1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LoopPredication pass tries to convert loop variant range checks to loop
11 // invariant by widening checks across loop iterations. For example, it will
12 // convert
13 //
14 // for (i = 0; i < n; i++) {
15 // guard(i < len);
16 // ...
17 // }
18 //
19 // to
20 //
21 // for (i = 0; i < n; i++) {
22 // guard(n - 1 < len);
23 // ...
24 // }
25 //
26 // After this transformation the condition of the guard is loop invariant, so
27 // loop-unswitch can later unswitch the loop by this condition which basically
28 // predicates the loop by the widened condition:
29 //
30 // if (n - 1 < len)
31 // for (i = 0; i < n; i++) {
32 // ...
33 // }
34 // else
35 // deoptimize
36 //
37 // It's tempting to rely on SCEV here, but it has proven to be problematic.
38 // Generally the facts SCEV provides about the increment step of add
39 // recurrences are true if the backedge of the loop is taken, which implicitly
40 // assumes that the guard doesn't fail. Using these facts to optimize the
41 // guard results in a circular logic where the guard is optimized under the
42 // assumption that it never fails.
43 //
44 // For example, in the loop below the induction variable will be marked as nuw
45 // basing on the guard. Basing on nuw the guard predicate will be considered
46 // monotonic. Given a monotonic condition it's tempting to replace the induction
47 // variable in the condition with its value on the last iteration. But this
48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49 //
50 // for (int i = b; i != e; i++)
51 // guard(i u< len)
52 //
53 // One of the ways to reason about this problem is to use an inductive proof
54 // approach. Given the loop:
55 //
56 // if (B(0)) {
57 // do {
58 // I = PHI(0, I.INC)
59 // I.INC = I + Step
60 // guard(G(I));
61 // } while (B(I));
62 // }
63 //
64 // where B(x) and G(x) are predicates that map integers to booleans, we want a
65 // loop invariant expression M such the following program has the same semantics
66 // as the above:
67 //
68 // if (B(0)) {
69 // do {
70 // I = PHI(0, I.INC)
71 // I.INC = I + Step
72 // guard(G(0) && M);
73 // } while (B(I));
74 // }
75 //
76 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77 //
78 // Informal proof that the transformation above is correct:
79 //
80 // By the definition of guards we can rewrite the guard condition to:
81 // G(I) && G(0) && M
82 //
83 // Let's prove that for each iteration of the loop:
84 // G(0) && M => G(I)
85 // And the condition above can be simplified to G(Start) && M.
86 //
87 // Induction base.
88 // G(0) && M => G(0)
89 //
90 // Induction step. Assuming G(0) && M => G(I) on the subsequent
91 // iteration:
92 //
93 // B(I) is true because it's the backedge condition.
94 // G(I) is true because the backedge is guarded by this condition.
95 //
96 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97 //
98 // Note that we can use anything stronger than M, i.e. any condition which
99 // implies M.
100 //
101 // When S = 1 (i.e. forward iterating loop), the transformation is supported
102 // when:
103 // * The loop has a single latch with the condition of the form:
104 // B(X) = latchStart + X <pred> latchLimit,
105 // where <pred> is u<, u<=, s<, or s<=.
106 // * The guard condition is of the form
107 // G(X) = guardStart + X u< guardLimit
108 //
109 // For the ult latch comparison case M is:
110 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
111 // guardStart + X + 1 u< guardLimit
112 //
113 // The only way the antecedent can be true and the consequent can be false is
114 // if
115 // X == guardLimit - 1 - guardStart
116 // (and guardLimit is non-zero, but we won't use this latter fact).
