• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// Cell SPU Instructions:
10//===----------------------------------------------------------------------===//
11
12//===----------------------------------------------------------------------===//
13// TODO Items (not urgent today, but would be nice, low priority)
14//
15// ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
16// concatenating the byte argument b as "bbbb". Could recognize this bit pattern
17// in 16-bit and 32-bit constants and reduce instruction count.
18//===----------------------------------------------------------------------===//
19
20//===----------------------------------------------------------------------===//
21// Pseudo instructions:
22//===----------------------------------------------------------------------===//
23
24let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
25  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt),
26                                "${:comment} ADJCALLSTACKDOWN",
27                                [(callseq_start timm:$amt)]>;
28  def ADJCALLSTACKUP   : Pseudo<(outs), (ins u16imm_i32:$amt),
29                                "${:comment} ADJCALLSTACKUP",
30                                [(callseq_end timm:$amt)]>;
31  def HBR_LABEL        : Pseudo<(outs), (ins hbrtarget:$targ),
32                                "$targ:\t${:comment}branch hint target",[ ]>;
33}
34
35//===----------------------------------------------------------------------===//
36// Loads:
37// NB: The ordering is actually important, since the instruction selection
38// will try each of the instructions in sequence, i.e., the D-form first with
39// the 10-bit displacement, then the A-form with the 16 bit displacement, and
40// finally the X-form with the register-register.
41//===----------------------------------------------------------------------===//
42
43let canFoldAsLoad = 1 in {
44  class LoadDFormVec<ValueType vectype>
45    : RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src),
46               "lqd\t$rT, $src",
47               LoadStore,
48               [(set (vectype VECREG:$rT), (load dform_addr:$src))]>
49  { }
50
51  class LoadDForm<RegisterClass rclass>
52    : RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src),
53               "lqd\t$rT, $src",
54               LoadStore,
55               [(set rclass:$rT, (load dform_addr:$src))]>
56  { }
57
58  multiclass LoadDForms
59  {
60    def v16i8: LoadDFormVec<v16i8>;
61    def v8i16: LoadDFormVec<v8i16>;
62    def v4i32: LoadDFormVec<v4i32>;
63    def v2i64: LoadDFormVec<v2i64>;
64    def v4f32: LoadDFormVec<v4f32>;
65    def v2f64: LoadDFormVec<v2f64>;
66
67    def r128:  LoadDForm<GPRC>;
68    def r64:   LoadDForm<R64C>;
69    def r32:   LoadDForm<R32C>;
70    def f32:   LoadDForm<R32FP>;
71    def f64:   LoadDForm<R64FP>;
72    def r16:   LoadDForm<R16C>;
73    def r8:    LoadDForm<R8C>;
74  }
75
76  class LoadAFormVec<ValueType vectype>
77    : RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
78               "lqa\t$rT, $src",
79               LoadStore,
80               [(set (vectype VECREG:$rT), (load aform_addr:$src))]>
81  { }
82
83  class LoadAForm<RegisterClass rclass>
84    : RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src),
85               "lqa\t$rT, $src",
86               LoadStore,
87               [(set rclass:$rT, (load aform_addr:$src))]>
88  { }
89
90  multiclass LoadAForms
91  {
92    def v16i8: LoadAFormVec<v16i8>;
93    def v8i16: LoadAFormVec<v8i16>;
94    def v4i32: LoadAFormVec<v4i32>;
95    def v2i64: LoadAFormVec<v2i64>;
96    def v4f32: LoadAFormVec<v4f32>;
97    def v2f64: LoadAFormVec<v2f64>;
98
99    def r128:  LoadAForm<GPRC>;
100    def r64:   LoadAForm<R64C>;
101    def r32:   LoadAForm<R32C>;
102    def f32:   LoadAForm<R32FP>;
103    def f64:   LoadAForm<R64FP>;
104    def r16:   LoadAForm<R16C>;
105    def r8:    LoadAForm<R8C>;
106  }
107
108  class LoadXFormVec<ValueType vectype>
109    : RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
110             "lqx\t$rT, $src",
111             LoadStore,
112             [(set (vectype VECREG:$rT), (load xform_addr:$src))]>
113  { }
114
115  class LoadXForm<RegisterClass rclass>
116    : RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src),
117             "lqx\t$rT, $src",
118             LoadStore,
119             [(set rclass:$rT, (load xform_addr:$src))]>
120  { }
121
122  multiclass LoadXForms
123  {
124    def v16i8: LoadXFormVec<v16i8>;
125    def v8i16: LoadXFormVec<v8i16>;
126    def v4i32: LoadXFormVec<v4i32>;
127    def v2i64: LoadXFormVec<v2i64>;
128    def v4f32: LoadXFormVec<v4f32>;
129    def v2f64: LoadXFormVec<v2f64>;
130
131    def r128:  LoadXForm<GPRC>;
132    def r64:   LoadXForm<R64C>;
133    def r32:   LoadXForm<R32C>;
134    def f32:   LoadXForm<R32FP>;
135    def f64:   LoadXForm<R64FP>;
136    def r16:   LoadXForm<R16C>;
137    def r8:    LoadXForm<R8C>;
138  }
139
140  defm LQA : LoadAForms;
141  defm LQD : LoadDForms;
142  defm LQX : LoadXForms;
143
144/* Load quadword, PC relative: Not much use at this point in time.
