1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_META_H 12 #define EIGEN_META_H 13 14 #if defined(__CUDA_ARCH__) 15 #include <cfloat> 16 #include <math_constants.h> 17 #endif 18 19 #if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L 20 #include <cstdint> 21 #endif 22 23 namespace Eigen { 24 25 typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; 26 27 /** 28 * \brief The Index type as used for the API. 29 * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. 30 * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex. 31 */ 32 33 typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index; 34 35 namespace internal { 36 37 /** \internal 38 * \file Meta.h 39 * This file contains generic metaprogramming classes which are not specifically related to Eigen. 40 * \note In case you wonder, yes we're aware that Boost already provides all these features, 41 * we however don't want to add a dependency to Boost. 42 */ 43 44 // Only recent versions of ICC complain about using ptrdiff_t to hold pointers, 45 // and older versions do not provide *intptr_t types. 46 #if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L 47 typedef std::intptr_t IntPtr; 48 typedef std::uintptr_t UIntPtr; 49 #else 50 typedef std::ptrdiff_t IntPtr; 51 typedef std::size_t UIntPtr; 52 #endif 53 54 struct true_type { enum { value = 1 }; }; 55 struct false_type { enum { value = 0 }; }; 56 57 template<bool Condition, typename Then, typename Else> 58 struct conditional { typedef Then type; }; 59 60 template<typename Then, typename Else> 61 struct conditional <false, Then, Else> { typedef Else type; }; 62 63 template<typename T, typename U> struct is_same { enum { value = 0 }; }; 64 template<typename T> struct is_same<T,T> { enum { value = 1 }; }; 65 66 template<typename T> struct remove_reference { typedef T type; }; 67 template<typename T> struct remove_reference<T&> { typedef T type; }; 68 69 template<typename T> struct remove_pointer { typedef T type; }; 70 template<typename T> struct remove_pointer<T*> { typedef T type; }; 71 template<typename T> struct remove_pointer<T*const> { typedef T type; }; 72 73 template <class T> struct remove_const { typedef T type; }; 74 template <class T> struct remove_const<const T> { typedef T type; }; 75 template <class T> struct remove_const<const T[]> { typedef T type[]; }; 76 template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; }; 77 78 template<typename T> struct remove_all { typedef T type; }; 79 template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; }; 80 template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; }; 81 template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; }; 82 template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; }; 83 template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; }; 84 85 template<typename T> struct is_arithmetic { enum { value = false }; }; 86 template<> struct is_arithmetic<float> { enum { value = true }; }; 87 template<> struct is_arithmetic<double> { enum { value = true }; }; 88 template<> struct is_arithmetic<long double> { enum { value = true }; }; 89 template<> struct is_arithmetic<bool> { enum { value = true }; }; 90 template<> struct is_arithmetic<char> { enum { value = true }; }; 91 template<> struct is_arithmetic<signed char> { enum { value = true }; }; 92 template<> struct is_arithmetic<unsigned char> { enum { value = true }; }; 93 template<> struct is_arithmetic<signed short> { enum { value = true }; }; 94 template<> struct is_arithmetic<unsigned short>{ enum { value = true }; }; 95 template<> struct is_arithmetic<signed int> { enum { value = true }; }; 96 template<> struct is_arithmetic<unsigned int> { enum { value = true }; }; 97 template<> struct is_arithmetic<signed long> { enum { value = true }; }; 98 template<> struct is_arithmetic<unsigned long> { enum { value = true }; }; 99 100 template<typename T> struct is_integral { enum { value = false }; }; 101 template<> struct is_integral<bool> { enum { value = true }; }; 102 template<> struct is_integral<char> { enum { value = true }; }; 103 template<> struct is_integral<signed char> { enum { value = true }; }; 104 template<> struct is_integral<unsigned char> { enum { value = true }; }; 105 template<> struct is_integral<signed short> { enum { value = true }; }; 106 template<> struct is_integral<unsigned short> { enum { value = true }; }; 107 template<> struct is_integral<signed int> { enum { value = true }; }; 108 