117 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is
118 // latchStart + guardLimit - 1 - guardStart u< latchLimit
119 // and its negation is
120 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
121 //
122 // In other words, if
123 // latchLimit u<= latchStart + guardLimit - 1 - guardStart
124 // then:
125 // (the ranges below are written in ConstantRange notation, where [A, B) is the
126 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127 //
128 // forall X . guardStart + X u< guardLimit &&
129 // latchStart + X u< latchLimit =>
130 // guardStart + X + 1 u< guardLimit
131 // == forall X . guardStart + X u< guardLimit &&
132 // latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
133 // guardStart + X + 1 u< guardLimit
134 // == forall X . (guardStart + X) in [0, guardLimit) &&
135 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
136 // (guardStart + X + 1) in [0, guardLimit)
137 // == forall X . X in [-guardStart, guardLimit - guardStart) &&
138 // X in [-latchStart, guardLimit - 1 - guardStart) =>
139 // X in [-guardStart - 1, guardLimit - guardStart - 1)
140 // == true
141 //
142 // So the widened condition is:
143 // guardStart u< guardLimit &&
144 // latchStart + guardLimit - 1 - guardStart u>= latchLimit
145 // Similarly for ule condition the widened condition is:
146 // guardStart u< guardLimit &&
147 // latchStart + guardLimit - 1 - guardStart u> latchLimit
148 // For slt condition the widened condition is:
149 // guardStart u< guardLimit &&
150 // latchStart + guardLimit - 1 - guardStart s>= latchLimit
151 // For sle condition the widened condition is:
152 // guardStart u< guardLimit &&
153 // latchStart + guardLimit - 1 - guardStart s> latchLimit
154 //
155 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
156 // when:
157 // * The loop has a single latch with the condition of the form:
158 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
159 // * The guard condition is of the form
160 // G(X) = X - 1 u< guardLimit
161 //
162 // For the ugt latch comparison case M is:
163 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164 //
165 // The only way the antecedent can be true and the consequent can be false is if
166 // X == 1.
167 // If X == 1 then the second half of the antecedent is
168 // 1 u> latchLimit, and its negation is latchLimit u>= 1.
169 //
170 // So the widened condition is:
171 // guardStart u< guardLimit && latchLimit u>= 1.
172 // Similarly for sgt condition the widened condition is:
173 // guardStart u< guardLimit && latchLimit s>= 1.
174 // For uge condition the widened condition is:
175 // guardStart u< guardLimit && latchLimit u> 1.
176 // For sge condition the widened condition is:
177 // guardStart u< guardLimit && latchLimit s> 1.
178 //===----------------------------------------------------------------------===//
179
180 #include "llvm/Transforms/Scalar/LoopPredication.h"
181 #include "llvm/Analysis/BranchProbabilityInfo.h"
182 #include "llvm/Analysis/LoopInfo.h"
183 #include "llvm/Analysis/LoopPass.h"
184 #include "llvm/Analysis/ScalarEvolution.h"
185 #include "llvm/Analysis/ScalarEvolutionExpander.h"
186 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
187 #include "llvm/IR/Function.h"
188 #include "llvm/IR/GlobalValue.h"
189 #include "llvm/IR/IntrinsicInst.h"
190 #include "llvm/IR/Module.h"
191 #include "llvm/IR/PatternMatch.h"
192 #include "llvm/Pass.h"
193 #include "llvm/Support/Debug.h"
194 #include "llvm/Transforms/Scalar.h"
195 #include "llvm/Transforms/Utils/LoopUtils.h"
196
197 #define DEBUG_TYPE "loop-predication"
198
199 using namespace llvm;
200
201 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
202 cl::Hidden, cl::init(true));
203
204 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
205 cl::Hidden, cl::init(true));
206
207 static cl::opt<bool>
208 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
209 cl::Hidden, cl::init(false));
210
211 // This is the scale factor for the latch probability. We use this during
212 // profitability analysis to find other exiting blocks that have a much higher
213 // probability of exiting the loop instead of loop exiting via latch.
214 // This value should be greater than 1 for a sane profitability check.
