
1146
1147<!-- _______________________________________________________________________ -->
1148<h4><a name="TYPE_CODE_FLOAT">TYPE_CODE_FLOAT Record</a></h4>
1149
1150<div>
1151
1152<p><tt>[FLOAT]</tt></p>
1153
1154<p>The <tt>FLOAT</tt> record (code 3) adds a <tt>float</tt> (32-bit
1155floating point) type to the type table.
1156</p>
1157</div>
1158
1159<!-- _______________________________________________________________________ -->
1160<h4><a name="TYPE_CODE_DOUBLE">TYPE_CODE_DOUBLE Record</a></h4>
1161
1162<div>
1163
1164<p><tt>[DOUBLE]</tt></p>
1165
1166<p>The <tt>DOUBLE</tt> record (code 4) adds a <tt>double</tt> (64-bit
1167floating point) type to the type table.
1168</p>
1169</div>
1170
1171<!-- _______________________________________________________________________ -->
1172<h4><a name="TYPE_CODE_LABEL">TYPE_CODE_LABEL Record</a></h4>
1173
1174<div>
1175
1176<p><tt>[LABEL]</tt></p>
1177
1178<p>The <tt>LABEL</tt> record (code 5) adds a <tt>label</tt> type to
1179the type table.
1180</p>
1181</div>
1182
1183<!-- _______________________________________________________________________ -->
1184<h4><a name="TYPE_CODE_OPAQUE">TYPE_CODE_OPAQUE Record</a></h4>
1185
1186<div>
1187
1188<p><tt>[OPAQUE]</tt></p>
1189
1190<p>The <tt>OPAQUE</tt> record (code 6) adds an <tt>opaque</tt> type to
1191the type table. Note that distinct <tt>opaque</tt> types are not
1192unified.
1193</p>
1194</div>
1195
1196<!-- _______________________________________________________________________ -->
1197<h4><a name="TYPE_CODE_INTEGER">TYPE_CODE_INTEGER  Record</a></h4>
1198
1199<div>
1200
1201<p><tt>[INTEGER, width]</tt></p>
1202
1203<p>The <tt>INTEGER</tt> record (code 7) adds an integer type to the
1204type table. The single <i>width</i> field indicates the width of the
1205integer type.
1206</p>
1207</div>
1208
1209<!-- _______________________________________________________________________ -->
1210<h4><a name="TYPE_CODE_POINTER">TYPE_CODE_POINTER Record</a></h4>
1211
1212<div>
1213
1214<p><tt>[POINTER, pointee type, address space]</tt></p>
1215
1216<p>The <tt>POINTER</tt> record (code 8) adds a pointer type to the
1217type table. The operand fields are</p>
1218
1219<ul>
1220<li><i>pointee type</i>: The type index of the pointed-to type</li>
1221
1222<li><i>address space</i>: If supplied, the target-specific numbered
1223address space where the pointed-to object resides. Otherwise, the
1224default address space is zero.
1225</li>
1226</ul>
1227</div>
1228
1229<!-- _______________________________________________________________________ -->
1230<h4><a name="TYPE_CODE_FUNCTION">TYPE_CODE_FUNCTION Record</a></h4>
1231
1232<div>
1233
1234<p><tt>[FUNCTION, vararg, ignored, retty, ...paramty... ]</tt></p>
1235
1236<p>The <tt>FUNCTION</tt> record (code 9) adds a function type to the
1237type table. The operand fields are</p>
1238
1239<ul>
1240<li><i>vararg</i>: Non-zero if the type represents a varargs function</li>
1241
1242<li><i>ignored</i>: This value field is present for backward
1243compatibility only, and is ignored</li>
1244
1245<li><i>retty</i>: The type index of the function's return type</li>
1246
1247<li><i>paramty</i>: Zero or more type indices representing the
1248parameter types of the function</li>
1249</ul>
1250
1251</div>
1252
1253<!-- _______________________________________________________________________ -->
1254<h4><a name="TYPE_CODE_STRUCT">TYPE_CODE_STRUCT Record</a></h4>
1255
1256<div>
1257
1258<p><tt>[STRUCT, ispacked, ...eltty...]</tt></p>
1259
1260<p>The <tt>STRUCT </tt> record (code 10) adds a struct type to the
1261type table. The operand fields are</p>
1262
1263<ul>
1264<li><i>ispacked</i>: Non-zero if the type represents a packed structure</li>
1265
1266<li><i>eltty</i>: Zero or more type indices representing the element
1267types of the structure</li>
1268</ul>
1269</div>
1270
1271<!-- _______________________________________________________________________ -->
1272<h4><a name="TYPE_CODE_ARRAY">TYPE_CODE_ARRAY Record</a></h4>
1273
1274<div>
1275
1276<p><tt>[ARRAY, numelts, eltty]</tt></p>
1277
1278<p>The <tt>ARRAY</tt> record (code 11) adds an array type to the type
1279table.  The operand fields are</p>
1280
1281<ul>
1282<li><i>numelts</i>: The number of elements in arrays of this type</li>
1283
1284<li><i>eltty</i>: The type index of the array element type</li>
1285</ul>
1286</div>
1287
1288<!-- _______________________________________________________________________ -->
1289<h4><a name="TYPE_CODE_VECTOR">TYPE_CODE_VECTOR Record</a></h4>
1290
1291<div>
1292
1293<p><tt>[VECTOR, numelts, eltty]</tt></p>
1294
1295<p>The <tt>VECTOR</tt> record (code 12) adds a vector type to the type
1296table.  The operand fields are</p>
1297
1298<ul>
1299<li><i>numelts</i>: The number of elements in vectors of this type</li>
1300
1301<li><i>eltty</i>: The type index of the vector element type</li>
1302</ul>
1303</div>
1304
1305<!-- _______________________________________________________________________ -->
1306<h4><a name="TYPE_CODE_X86_FP80">TYPE_CODE_X86_FP80 Record</a></h4>
1307
1308<div>
1309
1310<p><tt>[X86_FP80]</tt></p>
1311
1312<p>The <tt>X86_FP80</tt> record (code 13) adds an <tt>x86_fp80</tt> (80-bit
1313floating point) type to the type table.