template<> struct is_integral<unsigned int> { enum { value = true }; }; 109 template<> struct is_integral<signed long> { enum { value = true }; }; 110 template<> struct is_integral<unsigned long> { enum { value = true }; }; 111 112 template <typename T> struct add_const { typedef const T type; }; 113 template <typename T> struct add_const<T&> { typedef T& type; }; 114 115 template <typename T> struct is_const { enum { value = 0 }; }; 116 template <typename T> struct is_const<T const> { enum { value = 1 }; }; 117 118 template<typename T> struct add_const_on_value_type { typedef const T type; }; 119 template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; }; 120 template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; }; 121 template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; }; 122 template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; }; 123 124 125 template<typename From, typename To> 126 struct is_convertible_impl 127 { 128 private: 129 struct any_conversion 130 { 131 template <typename T> any_conversion(const volatile T&); 132 template <typename T> any_conversion(T&); 133 }; 134 struct yes {int a[1];}; 135 struct no {int a[2];}; 136 137 static yes test(const To&, int); 138 static no test(any_conversion, ...); 139 140 public: 141 static From ms_from; 142 #ifdef __INTEL_COMPILER 143 #pragma warning push 144 #pragma warning ( disable : 2259 ) 145 #endif 146 enum { value = sizeof(test(ms_from, 0))==sizeof(yes) }; 147 #ifdef __INTEL_COMPILER 148 #pragma warning pop 149 #endif 150 }; 151 152 template<typename From, typename To> 153 struct is_convertible 154 { 155 enum { value = is_convertible_impl<typename remove_all<From>::type, 156 typename remove_all<To >::type>::value }; 157 }; 158 159 /** \internal Allows to enable/disable an overload 160 * according to a compile time condition. 161 */ 162 template<bool Condition, typename T=void> struct enable_if; 163 164 template<typename T> struct enable_if<true,T> 165 { typedef T type; }; 166 167 #if defined(__CUDA_ARCH__) 168 #if !defined(__FLT_EPSILON__) 169 #define __FLT_EPSILON__ FLT_EPSILON 170 #define __DBL_EPSILON__ DBL_EPSILON 171 #endif 172 173 namespace device { 174 175 template<typename T> struct numeric_limits 176 { 177 EIGEN_DEVICE_FUNC 178 static T epsilon() { return 0; } 179 static T (max)() { assert(false && "Highest not supported for this type"); } 180 static T (min)() { assert(false && "Lowest not supported for this type"); } 181 static T infinity() { assert(false && "Infinity not supported for this type"); } 182 static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); } 183 }; 184 template<> struct numeric_limits<float> 185 { 186 EIGEN_DEVICE_FUNC 187 static float epsilon() { return __FLT_EPSILON__; } 188 EIGEN_DEVICE_FUNC 189 static float (max)() { return CUDART_MAX_NORMAL_F; } 190 EIGEN_DEVICE_FUNC 191 static float (min)() { return FLT_MIN; } 192 EIGEN_DEVICE_FUNC 193 static float infinity() { return CUDART_INF_F; } 194 EIGEN_DEVICE_FUNC 195 static float quiet_NaN() { return CUDART_NAN_F; } 196 }; 197 template<> struct numeric_limits<double> 198 { 199 EIGEN_DEVICE_FUNC 200 static double epsilon() { return __DBL_EPSILON__; } 201 EIGEN_DEVICE_FUNC 202 static double (max)() { return DBL_MAX; } 203 EIGEN_DEVICE_FUNC 204 static double (min)() { return DBL_MIN; } 205 EIGEN_DEVICE_FUNC 206 static double infinity() { return CUDART_INF; } 207 EIGEN_DEVICE_FUNC 208 static double quiet_NaN() { return CUDART_NAN; } 209 }; 210 template<> struct numeric_limits<int> 211 { 212 EIGEN_DEVICE_FUNC 213 static int epsilon() { return 0; } 214 EIGEN_DEVICE_FUNC 215 static int (max)() { return INT_MAX; } 216 EIGEN_DEVICE_FUNC 217 static int (min)() { return INT_MIN; } 218 }; 219 template<> struct numeric_limits<unsigned int> 220 { 221 EIGEN_DEVICE_FUNC 222 static unsigned int epsilon() { return 0; } 223 EIGEN_DEVICE_FUNC 224 static unsigned int (max)() { return UINT_MAX; } 225 EIGEN_DEVICE_FUNC 226 static unsigned int (min)() { return 0; } 227 }; 228 template<> struct numeric_limits<long> 229 { 230 EIGEN_DEVICE_FUNC 231 static long epsilon() { return 0; } 232 EIGEN_DEVICE_FUNC 233 static long (max)() { return LONG_MAX; } 234 EIGEN_DEVICE_FUNC 235 static long (min)() { return LONG_MIN; } 236 }; 237 template<> struct numeric_limits<unsigned long> 238 { 239 EIGEN_DEVICE_FUNC 240 static unsigned long epsilon() { return 0; } 241 EIGEN_DEVICE_FUNC 242 static unsigned long (max)() { return ULONG_MAX; } 243 