215 static cl::opt<float> LatchExitProbabilityScale(
216 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
217 cl::desc("scale factor for the latch probability. Value should be greater "
218 "than 1. Lower values are ignored"));
219
220 namespace {
221 class LoopPredication {
222 /// Represents an induction variable check:
223 /// icmp Pred, <induction variable>, <loop invariant limit>
224 struct LoopICmp {
225 ICmpInst::Predicate Pred;
226 const SCEVAddRecExpr *IV;
227 const SCEV *Limit;
LoopICmp__anon977f62220111::LoopPredication::LoopICmp228 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
229 const SCEV *Limit)
230 : Pred(Pred), IV(IV), Limit(Limit) {}
LoopICmp__anon977f62220111::LoopPredication::LoopICmp231 LoopICmp() {}
dump__anon977f62220111::LoopPredication::LoopICmp232 void dump() {
233 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
234 << ", Limit = " << *Limit << "\n";
235 }
236 };
237
238 ScalarEvolution *SE;
239 BranchProbabilityInfo *BPI;
240
241 Loop *L;
242 const DataLayout *DL;
243 BasicBlock *Preheader;
244 LoopICmp LatchCheck;
245
246 bool isSupportedStep(const SCEV* Step);
parseLoopICmp(ICmpInst * ICI)247 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
248 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
249 ICI->getOperand(1));
250 }
251 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
252 Value *RHS);
253
254 Optional<LoopICmp> parseLoopLatchICmp();
255
256 bool CanExpand(const SCEV* S);
257 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
258 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
259 Instruction *InsertAt);
260
261 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
262 IRBuilder<> &Builder);
263 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
264 LoopICmp RangeCheck,
265 SCEVExpander &Expander,
266 IRBuilder<> &Builder);
267 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
268 LoopICmp RangeCheck,
269 SCEVExpander &Expander,
270 IRBuilder<> &Builder);
271 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
272
273 // If the loop always exits through another block in the loop, we should not
274 // predicate based on the latch check. For example, the latch check can be a
275 // very coarse grained check and there can be more fine grained exit checks
276 // within the loop. We identify such unprofitable loops through BPI.
277 bool isLoopProfitableToPredicate();
278
279 // When the IV type is wider than the range operand type, we can still do loop
280 // predication, by generating SCEVs for the range and latch that are of the
281 // same type. We achieve this by generating a SCEV truncate expression for the
282 // latch IV. This is done iff truncation of the IV is a safe operation,
283 // without loss of information.
284 // Another way to achieve this is by generating a wider type SCEV for the
285 // range check operand, however, this needs a more involved check that
286 // operands do not overflow. This can lead to loss of information when the
287 // range operand is of the form: add i32 %offset, %iv. We need to prove that
288 // sext(x + y) is same as sext(x) + sext(y).
289 // This function returns true if we can safely represent the IV type in
290 // the RangeCheckType without loss of information.
291 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
292 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
293 // so.
294 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
295
296 public:
LoopPredication(ScalarEvolution * SE,BranchProbabilityInfo * BPI)297 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
298 : SE(SE), BPI(BPI){};
299 bool runOnLoop(Loop *L);
300 };
301
302 class LoopPredicationLegacyPass : public LoopPass {
303 public:
304 static char ID;
LoopPredicationLegacyPass()305 LoopPredicationLegacyPass() : LoopPass(ID) {
306 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
307 }
308
getAnalysisUsage(AnalysisUsage & AU) const309 void getAnalysisUsage(AnalysisUsage &AU) const override {
310 AU.addRequired<BranchProbabilityInfoWrapperPass>();
311 getLoopAnalysisUsage(AU);
312 }
313
runOnLoop(Loop * L,LPPassManager & LPM)314 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
315 if (skipLoop(L))
316 return false;
317 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
318 BranchProbabilityInfo &BPI =
319 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
320 LoopPredication LP(SE, &BPI);
321 return LP.runOnLoop(L);
322 }
323 };
324
325 char LoopPredicationLegacyPass::ID = 0;
326 } // end namespace llvm
327