145   Might be of use later for relocatable code. It's effectively the
146   same as LQA, but uses PC-relative addressing.
147  def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
148                     "lqr\t$rT, $disp", LoadStore,
149                     [(set VECREG:$rT, (load iaddr:$disp))]>;
150 */
151}
152
153//===----------------------------------------------------------------------===//
154// Stores:
155//===----------------------------------------------------------------------===//
156class StoreDFormVec<ValueType vectype>
157  : RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src),
158             "stqd\t$rT, $src",
159             LoadStore,
160             [(store (vectype VECREG:$rT), dform_addr:$src)]>
161{ }
162
163class StoreDForm<RegisterClass rclass>
164  : RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src),
165             "stqd\t$rT, $src",
166             LoadStore,
167             [(store rclass:$rT, dform_addr:$src)]>
168{ }
169
170multiclass StoreDForms
171{
172  def v16i8: StoreDFormVec<v16i8>;
173  def v8i16: StoreDFormVec<v8i16>;
174  def v4i32: StoreDFormVec<v4i32>;
175  def v2i64: StoreDFormVec<v2i64>;
176  def v4f32: StoreDFormVec<v4f32>;
177  def v2f64: StoreDFormVec<v2f64>;
178
179  def r128:  StoreDForm<GPRC>;
180  def r64:   StoreDForm<R64C>;
181  def r32:   StoreDForm<R32C>;
182  def f32:   StoreDForm<R32FP>;
183  def f64:   StoreDForm<R64FP>;
184  def r16:   StoreDForm<R16C>;
185  def r8:    StoreDForm<R8C>;
186}
187
188class StoreAFormVec<ValueType vectype>
189  : RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src),
190             "stqa\t$rT, $src",
191             LoadStore,
192             [(store (vectype VECREG:$rT), aform_addr:$src)]>;
193
194class StoreAForm<RegisterClass rclass>
195  : RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src),
196             "stqa\t$rT, $src",
197             LoadStore,
198             [(store rclass:$rT, aform_addr:$src)]>;
199
200multiclass StoreAForms
201{
202  def v16i8: StoreAFormVec<v16i8>;
203  def v8i16: StoreAFormVec<v8i16>;
204  def v4i32: StoreAFormVec<v4i32>;
205  def v2i64: StoreAFormVec<v2i64>;
206  def v4f32: StoreAFormVec<v4f32>;
207  def v2f64: StoreAFormVec<v2f64>;
208
209  def r128:  StoreAForm<GPRC>;
210  def r64:   StoreAForm<R64C>;
211  def r32:   StoreAForm<R32C>;
212  def f32:   StoreAForm<R32FP>;
213  def f64:   StoreAForm<R64FP>;
214  def r16:   StoreAForm<R16C>;
215  def r8:    StoreAForm<R8C>;
216}
217
218class StoreXFormVec<ValueType vectype>
219  : RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
220           "stqx\t$rT, $src",
221           LoadStore,
222           [(store (vectype VECREG:$rT), xform_addr:$src)]>
223{ }
224
225class StoreXForm<RegisterClass rclass>
226  : RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src),
227           "stqx\t$rT, $src",
228           LoadStore,
229           [(store rclass:$rT, xform_addr:$src)]>
230{ }
231
232multiclass StoreXForms
233{
234  def v16i8: StoreXFormVec<v16i8>;
235  def v8i16: StoreXFormVec<v8i16>;
236  def v4i32: StoreXFormVec<v4i32>;
237  def v2i64: StoreXFormVec<v2i64>;
238  def v4f32: StoreXFormVec<v4f32>;
239  def v2f64: StoreXFormVec<v2f64>;
240
241  def r128:  StoreXForm<GPRC>;
242  def r64:   StoreXForm<R64C>;
243  def r32:   StoreXForm<R32C>;
244  def f32:   StoreXForm<R32FP>;
245  def f64:   StoreXForm<R64FP>;
246  def r16:   StoreXForm<R16C>;
247  def r8:    StoreXForm<R8C>;
248}
249
250defm STQD : StoreDForms;
251defm STQA : StoreAForms;
252defm STQX : StoreXForms;
253
254/* Store quadword, PC relative: Not much use at this point in time. Might
255   be useful for relocatable code.