EIGEN_DEVICE_FUNC 244 static unsigned long (min)() { return 0; } 245 }; 246 template<> struct numeric_limits<long long> 247 { 248 EIGEN_DEVICE_FUNC 249 static long long epsilon() { return 0; } 250 EIGEN_DEVICE_FUNC 251 static long long (max)() { return LLONG_MAX; } 252 EIGEN_DEVICE_FUNC 253 static long long (min)() { return LLONG_MIN; } 254 }; 255 template<> struct numeric_limits<unsigned long long> 256 { 257 EIGEN_DEVICE_FUNC 258 static unsigned long long epsilon() { return 0; } 259 EIGEN_DEVICE_FUNC 260 static unsigned long long (max)() { return ULLONG_MAX; } 261 EIGEN_DEVICE_FUNC 262 static unsigned long long (min)() { return 0; } 263 }; 264 265 } 266 267 #endif 268 269 /** \internal 270 * A base class do disable default copy ctor and copy assignement operator. 271 */ 272 class noncopyable 273 { 274 EIGEN_DEVICE_FUNC noncopyable(const noncopyable&); 275 EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&); 276 protected: 277 EIGEN_DEVICE_FUNC noncopyable() {} 278 EIGEN_DEVICE_FUNC ~noncopyable() {} 279 }; 280 281 /** \internal 282 * Convenient struct to get the result type of a unary or binary functor. 283 * 284 * It supports both the current STL mechanism (using the result_type member) as well as 285 * upcoming next STL generation (using a templated result member). 286 * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack. 287 */ 288 #if EIGEN_HAS_STD_RESULT_OF 289 template<typename T> struct result_of { 290 typedef typename std::result_of<T>::type type1; 291 typedef typename remove_all<type1>::type type; 292 }; 293 #else 294 template<typename T> struct result_of { }; 295 296 struct has_none {int a[1];}; 297 struct has_std_result_type {int a[2];}; 298 struct has_tr1_result {int a[3];}; 299 300 template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)> 301 struct unary_result_of_select {typedef typename internal::remove_all<ArgType>::type type;}; 302 303 template<typename Func, typename ArgType> 304 struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;}; 305 306 template<typename Func, typename ArgType> 307 struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;}; 308 309 template<typename Func, typename ArgType> 310 struct result_of<Func(ArgType)> { 311 template<typename T> 312 static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); 313 template<typename T> 314 static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0); 315 static has_none testFunctor(...); 316 317 // note that the following indirection is needed for gcc-3.3 318 enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; 319 typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type; 320 }; 321 322 template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)> 323 struct binary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;}; 324 325 template<typename Func, typename ArgType0, typename ArgType1> 326 struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)> 327 {typedef typename Func::result_type type;}; 328 329 template<typename Func, typename ArgType0, typename ArgType1> 330 struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)> 331 {typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;}; 332 333 template<typename Func, typename ArgType0, typename ArgType1> 334 struct result_of<Func(ArgType0,ArgType1)> { 335 template<typename T> 336 static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); 337 template<typename T> 338 static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0); 339 static has_none testFunctor(...); 340 341 // note that the following indirection is needed for gcc-3.3 342 enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; 343 typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type; 344 }; 345 346 template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2, int SizeOf=sizeof(has_none)> 347 struct ternary_result_of_select {typedef typename internal::remove_all<ArgType0>::type type;}; 348 349 template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2> 350 struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_std_result_type)> 351 {typedef typename Func::result_type type;}; 352 353 template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2> 354 struct ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, sizeof(has_tr1_result)> 355 {typedef typename Func::template result<Func(ArgType0,ArgType1,ArgType2)>::type type;}; 356 357 template<typename Func, typename ArgType0, typename ArgType1, typename ArgType2> 358 struct