328 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
329 "Loop predication", false, false)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)330 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
331 INITIALIZE_PASS_DEPENDENCY(LoopPass)
332 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
333 "Loop predication", false, false)
334
335 Pass *llvm::createLoopPredicationPass() {
336 return new LoopPredicationLegacyPass();
337 }
338
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)339 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
340 LoopStandardAnalysisResults &AR,
341 LPMUpdater &U) {
342 const auto &FAM =
343 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
344 Function *F = L.getHeader()->getParent();
345 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
346 LoopPredication LP(&AR.SE, BPI);
347 if (!LP.runOnLoop(&L))
348 return PreservedAnalyses::all();
349
350 return getLoopPassPreservedAnalyses();
351 }
352
353 Optional<LoopPredication::LoopICmp>
parseLoopICmp(ICmpInst::Predicate Pred,Value * LHS,Value * RHS)354 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
355 Value *RHS) {
356 const SCEV *LHSS = SE->getSCEV(LHS);
357 if (isa<SCEVCouldNotCompute>(LHSS))
358 return None;
359 const SCEV *RHSS = SE->getSCEV(RHS);
360 if (isa<SCEVCouldNotCompute>(RHSS))
361 return None;
362
363 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
364 if (SE->isLoopInvariant(LHSS, L)) {
365 std::swap(LHS, RHS);
366 std::swap(LHSS, RHSS);
367 Pred = ICmpInst::getSwappedPredicate(Pred);
368 }
369
370 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
371 if (!AR || AR->getLoop() != L)
372 return None;
373
374 return LoopICmp(Pred, AR, RHSS);
375 }
376
expandCheck(SCEVExpander & Expander,IRBuilder<> & Builder,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,Instruction * InsertAt)377 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
378 IRBuilder<> &Builder,
379 ICmpInst::Predicate Pred, const SCEV *LHS,
380 const SCEV *RHS, Instruction *InsertAt) {
381 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
382
383 Type *Ty = LHS->getType();
384 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
385
386 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
387 return Builder.getTrue();
388
389 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
390 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
391 return Builder.CreateICmp(Pred, LHSV, RHSV);
392 }
393
394 Optional<LoopPredication::LoopICmp>
generateLoopLatchCheck(Type * RangeCheckType)395 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
396
397 auto *LatchType = LatchCheck.IV->getType();
398 if (RangeCheckType == LatchType)
399 return LatchCheck;
400 // For now, bail out if latch type is narrower than range type.
401 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
402 return None;
403 if (!isSafeToTruncateWideIVType(RangeCheckType))
404 return None;
405 // We can now safely identify the truncated version of the IV and limit for
406 // RangeCheckType.
407 LoopICmp NewLatchCheck;
408 NewLatchCheck.Pred = LatchCheck.Pred;
409 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
410 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
411 if (!NewLatchCheck.IV)
412 return None;
413 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
414 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
415 << "can be represented as range check type:"
416 << *RangeCheckType << "\n");
417 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
418 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
419 return NewLatchCheck;
420 }
421
isSupportedStep(const SCEV * Step)422 bool LoopPredication::isSupportedStep(const SCEV* Step) {
423 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
424 }
425
CanExpand(const SCEV * S)426 bool LoopPredication::CanExpand(const SCEV* S) {
427 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
428 }
429
widenICmpRangeCheckIncrementingLoop(LoopPredication::LoopICmp LatchCheck,LoopPredication::LoopICmp RangeCheck,SCEVExpander & Expander,IRBuilder<> & Builder)430 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
431 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
432 SCEVExpander &Expander, IRBuilder<> &Builder) {
433 auto *Ty = RangeCheck.IV->getType();
434 // Generate the widened condition for the forward loop:
435 // guardStart u< guardLimit &&
436 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
437 // where <pred> depends on the latch condition predicate. See the file
438 // header comment for the reasoning.