256def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
257                   "stqr\t$rT, $disp", LoadStore,
258                   [(store VECREG:$rT, iaddr:$disp)]>;
259*/
260
261//===----------------------------------------------------------------------===//
262// Generate Controls for Insertion:
263//===----------------------------------------------------------------------===//
264
265def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
266    "cbd\t$rT, $src", ShuffleOp,
267    [(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
268
269def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
270    "cbx\t$rT, $src", ShuffleOp,
271    [(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
272
273def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
274    "chd\t$rT, $src", ShuffleOp,
275    [(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
276
277def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
278    "chx\t$rT, $src", ShuffleOp,
279    [(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
280
281def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
282    "cwd\t$rT, $src", ShuffleOp,
283    [(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
284
285def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
286    "cwx\t$rT, $src", ShuffleOp,
287    [(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
288
289def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
290    "cwd\t$rT, $src", ShuffleOp,
291    [(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
292
293def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
294    "cwx\t$rT, $src", ShuffleOp,
295    [(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
296
297def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
298    "cdd\t$rT, $src", ShuffleOp,
299    [(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
300
301def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
302    "cdx\t$rT, $src", ShuffleOp,
303    [(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
304
305def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
306    "cdd\t$rT, $src", ShuffleOp,
307    [(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
308
309def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
310    "cdx\t$rT, $src", ShuffleOp,
311    [(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
312
313//===----------------------------------------------------------------------===//
314// Constant formation:
315//===----------------------------------------------------------------------===//
316
317def ILHv8i16:
318  RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
319    "ilh\t$rT, $val", ImmLoad,
320    [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;
321
322def ILHr16:
323  RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
324    "ilh\t$rT, $val", ImmLoad,
325    [(set R16C:$rT, immSExt16:$val)]>;
326
327// Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with
328// the right constant")
329def ILHr8:
330  RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val),
331    "ilh\t$rT, $val", ImmLoad,
332    [(set R8C:$rT, immSExt8:$val)]>;
333
334// IL does sign extension!
335
336class ILInst<dag OOL, dag IOL, list<dag> pattern>:
337  RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val",
338           ImmLoad, pattern>;
339
340class ILVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
341  ILInst<(outs VECREG:$rT), (ins immtype:$val),
342         [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
343
344class ILRegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
345  ILInst<(outs rclass:$rT), (ins immtype:$val),
346         [(set rclass:$rT, xform:$val)]>;
347
348multiclass ImmediateLoad
349{
350  def v2i64: ILVecInst<v2i64, s16imm_i64, v2i64SExt16Imm>;
351  def v4i32: ILVecInst<v4i32, s16imm_i32, v4i32SExt16Imm>;
352
353  // TODO: Need v2f64, v4f32
354
355  def r64: ILRegInst<R64C, s16imm_i64, immSExt16>;
356  def r32: ILRegInst<R32C, s16imm_i32, immSExt16>;
357  def f32: ILRegInst<R32FP, s16imm_f32, fpimmSExt16>;
358  def f64: ILRegInst<R64FP, s16imm_f64, fpimmSExt16>;
359}
360
361defm IL : ImmediateLoad;
362
363class ILHUInst<dag OOL, dag IOL, list<dag> pattern>:
364  RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val",
365           ImmLoad, pattern>;
366
367class ILHUVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
368  ILHUInst<(outs VECREG:$rT), (ins immtype:$val),
369           [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
370
371class ILHURegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
372  ILHUInst<(outs rclass:$rT), (ins immtype:$val),
373           [(set rclass:$rT, xform:$val)]>;
374
375multiclass ImmLoadHalfwordUpper
376{
377  def v2i64: ILHUVecInst<v2i64, u16imm_i64, immILHUvec_i64>;
378  def v4i32: ILHUVecInst<v4i32, u16imm_i32, immILHUvec>;
379
380  def r64: ILHURegInst<R64C, u16imm_i64, hi16>;
381  def r32: ILHURegInst<R32C, u16imm_i32, hi16>;
382
383  // Loads the high portion of an address
384  def hi: ILHURegInst<R32C, symbolHi, hi16>;
385
386  // Used in custom lowering constant SFP loads:
387  def f32: ILHURegInst<R32FP, f16imm, hi16_f32>;
388}
389
390defm ILHU : ImmLoadHalfwordUpper;
391
392// Immediate load address (can also be used to load 18-bit unsigned constants,
393// see the zext 16->32 pattern)
394
395class ILAInst<dag OOL, dag IOL, list<dag> pattern>:
396  RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val",
397           LoadNOP, pattern>;
398
399class ILAVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
400  ILAInst<(outs VECREG:$rT), (ins immtype:$val),
401          [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
402
403class ILARegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
404  ILAInst<(outs rclass:$rT), (ins immtype:$val),
405          [(set rclass:$rT, xform:$val)]>;
406
407multiclass ImmLoadAddress
408{
409  def v2i64: ILAVecInst<v2i64, u18imm, v2i64Uns18Imm>;
410  def v4i32: ILAVecInst<v4i32, u18imm, v4i32Uns18Imm>;
411
412  def r64: ILARegInst<R64C, u18imm_i64, imm18>;
413  def r32: ILARegInst<R32C, u18imm, imm18>;
414  def f32: ILARegInst<R32FP, f18imm, fpimm18>;
415  def f64: ILARegInst<R64FP, f18imm_f64, fpimm18>;
416
417  def hi: ILARegInst<R32C, symbolHi, imm18>;
418  def lo: ILARegInst<R32C, symbolLo, imm18>;
419
420  def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val),
421                   [(set R32C:$rT, imm18:$val)]>;
422}
423
424defm ILA : ImmLoadAddress;
425
426// Immediate OR, Halfword Lower: The "other" part of loading large constants
427// into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
428// Note that these are really two operand instructions, but they're encoded
429// as three operands with the first two arguments tied-to each other.
