• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <meta http-equiv="content-type" content="text/html; charset=utf-8">
6  <title>The LLVM Target-Independent Code Generator</title>
7  <link rel="stylesheet" href="llvm.css" type="text/css">
8
9  <style type="text/css">
10    .unknown { background-color: #C0C0C0; text-align: center; }
11    .unknown:before { content: "?" }
12    .no { background-color: #C11B17 }
13    .no:before { content: "N" }
14    .partial { background-color: #F88017 }
15    .yes { background-color: #0F0; }
16    .yes:before { content: "Y" }
17  </style>
18
19</head>
20<body>
21
22<h1>
23  The LLVM Target-Independent Code Generator
24</h1>
25
26<ol>
27  <li><a href="#introduction">Introduction</a>
28    <ul>
29      <li><a href="#required">Required components in the code generator</a></li>
30      <li><a href="#high-level-design">The high-level design of the code
31          generator</a></li>
32      <li><a href="#tablegen">Using TableGen for target description</a></li>
33    </ul>
34  </li>
35  <li><a href="#targetdesc">Target description classes</a>
36    <ul>
37      <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
38      <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
39      <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
40      <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
41      <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
42      <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
43      <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
44      <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
45    </ul>
46  </li>
47  <li><a href="#codegendesc">The "Machine" Code Generator classes</a>
48    <ul>
49    <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
50    <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
51                                     class</a></li>
52    <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
53    </ul>
54  </li>
55  <li><a href="#mc">The "MC" Layer</a>
56    <ul>
57    <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li>
58    <li><a href="#mccontext">The <tt>MCContext</tt> class</a>
59    <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li>
60    <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li>
61    <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li>
62    </ul>
63  </li>
64  <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
65    <ul>
66    <li><a href="#instselect">Instruction Selection</a>
67      <ul>
68      <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
69      <li><a href="#selectiondag_process">SelectionDAG Code Generation
70                                          Process</a></li>
71      <li><a href="#selectiondag_build">Initial SelectionDAG
72                                        Construction</a></li>
73      <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
74      <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
75      <li><a href="#selectiondag_optimize">SelectionDAG Optimization
76                                           Phase: the DAG Combiner</a></li>
77      <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
78      <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
79                                        Phase</a></li>
80      <li><a href="#selectiondag_future">Future directions for the
81                                         SelectionDAG</a></li>
82      </ul></li>
83     <li><a href="#liveintervals">Live Intervals</a>
84       <ul>
85       <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
86       <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
87       </ul></li>
88    <li><a href="#regalloc">Register Allocation</a>
89      <ul>
90      <li><a href="#regAlloc_represent">How registers are represented in
91                                        LLVM</a></li>
92      <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
93                                    registers</a></li>
94      <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
95      <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
96      <li><a href="#regAlloc_fold">Instruction folding</a></li>
97      <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
98      </ul></li>
99    <li><a href="#codeemit">Code Emission</a></li>
100    </ul>
101  </li>
102  <li><a href="#nativeassembler">Implementing a Native Assembler</a></li>
103
104  <li><a href="#targetimpls">Target-specific Implementation Notes</a>
105    <ul>
106    <li><a href="#targetfeatures">Target Feature Matrix</a></li>
107    <li><a href="#tailcallopt">Tail call optimization</a></li>
108    <li><a href="#sibcallopt">Sibling call optimization</a></li>
109    <li><a href="#x86">The X86 backend</a></li>
110    <li><a href="#ppc">The PowerPC backend</a>
111      <ul>
112      <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
113      <li><a href="#ppc_frame">Frame Layout</a></li>
114      <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
115      <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
116      </ul></li>
117    <li><a href="#ptx">The PTX backend</a></li>
118    </ul></li>
119
120</ol>
121
122<div class="doc_author">
123  <p>Written by the LLVM Team.</p>
124</div>
125
126<div class="doc_warning">
127  <p>Warning: This is a work in progress.</p>
128</div>
129
130<!-- *********************************************************************** -->
131<h2>
132  <a name="introduction">Introduction</a>
133</h2>
134<!-- *********************************************************************** -->
135
136<div>
137
138<p>The LLVM target-independent code generator is a framework that provides a
139   suite of reusable components for translating the LLVM internal representation
140   to the machine code for a specified target&mdash;either in assembly form
141   (suitable for a static compiler) or in binary machine code format (usable for
142   a JIT compiler). The LLVM target-independent code generator consists of six
143   main components:</p>
144
145<ol>
146  <li><a href="#targetdesc">Abstract target description</a> interfaces which
147      capture important properties about various aspects of the machine,
148      independently of how they will be used.  These interfaces are defined in
149      <tt>include/llvm/Target/</tt>.</li>
150
151  <li>Classes used to represent the <a href="#codegendesc">code being
152      generated</a> for a target.  These classes are intended to be abstract
153      enough to represent the machine code for <i>any</i> target machine.  These
154      classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level,
155      concepts like "constant pool entries" and "jump tables" are explicitly
156      exposed.</li>
157
158  <li>Classes and algorithms used to represent code as the object file level,
159      the <a href="#mc">MC Layer</a>.  These classes represent assembly level
160      constructs like labels, sections, and instructions.  At this level,
161      concepts like "constant pool entries" and "jump tables" don't exist.</li>
162
163  <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
164      various phases of native code generation (register allocation, scheduling,
165      stack frame representation, etc).  This code lives
166      in <tt>lib/CodeGen/</tt>.</li>
167
168  <li><a href="#targetimpls">Implementations of the abstract target description
169      interfaces</a> for particular targets.  These machine descriptions make
170      use of the components provided by LLVM, and can optionally provide custom
171      target-specific passes, to build complete code generators for a specific
172      target.  Target descriptions live in <tt>lib/Target/</tt>.</li>
173
174  <li><a href="#jit">The target-independent JIT components</a>.  The LLVM JIT is
175      completely target independent (it uses the <tt>TargetJITInfo</tt>
176      structure to interface for target-specific issues.  The code for the
177      target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
178</ol>
179
180<p>Depending on which part of the code generator you are interested in working
181   on, different pieces of this will be useful to you.  In any case, you should
182   be familiar with the <a href="#targetdesc">target description</a>
183   and <a href="#codegendesc">machine code representation</a> classes.  If you
184   want to add a backend for a new target, you will need
185   to <a href="#targetimpls">implement the target description</a> classes for
186   your new target and understand the <a href="LangRef.html">LLVM code
187   representation</a>.  If you are interested in implementing a
188   new <a href="#codegenalgs">code generation algorithm</a>, it should only
189   depend on the target-description and machine code representation classes,
190   ensuring that it is portable.</p>
191
192<!-- ======================================================================= -->
193<h3>
194 <a name="required">Required components in the code generator</a>
195</h3>
196
197<div>
198
199<p>The two pieces of the LLVM code generator are the high-level interface to the
200   code generator and the set of reusable components that can be used to build
201   target-specific backends.  The two most important interfaces
202   (<a href="#targetmachine"><tt>TargetMachine</tt></a>
203   and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
204   required to be defined for a backend to fit into the LLVM system, but the
205   others must be defined if the reusable code generator components are going to
206   be used.</p>
207
208<p>This design has two important implications.  The first is that LLVM can
209   support completely non-traditional code generation targets.  For example, the
210   C backend does not require register allocation, instruction selection, or any
211   of the other standard components provided by the system.  As such, it only
212   implements these two interfaces, and does its own thing.  Another example of
213   a code generator like this is a (purely hypothetical) backend that converts
214   LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
215
216<p>This design also implies that it is possible to design and implement
217   radically different code generators in the LLVM system that do not make use
218   of any of the built-in components.  Doing so is not recommended at all, but
219   could be required for radically different targets that do not fit into the
220   LLVM machine description model: FPGAs for example.</p>
221
222</div>
223
224<!-- ======================================================================= -->
225<h3>
226 <a name="high-level-design">The high-level design of the code generator</a>
227</h3>
228
229<div>
230
231<p>The LLVM target-independent code generator is designed to support efficient
232   and quality code generation for standard register-based microprocessors.
233   Code generation in this model is divided into the following stages:</p>
234
235<ol>
236  <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
237      determines an efficient way to express the input LLVM code in the target
238      instruction set.  This stage produces the initial code for the program in
239      the target instruction set, then makes use of virtual registers in SSA
240      form and physical registers that represent any required register
241      assignments due to target constraints or calling conventions.  This step
242      turns the LLVM code into a DAG of target instructions.</li>
243
244  <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
245      This phase takes the DAG of target instructions produced by the
246      instruction selection phase, determines an ordering of the instructions,
247      then emits the instructions
248      as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
249      Note that we describe this in the <a href="#instselect">instruction
250      selection section</a> because it operates on
251      a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
252
253  <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
254      This optional stage consists of a series of machine-code optimizations
255      that operate on the SSA-form produced by the instruction selector.
256      Optimizations like modulo-scheduling or peephole optimization work
257      here.</li>
258
259  <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
260      is transformed from an infinite virtual register file in SSA form to the
261      concrete register file used by the target.  This phase introduces spill
262      code and eliminates all virtual register references from the program.</li>
263
264  <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
265      the machine code has been generated for the function and the amount of
266      stack space required is known (used for LLVM alloca's and spill slots),
267      the prolog and epilog code for the function can be inserted and "abstract
268      stack location references" can be eliminated.  This stage is responsible
269      for implementing optimizations like frame-pointer elimination and stack
270      packing.</li>
271
272  <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
273      Optimizations that operate on "final" machine code can go here, such as
274      spill code scheduling and peephole optimizations.</li>
275
276  <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
277      actually puts out the code for the current function, either in the target
278      assembler format or in machine code.</li>
279</ol>
280
281<p>The code generator is based on the assumption that the instruction selector
282   will use an optimal pattern matching selector to create high-quality
283   sequences of native instructions.  Alternative code generator designs based
284   on pattern expansion and aggressive iterative peephole optimization are much
285   slower.  This design permits efficient compilation (important for JIT
286   environments) and aggressive optimization (used when generating code offline)
287   by allowing components of varying levels of sophistication to be used for any
288   step of compilation.</p>
289
290<p>In addition to these stages, target implementations can insert arbitrary
291   target-specific passes into the flow.  For example, the X86 target uses a
292   special pass to handle the 80x87 floating point stack architecture.  Other
293   targets with unusual requirements can be supported with custom passes as
294   needed.</p>
295
296</div>
297
298<!-- ======================================================================= -->
299<h3>
300 <a name="tablegen">Using TableGen for target description</a>
301</h3>
302
303<div>
304
305<p>The target description classes require a detailed description of the target
306   architecture.  These target descriptions often have a large amount of common
307   information (e.g., an <tt>add</tt> instruction is almost identical to a
308   <tt>sub</tt> instruction).  In order to allow the maximum amount of
309   commonality to be factored out, the LLVM code generator uses
310   the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
311   chunks of the target machine, which allows the use of domain-specific and
312   target-specific abstractions to reduce the amount of repetition.</p>
313
314<p>As LLVM continues to be developed and refined, we plan to move more and more
315   of the target description to the <tt>.td</tt> form.  Doing so gives us a
316   number of advantages.  The most important is that it makes it easier to port
317   LLVM because it reduces the amount of C++ code that has to be written, and
318   the surface area of the code generator that needs to be understood before
319   someone can get something working.  Second, it makes it easier to change
320   things. In particular, if tables and other things are all emitted
321   by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
322   update all of the targets to a new interface.</p>
323
324</div>
325
326</div>
327
328<!-- *********************************************************************** -->
329<h2>
330  <a name="targetdesc">Target description classes</a>
331</h2>
332<!-- *********************************************************************** -->
333
334<div>
335
336<p>The LLVM target description classes (located in the
337   <tt>include/llvm/Target</tt> directory) provide an abstract description of
338   the target machine independent of any particular client.  These classes are
339   designed to capture the <i>abstract</i> properties of the target (such as the
340   instructions and registers it has), and do not incorporate any particular
341   pieces of code generation algorithms.</p>
342
343<p>All of the target description classes (except the
344   <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
345   subclassed by the concrete target implementation, and have virtual methods
346   implemented.  To get to these implementations, the
347   <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
348   that should be implemented by the target.</p>
349
350<!-- ======================================================================= -->
351<h3>
352  <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
353</h3>
354
355<div>
356
357<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
358   access the target-specific implementations of the various target description
359   classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
360   <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.).  This class is
361   designed to be specialized by a concrete target implementation
362   (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
363   methods.  The only required target description class is
364   the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
365   generator components are to be used, the other interfaces should be
366   implemented as well.</p>
367
368</div>
369
370<!-- ======================================================================= -->
371<h3>
372  <a name="targetdata">The <tt>TargetData</tt> class</a>
373</h3>
374
375<div>
376
377<p>The <tt>TargetData</tt> class is the only required target description class,
378   and it is the only class that is not extensible (you cannot derived a new
379   class from it).  <tt>TargetData</tt> specifies information about how the
380   target lays out memory for structures, the alignment requirements for various