result_of<Func(ArgType0,ArgType1,ArgType2)> { 359 template<typename T> 360 static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); 361 template<typename T> 362 static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1,ArgType2)>::type const * = 0); 363 static has_none testFunctor(...); 364 365 // note that the following indirection is needed for gcc-3.3 366 enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))}; 367 typedef typename ternary_result_of_select<Func, ArgType0, ArgType1, ArgType2, FunctorType>::type type; 368 }; 369 #endif 370 371 struct meta_yes { char a[1]; }; 372 struct meta_no { char a[2]; }; 373 374 // Check whether T::ReturnType does exist 375 template <typename T> 376 struct has_ReturnType 377 { 378 template <typename C> static meta_yes testFunctor(typename C::ReturnType const *); 379 template <typename C> static meta_no testFunctor(...); 380 381 enum { value = sizeof(testFunctor<T>(0)) == sizeof(meta_yes) }; 382 }; 383 384 template<typename T> const T* return_ptr(); 385 386 template <typename T, typename IndexType=Index> 387 struct has_nullary_operator 388 { 389 template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()())>0)>::type * = 0); 390 static meta_no testFunctor(...); 391 392 enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; 393 }; 394 395 template <typename T, typename IndexType=Index> 396 struct has_unary_operator 397 { 398 template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0)))>0)>::type * = 0); 399 static meta_no testFunctor(...); 400 401 enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; 402 }; 403 404 template <typename T, typename IndexType=Index> 405 struct has_binary_operator 406 { 407 template <typename C> static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr<C>()->operator()(IndexType(0),IndexType(0)))>0)>::type * = 0); 408 static meta_no testFunctor(...); 409 410 enum { value = sizeof(testFunctor(static_cast<T*>(0))) == sizeof(meta_yes) }; 411 }; 412 413 /** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. 414 * Usage example: \code meta_sqrt<1023>::ret \endcode 415 */ 416 template<int Y, 417 int InfX = 0, 418 int SupX = ((Y==1) ? 1 : Y/2), 419 bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) > 420 // use ?: instead of || just to shut up a stupid gcc 4.3 warning 421 class meta_sqrt 422 { 423 enum { 424 MidX = (InfX+SupX)/2, 425 TakeInf = MidX*MidX > Y ? 1 : 0, 426 NewInf = int(TakeInf) ? InfX : int(MidX), 427 NewSup = int(TakeInf) ? int(MidX) : SupX 428 }; 429 public: 430 enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret }; 431 }; 432 433 template<int Y, int InfX, int SupX> 434 class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; 435 436 437 /** \internal Computes the least common multiple of two positive integer A and B 438 * at compile-time. It implements a naive algorithm testing all multiples of A. 439 * It thus works better if A>=B. 440 */ 441 template<int A, int B, int K=1, bool Done = ((A*K)%B)==0> 442 struct meta_least_common_multiple 443 { 444 enum { ret = meta_least_common_multiple<A,B,K+1>::ret }; 445 }; 446 template<int A, int B, int K> 447 struct meta_least_common_multiple<A,B,K,true> 448 { 449 enum { ret = A*K }; 450 }; 451 452 /** \internal determines whether the product of two numeric types is allowed and what the return type is */ 453 template<typename T, typename U> struct scalar_product_traits 454 { 455 enum { Defined = 0 }; 456 }; 457 458 // FIXME quick workaround around current limitation of result_of 459 // template<typename Scalar, typename ArgType0, typename ArgType1> 460 // struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> { 461 // typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type; 462 // }; 463 464 } // end namespace internal 465 466 namespace numext { 467 468 #if defined(__CUDA_ARCH__) 469 template<typename T> EIGEN_DEVICE_FUNC void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; } 470 #else 471 template<typename T> EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); } 472 #endif 473 474 #if defined(__CUDA_ARCH__) 475 using internal::device::numeric_limits; 476 #else 477 using std::numeric_limits; 478 #endif 479 480 // Integer division with rounding up. 481 // T is assumed to be an integer type with a>=0, and b>0 482 template<typename T> 483 T div_ceil(const T &a, const T &b) 484 { 485 return (a+b-1) / b; 486 } 487 488 } // end namespace numext 489 490 } // end namespace Eigen 491 492 #endif // EIGEN_META_H 493