430
431class IOHLInst<dag OOL, dag IOL, list<dag> pattern>:
432  RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val",
433           ImmLoad, pattern>,
434  RegConstraint<"$rS = $rT">,
435  NoEncode<"$rS">;
436
437class IOHLVecInst<ValueType vectype, Operand immtype /* , PatLeaf xform */>:
438  IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val),
439           [/* no pattern */]>;
440
441class IOHLRegInst<RegisterClass rclass, Operand immtype /* , PatLeaf xform */>:
442  IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val),
443           [/* no pattern */]>;
444
445multiclass ImmOrHalfwordLower
446{
447  def v2i64: IOHLVecInst<v2i64, u16imm_i64>;
448  def v4i32: IOHLVecInst<v4i32, u16imm_i32>;
449
450  def r32: IOHLRegInst<R32C, i32imm>;
451  def f32: IOHLRegInst<R32FP, f32imm>;
452
453  def lo: IOHLRegInst<R32C, symbolLo>;
454}
455
456defm IOHL: ImmOrHalfwordLower;
457
458// Form select mask for bytes using immediate, used in conjunction with the
459// SELB instruction:
460
461class FSMBIVec<ValueType vectype>:
462  RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
463          "fsmbi\t$rT, $val",
464          SelectOp,
465          [(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>;
466
467multiclass FormSelectMaskBytesImm
468{
469  def v16i8: FSMBIVec<v16i8>;
470  def v8i16: FSMBIVec<v8i16>;
471  def v4i32: FSMBIVec<v4i32>;
472  def v2i64: FSMBIVec<v2i64>;
473}
474
475defm FSMBI : FormSelectMaskBytesImm;
476
477// fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
478class FSMBInst<dag OOL, dag IOL, list<dag> pattern>:
479    RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp,
480             pattern>;
481
482class FSMBRegInst<RegisterClass rclass, ValueType vectype>:
483    FSMBInst<(outs VECREG:$rT), (ins rclass:$rA),
484             [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
485
486class FSMBVecInst<ValueType vectype>:
487    FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA),
488             [(set (vectype VECREG:$rT),
489                   (SPUselmask (vectype VECREG:$rA)))]>;
490
491multiclass FormSelectMaskBits {
492  def v16i8_r16: FSMBRegInst<R16C, v16i8>;
493  def v16i8:     FSMBVecInst<v16i8>;
494}
495
496defm FSMB: FormSelectMaskBits;
497
498// fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
499// only 8-bits wide (even though it's input as 16-bits here)
500
501class FSMHInst<dag OOL, dag IOL, list<dag> pattern>:
502    RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp,
503             pattern>;
504
505class FSMHRegInst<RegisterClass rclass, ValueType vectype>:
506    FSMHInst<(outs VECREG:$rT), (ins rclass:$rA),
507             [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
508
509class FSMHVecInst<ValueType vectype>:
510    FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA),
511             [(set (vectype VECREG:$rT),
512                   (SPUselmask (vectype VECREG:$rA)))]>;
513
514multiclass FormSelectMaskHalfword {
515  def v8i16_r16: FSMHRegInst<R16C, v8i16>;
516  def v8i16:     FSMHVecInst<v8i16>;
517}
518
519defm FSMH: FormSelectMaskHalfword;
520
521// fsm: Form select mask for words. Like the other fsm* instructions,
522// only the lower 4 bits of $rA are significant.