381   data types, the size of pointers in the target, and whether the target is
382   little-endian or big-endian.</p>
383
384</div>
385
386<!-- ======================================================================= -->
387<h3>
388  <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
389</h3>
390
391<div>
392
393<p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
394   selectors primarily to describe how LLVM code should be lowered to
395   SelectionDAG operations.  Among other things, this class indicates:</p>
396
397<ul>
398  <li>an initial register class to use for various <tt>ValueType</tt>s,</li>
399
400  <li>which operations are natively supported by the target machine,</li>
401
402  <li>the return type of <tt>setcc</tt> operations,</li>
403
404  <li>the type to use for shift amounts, and</li>
405
406  <li>various high-level characteristics, like whether it is profitable to turn
407      division by a constant into a multiplication sequence</li>
408</ul>
409
410</div>
411
412<!-- ======================================================================= -->
413<h3>
414  <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
415</h3>
416
417<div>
418
419<p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
420   of the target and any interactions between the registers.</p>
421
422<p>Registers in the code generator are represented in the code generator by
423   unsigned integers.  Physical registers (those that actually exist in the
424   target description) are unique small numbers, and virtual registers are
425   generally large.  Note that register #0 is reserved as a flag value.</p>
426
427<p>Each register in the processor description has an associated
428   <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
429   register (used for assembly output and debugging dumps) and a set of aliases
430   (used to indicate whether one register overlaps with another).</p>
431
432<p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
433   class exposes a set of processor specific register classes (instances of the
434   <tt>TargetRegisterClass</tt> class).  Each register class contains sets of
435   registers that have the same properties (for example, they are all 32-bit
436   integer registers).  Each SSA virtual register created by the instruction
437   selector has an associated register class.  When the register allocator runs,
438   it replaces virtual registers with a physical register in the set.</p>
439
440<p>The target-specific implementations of these classes is auto-generated from
441   a <a href="TableGenFundamentals.html">TableGen</a> description of the
442   register file.</p>
443
444</div>
445
446<!-- ======================================================================= -->
447<h3>
448  <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
449</h3>
450
451<div>
452
453<p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
454   instructions supported by the target. It is essentially an array of
455   <tt>TargetInstrDescriptor</tt> objects, each of which describes one
456   instruction the target supports. Descriptors define things like the mnemonic
457   for the opcode, the number of operands, the list of implicit register uses
458   and defs, whether the instruction has certain target-independent properties
459   (accesses memory, is commutable, etc), and holds any target-specific
460   flags.</p>
461
462</div>
463
464<!-- ======================================================================= -->
465<h3>
466  <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
467</h3>
468
469<div>
470
471<p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
472   stack frame layout of the target. It holds the direction of stack growth, the
473   known stack alignment on entry to each function, and the offset to the local
474   area.  The offset to the local area is the offset from the stack pointer on
475   function entry to the first location where function data (local variables,
476   spill locations) can be stored.</p>
477
478</div>
479
480<!-- ======================================================================= -->
481<h3>
482  <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
483</h3>
484
485<div>
486
487<p>The <tt>TargetSubtarget</tt> class is used to provide information about the
488   specific chip set being targeted.  A sub-target informs code generation of
489   which instructions are supported, instruction latencies and instruction
490   execution itinerary; i.e., which processing units are used, in what order,
491   and for how long.</p>
492
493</div>
494
495
496<!-- ======================================================================= -->
497<h3>
498  <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
499</h3>
500
501<div>
502
503<p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
504   Just-In-Time code generator to perform target-specific activities, such as
505   emitting stubs.  If a <tt>TargetMachine</tt> supports JIT code generation, it
506   should provide one of these objects through the <tt>getJITInfo</tt>
507   method.</p>
508
509</div>
510
511</div>
512
513<!-- *********************************************************************** -->
514<h2>
515  <a name="codegendesc">Machine code description classes</a>
516</h2>
517<!-- *********************************************************************** -->
518
519<div>
520
521<p>At the high-level, LLVM code is translated to a machine specific
522   representation formed out of
523   <a href="#machinefunction"><tt>MachineFunction</tt></a>,
524   <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
525   and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
526   in <tt>include/llvm/CodeGen</tt>).  This representation is completely target
527   agnostic, representing instructions in their most abstract form: an opcode
528   and a series of operands.  This representation is designed to support both an
529   SSA representation for machine code, as well as a register allocated, non-SSA
530   form.</p>
531
532<!-- ======================================================================= -->
533<h3>
534  <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
535</h3>
536
537<div>
538
539<p>Target machine instructions are represented as instances of the
540   <tt>MachineInstr</tt> class.  This class is an extremely abstract way of
541   representing machine instructions.  In particular, it only keeps track of an
542   opcode number and a set of operands.</p>
543
544<p>The opcode number is a simple unsigned integer that only has meaning to a
545   specific backend.  All of the instructions for a target should be defined in
546   the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
547   auto-generated from this description.  The <tt>MachineInstr</tt> class does
548   not have any information about how to interpret the instruction (i.e., what
549   the semantics of the instruction are); for that you must refer to the
550   <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p>
551
552<p>The operands of a machine instruction can be of several different types: a
553   register reference, a constant integer, a basic block reference, etc.  In
554   addition, a machine operand should be marked as a def or a use of the value
555   (though only registers are allowed to be defs).</p>
556
557<p>By convention, the LLVM code generator orders instruction operands so that
558   all register definitions come before the register uses, even on architectures
559   that are normally printed in other orders.  For example, the SPARC add
560   instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
561   and stores the result into the "%i3" register.  In the LLVM code generator,
562   the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
563   destination first.</p>
564
565<p>Keeping destination (definition) operands at the beginning of the operand
566   list has several advantages.  In particular, the debugging printer will print
567   the instruction like this:</p>
568
569<div class="doc_code">
570<pre>
571%r3 = add %i1, %i2
572</pre>
573</div>
574
575<p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
576   instructions</a> whose only def is the first operand.</p>
577
578<!-- _______________________________________________________________________ -->
579<h4>
580  <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
581</h4>
582
583<div>
584
585<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
586   located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file.  The
587   <tt>BuildMI</tt> functions make it easy to build arbitrary machine
588   instructions.  Usage of the <tt>BuildMI</tt> functions look like this:</p>
589
590<div class="doc_code">
591<pre>
592// Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
593// instruction.  The '1' specifies how many operands will be added.
594MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
595
596// Create the same instr, but insert it at the end of a basic block.
597MachineBasicBlock &amp;MBB = ...
598BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
599
600// Create the same instr, but insert it before a specified iterator point.
601MachineBasicBlock::iterator MBBI = ...
602BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
603
604// Create a 'cmp Reg, 0' instruction, no destination reg.
605MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
606// Create an 'sahf' instruction which takes no operands and stores nothing.
607MI = BuildMI(X86::SAHF, 0);
608
609// Create a self looping branch instruction.
610BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
611</pre>
612</div>
613
614<p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
615   have to specify the number of operands that the machine instruction will
616   take.  This allows for efficient memory allocation.  You also need to specify
617   if operands default to be uses of values, not definitions.  If you need to
618   add a definition operand (other than the optional destination register), you
619   must explicitly mark it as such:</p>
620
621<div class="doc_code">
622<pre>
623MI.addReg(Reg, RegState::Define);
624</pre>
625</div>
626
627</div>
628
629<!-- _______________________________________________________________________ -->
630<h4>
631  <a name="fixedregs">Fixed (preassigned) registers</a>
632</h4>
633
634<div>
635
636<p>One important issue that the code generator needs to be aware of is the
637   presence of fixed registers.  In particular, there are often places in the
638   instruction stream where the register allocator <em>must</em> arrange for a
639   particular value to be in a particular register.  This can occur due to
640   limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
641   with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
642   calling conventions.  In any case, the instruction selector should emit code
643   that copies a virtual register into or out of a physical register when
644   needed.</p>
645
646<p>For example, consider this simple LLVM example:</p>
647
648<div class="doc_code">
649<pre>
650define i32 @test(i32 %X, i32 %Y) {
651  %Z = udiv i32 %X, %Y
652  ret i32 %Z
653}
654</pre>
655</div>
656
657<p>The X86 instruction selector produces this machine code for the <tt>div</tt>
658   and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
659   get this):</p>
660
661<div class="doc_code">
662<pre>
663;; Start of div
664%EAX = mov %reg1024           ;; Copy X (in reg1024) into EAX
665%reg1027 = sar %reg1024, 31
666%EDX = mov %reg1027           ;; Sign extend X into EDX
667idiv %reg1025                 ;; Divide by Y (in reg1025)
668%reg1026 = mov %EAX           ;; Read the result (Z) out of EAX
669
670;; Start of ret
671%EAX = mov %reg1026           ;; 32-bit return value goes in EAX
672ret
673</pre>
674</div>
675
676<p>By the end of code generation, the register allocator has coalesced the
677   registers and deleted the resultant identity moves producing the following
678   code:</p>
679
680<div class="doc_code">
681<pre>
682;; X is in EAX, Y is in ECX
683mov %EAX, %EDX
684sar %EDX, 31
685idiv %ECX
686ret
687</pre>
688</div>
689
690<p>This approach is extremely general (if it can handle the X86 architecture, it
691   can handle anything!) and allows all of the target specific knowledge about
692   the instruction stream to be isolated in the instruction selector.  Note that
693   physical registers should have a short lifetime for good code generation, and
694   all physical registers are assumed dead on entry to and exit from basic
695   blocks (before register allocation).  Thus, if you need a value to be live
696   across basic block boundaries, it <em>must</em> live in a virtual
697   register.</p>
698
699</div>
700
701<!-- _______________________________________________________________________ -->
702<h4>
703  <a name="ssa">Machine code in SSA form</a>
704</h4>
705
706<div>
707
708<p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
709   maintained in SSA-form until register allocation happens.  For the most part,
710   this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
711   become machine code PHI nodes, and virtual registers are only allowed to have
712   a single definition.</p>
713
714<p>After register allocation, machine code is no longer in SSA-form because
715   there are no virtual registers left in the code.</p>
716
717</div>
718
719</div>
720
721<!-- ======================================================================= -->
722<h3>
723  <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
724</h3>
725
726<div>
727
728<p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
729   (<tt><a href="#machineinstr">MachineInstr</a></tt> instances).  It roughly
730   corresponds to the LLVM code input to the instruction selector, but there can
731   be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
732   machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
733   "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
734   comes from.</p>
735
736</div>
737
738<!-- ======================================================================= -->
739<h3>
740  <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
741</h3>
742
743<div>
744
745<p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
746   (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances).  It
747   corresponds one-to-one with the LLVM function input to the instruction
748   selector.  In addition to a list of basic blocks,
749   the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
750   a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
751   <tt>MachineRegisterInfo</tt>.  See
752   <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
753
754</div>
755
756</div>
757
758<!-- *********************************************************************** -->
759<h2>
760  <a name="mc">The "MC" Layer</a>
761</h2>
762<!-- *********************************************************************** -->
763
764<div>
765
766<p>
767The MC Layer is used to represent and process code at the raw machine code
768level, devoid of "high level" information like "constant pools", "jump tables",
769"global variables" or anything like that.  At this level, LLVM handles things
770like label names, machine instructions, and sections in the object file.  The
771code in this layer is used for a number of important purposes: the tail end of
772the code generator uses it to write a .s or .o file, and it is also used by the
773llvm-mc tool to implement standalone machine code assemblers and disassemblers.
774</p>
775
776<p>
777This section describes some of the important classes.  There are also a number
778of important subsystems that interact at this layer, they are described later
779in this manual.
780</p>
781
782<!-- ======================================================================= -->
783<h3>
784  <a name="mcstreamer">The <tt>MCStreamer</tt> API</a>
785</h3>
786
787<div>
788
789<p>
790MCStreamer is best thought of as an assembler API.  It is an abstract API which
791is <em>implemented</em> in different ways (e.g. to output a .s file, output an
792ELF .o file, etc) but whose API correspond directly to what you see in a .s
793file.  MCStreamer has one method per directive, such as EmitLabel,
794EmitSymbolAttribute, SwitchSection, EmitValue (for .byte, .word), etc, which
795directly correspond to assembly level directives.  It also has an
796EmitInstruction method, which is used to output an MCInst to the streamer.
797</p>
798
799<p>
800This API is most important for two clients: the llvm-mc stand-alone assembler is
801effectively a parser that parses a line, then invokes a method on MCStreamer. In
802the code generator, the <a href="#codeemit">Code Emission</a> phase of the code
803generator lowers higher level LLVM IR and Machine* constructs down to the MC
804layer, emitting directives through MCStreamer.</p>
805
806<p>
807On the implementation side of MCStreamer, there are two major implementations:
808one for writing out a .s file (MCAsmStreamer), and one for writing out a .o
809file (MCObjectStreamer).  MCAsmStreamer is a straight-forward implementation
810that prints out a directive for each method (e.g. EmitValue -&gt; .byte), but
811MCObjectStreamer implements a full assembler.
812</p>
813
814</div>
815
816<!-- ======================================================================= -->
817<h3>
818  <a name="mccontext">The <tt>MCContext</tt> class</a>
819</h3>
820
821<div>
822
823<p>
824The MCContext class is the owner of a variety of uniqued data structures at the
825MC layer, including symbols, sections, etc.  As such, this is the class that you
826interact with to create symbols and sections.  This class can not be subclassed.
827</p>
828
829</div>
830
831<!-- ======================================================================= -->
832<h3>
833  <a name="mcsymbol">The <tt>MCSymbol</tt> class</a>
834</h3>
835
836<div>
837
838<p>
839The MCSymbol class represents a symbol (aka label) in the assembly file.  There
840are two interesting kinds of symbols: assembler temporary symbols, and normal
841symbols.  Assembler temporary symbols are used and processed by the assembler
842but are discarded when the object file is produced.  The distinction is usually
843represented by adding a prefix to the label, for example "L" labels are
844assembler temporary labels in MachO.
