1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <inttypes.h>
18 #include <string.h>
19
20 #include <functional>
21 #include <iomanip>
22 #include <mutex>
23 #include <sstream>
24 #include <string>
25 #include <unordered_map>
26
27 #include <android-base/macros.h>
28 #include <backtrace.h>
29
30 #include "Allocator.h"
31 #include "Binder.h"
32 #include "HeapWalker.h"
33 #include "Leak.h"
34 #include "LeakFolding.h"
35 #include "LeakPipe.h"
36 #include "ProcessMappings.h"
37 #include "PtracerThread.h"
38 #include "ScopedDisableMalloc.h"
39 #include "Semaphore.h"
40 #include "ThreadCapture.h"
41
42 #include "bionic.h"
43 #include "log.h"
44 #include "memunreachable/memunreachable.h"
45
46 using namespace std::chrono_literals;
47
48 namespace android {
49
50 const size_t Leak::contents_length;
51
52 class MemUnreachable {
53 public:
MemUnreachable(pid_t pid,Allocator<void> allocator)54 MemUnreachable(pid_t pid, Allocator<void> allocator)
55 : pid_(pid), allocator_(allocator), heap_walker_(allocator_) {}
56 bool CollectAllocations(const allocator::vector<ThreadInfo>& threads,
57 const allocator::vector<Mapping>& mappings,
58 const allocator::vector<uintptr_t>& refs);
59 bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, size_t* num_leaks,
60 size_t* leak_bytes);
Allocations()61 size_t Allocations() { return heap_walker_.Allocations(); }
AllocationBytes()62 size_t AllocationBytes() { return heap_walker_.AllocationBytes(); }
63
64 private:
65 bool ClassifyMappings(const allocator::vector<Mapping>& mappings,
66 allocator::vector<Mapping>& heap_mappings,
67 allocator::vector<Mapping>& anon_mappings,
68 allocator::vector<Mapping>& globals_mappings,
69 allocator::vector<Mapping>& stack_mappings);
70 DISALLOW_COPY_AND_ASSIGN(MemUnreachable);
71 pid_t pid_;
72 Allocator<void> allocator_;
73 HeapWalker heap_walker_;
74 };
75
HeapIterate(const Mapping & heap_mapping,const std::function<void (uintptr_t,size_t)> & func)76 static void HeapIterate(const Mapping& heap_mapping,
77 const std::function<void(uintptr_t, size_t)>& func) {
78 malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin,
79 [](uintptr_t base, size_t size, void* arg) {
80 auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg);
81 (*f)(base, size);
82 },
83 const_cast<void*>(reinterpret_cast<const void*>(&func)));
84 }
85
CollectAllocations(const allocator::vector<ThreadInfo> & threads,const allocator::vector<Mapping> & mappings,const allocator::vector<uintptr_t> & refs)86 bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads,
87 const allocator::vector<Mapping>& mappings,
88 const allocator::vector<uintptr_t>& refs) {
89 MEM_ALOGI("searching process %d for allocations", pid_);
90
91 for (auto it = mappings.begin(); it != mappings.end(); it++) {
92 heap_walker_.Mapping(it->begin, it->end);
93 }
94
95 allocator::vector<Mapping> heap_mappings{mappings};
96 allocator::vector<Mapping> anon_mappings{mappings};
97 allocator::vector<Mapping> globals_mappings{mappings};
98 allocator::vector<Mapping> stack_mappings{mappings};
99 if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, globals_mappings, stack_mappings)) {
100 return false;
101 }
102
103 for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) {
104 MEM_ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
105 HeapIterate(*it,
106 [&](uintptr_t base, size_t size) { heap_walker_.Allocation(base, base + size); });
107 }
108
109 for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) {
110 MEM_ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
111 heap_walker_.Allocation(it->begin, it->end);
112 }
113
114 for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) {