523
524class FSMInst<dag OOL, dag IOL, list<dag> pattern>:
525    RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp,
526             pattern>;
527
528class FSMRegInst<ValueType vectype, RegisterClass rclass>:
529    FSMInst<(outs VECREG:$rT), (ins rclass:$rA),
530            [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
531
532class FSMVecInst<ValueType vectype>:
533    FSMInst<(outs VECREG:$rT), (ins VECREG:$rA),
534            [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>;
535
536multiclass FormSelectMaskWord {
537  def v4i32: FSMVecInst<v4i32>;
538
539  def r32 :  FSMRegInst<v4i32, R32C>;
540  def r16 :  FSMRegInst<v4i32, R16C>;
541}
542
543defm FSM : FormSelectMaskWord;
544
545// Special case when used for i64 math operations
546multiclass FormSelectMaskWord64 {
547  def r32 : FSMRegInst<v2i64, R32C>;
548  def r16 : FSMRegInst<v2i64, R16C>;
549}
550
551defm FSM64 : FormSelectMaskWord64;
552
553//===----------------------------------------------------------------------===//
554// Integer and Logical Operations:
555//===----------------------------------------------------------------------===//
556
557def AHv8i16:
558  RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
559    "ah\t$rT, $rA, $rB", IntegerOp,
560    [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;
561
562def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
563          (AHv8i16 VECREG:$rA, VECREG:$rB)>;
564
565def AHr16:
566  RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
567    "ah\t$rT, $rA, $rB", IntegerOp,
568    [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;
569
570def AHIvec:
571    RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
572      "ahi\t$rT, $rA, $val", IntegerOp,
573      [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
574                                     v8i16SExt10Imm:$val))]>;
575
576def AHIr16:
577  RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
578    "ahi\t$rT, $rA, $val", IntegerOp,
579    [(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>;
580
581// v4i32, i32 add instruction:
582
583class AInst<dag OOL, dag IOL, list<dag> pattern>:
584  RRForm<0b00000011000, OOL, IOL,
585         "a\t$rT, $rA, $rB", IntegerOp,
586         pattern>;
587
588class AVecInst<ValueType vectype>:
589  AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
590        [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA),
591                                         (vectype VECREG:$rB)))]>;
592
593class ARegInst<RegisterClass rclass>:
594  AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
595        [(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>;
596
597multiclass AddInstruction {
598  def v4i32: AVecInst<v4i32>;
599  def v16i8: AVecInst<v16i8>;
600  def r32:   ARegInst<R32C>;
601}
602
603defm A : AddInstruction;
604
605class AIInst<dag OOL, dag IOL, list<dag> pattern>:
606    RI10Form<0b00111000, OOL, IOL,
607             "ai\t$rT, $rA, $val", IntegerOp,
608             pattern>;
609
610class AIVecInst<ValueType vectype, PatLeaf immpred>:
611    AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
612            [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>;
613
614class AIFPVecInst<ValueType vectype, PatLeaf immpred>:
615    AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
616            [/* no pattern */]>;
617
618class AIRegInst<RegisterClass rclass, PatLeaf immpred>:
619    AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
620           [(set rclass:$rT, (add rclass:$rA, immpred:$val))]>;
621
622// This is used to add epsilons to floating point numbers in the f32 fdiv code:
623class AIFPInst<RegisterClass rclass, PatLeaf immpred>:
624    AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
625           [/* no pattern */]>;
626
627multiclass AddImmediate {
628  def v4i32: AIVecInst<v4i32, v4i32SExt10Imm>;
629
630  def r32: AIRegInst<R32C, i32ImmSExt10>;
631
632  def v4f32: AIFPVecInst<v4f32, v4i32SExt10Imm>;
633  def f32: AIFPInst<R32FP, i32ImmSExt10>;
634}
635
636defm AI : AddImmediate;
637
638def SFHvec:
639    RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
640      "sfh\t$rT, $rA, $rB", IntegerOp,
641      [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA),
642                                     (v8i16 VECREG:$rB)))]>;
643
644def SFHr16:
645    RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
646      "sfh\t$rT, $rA, $rB", IntegerOp,
647      [(set R16C:$rT, (sub R16C:$rB, R16C:$rA))]>;
648
649def SFHIvec:
650    RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
651      "sfhi\t$rT, $rA, $val", IntegerOp,
652      [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
653                                     (v8i16 VECREG:$rA)))]>;
654
655def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
656  "sfhi\t$rT, $rA, $val", IntegerOp,
657  [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;
658
659def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
660                                  (ins VECREG:$rA, VECREG:$rB),
661  "sf\t$rT, $rA, $rB", IntegerOp,
662  [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rB), (v4i32 VECREG:$rA)))]>;
663
664
665def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
666  "sf\t$rT, $rA, $rB", IntegerOp,
667  [(set R32C:$rT, (sub R32C:$rB, R32C:$rA))]>;
668
669def SFIvec:
670    RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
671      "sfi\t$rT, $rA, $val", IntegerOp,
672      [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
673                                     (v4i32 VECREG:$rA)))]>;
674
675def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
676                                  (ins R32C:$rA, s10imm_i32:$val),
677  "sfi\t$rT, $rA, $val", IntegerOp,
678  [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;
679
680// ADDX: only available in vector form, doesn't match a pattern.