845</p>
846
847<p>MCSymbols are created by MCContext and uniqued there.  This means that
848MCSymbols can be compared for pointer equivalence to find out if they are the
849same symbol.  Note that pointer inequality does not guarantee the labels will
850end up at different addresses though.  It's perfectly legal to output something
851like this to the .s file:<p>
852
853<pre>
854  foo:
855  bar:
856    .byte 4
857</pre>
858
859<p>In this case, both the foo and bar symbols will have the same address.</p>
860
861</div>
862
863<!-- ======================================================================= -->
864<h3>
865  <a name="mcsection">The <tt>MCSection</tt> class</a>
866</h3>
867
868<div>
869
870<p>
871The MCSection class represents an object-file specific section. It is subclassed
872by object file specific implementations (e.g. <tt>MCSectionMachO</tt>,
873<tt>MCSectionCOFF</tt>, <tt>MCSectionELF</tt>) and these are created and uniqued
874by MCContext.  The MCStreamer has a notion of the current section, which can be
875changed with the SwitchToSection method (which corresponds to a ".section"
876directive in a .s file).
877</p>
878
879</div>
880
881<!-- ======================================================================= -->
882<h3>
883  <a name="mcinst">The <tt>MCInst</tt> class</a>
884</h3>
885
886<div>
887
888<p>
889The MCInst class is a target-independent representation of an instruction.  It
890is a simple class (much more so than <a href="#machineinstr">MachineInstr</a>)
891that holds a target-specific opcode and a vector of MCOperands.  MCOperand, in
892turn, is a simple discriminated union of three cases: 1) a simple immediate,
8932) a target register ID, 3) a symbolic expression (e.g. "Lfoo-Lbar+42") as an
894MCExpr.
895</p>
896
897<p>MCInst is the common currency used to represent machine instructions at the
898MC layer.  It is the type used by the instruction encoder, the instruction
899printer, and the type generated by the assembly parser and disassembler.
900</p>
901
902</div>
903
904</div>
905
906<!-- *********************************************************************** -->
907<h2>
908  <a name="codegenalgs">Target-independent code generation algorithms</a>
909</h2>
910<!-- *********************************************************************** -->
911
912<div>
913
914<p>This section documents the phases described in the
915   <a href="#high-level-design">high-level design of the code generator</a>.
916   It explains how they work and some of the rationale behind their design.</p>
917
918<!-- ======================================================================= -->
919<h3>
920  <a name="instselect">Instruction Selection</a>
921</h3>
922
923<div>
924
925<p>Instruction Selection is the process of translating LLVM code presented to
926   the code generator into target-specific machine instructions.  There are
927   several well-known ways to do this in the literature.  LLVM uses a
928   SelectionDAG based instruction selector.</p>
929
930<p>Portions of the DAG instruction selector are generated from the target
931   description (<tt>*.td</tt>) files.  Our goal is for the entire instruction
932   selector to be generated from these <tt>.td</tt> files, though currently
933   there are still things that require custom C++ code.</p>
934
935<!-- _______________________________________________________________________ -->
936<h4>
937  <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
938</h4>
939
940<div>
941
942<p>The SelectionDAG provides an abstraction for code representation in a way
943   that is amenable to instruction selection using automatic techniques
944   (e.g. dynamic-programming based optimal pattern matching selectors). It is
945   also well-suited to other phases of code generation; in particular,
946   instruction scheduling (SelectionDAG's are very close to scheduling DAGs
947   post-selection).  Additionally, the SelectionDAG provides a host
948   representation where a large variety of very-low-level (but
949   target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
950   performed; ones which require extensive information about the instructions
951   efficiently supported by the target.</p>
952
953<p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
954   <tt>SDNode</tt> class.  The primary payload of the <tt>SDNode</tt> is its
955   operation code (Opcode) that indicates what operation the node performs and
956   the operands to the operation.  The various operation node types are
957   described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
958   file.</p>
959
960<p>Although most operations define a single value, each node in the graph may
961   define multiple values.  For example, a combined div/rem operation will
962   define both the dividend and the remainder. Many other situations require
963   multiple values as well.  Each node also has some number of operands, which
964   are edges to the node defining the used value.  Because nodes may define
965   multiple values, edges are represented by instances of the <tt>SDValue</tt>
966   class, which is a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node
967   and result value being used, respectively.  Each value produced by
968   an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
969   indicating what the type of the value is.</p>
970
971<p>SelectionDAGs contain two different kinds of values: those that represent
972   data flow and those that represent control flow dependencies.  Data values
973   are simple edges with an integer or floating point value type.  Control edges
974   are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
975   These edges provide an ordering between nodes that have side effects (such as
976   loads, stores, calls, returns, etc).  All nodes that have side effects should
977   take a token chain as input and produce a new one as output.  By convention,
978   token chain inputs are always operand #0, and chain results are always the
979   last value produced by an operation.</p>
980
981<p>A SelectionDAG has designated "Entry" and "Root" nodes.  The Entry node is
982   always a marker node with an Opcode of <tt>ISD::EntryToken</tt>.  The Root
983   node is the final side-effecting node in the token chain. For example, in a
984   single basic block function it would be the return node.</p>
985
986<p>One important concept for SelectionDAGs is the notion of a "legal" vs.
987   "illegal" DAG.  A legal DAG for a target is one that only uses supported
988   operations and supported types.  On a 32-bit PowerPC, for example, a DAG with
989   a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that
990   uses a SREM or UREM operation.  The
991   <a href="#selectinodag_legalize_types">legalize types</a> and
992   <a href="#selectiondag_legalize">legalize operations</a> phases are
993   responsible for turning an illegal DAG into a legal DAG.</p>
994
995</div>
996
997<!-- _______________________________________________________________________ -->
998<h4>
999  <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
1000</h4>
1001
1002<div>
1003
1004<p>SelectionDAG-based instruction selection consists of the following steps:</p>
1005
1006<ol>
1007  <li><a href="#selectiondag_build">Build initial DAG</a> &mdash; This stage
1008      performs a simple translation from the input LLVM code to an illegal
1009      SelectionDAG.</li>
1010
1011  <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; This
1012      stage performs simple optimizations on the SelectionDAG to simplify it,
1013      and recognize meta instructions (like rotates
1014      and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta
1015      operations.  This makes the resultant code more efficient and
1016      the <a href="#selectiondag_select">select instructions from DAG</a> phase
1017      (below) simpler.</li>
1018
1019  <li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a>
1020      &mdash; This stage transforms SelectionDAG nodes to eliminate any types
1021      that are unsupported on the target.</li>
1022
1023  <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
1024      SelectionDAG optimizer is run to clean up redundancies exposed by type
1025      legalization.</li>
1026
1027  <li><a href="#selectiondag_legalize">Legalize SelectionDAG Ops</a> &mdash;
1028      This stage transforms SelectionDAG nodes to eliminate any operations
1029      that are unsupported on the target.</li>
1030
1031  <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
1032      SelectionDAG optimizer is run to eliminate inefficiencies introduced by
1033      operation legalization.</li>
1034
1035  <li><a href="#selectiondag_select">Select instructions from DAG</a> &mdash;
1036      Finally, the target instruction selector matches the DAG operations to
1037      target instructions.  This process translates the target-independent input
1038      DAG into another DAG of target instructions.</li>
1039
1040  <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
1041      &mdash; The last phase assigns a linear order to the instructions in the
1042      target-instruction DAG and emits them into the MachineFunction being
1043      compiled.  This step uses traditional prepass scheduling techniques.</li>
1044</ol>
1045
1046<p>After all of these steps are complete, the SelectionDAG is destroyed and the
1047   rest of the code generation passes are run.</p>
1048
1049<p>One great way to visualize what is going on here is to take advantage of a
1050   few LLC command line options.  The following options pop up a window
1051   displaying the SelectionDAG at specific times (if you only get errors printed
1052   to the console while using this, you probably
1053   <a href="ProgrammersManual.html#ViewGraph">need to configure your system</a>
1054   to add support for it).</p>
1055
1056<ul>
1057  <li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built,
1058      before the first optimization pass.</li>
1059
1060  <li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li>
1061
1062  <li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second
1063      optimization pass.</li>
1064
1065  <li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li>
1066
1067  <li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li>
1068</ul>
1069
1070<p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph.
1071   This graph is based on the final SelectionDAG, with nodes that must be
1072   scheduled together bundled into a single scheduling-unit node, and with
1073   immediate operands and other nodes that aren't relevant for scheduling
1074   omitted.</p>
1075
1076</div>
1077
1078<!-- _______________________________________________________________________ -->
1079<h4>
1080  <a name="selectiondag_build">Initial SelectionDAG Construction</a>
1081</h4>
1082
1083<div>
1084
1085<p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
1086   input by the <tt>SelectionDAGLowering</tt> class in the
1087   <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file.  The intent of
1088   this pass is to expose as much low-level, target-specific details to the
1089   SelectionDAG as possible.  This pass is mostly hard-coded (e.g. an
1090   LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a
1091   <tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass
1092   requires target-specific hooks to lower calls, returns, varargs, etc.  For
1093   these features, the <tt><a href="#targetlowering">TargetLowering</a></tt>
1094   interface is used.</p>
1095
1096</div>
1097
1098<!-- _______________________________________________________________________ -->
1099<h4>
1100  <a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a>
1101</h4>
1102
1103<div>
1104
1105<p>The Legalize phase is in charge of converting a DAG to only use the types
1106   that are natively supported by the target.</p>
1107
1108<p>There are two main ways of converting values of unsupported scalar types to
1109   values of supported types: converting small types to larger types
1110   ("promoting"), and breaking up large integer types into smaller ones
1111   ("expanding").  For example, a target might require that all f32 values are
1112   promoted to f64 and that all i1/i8/i16 values are promoted to i32.  The same
1113   target might require that all i64 values be expanded into pairs of i32
1114   values.  These changes can insert sign and zero extensions as needed to make
1115   sure that the final code has the same behavior as the input.</p>
1116
1117<p>There are two main ways of converting values of unsupported vector types to
1118   value of supported types: splitting vector types, multiple times if
1119   necessary, until a legal type is found, and extending vector types by adding
1120   elements to the end to round them out to legal types ("widening").  If a
1121   vector gets split all the way down to single-element parts with no supported
1122   vector type being found, the elements are converted to scalars
1123   ("scalarizing").</p>
1124
1125<p>A target implementation tells the legalizer which types are supported (and
1126   which register class to use for them) by calling the
1127   <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>
1128
1129</div>
1130
1131<!-- _______________________________________________________________________ -->
1132<h4>
1133  <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
1134</h4>
1135
1136<div>
1137
1138<p>The Legalize phase is in charge of converting a DAG to only use the
1139   operations that are natively supported by the target.</p>
1140
1141<p>Targets often have weird constraints, such as not supporting every operation
1142   on every supported datatype (e.g. X86 does not support byte conditional moves
1143   and PowerPC does not support sign-extending loads from a 16-bit memory
1144   location).  Legalize takes care of this by open-coding another sequence of
1145   operations to emulate the operation ("expansion"), by promoting one type to a
1146   larger type that supports the operation ("promotion"), or by using a
1147   target-specific hook to implement the legalization ("custom").</p>
1148
1149<p>A target implementation tells the legalizer which operations are not
1150   supported (and which of the above three actions to take) by calling the
1151   <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
1152   constructor.</p>
1153
1154<p>Prior to the existence of the Legalize passes, we required that every target
1155   <a href="#selectiondag_optimize">selector</a> supported and handled every
1156   operator and type even if they are not natively supported.  The introduction
1157   of the Legalize phases allows all of the canonicalization patterns to be
1158   shared across targets, and makes it very easy to optimize the canonicalized
1159   code because it is still in the form of a DAG.</p>
1160
1161</div>
1162
1163<!-- _______________________________________________________________________ -->
1164<h4>
1165  <a name="selectiondag_optimize">
1166    SelectionDAG Optimization Phase: the DAG Combiner
1167  </a>
1168</h4>
1169
1170<div>
1171
1172<p>The SelectionDAG optimization phase is run multiple times for code
1173   generation, immediately after the DAG is built and once after each
1174   legalization.  The first run of the pass allows the initial code to be
1175   cleaned up (e.g. performing optimizations that depend on knowing that the
1176   operators have restricted type inputs).  Subsequent runs of the pass clean up
1177   the messy code generated by the Legalize passes, which allows Legalize to be
1178   very simple (it can focus on making code legal instead of focusing on
1179   generating <em>good</em> and legal code).</p>
1180
1181<p>One important class of optimizations performed is optimizing inserted sign
1182   and zero extension instructions.  We currently use ad-hoc techniques, but
1183   could move to more rigorous techniques in the future.  Here are some good
1184   papers on the subject:</p>
1185
1186<p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
1187   integer arithmetic</a>"<br>
1188   Kevin Redwine and Norman Ramsey<br>
1189   International Conference on Compiler Construction (CC) 2004</p>
1190
1191<p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
1192   sign extension elimination</a>"<br>
1193   Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
1194   Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
1195   and Implementation.</p>
1196
1197</div>
1198
1199<!-- _______________________________________________________________________ -->
1200<h4>
1201  <a name="selectiondag_select">SelectionDAG Select Phase</a>
1202</h4>
1203
1204<div>
1205
1206<p>The Select phase is the bulk of the target-specific code for instruction
1207   selection.  This phase takes a legal SelectionDAG as input, pattern matches
1208   the instructions supported by the target to this DAG, and produces a new DAG
1209   of target code.  For example, consider the following LLVM fragment:</p>
1210
1211<div class="doc_code">
1212<pre>
1213%t1 = fadd float %W, %X
1214%t2 = fmul float %t1, %Y
1215%t3 = fadd float %t2, %Z
1216</pre>
1217</div>
1218
1219<p>This LLVM code corresponds to a SelectionDAG that looks basically like
1220   this:</p>
1221
1222<div class="doc_code">
1223<pre>
1224(fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
1225</pre>
1226</div>
1227
1228<p>If a target supports floating point multiply-and-add (FMA) operations, one of
1229   the adds can be merged with the multiply.  On the PowerPC, for example, the
1230   output of the instruction selector might look like this DAG:</p>
1231
1232<div class="doc_code">
1233<pre>
1234(FMADDS (FADDS W, X), Y, Z)
1235</pre>
1236</div>
1237
1238<p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
1239first two operands and adds the third (as single-precision floating-point
1240numbers).  The <tt>FADDS</tt> instruction is a simple binary single-precision
1241add instruction.  To perform this pattern match, the PowerPC backend includes
1242the following instruction definitions:</p>
1243
1244<div class="doc_code">
1245<pre>
1246def FMADDS : AForm_1&lt;59, 29,
1247                    (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
1248                    "fmadds $FRT, $FRA, $FRC, $FRB",
1249                    [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
1250                                           F4RC:$FRB))</b>]&gt;;
1251def FADDS : AForm_2&lt;59, 21,
1252                    (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
1253                    "fadds $FRT, $FRA, $FRB",
1254                    [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]&gt;;
1255</pre>
1256</div>
1257
1258<p>The portion of the instruction definition in bold indicates the pattern used
1259   to match the instruction.  The DAG operators
1260   (like <tt>fmul</tt>/<tt>fadd</tt>) are defined in
1261   the <tt>include/llvm/Target/TargetSelectionDAG.td</tt> file.  "
1262   <tt>F4RC</tt>" is the register class of the input and result values.</p>
1263
1264<p>The TableGen DAG instruction selector generator reads the instruction
1265   patterns in the <tt>.td</tt> file and automatically builds parts of the
1266   pattern matching code for your target.  It has the following strengths:</p>
1267
1268<ul>
1269  <li>At compiler-compiler time, it analyzes your instruction patterns and tells
1270      you if your patterns make sense or not.</li>
1271
1272  <li>It can handle arbitrary constraints on operands for the pattern match.  In
1273      particular, it is straight-forward to say things like "match any immediate
1274      that is a 13-bit sign-extended value".  For examples, see the
1275      <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
1276      backend.</li>
1277
1278  <li>It knows several important identities for the patterns defined.  For
1279      example, it knows that addition is commutative, so it allows the
1280      <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
1281      well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
1282      to specially handle this case.</li>
1283
1284  <li>It has a full-featured type-inferencing system.  In particular, you should
1285      rarely have to explicitly tell the system what type parts of your patterns
1286      are.  In the <tt>FMADDS</tt> case above, we didn't have to tell
1287      <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'.