115 MEM_ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name);
116 heap_walker_.Root(it->begin, it->end);
117 }
118
119 for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) {
120 for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) {
121 if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) {
122 MEM_ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name);
123 heap_walker_.Root(thread_it->stack.first, it->end);
124 }
125 }
126 heap_walker_.Root(thread_it->regs);
127 }
128
129 heap_walker_.Root(refs);
130
131 MEM_ALOGI("searching done");
132
133 return true;
134 }
135
GetUnreachableMemory(allocator::vector<Leak> & leaks,size_t limit,size_t * num_leaks,size_t * leak_bytes)136 bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit,
137 size_t* num_leaks, size_t* leak_bytes) {
138 MEM_ALOGI("sweeping process %d for unreachable memory", pid_);
139 leaks.clear();
140
141 if (!heap_walker_.DetectLeaks()) {
142 return false;
143 }
144
145 allocator::vector<Range> leaked1{allocator_};
146 heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes);
147
148 MEM_ALOGI("sweeping done");
149
150 MEM_ALOGI("folding related leaks");
151
152 LeakFolding folding(allocator_, heap_walker_);
153 if (!folding.FoldLeaks()) {
154 return false;
155 }
156
157 allocator::vector<LeakFolding::Leak> leaked{allocator_};
158
159 if (!folding.Leaked(leaked, num_leaks, leak_bytes)) {
160 return false;
161 }
162
163 allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_};
164
165 // Prevent reallocations of backing memory so we can store pointers into it
166 // in backtrace_map.
167 leaks.reserve(leaked.size());
168
169 for (auto& it : leaked) {
170 leaks.emplace_back();
171 Leak* leak = &leaks.back();
172
173 ssize_t num_backtrace_frames = malloc_backtrace(
174 reinterpret_cast<void*>(it.range.begin), leak->backtrace.frames, leak->backtrace.max_frames);
175 if (num_backtrace_frames > 0) {
176 leak->backtrace.num_frames = num_backtrace_frames;
177
178 auto inserted = backtrace_map.emplace(leak->backtrace, leak);
179 if (!inserted.second) {
180 // Leak with same backtrace already exists, drop this one and
181 // increment similar counts on the existing one.
182 leaks.pop_back();
183 Leak* similar_leak = inserted.first->second;
184 similar_leak->similar_count++;
185 similar_leak->similar_size += it.range.size();
186 similar_leak->similar_referenced_count += it.referenced_count;
187 similar_leak->similar_referenced_size += it.referenced_size;
188 similar_leak->total_size += it.range.size();
189 similar_leak->total_size += it.referenced_size;
190 continue;
191 }
192 }
193
194 leak->begin = it.range.begin;
195 leak->size = it.range.size();
196 leak->referenced_count = it.referenced_count;
197 leak->referenced_size = it.referenced_size;
198 leak->total_size = leak->size + leak->referenced_size;
199 memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin),
200 std::min(leak->size, Leak::contents_length));
201 }
202
203 MEM_ALOGI("folding done");
204
205 std::sort(leaks.begin(), leaks.end(),
206 [](const Leak& a, const Leak& b) { return a.total_size > b.total_size; });
207
208 if (leaks.size() > limit) {
209 leaks.resize(limit);
210 }
211
212 return true;
213 }
214
has_prefix(const allocator::string & s,const char * prefix)215 static bool has_prefix(const allocator::string& s, const char* prefix) {
216 int ret = s.compare(0, strlen(prefix), prefix);
217 return ret == 0;
218 }
219
is_sanitizer_mapping(const allocator::string & s)220 static bool is_sanitizer_mapping(const allocator::string& s) {
221 return s == "[anon:low shadow]" || s == "[anon:high shadow]" || has_prefix(s, "[anon:hwasan");
222 }
223