681class ADDXInst<dag OOL, dag IOL, list<dag> pattern>:
682    RRForm<0b00000010110, OOL, IOL,
683      "addx\t$rT, $rA, $rB",
684      IntegerOp, pattern>;
685
686class ADDXVecInst<ValueType vectype>:
687    ADDXInst<(outs VECREG:$rT),
688             (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
689             [/* no pattern */]>,
690    RegConstraint<"$rCarry = $rT">,
691    NoEncode<"$rCarry">;
692
693class ADDXRegInst<RegisterClass rclass>:
694    ADDXInst<(outs rclass:$rT),
695             (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
696             [/* no pattern */]>,
697    RegConstraint<"$rCarry = $rT">,
698    NoEncode<"$rCarry">;
699
700multiclass AddExtended {
701  def v2i64 : ADDXVecInst<v2i64>;
702  def v4i32 : ADDXVecInst<v4i32>;
703  def r64 : ADDXRegInst<R64C>;
704  def r32 : ADDXRegInst<R32C>;
705}
706
707defm ADDX : AddExtended;
708
709// CG: Generate carry for add
710class CGInst<dag OOL, dag IOL, list<dag> pattern>:
711    RRForm<0b01000011000, OOL, IOL,
712      "cg\t$rT, $rA, $rB",
713      IntegerOp, pattern>;
714
715class CGVecInst<ValueType vectype>:
716    CGInst<(outs VECREG:$rT),
717           (ins VECREG:$rA, VECREG:$rB),
718           [/* no pattern */]>;
719
720class CGRegInst<RegisterClass rclass>:
721    CGInst<(outs rclass:$rT),
722           (ins rclass:$rA, rclass:$rB),
723           [/* no pattern */]>;
724
725multiclass CarryGenerate {
726  def v2i64 : CGVecInst<v2i64>;
727  def v4i32 : CGVecInst<v4i32>;
728  def r64 : CGRegInst<R64C>;
729  def r32 : CGRegInst<R32C>;
730}
731
732defm CG : CarryGenerate;
733
734// SFX: Subract from, extended. This is used in conjunction with BG to subtract
735// with carry (borrow, in this case)
736class SFXInst<dag OOL, dag IOL, list<dag> pattern>:
737    RRForm<0b10000010110, OOL, IOL,
738      "sfx\t$rT, $rA, $rB",
739      IntegerOp, pattern>;
740
741class SFXVecInst<ValueType vectype>:
742    SFXInst<(outs VECREG:$rT),
743            (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
744             [/* no pattern */]>,
745    RegConstraint<"$rCarry = $rT">,
746    NoEncode<"$rCarry">;
747
748class SFXRegInst<RegisterClass rclass>:
749    SFXInst<(outs rclass:$rT),
750            (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
751             [/* no pattern */]>,
752    RegConstraint<"$rCarry = $rT">,
753    NoEncode<"$rCarry">;
754
755multiclass SubtractExtended {
756  def v2i64 : SFXVecInst<v2i64>;
757  def v4i32 : SFXVecInst<v4i32>;
758  def r64 : SFXRegInst<R64C>;
759  def r32 : SFXRegInst<R32C>;
760}
761
762defm SFX : SubtractExtended;
763
764// BG: only available in vector form, doesn't match a pattern.
765class BGInst<dag OOL, dag IOL, list<dag> pattern>:
766    RRForm<0b01000010000, OOL, IOL,
767      "bg\t$rT, $rA, $rB",
768      IntegerOp, pattern>;
769
770class BGVecInst<ValueType vectype>:
771    BGInst<(outs VECREG:$rT),
772           (ins VECREG:$rA, VECREG:$rB),
773           [/* no pattern */]>;
774
775class BGRegInst<RegisterClass rclass>:
776    BGInst<(outs rclass:$rT),
777           (ins rclass:$rA, rclass:$rB),
778           [/* no pattern */]>;
779
780multiclass BorrowGenerate {
781  def v4i32 : BGVecInst<v4i32>;
782  def v2i64 : BGVecInst<v2i64>;
783  def r64 : BGRegInst<R64C>;
784  def r32 : BGRegInst<R32C>;
785}
786
787defm BG : BorrowGenerate;
788
789// BGX: Borrow generate, extended.
790def BGXvec:
791    RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
792                                VECREG:$rCarry),
793      "bgx\t$rT, $rA, $rB", IntegerOp,
794      []>,
795    RegConstraint<"$rCarry = $rT">,
796    NoEncode<"$rCarry">;
797
798// Halfword multiply variants:
799// N.B: These can be used to build up larger quantities (16x16 -> 32)
800
801def MPYv8i16:
802  RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
803    "mpy\t$rT, $rA, $rB", IntegerMulDiv,
804    [/* no pattern */]>;
805
806def MPYr16:
807  RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
808    "mpy\t$rT, $rA, $rB", IntegerMulDiv,
809    [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;
810
811// Unsigned 16-bit multiply:
812
813class MPYUInst<dag OOL, dag IOL, list<dag> pattern>:
814    RRForm<0b00110011110, OOL, IOL,
815      "mpyu\t$rT, $rA, $rB", IntegerMulDiv,
816      pattern>;
817
818def MPYUv4i32:
819  MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
820           [/* no pattern */]>;
821
822def MPYUr16:
823  MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
824           [(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>;
825
826def MPYUr32:
827  MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
828           [/* no pattern */]>;
829
830// mpyi: multiply 16 x s10imm -> 32 result.