1288      It was able to infer and propagate this knowledge from the fact that
1289      <tt>F4RC</tt> has type 'f32'.</li>
1290
1291  <li>Targets can define their own (and rely on built-in) "pattern fragments".
1292      Pattern fragments are chunks of reusable patterns that get inlined into
1293      your patterns during compiler-compiler time.  For example, the integer
1294      "<tt>(not x)</tt>" operation is actually defined as a pattern fragment
1295      that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not
1296      have a native '<tt>not</tt>' operation.  Targets can define their own
1297      short-hand fragments as they see fit.  See the definition of
1298      '<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li>
1299
1300  <li>In addition to instructions, targets can specify arbitrary patterns that
1301      map to one or more instructions using the 'Pat' class.  For example, the
1302      PowerPC has no way to load an arbitrary integer immediate into a register
1303      in one instruction. To tell tblgen how to do this, it defines:
1304      <br>
1305      <br>
1306<div class="doc_code">
1307<pre>
1308// Arbitrary immediate support.  Implement in terms of LIS/ORI.
1309def : Pat&lt;(i32 imm:$imm),
1310          (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))&gt;;
1311</pre>
1312</div>
1313      <br>
1314      If none of the single-instruction patterns for loading an immediate into a
1315      register match, this will be used.  This rule says "match an arbitrary i32
1316      immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and
1317      an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to
1318      the left 16 bits') instruction".  To make this work, the
1319      <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate
1320      the input immediate (in this case, take the high or low 16-bits of the
1321      immediate).</li>
1322
1323  <li>While the system does automate a lot, it still allows you to write custom
1324      C++ code to match special cases if there is something that is hard to
1325      express.</li>
1326</ul>
1327
1328<p>While it has many strengths, the system currently has some limitations,
1329   primarily because it is a work in progress and is not yet finished:</p>
1330
1331<ul>
1332  <li>Overall, there is no way to define or match SelectionDAG nodes that define
1333      multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
1334      etc).  This is the biggest reason that you currently still <em>have
1335      to</em> write custom C++ code for your instruction selector.</li>
1336
1337  <li>There is no great way to support matching complex addressing modes yet.
1338      In the future, we will extend pattern fragments to allow them to define
1339      multiple values (e.g. the four operands of the <a href="#x86_memory">X86
1340      addressing mode</a>, which are currently matched with custom C++ code).
1341      In addition, we'll extend fragments so that a fragment can match multiple
1342      different patterns.</li>
1343
1344  <li>We don't automatically infer flags like isStore/isLoad yet.</li>
1345
1346  <li>We don't automatically generate the set of supported registers and
1347      operations for the <a href="#selectiondag_legalize">Legalizer</a>
1348      yet.</li>
1349
1350  <li>We don't have a way of tying in custom legalized nodes yet.</li>
1351</ul>
1352
1353<p>Despite these limitations, the instruction selector generator is still quite
1354   useful for most of the binary and logical operations in typical instruction
1355   sets.  If you run into any problems or can't figure out how to do something,
1356   please let Chris know!</p>
1357
1358</div>
1359
1360<!-- _______________________________________________________________________ -->
1361<h4>
1362  <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
1363</h4>
1364
1365<div>
1366
1367<p>The scheduling phase takes the DAG of target instructions from the selection
1368   phase and assigns an order.  The scheduler can pick an order depending on
1369   various constraints of the machines (i.e. order for minimal register pressure
1370   or try to cover instruction latencies).  Once an order is established, the
1371   DAG is converted to a list
1372   of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is
1373   destroyed.</p>
1374
1375<p>Note that this phase is logically separate from the instruction selection
1376   phase, but is tied to it closely in the code because it operates on
1377   SelectionDAGs.</p>
1378
1379</div>
1380
1381<!-- _______________________________________________________________________ -->
1382<h4>
1383  <a name="selectiondag_future">Future directions for the SelectionDAG</a>
1384</h4>
1385
1386<div>
1387
1388<ol>
1389  <li>Optional function-at-a-time selection.</li>
1390
1391  <li>Auto-generate entire selector from <tt>.td</tt> file.</li>
1392</ol>
1393
1394</div>
1395
1396</div>
1397
1398<!-- ======================================================================= -->
1399<h3>
1400  <a name="ssamco">SSA-based Machine Code Optimizations</a>
1401</h3>
1402<div><p>To Be Written</p></div>
1403
1404<!-- ======================================================================= -->
1405<h3>
1406  <a name="liveintervals">Live Intervals</a>
1407</h3>
1408
1409<div>
1410
1411<p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
1412   They are used by some <a href="#regalloc">register allocator</a> passes to
1413   determine if two or more virtual registers which require the same physical
1414   register are live at the same point in the program (i.e., they conflict).
1415   When this situation occurs, one virtual register must be <i>spilled</i>.</p>
1416
1417<!-- _______________________________________________________________________ -->
1418<h4>
1419  <a name="livevariable_analysis">Live Variable Analysis</a>
1420</h4>
1421
1422<div>
1423
1424<p>The first step in determining the live intervals of variables is to calculate
1425   the set of registers that are immediately dead after the instruction (i.e.,
1426   the instruction calculates the value, but it is never used) and the set of
1427   registers that are used by the instruction, but are never used after the
1428   instruction (i.e., they are killed). Live variable information is computed
1429   for each <i>virtual</i> register and <i>register allocatable</i> physical
1430   register in the function.  This is done in a very efficient manner because it
1431   uses SSA to sparsely compute lifetime information for virtual registers
1432   (which are in SSA form) and only has to track physical registers within a
1433   block.  Before register allocation, LLVM can assume that physical registers
1434   are only live within a single basic block.  This allows it to do a single,
1435   local analysis to resolve physical register lifetimes within each basic
1436   block. If a physical register is not register allocatable (e.g., a stack
1437   pointer or condition codes), it is not tracked.</p>
1438
1439<p>Physical registers may be live in to or out of a function. Live in values are
1440   typically arguments in registers. Live out values are typically return values
1441   in registers. Live in values are marked as such, and are given a dummy
1442   "defining" instruction during live intervals analysis. If the last basic
1443   block of a function is a <tt>return</tt>, then it's marked as using all live
1444   out values in the function.</p>
1445
1446<p><tt>PHI</tt> nodes need to be handled specially, because the calculation of
1447   the live variable information from a depth first traversal of the CFG of the
1448   function won't guarantee that a virtual register used by the <tt>PHI</tt>
1449   node is defined before it's used. When a <tt>PHI</tt> node is encountered,
1450   only the definition is handled, because the uses will be handled in other
1451   basic blocks.</p>
1452
1453<p>For each <tt>PHI</tt> node of the current basic block, we simulate an
1454   assignment at the end of the current basic block and traverse the successor
1455   basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
1456   the <tt>PHI</tt> node's operands is coming from the current basic block, then
1457   the variable is marked as <i>alive</i> within the current basic block and all
1458   of its predecessor basic blocks, until the basic block with the defining
1459   instruction is encountered.</p>
1460
1461</div>
1462
1463<!-- _______________________________________________________________________ -->
1464<h4>
1465  <a name="liveintervals_analysis">Live Intervals Analysis</a>
1466</h4>
1467
1468<div>
1469
1470<p>We now have the information available to perform the live intervals analysis
1471   and build the live intervals themselves.  We start off by numbering the basic
1472   blocks and machine instructions.  We then handle the "live-in" values.  These
1473   are in physical registers, so the physical register is assumed to be killed
1474   by the end of the basic block.  Live intervals for virtual registers are
1475   computed for some ordering of the machine instructions <tt>[1, N]</tt>.  A
1476   live interval is an interval <tt>[i, j)</tt>, where <tt>1 &lt;= i &lt;= j
1477   &lt; N</tt>, for which a variable is live.</p>
1478
1479<p><i><b>More to come...</b></i></p>
1480
1481</div>
1482
1483</div>
1484
1485<!-- ======================================================================= -->
1486<h3>
1487  <a name="regalloc">Register Allocation</a>
1488</h3>
1489
1490<div>
1491
1492<p>The <i>Register Allocation problem</i> consists in mapping a program
1493   <i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers,
1494   to a program <i>P<sub>p</sub></i> that contains a finite (possibly small)
1495   number of physical registers. Each target architecture has a different number
1496   of physical registers. If the number of physical registers is not enough to
1497   accommodate all the virtual registers, some of them will have to be mapped
1498   into memory. These virtuals are called <i>spilled virtuals</i>.</p>
1499
1500<!-- _______________________________________________________________________ -->
1501
1502<h4>
1503  <a name="regAlloc_represent">How registers are represented in LLVM</a>
1504</h4>
1505
1506<div>
1507
1508<p>In LLVM, physical registers are denoted by integer numbers that normally
1509   range from 1 to 1023. To see how this numbering is defined for a particular
1510   architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that
1511   architecture. For instance, by
1512   inspecting <tt>lib/Target/X86/X86GenRegisterNames.inc</tt> we see that the
1513   32-bit register <tt>EAX</tt> is denoted by 15, and the MMX register
1514   <tt>MM0</tt> is mapped to 48.</p>
1515
1516<p>Some architectures contain registers that share the same physical location. A
1517   notable example is the X86 platform. For instance, in the X86 architecture,
1518   the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight
1519   bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a
1520   particular architecture, you can check which registers are aliased by
1521   inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method
1522   <tt>TargetRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
1523   all the physical registers aliased to the register <tt>p_reg</tt>.</p>
1524
1525<p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
1526   Elements in the same register class are functionally equivalent, and can be
1527   interchangeably used. Each virtual register can only be mapped to physical
1528   registers of a particular class. For instance, in the X86 architecture, some
1529   virtuals can only be allocated to 8 bit registers.  A register class is
1530   described by <tt>TargetRegisterClass</tt> objects.  To discover if a virtual
1531   register is compatible with a given physical, this code can be used:</p>
1532
1533<div class="doc_code">
1534<pre>
1535bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
1536                                      unsigned v_reg,
1537                                      unsigned p_reg) {
1538  assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
1539         "Target register must be physical");
1540  const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
1541  return trc-&gt;contains(p_reg);
1542}
1543</pre>
1544</div>
1545
1546<p>Sometimes, mostly for debugging purposes, it is useful to change the number
1547   of physical registers available in the target architecture. This must be done
1548   statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt>
1549   for <tt>RegisterClass</tt>, the last parameter of which is a list of
1550   registers. Just commenting some out is one simple way to avoid them being
1551   used. A more polite way is to explicitly exclude some registers from
1552   the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register
1553   class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this.