ClassifyMappings(const allocator::vector<Mapping> & mappings,allocator::vector<Mapping> & heap_mappings,allocator::vector<Mapping> & anon_mappings,allocator::vector<Mapping> & globals_mappings,allocator::vector<Mapping> & stack_mappings)224 bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings,
225 allocator::vector<Mapping>& heap_mappings,
226 allocator::vector<Mapping>& anon_mappings,
227 allocator::vector<Mapping>& globals_mappings,
228 allocator::vector<Mapping>& stack_mappings) {
229 heap_mappings.clear();
230 anon_mappings.clear();
231 globals_mappings.clear();
232 stack_mappings.clear();
233
234 allocator::string current_lib{allocator_};
235
236 for (auto it = mappings.begin(); it != mappings.end(); it++) {
237 if (it->execute) {
238 current_lib = it->name;
239 continue;
240 }
241
242 if (!it->read) {
243 continue;
244 }
245
246 const allocator::string mapping_name{it->name, allocator_};
247 if (mapping_name == "[anon:.bss]") {
248 // named .bss section
249 globals_mappings.emplace_back(*it);
250 } else if (mapping_name == current_lib) {
251 // .rodata or .data section
252 globals_mappings.emplace_back(*it);
253 } else if (mapping_name == "[anon:libc_malloc]") {
254 // named malloc mapping
255 heap_mappings.emplace_back(*it);
256 } else if (has_prefix(mapping_name, "[anon:dalvik-")) {
257 // named dalvik heap mapping
258 globals_mappings.emplace_back(*it);
259 } else if (has_prefix(mapping_name, "[stack")) {
260 // named stack mapping
261 stack_mappings.emplace_back(*it);
262 } else if (mapping_name.size() == 0) {
263 globals_mappings.emplace_back(*it);
264 } else if (has_prefix(mapping_name, "[anon:") &&
265 mapping_name != "[anon:leak_detector_malloc]" &&
266 !is_sanitizer_mapping(mapping_name)) {
267 // TODO(ccross): it would be nice to treat named anonymous mappings as
268 // possible leaks, but naming something in a .bss or .data section makes
269 // it impossible to distinguish them from mmaped and then named mappings.
270 globals_mappings.emplace_back(*it);
271 }
272 }
273
274 return true;
275 }
276
277 template <typename T>
plural(T val)278 static inline const char* plural(T val) {
279 return (val == 1) ? "" : "s";
280 }
281
GetUnreachableMemory(UnreachableMemoryInfo & info,size_t limit)282 bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) {
283 int parent_pid = getpid();
284 int parent_tid = gettid();
285
286 Heap heap;
287
288 Semaphore continue_parent_sem;
289 LeakPipe pipe;
290
291 PtracerThread thread{[&]() -> int {
292 /////////////////////////////////////////////
293 // Collection thread
294 /////////////////////////////////////////////
295 MEM_ALOGI("collecting thread info for process %d...", parent_pid);
296
297 ThreadCapture thread_capture(parent_pid, heap);
298 allocator::vector<ThreadInfo> thread_info(heap);
299 allocator::vector<Mapping> mappings(heap);
300 allocator::vector<uintptr_t> refs(heap);
301
302 // ptrace all the threads
303 if (!thread_capture.CaptureThreads()) {
304 continue_parent_sem.Post();
305 return 1;
306 }
307
308 // collect register contents and stacks
309 if (!thread_capture.CapturedThreadInfo(thread_info)) {
310 continue_parent_sem.Post();
311 return 1;
312 }
313
314 // snapshot /proc/pid/maps
315 if (!ProcessMappings(parent_pid, mappings)) {
316 continue_parent_sem.Post();
317 return 1;
318 }
319
320 if (!BinderReferences(refs)) {
321 continue_parent_sem.Post();
322 return 1;
323 }
324
325 // malloc must be enabled to call fork, at_fork handlers take the same
326 // locks as ScopedDisableMalloc. All threads are paused in ptrace, so
327 // memory state is still consistent. Unfreeze the original thread so it
328 // can drop the malloc locks, it will block until the collection thread
329 // exits.