439 // guardLimit - guardStart + latchStart - 1
440 const SCEV *GuardStart = RangeCheck.IV->getStart();
441 const SCEV *GuardLimit = RangeCheck.Limit;
442 const SCEV *LatchStart = LatchCheck.IV->getStart();
443 const SCEV *LatchLimit = LatchCheck.Limit;
444
445 // guardLimit - guardStart + latchStart - 1
446 const SCEV *RHS =
447 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
448 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
449 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
450 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
451 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
452 return None;
453 }
454 auto LimitCheckPred =
455 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
456
457 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
458 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
459 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
460
461 Instruction *InsertAt = Preheader->getTerminator();
462 auto *LimitCheck =
463 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
464 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
465 GuardStart, GuardLimit, InsertAt);
466 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
467 }
468
widenICmpRangeCheckDecrementingLoop(LoopPredication::LoopICmp LatchCheck,LoopPredication::LoopICmp RangeCheck,SCEVExpander & Expander,IRBuilder<> & Builder)469 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
470 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
471 SCEVExpander &Expander, IRBuilder<> &Builder) {
472 auto *Ty = RangeCheck.IV->getType();
473 const SCEV *GuardStart = RangeCheck.IV->getStart();
474 const SCEV *GuardLimit = RangeCheck.Limit;
475 const SCEV *LatchLimit = LatchCheck.Limit;
476 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
477 !CanExpand(LatchLimit)) {
478 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
479 return None;
480 }
481 // The decrement of the latch check IV should be the same as the
482 // rangeCheckIV.
483 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
484 if (RangeCheck.IV != PostDecLatchCheckIV) {
485 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
486 << *PostDecLatchCheckIV
487 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
488 return None;
489 }
490
491 // Generate the widened condition for CountDownLoop:
492 // guardStart u< guardLimit &&
493 // latchLimit <pred> 1.
494 // See the header comment for reasoning of the checks.
495 Instruction *InsertAt = Preheader->getTerminator();
496 auto LimitCheckPred =
497 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
498 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
499 GuardStart, GuardLimit, InsertAt);
500 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
501 SE->getOne(Ty), InsertAt);
502 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
503 }
504
505 /// If ICI can be widened to a loop invariant condition emits the loop
506 /// invariant condition in the loop preheader and return it, otherwise
507 /// returns None.
widenICmpRangeCheck(ICmpInst * ICI,SCEVExpander & Expander,IRBuilder<> & Builder)508 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
509 SCEVExpander &Expander,
510 IRBuilder<> &Builder) {
511 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
512 LLVM_DEBUG(ICI->dump());
513
514 // parseLoopStructure guarantees that the latch condition is:
515 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
516 // We are looking for the range checks of the form:
517 // i u< guardLimit
518 auto RangeCheck = parseLoopICmp(ICI);
519 if (!RangeCheck) {
520 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
521 return None;
522 }
523 LLVM_DEBUG(dbgs() << "Guard check:\n");
524 LLVM_DEBUG(RangeCheck->dump());
525 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
526 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
527 << RangeCheck->Pred << ")!\n");
528 return None;
529 }
530 auto *RangeCheckIV = RangeCheck->IV;
531 if (!RangeCheckIV->isAffine()) {
532 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
533 return None;
534 }
535 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
536 // We cannot just compare with latch IV step because the latch and range IVs
537 // may have different types.
538 if (!isSupportedStep(Step)) {
539 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
540 return None;
541 }
542 auto *Ty = RangeCheckIV->getType();
543 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
544 if (!CurrLatchCheckOpt) {
545 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
546 "corresponding to range type: "
547 << *Ty << "\n");
548 return None;
549 }
550
551 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
552 // At this point, the range and latch step should have the same type, but need
553 // not have the same value (we support both 1 and -1 steps).
554 assert(Step->getType() ==
555 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
556 "Range and latch steps should be of same type!");
557 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
558 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
559 return None;
560 }
561
562 if (Step->isOne())
563 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
564 Expander, Builder);
565 else {
566 assert(Step->isAllOnesValue() && "Step should be -1!");
567 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
568 Expander, Builder);
569 }
570 }
571
widenGuardConditions(IntrinsicInst * Guard,SCEVExpander & Expander)572 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
573 SCEVExpander &Expander) {
574 LLVM_DEBUG(dbgs() << "Processing guard:\n");
575 LLVM_DEBUG(Guard->dump());
576
577 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
578
579 // The guard condition is expected to be in form of:
580 // cond1 && cond2 && cond3 ...