1554   </p>
1555
1556<p>Virtual registers are also denoted by integer numbers. Contrary to physical
1557   registers, different virtual registers never share the same number. Whereas
1558   physical registers are statically defined in a <tt>TargetRegisterInfo.td</tt>
1559   file and cannot be created by the application developer, that is not the case
1560   with virtual registers. In order to create new virtual registers, use the
1561   method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method
1562   will return a new virtual register. Use an <tt>IndexedMap&lt;Foo,
1563   VirtReg2IndexFunctor&gt;</tt> to hold information per virtual register. If you
1564   need to enumerate all virtual registers, use the function
1565   <tt>TargetRegisterInfo::index2VirtReg()</tt> to find the virtual register
1566   numbers:</p>
1567
1568<div class="doc_code">
1569<pre>
1570  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1571    unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
1572    stuff(VirtReg);
1573  }
1574</pre>
1575</div>
1576
1577<p>Before register allocation, the operands of an instruction are mostly virtual
1578   registers, although physical registers may also be used. In order to check if
1579   a given machine operand is a register, use the boolean
1580   function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of
1581   a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define
1582   or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
1583   defines the registers 1024, and uses registers 1025 and 1026. Given a
1584   register operand, the method <tt>MachineOperand::isUse()</tt> informs if that
1585   register is being used by the instruction. The
1586   method <tt>MachineOperand::isDef()</tt> informs if that registers is being
1587   defined.</p>
1588
1589<p>We will call physical registers present in the LLVM bitcode before register
1590   allocation <i>pre-colored registers</i>. Pre-colored registers are used in
1591   many different situations, for instance, to pass parameters of functions
1592   calls, and to store results of particular instructions. There are two types
1593   of pre-colored registers: the ones <i>implicitly</i> defined, and
1594   those <i>explicitly</i> defined. Explicitly defined registers are normal
1595   operands, and can be accessed
1596   with <tt>MachineInstr::getOperand(int)::getReg()</tt>.  In order to check
1597   which registers are implicitly defined by an instruction, use
1598   the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>,
1599   where <tt>opcode</tt> is the opcode of the target instruction. One important
1600   difference between explicit and implicit physical registers is that the
1601   latter are defined statically for each instruction, whereas the former may
1602   vary depending on the program being compiled. For example, an instruction
1603   that represents a function call will always implicitly define or use the same
1604   set of physical registers. To read the registers implicitly used by an
1605   instruction,
1606   use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
1607   registers impose constraints on any register allocation algorithm. The
1608   register allocator must make sure that none of them are overwritten by
1609   the values of virtual registers while still alive.</p>
1610
1611</div>
1612
1613<!-- _______________________________________________________________________ -->
1614
1615<h4>
1616  <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
1617</h4>
1618
1619<div>
1620
1621<p>There are two ways to map virtual registers to physical registers (or to
1622   memory slots). The first way, that we will call <i>direct mapping</i>, is
1623   based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
1624   and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect
1625   mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads
1626   and stores sending and getting values to and from memory.</p>
1627
1628<p>The direct mapping provides more flexibility to the developer of the register
1629   allocator; however, it is more error prone, and demands more implementation
1630   work.  Basically, the programmer will have to specify where load and store
1631   instructions should be inserted in the target function being compiled in
1632   order to get and store values in memory. To assign a physical register to a
1633   virtual register present in a given operand,
1634   use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction,
1635   use <tt>TargetInstrInfo::storeRegToStackSlot(...)</tt>, and to insert a
1636   load instruction, use <tt>TargetInstrInfo::loadRegFromStackSlot</tt>.</p>
1637
1638<p>The indirect mapping shields the application developer from the complexities
1639   of inserting load and store instructions. In order to map a virtual register
1640   to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>.  In
1641   order to map a certain virtual register to memory,
1642   use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return
1643   the stack slot where <tt>vreg</tt>'s value will be located.  If it is
1644   necessary to map another virtual register to the same stack slot,
1645   use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One
1646   important point to consider when using the indirect mapping, is that even if
1647   a virtual register is mapped to memory, it still needs to be mapped to a
1648   physical register. This physical register is the location where the virtual
1649   register is supposed to be found before being stored or after being
1650   reloaded.</p>
1651
1652<p>If the indirect strategy is used, after all the virtual registers have been
1653   mapped to physical registers or stack slots, it is necessary to use a spiller
1654   object to place load and store instructions in the code. Every virtual that
1655   has been mapped to a stack slot will be stored to memory after been defined
1656   and will be loaded before being used. The implementation of the spiller tries
1657   to recycle load/store instructions, avoiding unnecessary instructions. For an
1658   example of how to invoke the spiller,
1659   see <tt>RegAllocLinearScan::runOnMachineFunction</tt>
1660   in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
1661
1662</div>
1663
1664<!-- _______________________________________________________________________ -->
1665<h4>
1666  <a name="regAlloc_twoAddr">Handling two address instructions</a>
1667</h4>
1668
1669<div>
1670
1671<p>With very rare exceptions (e.g., function calls), the LLVM machine code
1672   instructions are three address instructions. That is, each instruction is
1673   expected to define at most one register, and to use at most two registers.
1674   However, some architectures use two address instructions. In this case, the
1675   defined register is also one of the used register. For instance, an
1676   instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent
1677   to <tt>%EAX = %EAX + %EBX</tt>.</p>
1678
1679<p>In order to produce correct code, LLVM must convert three address
1680   instructions that represent two address instructions into true two address
1681   instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for
1682   this specific purpose. It must be run before register allocation takes
1683   place. After its execution, the resulting code may no longer be in SSA
1684   form. This happens, for instance, in situations where an instruction such
1685   as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p>
1686
1687<div class="doc_code">
1688<pre>
1689%a = MOVE %b
1690%a = ADD %a %c
1691</pre>
1692</div>
1693
1694<p>Notice that, internally, the second instruction is represented as
1695   <tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both
1696   used and defined by the instruction.</p>
1697
1698</div>
1699
1700<!-- _______________________________________________________________________ -->
1701<h4>
1702  <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
1703</h4>
1704
1705<div>
1706
1707<p>An important transformation that happens during register allocation is called
1708   the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses
1709   that are performed on the control flow graph of programs. However,
1710   traditional instruction sets do not implement PHI instructions. Thus, in
1711   order to generate executable code, compilers must replace PHI instructions
1712   with other instructions that preserve their semantics.</p>
1713
1714<p>There are many ways in which PHI instructions can safely be removed from the
1715   target code. The most traditional PHI deconstruction algorithm replaces PHI
1716   instructions with copy instructions. That is the strategy adopted by
1717   LLVM. The SSA deconstruction algorithm is implemented
1718   in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the
1719   identifier <tt>PHIEliminationID</tt> must be marked as required in the code
1720   of the register allocator.</p>
1721
1722</div>
1723
1724<!-- _______________________________________________________________________ -->
1725<h4>
1726  <a name="regAlloc_fold">Instruction folding</a>
1727</h4>
1728
1729<div>
1730
1731<p><i>Instruction folding</i> is an optimization performed during register
1732   allocation that removes unnecessary copy instructions. For instance, a
1733   sequence of instructions such as:</p>
1734
1735<div class="doc_code">
1736<pre>
1737%EBX = LOAD %mem_address
1738%EAX = COPY %EBX
1739</pre>
1740</div>
1741
1742<p>can be safely substituted by the single instruction:</p>
1743
1744<div class="doc_code">
1745<pre>
1746%EAX = LOAD %mem_address
1747</pre>
1748</div>
1749
1750<p>Instructions can be folded with
1751   the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
1752   taken when folding instructions; a folded instruction can be quite different
1753   from the original
1754   instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt>
1755   in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its
1756   use.</p>
1757
1758</div>
1759
1760<!-- _______________________________________________________________________ -->
1761
1762<h4>
1763  <a name="regAlloc_builtIn">Built in register allocators</a>
1764</h4>
1765
1766<div>
1767
1768<p>The LLVM infrastructure provides the application developer with three
1769   different register allocators:</p>
1770
1771<ul>
1772  <li><i>Fast</i> &mdash; This register allocator is the default for debug
1773      builds. It allocates registers on a basic block level, attempting to keep
1774      values in registers and reusing registers as appropriate.</li>
1775
1776  <li><i>Basic</i> &mdash; This is an incremental approach to register
1777  allocation. Live ranges are assigned to registers one at a time in
1778  an order that is driven by heuristics. Since code can be rewritten
1779  on-the-fly during allocation, this framework allows interesting
1780  allocators to be developed as extensions. It is not itself a
1781  production register allocator but is a potentially useful
1782  stand-alone mode for triaging bugs and as a performance baseline.
1783
1784  <li><i>Greedy</i> &mdash; <i>The default allocator</i>. This is a
1785  highly tuned implementation of the <i>Basic</i> allocator that
1786  incorporates global live range splitting. This allocator works hard
1787  to minimize the cost of spill code.
1788
1789  <li><i>PBQP</i> &mdash; A Partitioned Boolean Quadratic Programming (PBQP)
1790      based register allocator. This allocator works by constructing a PBQP
1791      problem representing the register allocation problem under consideration,
1792      solving this using a PBQP solver, and mapping the solution back to a
1793      register assignment.</li>
1794</ul>
1795
1796<p>The type of register allocator used in <tt>llc</tt> can be chosen with the
1797   command line option <tt>-regalloc=...</tt>:</p>
1798
1799<div class="doc_code">
1800<pre>
1801$ llc -regalloc=linearscan file.bc -o ln.s;
1802$ llc -regalloc=fast file.bc -o fa.s;
1803$ llc -regalloc=pbqp file.bc -o pbqp.s;
1804</pre>
1805</div>
1806
1807</div>
1808
1809</div>
1810
1811<!-- ======================================================================= -->
1812<h3>
1813  <a name="proepicode">Prolog/Epilog Code Insertion</a>
1814</h3>
1815
1816<!-- _______________________________________________________________________ -->
1817<h4>
1818  <a name="compact_unwind">Compact Unwind</a>
1819</h4>
1820
1821<div>
1822
1823<p>Throwing an exception requires <em>unwinding</em> out of a function. The
1824   information on how to unwind a given function is traditionally expressed in
1825   DWARF unwind (a.k.a. frame) info. But that format was originally developed
1826   for debuggers to backtrace, and each Frame Description Entry (FDE) requires
1827   ~20-30 bytes per function. There is also the cost of mapping from an address
1828   in a function to the corresponding FDE at runtime. An alternative unwind
1829   encoding is called <em>compact unwind</em> and requires just 4-bytes per
1830   function.</p>
1831
1832<p>The compact unwind encoding is a 32-bit value, which is encoded in an
1833   architecture-specific way. It specifies which registers to restore and from
1834   where, and how to unwind out of the function. When the linker creates a final
1835   linked image, it will create a <code>__TEXT,__unwind_info</code>
1836   section. This section is a small and fast way for the runtime to access
1837   unwind info for any given function. If we emit compact unwind info for the
1838   function, that compact unwind info will be encoded in
1839   the <code>__TEXT,__unwind_info</code> section. If we emit DWARF unwind info,
1840   the <code>__TEXT,__unwind_info</code> section will contain the offset of the
1841   FDE in the <code>__TEXT,__eh_frame</code> section in the final linked
1842   image.</p>
1843
1844<p>For X86, there are three modes for the compact unwind encoding:</p>
1845
1846<dl>
1847  <dt><i>Function with a Frame Pointer (<code>EBP</code> or <code>RBP</code>)</i></dt>
1848  <dd><p><code>EBP/RBP</code>-based frame, where <code>EBP/RBP</code> is pushed
1849      onto the stack immediately after the return address,
1850      then <code>ESP/RSP</code> is moved to <code>EBP/RBP</code>. Thus to
1851      unwind, <code>ESP/RSP</code> is restored with the
1852      current <code>EBP/RBP</code> value, then <code>EBP/RBP</code> is restored
1853      by popping the stack, and the return is done by popping the stack once
1854      more into the PC. All non-volatile registers that need to be restored must
1855      have been saved in a small range on the stack that
1856      starts <code>EBP-4</code> to <code>EBP-1020</code> (<code>RBP-8</code>
1857      to <code>RBP-1020</code>). The offset (divided by 4 in 32-bit mode and 8
1858      in 64-bit mode) is encoded in bits 16-23 (mask: <code>0x00FF0000</code>).