330 thread_capture.ReleaseThread(parent_tid);
331 continue_parent_sem.Post();
332
333 // fork a process to do the heap walking
334 int ret = fork();
335 if (ret < 0) {
336 return 1;
337 } else if (ret == 0) {
338 /////////////////////////////////////////////
339 // Heap walker process
340 /////////////////////////////////////////////
341 // Examine memory state in the child using the data collected above and
342 // the CoW snapshot of the process memory contents.
343
344 if (!pipe.OpenSender()) {
345 _exit(1);
346 }
347
348 MemUnreachable unreachable{parent_pid, heap};
349
350 if (!unreachable.CollectAllocations(thread_info, mappings, refs)) {
351 _exit(2);
352 }
353 size_t num_allocations = unreachable.Allocations();
354 size_t allocation_bytes = unreachable.AllocationBytes();
355
356 allocator::vector<Leak> leaks{heap};
357
358 size_t num_leaks = 0;
359 size_t leak_bytes = 0;
360 bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes);
361
362 ok = ok && pipe.Sender().Send(num_allocations);
363 ok = ok && pipe.Sender().Send(allocation_bytes);
364 ok = ok && pipe.Sender().Send(num_leaks);
365 ok = ok && pipe.Sender().Send(leak_bytes);
366 ok = ok && pipe.Sender().SendVector(leaks);
367
368 if (!ok) {
369 _exit(3);
370 }
371
372 _exit(0);
373 } else {
374 // Nothing left to do in the collection thread, return immediately,
375 // releasing all the captured threads.
376 MEM_ALOGI("collection thread done");
377 return 0;
378 }
379 }};
380
381 /////////////////////////////////////////////
382 // Original thread
383 /////////////////////////////////////////////
384
385 {
386 // Disable malloc to get a consistent view of memory
387 ScopedDisableMalloc disable_malloc;
388
389 // Start the collection thread
390 thread.Start();
391
392 // Wait for the collection thread to signal that it is ready to fork the
393 // heap walker process.
394 continue_parent_sem.Wait(30s);
395
396 // Re-enable malloc so the collection thread can fork.
397 }
398
399 // Wait for the collection thread to exit
400 int ret = thread.Join();
401 if (ret != 0) {
402 return false;
403 }
404
405 // Get a pipe from the heap walker process. Transferring a new pipe fd
406 // ensures no other forked processes can have it open, so when the heap
407 // walker process dies the remote side of the pipe will close.
408 if (!pipe.OpenReceiver()) {
409 return false;
410 }
411
412 bool ok = true;
413 ok = ok && pipe.Receiver().Receive(&info.num_allocations);
414 ok = ok && pipe.Receiver().Receive(&info.allocation_bytes);
415 ok = ok && pipe.Receiver().Receive(&info.num_leaks);
416 ok = ok && pipe.Receiver().Receive(&info.leak_bytes);
417 ok = ok && pipe.Receiver().ReceiveVector(info.leaks);
418 if (!ok) {
419 return false;
420 }
421
422 MEM_ALOGI("unreachable memory detection done");
423 MEM_ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s",
424 info.leak_bytes, info.num_leaks, plural(info.num_leaks), info.allocation_bytes,
425 info.num_allocations, plural(info.num_allocations));
426 return true;
427 }
428
ToString(bool log_contents) const429 std::string Leak::ToString(bool log_contents) const {
430 std::ostringstream oss;
431
432 oss << " " << std::dec << size;
433 oss << " bytes unreachable at ";
434 oss << std::hex << begin;
435 oss << std::endl;
436 if (referenced_count > 0) {
437 oss << std::dec;
438 oss << " referencing " << referenced_size << " unreachable bytes";
439 oss << " in " << referenced_count << " allocation" << plural(referenced_count);
440 oss << std::endl;
441 }
442 if (similar_count > 0) {
443 oss << std::dec;