1314</p>
1315</div>
1316
1317<!-- _______________________________________________________________________ -->
1318<h4><a name="TYPE_CODE_FP128">TYPE_CODE_FP128 Record</a></h4>
1319
1320<div>
1321
1322<p><tt>[FP128]</tt></p>
1323
1324<p>The <tt>FP128</tt> record (code 14) adds an <tt>fp128</tt> (128-bit
1325floating point) type to the type table.
1326</p>
1327</div>
1328
1329<!-- _______________________________________________________________________ -->
1330<h4><a name="TYPE_CODE_PPC_FP128">TYPE_CODE_PPC_FP128 Record</a></h4>
1331
1332<div>
1333
1334<p><tt>[PPC_FP128]</tt></p>
1335
1336<p>The <tt>PPC_FP128</tt> record (code 15) adds a <tt>ppc_fp128</tt>
1337(128-bit floating point) type to the type table.
1338</p>
1339</div>
1340
1341<!-- _______________________________________________________________________ -->
1342<h4><a name="TYPE_CODE_METADATA">TYPE_CODE_METADATA Record</a></h4>
1343
1344<div>
1345
1346<p><tt>[METADATA]</tt></p>
1347
1348<p>The <tt>METADATA</tt> record (code 16) adds a <tt>metadata</tt>
1349type to the type table.
1350</p>
1351</div>
1352
1353</div>
1354
1355<!-- ======================================================================= -->
1356<h3>
1357  <a name="CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents</a>
1358</h3>
1359
1360<div>
1361
1362<p>The <tt>CONSTANTS_BLOCK</tt> block (id 11) ...
1363</p>
1364
1365</div>
1366
1367
1368<!-- ======================================================================= -->
1369<h3>
1370  <a name="FUNCTION_BLOCK">FUNCTION_BLOCK Contents</a>
1371</h3>
1372
1373<div>
1374
1375<p>The <tt>FUNCTION_BLOCK</tt> block (id 12) ...
1376</p>
1377
1378<p>In addition to the record types described below, a
1379<tt>FUNCTION_BLOCK</tt> block may contain the following sub-blocks:
1380</p>
1381
1382<ul>
1383<li><a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a></li>
1384<li><a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a></li>
1385<li><a href="#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT</tt></a></li>
1386</ul>
1387
1388</div>
1389
1390
1391<!-- ======================================================================= -->
1392<h3>
1393  <a name="TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents</a>
1394</h3>
1395
1396<div>
1397
1398<p>The <tt>TYPE_SYMTAB_BLOCK</tt> block (id 13) contains entries which
1399map between module-level named types and their corresponding type
1400indices.
1401</p>
1402
1403<!-- _______________________________________________________________________ -->
1404<h4><a name="TST_CODE_ENTRY">TST_CODE_ENTRY Record</a></h4>
1405
1406<div>
1407
1408<p><tt>[ENTRY, typeid, ...string...]</tt></p>
1409
1410<p>The <tt>ENTRY</tt> record (code 1) contains a variable number of
1411values, with the first giving the type index of the designated type,
1412and the remaining values giving the character codes of the type
1413name. Each entry corresponds to a single named type.
1414</p>
1415</div>
1416
1417</div>
1418
1419<!-- ======================================================================= -->
1420<h3>
1421  <a name="VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents</a>
1422</h3>
1423
1424<div>
1425
1426<p>The <tt>VALUE_SYMTAB_BLOCK</tt> block (id 14) ...
1427</p>
1428
1429</div>
1430
1431
1432<!-- ======================================================================= -->
1433<h3>
1434  <a name="METADATA_BLOCK">METADATA_BLOCK Contents</a>
1435</h3>
1436
1437<div>
1438
1439<p>The <tt>METADATA_BLOCK</tt> block (id 15) ...
1440</p>
1441
1442</div>
1443
1444
1445<!-- ======================================================================= -->
1446<h3>
1447  <a name="METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents</a>
1448</h3>
1449
1450<div>
1451
1452<p>The <tt>METADATA_ATTACHMENT</tt> block (id 16) ...
1453</p>
1454
1455</div>
1456
1457</div>
1458
1459<!-- *********************************************************************** -->
1460<hr>
1461<address> <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1462 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1463<a href="http://validator.w3.org/check/referer"><img
1464 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1465 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1466<a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1467Last modified: $Date: 2011-04-22 20:30:22 -0400 (Fri, 22 Apr 2011) $
1468</address>
1469</body>
1470</html>
1471