1859      The registers saved are encoded in bits 0-14
1860      (mask: <code>0x00007FFF</code>) as five 3-bit entries from the following
1861      table:</p>
1862<table border="1" cellspacing="0">
1863  <tr>
1864    <th>Compact Number</th>
1865    <th>i386 Register</th>
1866    <th>x86-64 Regiser</th>
1867  </tr>
1868  <tr>
1869    <td>1</td>
1870    <td><code>EBX</code></td>
1871    <td><code>RBX</code></td>
1872  </tr>
1873  <tr>
1874    <td>2</td>
1875    <td><code>ECX</code></td>
1876    <td><code>R12</code></td>
1877  </tr>
1878  <tr>
1879    <td>3</td>
1880    <td><code>EDX</code></td>
1881    <td><code>R13</code></td>
1882  </tr>
1883  <tr>
1884    <td>4</td>
1885    <td><code>EDI</code></td>
1886    <td><code>R14</code></td>
1887  </tr>
1888  <tr>
1889    <td>5</td>
1890    <td><code>ESI</code></td>
1891    <td><code>R15</code></td>
1892  </tr>
1893  <tr>
1894    <td>6</td>
1895    <td><code>EBP</code></td>
1896    <td><code>RBP</code></td>
1897  </tr>
1898</table>
1899
1900</dd>
1901
1902  <dt><i>Frameless with a Small Constant Stack Size (<code>EBP</code>
1903         or <code>RBP</code> is not used as a frame pointer)</i></dt>
1904  <dd><p>To return, a constant (encoded in the compact unwind encoding) is added
1905      to the <code>ESP/RSP</code>.  Then the return is done by popping the stack
1906      into the PC. All non-volatile registers that need to be restored must have
1907      been saved on the stack immediately after the return address. The stack
1908      size (divided by 4 in 32-bit mode and 8 in 64-bit mode) is encoded in bits
1909      16-23 (mask: <code>0x00FF0000</code>). There is a maximum stack size of
1910      1024 bytes in 32-bit mode and 2048 in 64-bit mode. The number of registers
1911      saved is encoded in bits 9-12 (mask: <code>0x00001C00</code>). Bits 0-9
1912      (mask: <code>0x000003FF</code>) contain which registers were saved and
1913      their order. (See
1914      the <code>encodeCompactUnwindRegistersWithoutFrame()</code> function
1915      in <code>lib/Target/X86FrameLowering.cpp</code> for the encoding
1916      algorithm.)</p></dd>
1917
1918  <dt><i>Frameless with a Large Constant Stack Size (<code>EBP</code>
1919         or <code>RBP</code> is not used as a frame pointer)</i></dt>
1920  <dd><p>This case is like the "Frameless with a Small Constant Stack Size"
1921      case, but the stack size is too large to encode in the compact unwind
1922      encoding. Instead it requires that the function contains "<code>subl
1923      $nnnnnn, %esp</code>" in its prolog. The compact encoding contains the
1924      offset to the <code>$nnnnnn</code> value in the function in bits 9-12
1925      (mask: <code>0x00001C00</code>).</p></dd>
1926</dl>
1927
1928</div>
1929
1930<!-- ======================================================================= -->
1931<h3>
1932  <a name="latemco">Late Machine Code Optimizations</a>
1933</h3>
1934<div><p>To Be Written</p></div>
1935
1936<!-- ======================================================================= -->
1937<h3>
1938  <a name="codeemit">Code Emission</a>
1939</h3>
1940
1941<div>
1942
1943<p>The code emission step of code generation is responsible for lowering from
1944the code generator abstractions (like <a
1945href="#machinefunction">MachineFunction</a>, <a
1946href="#machineinstr">MachineInstr</a>, etc) down
1947to the abstractions used by the MC layer (<a href="#mcinst">MCInst</a>,
1948<a href="#mcstreamer">MCStreamer</a>, etc).  This is
1949done with a combination of several different classes: the (misnamed)
1950target-independent AsmPrinter class, target-specific subclasses of AsmPrinter
1951(such as SparcAsmPrinter), and the TargetLoweringObjectFile class.</p>
1952
1953<p>Since the MC layer works at the level of abstraction of object files, it
1954doesn't have a notion of functions, global variables etc.  Instead, it thinks
1955about labels, directives, and instructions.  A key class used at this time is
1956the MCStreamer class.  This is an abstract API that is implemented in different
1957ways (e.g. to output a .s file, output an ELF .o file, etc) that is effectively
1958an "assembler API".  MCStreamer has one method per directive, such as EmitLabel,
1959EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly
1960level directives.
1961</p>
1962
1963<p>If you are interested in implementing a code generator for a target, there
1964are three important things that you have to implement for your target:</p>
1965
1966<ol>
1967<li>First, you need a subclass of AsmPrinter for your target.  This class
1968implements the general lowering process converting MachineFunction's into MC
1969label constructs.  The AsmPrinter base class provides a number of useful methods
1970and routines, and also allows you to override the lowering process in some
1971important ways.  You should get much of the lowering for free if you are
1972implementing an ELF, COFF, or MachO target, because the TargetLoweringObjectFile
1973class implements much of the common logic.</li>
1974
1975<li>Second, you need to implement an instruction printer for your target.  The
1976instruction printer takes an <a href="#mcinst">MCInst</a> and renders it to a
1977raw_ostream as text.  Most of this is automatically generated from the .td file
1978(when you specify something like "<tt>add $dst, $src1, $src2</tt>" in the
1979instructions), but you need to implement routines to print operands.</li>
1980
1981<li>Third, you need to implement code that lowers a <a
1982href="#machineinstr">MachineInstr</a> to an MCInst, usually implemented in
1983"&lt;target&gt;MCInstLower.cpp".  This lowering process is often target
1984specific, and is responsible for turning jump table entries, constant pool
1985indices, global variable addresses, etc into MCLabels as appropriate.  This
1986translation layer is also responsible for expanding pseudo ops used by the code
1987generator into the actual machine instructions they correspond to. The MCInsts
1988that are generated by this are fed into the instruction printer or the encoder.
1989</li>
1990
1991</ol>
1992
1993<p>Finally, at your choosing, you can also implement an subclass of
1994MCCodeEmitter which lowers MCInst's into machine code bytes and relocations.
1995This is important if you want to support direct .o file emission, or would like
1996to implement an assembler for your target.</p>
1997
1998</div>
1999
2000</div>
2001
2002<!-- *********************************************************************** -->
2003<h2>
2004  <a name="nativeassembler">Implementing a Native Assembler</a>
2005</h2>
2006<!-- *********************************************************************** -->
2007
2008<div>
2009
2010<p>Though you're probably reading this because you want to write or maintain a
2011compiler backend, LLVM also fully supports building a native assemblers too.
2012We've tried hard to automate the generation of the assembler from the .td files
2013(in particular the instruction syntax and encodings), which means that a large
2014part of the manual and repetitive data entry can be factored and shared with the
2015compiler.</p>
2016
2017<!-- ======================================================================= -->
2018<h3 id="na_instparsing">Instruction Parsing</h3>
2019
2020<div><p>To Be Written</p></div>
2021
2022
2023<!-- ======================================================================= -->
2024<h3 id="na_instaliases">
2025  Instruction Alias Processing
2026</h3>
2027
2028<div>
2029<p>Once the instruction is parsed, it enters the MatchInstructionImpl function.
2030The MatchInstructionImpl function performs alias processing and then does
2031actual matching.</p>
2032
2033<p>Alias processing is the phase that canonicalizes different lexical forms of
2034the same instructions down to one representation.  There are several different
2035kinds of alias that are possible to implement and they are listed below in the
2036order that they are processed (which is in order from simplest/weakest to most
2037complex/powerful).  Generally you want to use the first alias mechanism that
2038meets the needs of your instruction, because it will allow a more concise
2039description.</p>
2040
2041<!-- _______________________________________________________________________ -->
2042<h4>Mnemonic Aliases</h4>
2043
2044<div>
2045
2046<p>The first phase of alias processing is simple instruction mnemonic
2047remapping for classes of instructions which are allowed with two different
2048mnemonics.  This phase is a simple and unconditionally remapping from one input
2049mnemonic to one output mnemonic.  It isn't possible for this form of alias to
2050look at the operands at all, so the remapping must apply for all forms of a
2051given mnemonic.  Mnemonic aliases are defined simply, for example X86 has:
2052</p>
2053
2054<div class="doc_code">
2055<pre>
2056def : MnemonicAlias&lt;"cbw",     "cbtw"&gt;;
2057def : MnemonicAlias&lt;"smovq",   "movsq"&gt;;
2058def : MnemonicAlias&lt;"fldcww",  "fldcw"&gt;;
2059def : MnemonicAlias&lt;"fucompi", "fucomip"&gt;;
2060def : MnemonicAlias&lt;"ud2a",    "ud2"&gt;;
2061</pre>
2062</div>
2063
2064<p>... and many others.  With a MnemonicAlias definition, the mnemonic is
2065remapped simply and directly.  Though MnemonicAlias's can't look at any aspect
2066of the instruction (such as the operands) they can depend on global modes (the
2067same ones supported by the matcher), through a Requires clause:</p>
2068
2069<div class="doc_code">
2070<pre>
2071def : MnemonicAlias&lt;"pushf", "pushfq"&gt;, Requires&lt;[In64BitMode]&gt;;
2072def : MnemonicAlias&lt;"pushf", "pushfl"&gt;, Requires&lt;[In32BitMode]&gt;;
2073</pre>
2074</div>
2075
2076<p>In this example, the mnemonic gets mapped into different a new one depending
2077on the current instruction set.</p>
2078
2079</div>
2080
2081<!-- _______________________________________________________________________ -->
2082<h4>Instruction Aliases</h4>
2083
2084<div>
2085
2086<p>The most general phase of alias processing occurs while matching is
2087happening: it provides new forms for the matcher to match along with a specific
2088instruction to generate.  An instruction alias has two parts: the string to
2089match and the instruction to generate.  For example:
2090</p>
2091
2092<div class="doc_code">
2093<pre>
2094def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8  :$src)&gt;;
2095def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)&gt;;
2096def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr8  GR32:$dst, GR8  :$src)&gt;;
2097def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)&gt;;
2098def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr8  GR64:$dst, GR8  :$src)&gt;;
2099def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)&gt;;
2100def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)&gt;;
2101</pre>
2102</div>
2103
2104<p>This shows a powerful example of the instruction aliases, matching the
2105same mnemonic in multiple different ways depending on what operands are present
2106in the assembly.  The result of instruction aliases can include operands in a
2107different order than the destination instruction, and can use an input
2108multiple times, for example:</p>
2109
2110<div class="doc_code">
2111<pre>
2112def : InstAlias&lt;"clrb $reg", (XOR8rr  GR8 :$reg, GR8 :$reg)&gt;;
2113def : InstAlias&lt;"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)&gt;;
2114def : InstAlias&lt;"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)&gt;;
2115def : InstAlias&lt;"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)&gt;;
2116</pre>
2117</div>
2118
2119<p>This example also shows that tied operands are only listed once.  In the X86
2120backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied
2121to the output).  InstAliases take a flattened operand list without duplicates
2122for tied operands.  The result of an instruction alias can also use immediates
2123and fixed physical registers which are added as simple immediate operands in the
2124result, for example:</p>
2125
2126<div class="doc_code">
2127<pre>
2128// Fixed Immediate operand.
2129def : InstAlias&lt;"aad", (AAD8i8 10)&gt;;
2130
2131// Fixed register operand.
2132def : InstAlias&lt;"fcomi", (COM_FIr ST1)&gt;;
2133
2134// Simple alias.
2135def : InstAlias&lt;"fcomi $reg", (COM_FIr RST:$reg)&gt;;
2136</pre>
2137</div>
2138
2139
2140<p>Instruction aliases can also have a Requires clause to make them
2141subtarget specific.</p>
2142
2143<p>If the back-end supports it, the instruction printer can automatically emit
2144   the alias rather than what's being aliased. It typically leads to better,
2145   more readable code. If it's better to print out what's being aliased, then
2146   pass a '0' as the third parameter to the InstAlias definition.</p>
2147
2148</div>
2149
2150</div>
2151
2152<!-- ======================================================================= -->
2153<h3 id="na_matching">Instruction Matching</h3>
2154
2155<div><p>To Be Written</p></div>
2156
2157</div>
2158
2159<!-- *********************************************************************** -->
2160<h2>
2161  <a name="targetimpls">Target-specific Implementation Notes</a>
2162</h2>
2163<!-- *********************************************************************** -->
2164
2165<div>
2166
2167<p>This section of the document explains features or design decisions that are
2168   specific to the code generator for a particular target.  First we start
2169   with a table that summarizes what features are supported by each target.</p>
2170
2171<!-- ======================================================================= -->
2172<h3>
2173  <a name="targetfeatures">Target Feature Matrix</a>
2174</h3>
2175
2176<div>
2177
2178<p>Note that this table does not include the C backend or Cpp backends, since
2179they do not use the target independent code generator infrastructure.  It also
2180doesn't list features that are not supported fully by any target yet.  It
2181considers a feature to be supported if at least one subtarget supports it.  A
2182feature being supported means that it is useful and works for most cases, it
2183does not indicate that there are zero known bugs in the implementation.  Here
2184is the key:</p>
2185
2186
2187<table border="1" cellspacing="0">
2188  <tr>
2189    <th>Unknown</th>
2190    <th>No support</th>
2191    <th>Partial Support</th>
2192    <th>Complete Support</th>
2193  </tr>
2194  <tr>
2195    <td class="unknown"></td>
2196    <td class="no"></td>
2197    <td class="partial"></td>
2198    <td class="yes"></td>
2199  </tr>
2200</table>
2201
2202<p>Here is the table:</p>
2203
2204<table width="689" border="1" cellspacing="0">
2205<tr><td></td>
2206<td colspan="13" align="center" style="background-color:#ffc">Target</td>
2207</tr>
2208  <tr>
2209    <th>Feature</th>
2210    <th>ARM</th>
2211    <th>Alpha</th>
2212    <th>Blackfin</th>
2213    <th>CellSPU</th>
2214    <th>MBlaze</th>
2215    <th>MSP430</th>
2216    <th>Mips</th>
2217    <th>PTX</th>
2218    <th>PowerPC</th>
2219    <th>Sparc</th>
2220    <th>SystemZ</th>
2221    <th>X86</th>
2222    <th>XCore</th>
2223  </tr>
2224
2225<tr>
2226  <td><a href="#feat_reliable">is generally reliable</a></td>
2227  <td class="yes"></td> <!-- ARM -->
2228  <td class="unknown"></td> <!-- Alpha -->
2229  <td class="no"></td> <!-- Blackfin -->
2230  <td class="no"></td> <!-- CellSPU -->
2231  <td class="no"></td> <!-- MBlaze -->
2232  <td class="unknown"></td> <!-- MSP430 -->
2233  <td class="no"></td> <!-- Mips -->
2234  <td class="no"></td> <!-- PTX -->
2235  <td class="yes"></td> <!-- PowerPC -->
2236  <td class="yes"></td> <!-- Sparc -->