444 oss << " and " << similar_size << " similar unreachable bytes";
445 oss << " in " << similar_count << " allocation" << plural(similar_count);
446 oss << std::endl;
447 if (similar_referenced_count > 0) {
448 oss << " referencing " << similar_referenced_size << " unreachable bytes";
449 oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count);
450 oss << std::endl;
451 }
452 }
453
454 if (log_contents) {
455 const int bytes_per_line = 16;
456 const size_t bytes = std::min(size, contents_length);
457
458 if (bytes == size) {
459 oss << " contents:" << std::endl;
460 } else {
461 oss << " first " << bytes << " bytes of contents:" << std::endl;
462 }
463
464 for (size_t i = 0; i < bytes; i += bytes_per_line) {
465 oss << " " << std::hex << begin + i << ": ";
466 size_t j;
467 oss << std::setfill('0');
468 for (j = i; j < bytes && j < i + bytes_per_line; j++) {
469 oss << std::setw(2) << static_cast<int>(contents[j]) << " ";
470 }
471 oss << std::setfill(' ');
472 for (; j < i + bytes_per_line; j++) {
473 oss << " ";
474 }
475 for (j = i; j < bytes && j < i + bytes_per_line; j++) {
476 char c = contents[j];
477 if (c < ' ' || c >= 0x7f) {
478 c = '.';
479 }
480 oss << c;
481 }
482 oss << std::endl;
483 }
484 }
485 if (backtrace.num_frames > 0) {
486 oss << backtrace_string(backtrace.frames, backtrace.num_frames);
487 }
488
489 return oss.str();
490 }
491
ToString(bool log_contents) const492 std::string UnreachableMemoryInfo::ToString(bool log_contents) const {
493 std::ostringstream oss;
494 oss << " " << leak_bytes << " bytes in ";
495 oss << num_leaks << " unreachable allocation" << plural(num_leaks);
496 oss << std::endl;
497 oss << " ABI: '" ABI_STRING "'" << std::endl;
498 oss << std::endl;
499
500 for (auto it = leaks.begin(); it != leaks.end(); it++) {
501 oss << it->ToString(log_contents);
502 oss << std::endl;
503 }
504
505 return oss.str();
506 }
507
~UnreachableMemoryInfo()508 UnreachableMemoryInfo::~UnreachableMemoryInfo() {
509 // Clear the memory that holds the leaks, otherwise the next attempt to
510 // detect leaks may find the old data (for example in the jemalloc tcache)
511 // and consider all the leaks to be referenced.
512 memset(leaks.data(), 0, leaks.capacity() * sizeof(Leak));
513
514 std::vector<Leak> tmp;
515 leaks.swap(tmp);
516
517 // Disable and re-enable malloc to flush the jemalloc tcache to make sure
518 // there are no copies of the leaked pointer addresses there.
519 malloc_disable();
520 malloc_enable();
521 }
522
GetUnreachableMemoryString(bool log_contents,size_t limit)523 std::string GetUnreachableMemoryString(bool log_contents, size_t limit) {
524 UnreachableMemoryInfo info;
525 if (!GetUnreachableMemory(info, limit)) {
526 return "Failed to get unreachable memory\n"
527 "If you are trying to get unreachable memory from a system app\n"
528 "(like com.android.systemui), disable selinux first using\n"
529 "setenforce 0\n";
530 }
531
532 return info.ToString(log_contents);
533 }
534
535 } // namespace android
536
LogUnreachableMemory(bool log_contents,size_t limit)537 bool LogUnreachableMemory(bool log_contents, size_t limit) {
538 android::UnreachableMemoryInfo info;
539 if (!android::GetUnreachableMemory(info, limit)) {
540 return false;
541 }
542
543 for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) {
544 MEM_ALOGE("%s", it->ToString(log_contents).c_str());
545 }
546 return true;
547 }
548
NoLeaks()549 bool NoLeaks() {
550 android::UnreachableMemoryInfo info;
551 if (!android::GetUnreachableMemory(info, 0)) {
552 return false;
553 }
554
555 return info.num_leaks == 0;
556 }
557