831
832class MPYIInst<dag OOL, dag IOL, list<dag> pattern>:
833  RI10Form<0b00101110, OOL, IOL,
834    "mpyi\t$rT, $rA, $val", IntegerMulDiv,
835    pattern>;
836
837def MPYIvec:
838  MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
839           [(set (v8i16 VECREG:$rT),
840                 (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
841
842def MPYIr16:
843  MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
844           [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;
845
846// mpyui: same issues as other multiplies, plus, this doesn't match a
847// pattern... but may be used during target DAG selection or lowering
848
849class MPYUIInst<dag OOL, dag IOL, list<dag> pattern>:
850  RI10Form<0b10101110, OOL, IOL,
851           "mpyui\t$rT, $rA, $val", IntegerMulDiv,
852           pattern>;
853
854def MPYUIvec:
855  MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
856            []>;
857
858def MPYUIr16:
859  MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
860            []>;
861
862// mpya: 16 x 16 + 16 -> 32 bit result
863class MPYAInst<dag OOL, dag IOL, list<dag> pattern>:
864  RRRForm<0b0011, OOL, IOL,
865          "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
866          pattern>;
867
868def MPYAv4i32:
869  MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
870           [(set (v4i32 VECREG:$rT),
871                 (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
872                                              (v8i16 VECREG:$rB)))),
873                      (v4i32 VECREG:$rC)))]>;
874
875def MPYAr32:
876  MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
877           [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
878                                R32C:$rC))]>;
879
880def MPYAr32_sext:
881  MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
882           [(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)),
883                                R32C:$rC))]>;
884
885def MPYAr32_sextinreg:
886  MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
887           [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
888                                     (sext_inreg R32C:$rB, i16)),
889                                R32C:$rC))]>;
890
891// mpyh: multiply high, used to synthesize 32-bit multiplies
892class MPYHInst<dag OOL, dag IOL, list<dag> pattern>:
893  RRForm<0b10100011110, OOL, IOL,
894         "mpyh\t$rT, $rA, $rB", IntegerMulDiv,
895         pattern>;
896
897def MPYHv4i32:
898    MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
899             [/* no pattern */]>;
900
901def MPYHr32:
902    MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
903             [/* no pattern */]>;
904
905// mpys: multiply high and shift right (returns the top half of
906// a 16-bit multiply, sign extended to 32 bits.)
907
908class MPYSInst<dag OOL, dag IOL>:
909    RRForm<0b11100011110, OOL, IOL,
910      "mpys\t$rT, $rA, $rB", IntegerMulDiv,
911      [/* no pattern */]>;
912
913def MPYSv4i32:
914    MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
915
916def MPYSr16:
917    MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>;
918
919// mpyhh: multiply high-high (returns the 32-bit result from multiplying
920// the top 16 bits of the $rA, $rB)
921
922class MPYHHInst<dag OOL, dag IOL>:
923  RRForm<0b01100011110, OOL, IOL,
924        "mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
925        [/* no pattern */]>;
926
927def MPYHHv8i16:
928    MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
929
930def MPYHHr32:
931    MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
932
933// mpyhha: Multiply high-high, add to $rT:
934
935class MPYHHAInst<dag OOL, dag IOL>:
936    RRForm<0b01100010110, OOL, IOL,
937      "mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
938      [/* no pattern */]>;
939
940def MPYHHAvec:
941    MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
942
943def MPYHHAr32:
944    MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
945
946// mpyhhu: Multiply high-high, unsigned, e.g.:
947//
948// +-------+-------+   +-------+-------+   +---------+
949// |  a0   .  a1   | x |  b0   .  b1   | = | a0 x b0 |
950// +-------+-------+   +-------+-------+   +---------+
951//
952// where a0, b0 are the upper 16 bits of the 32-bit word
953
954class MPYHHUInst<dag OOL, dag IOL>:
955    RRForm<0b01110011110, OOL, IOL,
956      "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
957      [/* no pattern */]>;
958
959def MPYHHUv4i32:
960    MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
961
962def MPYHHUr32:
963    MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
964
965// mpyhhau: Multiply high-high, unsigned
966
967class MPYHHAUInst<dag OOL, dag IOL>:
968    RRForm<0b01110010110, OOL, IOL,
969      "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
970      [/* no pattern */]>;
971
972def MPYHHAUvec:
973    MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
974
975def MPYHHAUr32:
976    MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
977
978//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
979// clz: Count leading zeroes
980//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
981class CLZInst<dag OOL, dag IOL, list<dag> pattern>:
982    RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA",
983             IntegerOp, pattern>;
984
985class CLZRegInst<RegisterClass rclass>:
986    CLZInst<(outs rclass:$rT), (ins rclass:$rA),
987            [(set rclass:$rT, (ctlz rclass:$rA))]>;
988
989class CLZVecInst<ValueType vectype>:
990    CLZInst<(outs VECREG:$rT), (ins VECREG:$rA),
991            [(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>;
992
993multiclass CountLeadingZeroes {
994  def v4i32 : CLZVecInst<v4i32>;
995  def r32   : CLZRegInst<R32C>;
996}
997
998defm CLZ : CountLeadingZeroes;
999
1000// cntb: Count ones in bytes (aka "population count")
1001//
1002// NOTE: This instruction is really a vector instruction, but the custom
1003// lowering code uses it in unorthodox ways to support CTPOP for other
1004// data types!
1005
1006def CNTBv16i8:
1007    RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
1008      "cntb\t$rT, $rA", IntegerOp,
1009      [(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>;
1010
1011def CNTBv8i16 :
1012    RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
1013      "cntb\t$rT, $rA", IntegerOp,
1014      [(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>;
1015
1016def CNTBv4i32 :
1017    RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
1018      "cntb\t$rT, $rA", IntegerOp,
1019      [(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>;
1020
1021// gbb: Gather the low order bits from each byte in $rA into a single 16-bit
1022// quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are
1023// slots 1-3.