2237  <td class="unknown"></td> <!-- SystemZ -->
2238  <td class="yes"></td> <!-- X86 -->
2239  <td class="unknown"></td> <!-- XCore -->
2240</tr>
2241
2242<tr>
2243  <td><a href="#feat_asmparser">assembly parser</a></td>
2244  <td class="no"></td> <!-- ARM -->
2245  <td class="no"></td> <!-- Alpha -->
2246  <td class="no"></td> <!-- Blackfin -->
2247  <td class="no"></td> <!-- CellSPU -->
2248  <td class="yes"></td> <!-- MBlaze -->
2249  <td class="no"></td> <!-- MSP430 -->
2250  <td class="no"></td> <!-- Mips -->
2251  <td class="no"></td> <!-- PTX -->
2252  <td class="no"></td> <!-- PowerPC -->
2253  <td class="no"></td> <!-- Sparc -->
2254  <td class="no"></td> <!-- SystemZ -->
2255  <td class="yes"></td> <!-- X86 -->
2256  <td class="no"></td> <!-- XCore -->
2257</tr>
2258
2259<tr>
2260  <td><a href="#feat_disassembler">disassembler</a></td>
2261  <td class="yes"></td> <!-- ARM -->
2262  <td class="no"></td> <!-- Alpha -->
2263  <td class="no"></td> <!-- Blackfin -->
2264  <td class="no"></td> <!-- CellSPU -->
2265  <td class="yes"></td> <!-- MBlaze -->
2266  <td class="no"></td> <!-- MSP430 -->
2267  <td class="no"></td> <!-- Mips -->
2268  <td class="no"></td> <!-- PTX -->
2269  <td class="no"></td> <!-- PowerPC -->
2270  <td class="no"></td> <!-- Sparc -->
2271  <td class="no"></td> <!-- SystemZ -->
2272  <td class="yes"></td> <!-- X86 -->
2273  <td class="no"></td> <!-- XCore -->
2274</tr>
2275
2276<tr>
2277  <td><a href="#feat_inlineasm">inline asm</a></td>
2278  <td class="yes"></td> <!-- ARM -->
2279  <td class="unknown"></td> <!-- Alpha -->
2280  <td class="yes"></td> <!-- Blackfin -->
2281  <td class="no"></td> <!-- CellSPU -->
2282  <td class="yes"></td> <!-- MBlaze -->
2283  <td class="unknown"></td> <!-- MSP430 -->
2284  <td class="no"></td> <!-- Mips -->
2285  <td class="unknown"></td> <!-- PTX -->
2286  <td class="yes"></td> <!-- PowerPC -->
2287  <td class="unknown"></td> <!-- Sparc -->
2288  <td class="unknown"></td> <!-- SystemZ -->
2289  <td class="yes"></td> <!-- X86 -->
2290  <td class="unknown"></td> <!-- XCore -->
2291</tr>
2292
2293<tr>
2294  <td><a href="#feat_jit">jit</a></td>
2295  <td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM -->
2296  <td class="no"></td> <!-- Alpha -->
2297  <td class="no"></td> <!-- Blackfin -->
2298  <td class="no"></td> <!-- CellSPU -->
2299  <td class="no"></td> <!-- MBlaze -->
2300  <td class="unknown"></td> <!-- MSP430 -->
2301  <td class="no"></td> <!-- Mips -->
2302  <td class="unknown"></td> <!-- PTX -->
2303  <td class="yes"></td> <!-- PowerPC -->
2304  <td class="unknown"></td> <!-- Sparc -->
2305  <td class="unknown"></td> <!-- SystemZ -->
2306  <td class="yes"></td> <!-- X86 -->
2307  <td class="unknown"></td> <!-- XCore -->
2308</tr>
2309
2310<tr>
2311  <td><a href="#feat_objectwrite">.o&nbsp;file writing</a></td>
2312  <td class="no"></td> <!-- ARM -->
2313  <td class="no"></td> <!-- Alpha -->
2314  <td class="no"></td> <!-- Blackfin -->
2315  <td class="no"></td> <!-- CellSPU -->
2316  <td class="yes"></td> <!-- MBlaze -->
2317  <td class="no"></td> <!-- MSP430 -->
2318  <td class="no"></td> <!-- Mips -->
2319  <td class="no"></td> <!-- PTX -->
2320  <td class="no"></td> <!-- PowerPC -->
2321  <td class="no"></td> <!-- Sparc -->
2322  <td class="no"></td> <!-- SystemZ -->
2323  <td class="yes"></td> <!-- X86 -->
2324  <td class="no"></td> <!-- XCore -->
2325</tr>
2326
2327<tr>
2328  <td><a href="#feat_tailcall">tail calls</a></td>
2329  <td class="yes"></td> <!-- ARM -->
2330  <td class="unknown"></td> <!-- Alpha -->
2331  <td class="no"></td> <!-- Blackfin -->
2332  <td class="no"></td> <!-- CellSPU -->
2333  <td class="no"></td> <!-- MBlaze -->
2334  <td class="unknown"></td> <!-- MSP430 -->
2335  <td class="no"></td> <!-- Mips -->
2336  <td class="unknown"></td> <!-- PTX -->
2337  <td class="yes"></td> <!-- PowerPC -->
2338  <td class="unknown"></td> <!-- Sparc -->
2339  <td class="unknown"></td> <!-- SystemZ -->
2340  <td class="yes"></td> <!-- X86 -->
2341  <td class="unknown"></td> <!-- XCore -->
2342</tr>
2343
2344
2345</table>
2346
2347<!-- _______________________________________________________________________ -->
2348<h4 id="feat_reliable">Is Generally Reliable</h4>
2349
2350<div>
2351<p>This box indicates whether the target is considered to be production quality.
2352This indicates that the target has been used as a static compiler to
2353compile large amounts of code by a variety of different people and is in
2354continuous use.</p>
2355</div>
2356
2357<!-- _______________________________________________________________________ -->
2358<h4 id="feat_asmparser">Assembly Parser</h4>
2359
2360<div>
2361<p>This box indicates whether the target supports parsing target specific .s
2362files by implementing the MCAsmParser interface.  This is required for llvm-mc
2363to be able to act as a native assembler and is required for inline assembly
2364support in the native .o file writer.</p>
2365
2366</div>
2367
2368
2369<!-- _______________________________________________________________________ -->
2370<h4 id="feat_disassembler">Disassembler</h4>
2371
2372<div>
2373<p>This box indicates whether the target supports the MCDisassembler API for
2374disassembling machine opcode bytes into MCInst's.</p>
2375
2376</div>
2377
2378<!-- _______________________________________________________________________ -->
2379<h4 id="feat_inlineasm">Inline Asm</h4>
2380
2381<div>
2382<p>This box indicates whether the target supports most popular inline assembly
2383constraints and modifiers.</p>
2384
2385</div>
2386
2387<!-- _______________________________________________________________________ -->
2388<h4 id="feat_jit">JIT Support</h4>
2389
2390<div>
2391<p>This box indicates whether the target supports the JIT compiler through
2392the ExecutionEngine interface.</p>
2393
2394<p id="feat_jit_arm">The ARM backend has basic support for integer code
2395in ARM codegen mode, but lacks NEON and full Thumb support.</p>
2396
2397</div>
2398
2399<!-- _______________________________________________________________________ -->
2400<h4 id="feat_objectwrite">.o File Writing</h4>
2401
2402<div>
2403
2404<p>This box indicates whether the target supports writing .o files (e.g. MachO,
2405ELF, and/or COFF) files directly from the target.  Note that the target also
2406must include an assembly parser and general inline assembly support for full
2407inline assembly support in the .o writer.</p>
2408
2409<p>Targets that don't support this feature can obviously still write out .o
2410files, they just rely on having an external assembler to translate from a .s
2411file to a .o file (as is the case for many C compilers).</p>
2412
2413</div>
2414
2415<!-- _______________________________________________________________________ -->
2416<h4 id="feat_tailcall">Tail Calls</h4>
2417
2418<div>
2419
2420<p>This box indicates whether the target supports guaranteed tail calls.  These
2421are calls marked "<a href="LangRef.html#i_call">tail</a>" and use the fastcc
2422calling convention.  Please see the <a href="#tailcallopt">tail call section
2423more more details</a>.</p>
2424
2425</div>
2426
2427</div>
2428
2429<!-- ======================================================================= -->
2430<h3>
2431  <a name="tailcallopt">Tail call optimization</a>
2432</h3>
2433
2434<div>
2435
2436<p>Tail call optimization, callee reusing the stack of the caller, is currently
2437   supported on x86/x86-64 and PowerPC. It is performed if:</p>
2438
2439<ul>
2440  <li>Caller and callee have the calling convention <tt>fastcc</tt> or
2441       <tt>cc 10</tt> (GHC call convention).</li>
2442
2443  <li>The call is a tail call - in tail position (ret immediately follows call
2444      and ret uses value of call or is void).</li>
2445
2446  <li>Option <tt>-tailcallopt</tt> is enabled.</li>
2447
2448  <li>Platform specific constraints are met.</li>
2449</ul>
2450
2451<p>x86/x86-64 constraints:</p>
2452
2453<ul>
2454  <li>No variable argument lists are used.</li>
2455
2456  <li>On x86-64 when generating GOT/PIC code only module-local calls (visibility
2457  = hidden or protected) are supported.</li>
2458</ul>
2459
2460<p>PowerPC constraints:</p>
2461
2462<ul>
2463  <li>No variable argument lists are used.</li>
2464
2465  <li>No byval parameters are used.</li>
2466
2467  <li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li>
2468</ul>
2469
2470<p>Example:</p>
2471
2472<p>Call as <tt>llc -tailcallopt test.ll</tt>.</p>
2473
2474<div class="doc_code">
2475<pre>
2476declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
2477
2478define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
2479  %l1 = add i32 %in1, %in2
2480  %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
2481  ret i32 %tmp
2482}
2483</pre>
2484</div>
2485
2486<p>Implications of <tt>-tailcallopt</tt>:</p>
2487
2488<p>To support tail call optimization in situations where the callee has more
2489   arguments than the caller a 'callee pops arguments' convention is used. This
2490   currently causes each <tt>fastcc</tt> call that is not tail call optimized
2491   (because one or more of above constraints are not met) to be followed by a
2492   readjustment of the stack. So performance might be worse in such cases.</p>
2493
2494</div>
2495<!-- ======================================================================= -->
2496<h3>
2497  <a name="sibcallopt">Sibling call optimization</a>
2498</h3>
2499
2500<div>
2501
2502<p>Sibling call optimization is a restricted form of tail call optimization.
2503   Unlike tail call optimization described in the previous section, it can be
2504   performed automatically on any tail calls when <tt>-tailcallopt</tt> option
2505   is not specified.</p>
2506
2507<p>Sibling call optimization is currently performed on x86/x86-64 when the
2508   following constraints are met:</p>
2509
2510<ul>
2511  <li>Caller and callee have the same calling convention. It can be either
2512      <tt>c</tt> or <tt>fastcc</tt>.
2513
2514  <li>The call is a tail call - in tail position (ret immediately follows call
2515      and ret uses value of call or is void).</li>
2516
2517  <li>Caller and callee have matching return type or the callee result is not
2518      used.
2519
2520  <li>If any of the callee arguments are being passed in stack, they must be
2521      available in caller's own incoming argument stack and the frame offsets
2522      must be the same.
2523</ul>
2524
2525<p>Example:</p>
2526<div class="doc_code">
2527<pre>
2528declare i32 @bar(i32, i32)
2529
2530define i32 @foo(i32 %a, i32 %b, i32 %c) {
2531entry:
2532  %0 = tail call i32 @bar(i32 %a, i32 %b)
2533  ret i32 %0
2534}
2535</pre>
2536</div>
2537
2538</div>
2539<!-- ======================================================================= -->
2540<h3>
2541  <a name="x86">The X86 backend</a>
2542</h3>
2543
2544<div>
2545
2546<p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory.  This
2547   code generator is capable of targeting a variety of x86-32 and x86-64
2548   processors, and includes support for ISA extensions such as MMX and SSE.</p>
2549
2550<!-- _______________________________________________________________________ -->
2551<h4>
2552  <a name="x86_tt">X86 Target Triples supported</a>
2553</h4>
2554
2555<div>
2556
2557<p>The following are the known target triples that are supported by the X86
2558   backend.  This is not an exhaustive list, and it would be useful to add those
2559   that people test.</p>
2560
2561<ul>
2562  <li><b>i686-pc-linux-gnu</b> &mdash; Linux</li>
2563
2564  <li><b>i386-unknown-freebsd5.3</b> &mdash; FreeBSD 5.3</li>
2565
2566  <li><b>i686-pc-cygwin</b> &mdash; Cygwin on Win32</li>
2567
2568  <li><b>i686-pc-mingw32</b> &mdash; MingW on Win32</li>
2569
2570  <li><b>i386-pc-mingw32msvc</b> &mdash; MingW crosscompiler on Linux</li>
2571
2572  <li><b>i686-apple-darwin*</b> &mdash; Apple Darwin on X86</li>
2573
2574  <li><b>x86_64-unknown-linux-gnu</b> &mdash; Linux</li>
2575</ul>
2576
2577</div>
2578
2579<!-- _______________________________________________________________________ -->
2580<h4>
2581  <a name="x86_cc">X86 Calling Conventions supported</a>
2582</h4>
2583
2584
2585<div>
2586
2587<p>The following target-specific calling conventions are known to backend:</p>
2588
2589<ul>
2590<li><b>x86_StdCall</b> &mdash; stdcall calling convention seen on Microsoft
2591    Windows platform (CC ID = 64).</li>
2592<li><b>x86_FastCall</b> &mdash; fastcall calling convention seen on Microsoft
2593    Windows platform (CC ID = 65).</li>
2594<li><b>x86_ThisCall</b> &mdash; Similar to X86_StdCall. Passes first argument
2595    in ECX,  others via stack. Callee is responsible for stack cleaning. This
2596    convention is used by MSVC by default for methods in its ABI
2597    (CC ID = 70).</li>
2598</ul>
2599
2600</div>
2601
2602<!-- _______________________________________________________________________ -->
2603<h4>
2604  <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
2605</h4>
2606
2607<div>
2608
2609<p>The x86 has a very flexible way of accessing memory.  It is capable of
2610   forming memory addresses of the following expression directly in integer
2611   instructions (which use ModR/M addressing):</p>
2612
2613<div class="doc_code">
2614<pre>
2615SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
2616</pre>
2617</div>
2618
2619<p>In order to represent this, LLVM tracks no less than 5 operands for each
2620   memory operand of this form.  This means that the "load" form of
2621   '<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p>
2622
2623<div class="doc_code">
2624<pre>
2625Index:        0     |    1        2       3           4          5
2626Meaning:   DestReg, | BaseReg,  Scale, IndexReg, Displacement Segment
2627OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg,   SignExtImm  PhysReg
2628</pre>
2629</div>
2630
2631<p>Stores, and all other instructions, treat the four memory operands in the
2632   same way and in the same order.  If the segment register is unspecified
2633   (regno = 0), then no segment override is generated.  "Lea" operations do not
2634   have a segment register specified, so they only have 4 operands for their
2635   memory reference.</p>
2636
2637</div>
2638
2639<!-- _______________________________________________________________________ -->
2640<h4>
2641  <a name="x86_memory">X86 address spaces supported</a>
2642</h4>
2643
2644<div>
2645
2646<p>x86 has a feature which provides
2647   the ability to perform loads and stores to different address spaces
2648   via the x86 segment registers.  A segment override prefix byte on an
2649   instruction causes the instruction's memory access to go to the specified
2650   segment.  LLVM address space 0 is the default address space, which includes
2651   the stack, and any unqualified memory accesses in a program.  Address spaces
2652   1-255 are currently reserved for user-defined code.  The GS-segment is
2653   represented by address space 256, while the FS-segment is represented by
2654   address space 257. Other x86 segments have yet to be allocated address space
2655   numbers.</p>
2656
2657<p>While these address spaces may seem similar to TLS via the
2658   <tt>thread_local</tt> keyword, and often use the same underlying hardware,
2659   there are some fundamental differences.</p>
2660
2661<p>The <tt>thread_local</tt> keyword applies to global variables and
2662   specifies that they are to be allocated in thread-local memory. There are
2663   no type qualifiers involved, and these variables can be pointed to with
2664   normal pointers and accessed with normal loads and stores.