581 // Iterate over subconditions looking for icmp conditions which can be
582 // widened across loop iterations. Widening these conditions remember the
583 // resulting list of subconditions in Checks vector.
584 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
585 SmallPtrSet<Value *, 4> Visited;
586
587 SmallVector<Value *, 4> Checks;
588
589 unsigned NumWidened = 0;
590 do {
591 Value *Condition = Worklist.pop_back_val();
592 if (!Visited.insert(Condition).second)
593 continue;
594
595 Value *LHS, *RHS;
596 using namespace llvm::PatternMatch;
597 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
598 Worklist.push_back(LHS);
599 Worklist.push_back(RHS);
600 continue;
601 }
602
603 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
604 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
605 Checks.push_back(NewRangeCheck.getValue());
606 NumWidened++;
607 continue;
608 }
609 }
610
611 // Save the condition as is if we can't widen it
612 Checks.push_back(Condition);
613 } while (Worklist.size() != 0);
614
615 if (NumWidened == 0)
616 return false;
617
618 // Emit the new guard condition
619 Builder.SetInsertPoint(Guard);
620 Value *LastCheck = nullptr;
621 for (auto *Check : Checks)
622 if (!LastCheck)
623 LastCheck = Check;
624 else
625 LastCheck = Builder.CreateAnd(LastCheck, Check);
626 Guard->setOperand(0, LastCheck);
627
628 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
629 return true;
630 }
631
parseLoopLatchICmp()632 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
633 using namespace PatternMatch;
634
635 BasicBlock *LoopLatch = L->getLoopLatch();
636 if (!LoopLatch) {
637 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
638 return None;
639 }
640
641 ICmpInst::Predicate Pred;
642 Value *LHS, *RHS;
643 BasicBlock *TrueDest, *FalseDest;
644
645 if (!match(LoopLatch->getTerminator(),
646 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
647 FalseDest))) {
648 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
649 return None;
650 }
651 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
652 "One of the latch's destinations must be the header");
653 if (TrueDest != L->getHeader())
654 Pred = ICmpInst::getInversePredicate(Pred);
655
656 auto Result = parseLoopICmp(Pred, LHS, RHS);
657 if (!Result) {
658 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
659 return None;
660 }
661
662 // Check affine first, so if it's not we don't try to compute the step
663 // recurrence.
664 if (!Result->IV->isAffine()) {
665 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
666 return None;
667 }
668
669 auto *Step = Result->IV->getStepRecurrence(*SE);
670 if (!isSupportedStep(Step)) {
671 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
672 return None;
673 }
674
675 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
676 if (Step->isOne()) {
677 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
678 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
679 } else {
680 assert(Step->isAllOnesValue() && "Step should be -1!");
681 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
682 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
683 }
684 };
685
686 if (IsUnsupportedPredicate(Step, Result->Pred)) {
687 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
688 << ")!\n");
689 return None;
690 }
691 return Result;
692 }
693
694 // Returns true if its safe to truncate the IV to RangeCheckType.
isSafeToTruncateWideIVType(Type * RangeCheckType)695 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
696 if (!EnableIVTruncation)
697 return false;
698 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
699 DL->getTypeSizeInBits(RangeCheckType) &&
700 "Expected latch check IV type to be larger than range check operand "
701 "type!");
702 // The start and end values of the IV should be known. This is to guarantee
703 // that truncating the wide type will not lose information.
704 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
705 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
706 if (!Limit || !Start)
707 return false;
708 // This check makes sure that the IV does not change sign during loop
709 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
710 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
711 // IV wraps around, and the truncation of the IV would lose the range of
712 // iterations between 2^32 and 2^64.
713 bool Increasing;
714 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
715 return false;
716 // The active bits should be less than the bits in the RangeCheckType. This
717 // guarantees that truncating the latch check to RangeCheckType is a safe
718 // operation.
719 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
720 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
721 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
722 }
723
isLoopProfitableToPredicate()724 bool LoopPredication::isLoopProfitableToPredicate() {
725 if (SkipProfitabilityChecks || !BPI)
726 return true;
727
728 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
729 L->getExitEdges(ExitEdges);
730 // If there is only one exiting edge in the loop, it is always profitable to
731 // predicate the loop.
732 if (ExitEdges.size() == 1)
733 return true;
734
735 // Calculate the exiting probabilities of all exiting edges from the loop,
736 // starting with the LatchExitProbability.
737 // Heuristic for profitability: If any of the exiting blocks' probability of
738 // exiting the loop is larger than exiting through the latch block, it's not
739 // profitable to predicate the loop.
740 auto *LatchBlock = L->getLoopLatch();
741 assert(LatchBlock && "Should have a single latch at this point!");
742 auto *LatchTerm = LatchBlock->getTerminator();
743 assert(LatchTerm->getNumSuccessors() == 2 &&
744 "expected to be an exiting block with 2 succs!");
745 unsigned LatchBrExitIdx =
746 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
747 BranchProbability LatchExitProbability =
748 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
749
750 // Protect against degenerate inputs provided by the user. Providing a value
751 // less than one, can invert the definition of profitable loop predication.
752 float ScaleFactor = LatchExitProbabilityScale;
753 if (ScaleFactor < 1) {
754 LLVM_DEBUG(
755 dbgs()
756 << "Ignored user setting for loop-predication-latch-probability-scale: "
757 << LatchExitProbabilityScale << "\n");
758 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
759 ScaleFactor = 1.0;
760 }
761 const auto LatchProbabilityThreshold =
762 LatchExitProbability * ScaleFactor;
763
764 for (const auto &ExitEdge : ExitEdges) {
765 BranchProbability ExitingBlockProbability =
766 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
767 // Some exiting edge has higher probability than the latch exiting edge.
768 // No longer profitable to predicate.
769 if (ExitingBlockProbability > LatchProbabilityThreshold)
770 return false;
771 }
772 // Using BPI, we have concluded that the most probable way to exit from the
773 // loop is through the latch (or there's no profile information and all
774 // exits are equally likely).
775 return true;
776 }
777
runOnLoop(Loop * Loop)778 bool LoopPredication::runOnLoop(Loop *Loop) {
779 L = Loop;
780
781 LLVM_DEBUG(dbgs() << "Analyzing ");
782 LLVM_DEBUG(L->dump());
783
784 Module *M = L->getHeader()->getModule();
785
786 // There is nothing to do if the module doesn't use guards
787 auto *GuardDecl =
788 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
789 if (!GuardDecl || GuardDecl->use_empty())
790 return false;
791
792 DL = &M->getDataLayout();
793
794 Preheader = L->getLoopPreheader();
795 if (!Preheader)
796 return false;
797
798 auto LatchCheckOpt = parseLoopLatchICmp();
799 if (!LatchCheckOpt)
800 return false;
801 LatchCheck = *LatchCheckOpt;
802
803 LLVM_DEBUG(dbgs() << "Latch check:\n");
804 LLVM_DEBUG(LatchCheck.dump());
805
806 if (!isLoopProfitableToPredicate()) {
807 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
808 return false;
809 }
810 // Collect all the guards into a vector and process later, so as not
811 // to invalidate the instruction iterator.
812 SmallVector<IntrinsicInst *, 4> Guards;
813 for (const auto BB : L->blocks())
814 for (auto &I : *BB)
815 if (auto *II = dyn_cast<IntrinsicInst>(&I))
816 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
817 Guards.push_back(II);
818
819 if (Guards.empty())
820 return false;
821
822 SCEVExpander Expander(*SE, *DL, "loop-predication");
823
824 bool Changed = false;
825 for (auto *Guard : Guards)
826 Changed |= widenGuardConditions(Guard, Expander);
827
828 return Changed;
829 }
830