2665   The <tt>thread_local</tt> keyword is target-independent at the LLVM IR
2666   level (though LLVM doesn't yet have implementations of it for some
2667   configurations).<p>
2668
2669<p>Special address spaces, in contrast, apply to static types. Every
2670   load and store has a particular address space in its address operand type,
2671   and this is what determines which address space is accessed.
2672   LLVM ignores these special address space qualifiers on global variables,
2673   and does not provide a way to directly allocate storage in them.
2674   At the LLVM IR level, the behavior of these special address spaces depends
2675   in part on the underlying OS or runtime environment, and they are specific
2676   to x86 (and LLVM doesn't yet handle them correctly in some cases).</p>
2677
2678<p>Some operating systems and runtime environments use (or may in the future
2679   use) the FS/GS-segment registers for various low-level purposes, so care
2680   should be taken when considering them.</p>
2681
2682</div>
2683
2684<!-- _______________________________________________________________________ -->
2685<h4>
2686  <a name="x86_names">Instruction naming</a>
2687</h4>
2688
2689<div>
2690
2691<p>An instruction name consists of the base name, a default operand size, and a
2692   a character per operand with an optional special size. For example:</p>
2693
2694<div class="doc_code">
2695<pre>
2696ADD8rr      -&gt; add, 8-bit register, 8-bit register
2697IMUL16rmi   -&gt; imul, 16-bit register, 16-bit memory, 16-bit immediate
2698IMUL16rmi8  -&gt; imul, 16-bit register, 16-bit memory, 8-bit immediate
2699MOVSX32rm16 -&gt; movsx, 32-bit register, 16-bit memory
2700</pre>
2701</div>
2702
2703</div>
2704
2705</div>
2706
2707<!-- ======================================================================= -->
2708<h3>
2709  <a name="ppc">The PowerPC backend</a>
2710</h3>
2711
2712<div>
2713
2714<p>The PowerPC code generator lives in the lib/Target/PowerPC directory.  The
2715   code generation is retargetable to several variations or <i>subtargets</i> of
2716   the PowerPC ISA; including ppc32, ppc64 and altivec.</p>
2717
2718<!-- _______________________________________________________________________ -->
2719<h4>
2720  <a name="ppc_abi">LLVM PowerPC ABI</a>
2721</h4>
2722
2723<div>
2724
2725<p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
2726   relative (PIC) or static addressing for accessing global values, so no TOC
2727   (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth
2728   of a stack frame.  LLVM takes advantage of having no TOC to provide space to
2729   save the frame pointer in the PowerPC linkage area of the caller frame.
2730   Other details of PowerPC ABI can be found at <a href=
2731   "http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
2732   >PowerPC ABI.</a> Note: This link describes the 32 bit ABI.  The 64 bit ABI
2733   is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
2734   for system use.</p>
2735
2736</div>
2737
2738<!-- _______________________________________________________________________ -->
2739<h4>
2740  <a name="ppc_frame">Frame Layout</a>
2741</h4>
2742
2743<div>
2744
2745<p>The size of a PowerPC frame is usually fixed for the duration of a
2746   function's invocation.  Since the frame is fixed size, all references
2747   into the frame can be accessed via fixed offsets from the stack pointer.  The
2748   exception to this is when dynamic alloca or variable sized arrays are
2749   present, then a base pointer (r31) is used as a proxy for the stack pointer
2750   and stack pointer is free to grow or shrink.  A base pointer is also used if
2751   llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is
2752   always aligned to 16 bytes, so that space allocated for altivec vectors will
2753   be properly aligned.</p>
2754
2755<p>An invocation frame is laid out as follows (low memory at top);</p>
2756
2757<table class="layout">
2758  <tr>
2759    <td>Linkage<br><br></td>
2760  </tr>
2761  <tr>
2762    <td>Parameter area<br><br></td>
2763  </tr>
2764  <tr>
2765    <td>Dynamic area<br><br></td>
2766  </tr>
2767  <tr>
2768    <td>Locals area<br><br></td>
2769  </tr>
2770  <tr>
2771    <td>Saved registers area<br><br></td>
2772  </tr>
2773  <tr style="border-style: none hidden none hidden;">
2774    <td><br></td>
2775  </tr>
2776  <tr>
2777    <td>Previous Frame<br><br></td>
2778  </tr>
2779</table>
2780
2781<p>The <i>linkage</i> area is used by a callee to save special registers prior
2782   to allocating its own frame.  Only three entries are relevant to LLVM. The
2783   first entry is the previous stack pointer (sp), aka link.  This allows
2784   probing tools like gdb or exception handlers to quickly scan the frames in
2785   the stack.  A function epilog can also use the link to pop the frame from the
2786   stack.  The third entry in the linkage area is used to save the return
2787   address from the lr register. Finally, as mentioned above, the last entry is
2788   used to save the previous frame pointer (r31.)  The entries in the linkage
2789   area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit
2790   mode and 48 bytes in 64 bit mode.</p>
2791
2792<p>32 bit linkage area</p>
2793
2794<table class="layout">
2795  <tr>
2796    <td>0</td>
2797    <td>Saved SP (r1)</td>
2798  </tr>
2799  <tr>
2800    <td>4</td>
2801    <td>Saved CR</td>
2802  </tr>
2803  <tr>
2804    <td>8</td>
2805    <td>Saved LR</td>
2806  </tr>
2807  <tr>
2808    <td>12</td>
2809    <td>Reserved</td>
2810  </tr>
2811  <tr>
2812    <td>16</td>
2813    <td>Reserved</td>
2814  </tr>
2815  <tr>
2816    <td>20</td>
2817    <td>Saved FP (r31)</td>
2818  </tr>
2819</table>
2820
2821<p>64 bit linkage area</p>
2822
2823<table class="layout">
2824  <tr>
2825    <td>0</td>
2826    <td>Saved SP (r1)</td>
2827  </tr>
2828  <tr>
2829    <td>8</td>
2830    <td>Saved CR</td>
2831  </tr>
2832  <tr>
2833    <td>16</td>
2834    <td>Saved LR</td>
2835  </tr>
2836  <tr>
2837    <td>24</td>
2838    <td>Reserved</td>
2839  </tr>
2840  <tr>
2841    <td>32</td>
2842    <td>Reserved</td>
2843  </tr>
2844  <tr>
2845    <td>40</td>
2846    <td>Saved FP (r31)</td>
2847  </tr>
2848</table>
2849
2850<p>The <i>parameter area</i> is used to store arguments being passed to a callee
2851   function.  Following the PowerPC ABI, the first few arguments are actually
2852   passed in registers, with the space in the parameter area unused.  However,
2853   if there are not enough registers or the callee is a thunk or vararg
2854   function, these register arguments can be spilled into the parameter area.
2855   Thus, the parameter area must be large enough to store all the parameters for
2856   the largest call sequence made by the caller.  The size must also be
2857   minimally large enough to spill registers r3-r10.  This allows callees blind
2858   to the call signature, such as thunks and vararg functions, enough space to
2859   cache the argument registers.  Therefore, the parameter area is minimally 32
2860   bytes (64 bytes in 64 bit mode.)  Also note that since the parameter area is
2861   a fixed offset from the top of the frame, that a callee can access its spilt
2862   arguments using fixed offsets from the stack pointer (or base pointer.)</p>
2863
2864<p>Combining the information about the linkage, parameter areas and alignment. A
2865   stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
2866   mode.</p>
2867
2868<p>The <i>dynamic area</i> starts out as size zero.  If a function uses dynamic
2869   alloca then space is added to the stack, the linkage and parameter areas are
2870   shifted to top of stack, and the new space is available immediately below the
2871   linkage and parameter areas.  The cost of shifting the linkage and parameter
2872   areas is minor since only the link value needs to be copied.  The link value
2873   can be easily fetched by adding the original frame size to the base pointer.
2874   Note that allocations in the dynamic space need to observe 16 byte
2875   alignment.</p>
2876
2877<p>The <i>locals area</i> is where the llvm compiler reserves space for local
2878   variables.</p>
2879
2880<p>The <i>saved registers area</i> is where the llvm compiler spills callee
2881   saved registers on entry to the callee.</p>
2882
2883</div>
2884
2885<!-- _______________________________________________________________________ -->
2886<h4>
2887  <a name="ppc_prolog">Prolog/Epilog</a>
2888</h4>
2889
2890<div>
2891
2892<p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
2893   the following exceptions.  Callee saved registers are spilled after the frame
2894   is created.  This allows the llvm epilog/prolog support to be common with
2895   other targets.  The base pointer callee saved register r31 is saved in the
2896   TOC slot of linkage area.  This simplifies allocation of space for the base
2897   pointer and makes it convenient to locate programatically and during
2898   debugging.</p>
2899
2900</div>
2901
2902<!-- _______________________________________________________________________ -->
2903<h4>
2904  <a name="ppc_dynamic">Dynamic Allocation</a>
2905</h4>
2906
2907<div>
2908
2909<p><i>TODO - More to come.</i></p>
2910
2911</div>
2912
2913</div>
2914
2915<!-- ======================================================================= -->
2916<h3>
2917  <a name="ptx">The PTX backend</a>
2918</h3>
2919
2920<div>
2921
2922<p>The PTX code generator lives in the lib/Target/PTX directory. It is
2923  currently a work-in-progress, but already supports most of the code
2924  generation functionality needed to generate correct PTX kernels for
2925  CUDA devices.</p>
2926
2927<p>The code generator can target PTX 2.0+, and shader model 1.0+.  The
2928  PTX ISA Reference Manual is used as the primary source of ISA
2929  information, though an effort is made to make the output of the code
2930  generator match the output of the NVidia nvcc compiler, whenever
2931  possible.</p>
2932
2933<p>Code Generator Options:</p>
2934<table border="1" cellspacing="0">
2935  <tr>
2936    <th>Option</th>
2937    <th>Description</th>
2938 </tr>
2939   <tr>
2940     <td><code>double</code></td>
2941     <td align="left">If enabled, the map_f64_to_f32 directive is
2942       disabled in the PTX output, allowing native double-precision
2943       arithmetic</td>
2944  </tr>
2945  <tr>
2946    <td><code>no-fma</code></td>
2947    <td align="left">Disable generation of Fused-Multiply Add
2948      instructions, which may be beneficial for some devices</td>
2949  </tr>
2950  <tr>
2951    <td><code>smxy / computexy</code></td>
2952    <td align="left">Set shader model/compute capability to x.y,
2953    e.g. sm20 or compute13</td>
2954  </tr>
2955</table>
2956
2957<p>Working:</p>
2958<ul>
2959  <li>Arithmetic instruction selection (including combo FMA)</li>
2960  <li>Bitwise instruction selection</li>
2961  <li>Control-flow instruction selection</li>
2962  <li>Function calls (only on SM 2.0+ and no return arguments)</li>
2963  <li>Addresses spaces (0 = global, 1 = constant, 2 = local, 4 =
2964  shared)</li>
2965  <li>Thread synchronization (bar.sync)</li>
2966  <li>Special register reads ([N]TID, [N]CTAID, PMx, CLOCK, etc.)</li>
2967</ul>
2968
2969<p>In Progress:</p>
2970<ul>
2971  <li>Robust call instruction selection</li>
2972  <li>Stack frame allocation</li>
2973  <li>Device-specific instruction scheduling optimizations</li>
2974</ul>
2975
2976
2977</div>
2978
2979</div>
2980
2981<!-- *********************************************************************** -->
2982<hr>
2983<address>
2984  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2985  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
2986  <a href="http://validator.w3.org/check/referer"><img
2987  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
2988
2989  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
2990  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
2991  Last modified: $Date: 2011-09-19 14:15:46 -0400 (Mon, 19 Sep 2011) $
2992</address>
2993
2994</body>
2995</html>
2996