1024//
1025// Note: This instruction "pairs" with the fsmb instruction for all of the
1026// various types defined here.
1027//
1028// Note 2: The "VecInst" and "RegInst" forms refer to the result being either
1029// a vector or register.
1030
1031class GBBInst<dag OOL, dag IOL, list<dag> pattern>:
1032  RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>;
1033
1034class GBBRegInst<RegisterClass rclass, ValueType vectype>:
1035  GBBInst<(outs rclass:$rT), (ins VECREG:$rA),
1036          [/* no pattern */]>;
1037
1038class GBBVecInst<ValueType vectype>:
1039  GBBInst<(outs VECREG:$rT), (ins VECREG:$rA),
1040          [/* no pattern */]>;
1041
1042multiclass GatherBitsFromBytes {
1043  def v16i8_r32: GBBRegInst<R32C, v16i8>;
1044  def v16i8_r16: GBBRegInst<R16C, v16i8>;
1045  def v16i8:     GBBVecInst<v16i8>;
1046}
1047
1048defm GBB: GatherBitsFromBytes;
1049
1050// gbh: Gather all low order bits from each halfword in $rA into a single
1051// 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0
1052// and slots 1-3 also set to 0.
1053//
1054// See notes for GBBInst, above.
1055
1056class GBHInst<dag OOL, dag IOL, list<dag> pattern>:
1057    RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp,
1058             pattern>;
1059
1060class GBHRegInst<RegisterClass rclass, ValueType vectype>:
1061    GBHInst<(outs rclass:$rT), (ins VECREG:$rA),
1062            [/* no pattern */]>;
1063
1064class GBHVecInst<ValueType vectype>:
1065    GBHInst<(outs VECREG:$rT), (ins VECREG:$rA),
1066            [/* no pattern */]>;
1067
1068multiclass GatherBitsHalfword {
1069  def v8i16_r32: GBHRegInst<R32C, v8i16>;
1070  def v8i16_r16: GBHRegInst<R16C, v8i16>;
1071  def v8i16:     GBHVecInst<v8i16>;
1072}
1073
1074defm GBH: GatherBitsHalfword;
1075
1076// gb: Gather all low order bits from each word in $rA into a single
1077// 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0,
1078// as well as slots 1-3.
1079//
1080// See notes for gbb, above.
1081
1082class GBInst<dag OOL, dag IOL, list<dag> pattern>:
1083    RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp,
1084             pattern>;
1085
1086class GBRegInst<RegisterClass rclass, ValueType vectype>:
1087    GBInst<(outs rclass:$rT), (ins VECREG:$rA),
1088           [/* no pattern */]>;
1089
1090class GBVecInst<ValueType vectype>:
1091    GBInst<(outs VECREG:$rT), (ins VECREG:$rA),
1092           [/* no pattern */]>;
1093
1094multiclass GatherBitsWord {
1095  def v4i32_r32: GBRegInst<R32C, v4i32>;
1096  def v4i32_r16: GBRegInst<R16C, v4i32>;
1097  def v4i32:     GBVecInst<v4i32>;
1098}
1099
1100defm GB: GatherBitsWord;
1101
1102// avgb: average bytes
1103def AVGB:
1104    RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1105      "avgb\t$rT, $rA, $rB", ByteOp,
1106      []>;
1107
1108// absdb: absolute difference of bytes
1109def ABSDB:
1110    RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1111      "absdb\t$rT, $rA, $rB", ByteOp,
1112      []>;
1113
1114// sumb: sum bytes into halfwords
1115def SUMB:
1116    RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1117      "sumb\t$rT, $rA, $rB", ByteOp,
1118      []>;
1119
1120// Sign extension operations:
1121class XSBHInst<dag OOL, dag IOL, list<dag> pattern>:
1122    RRForm_1<0b01101101010, OOL, IOL,
1123      "xsbh\t$rDst, $rSrc",
1124      IntegerOp, pattern>;
1125
1126class XSBHInRegInst<RegisterClass rclass, list<dag> pattern>:
1127    XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc),
1128             pattern>;
1129
1130multiclass ExtendByteHalfword {
1131  def v16i8:     XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
1132                          [
1133                  /*(set (v8i16 VECREG:$rDst), (sext (v8i16 VECREG:$rSrc)))*/]>;
1134  def r8:        XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc),
1135                          [(set R16C:$rDst, (sext R8C:$rSrc))]>;
1136  def r16:       XSBHInRegInst<R16C,
1137                               [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;
1138
1139  // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
1140  // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
1141  // pattern below). Intentionally doesn't match a pattern because we want the
1142  // sext 8->32 pattern to do the work for us, namely because we need the extra
1143  // XSHWr32.
1144  def r32:   XSBHInRegInst<R32C, [/* no pattern */]>;
1145
1146  // Same as the 32-bit version, but for i64
1147  def r64:   XSBHInRegInst<R64C, [/* no pattern */]>;
1148}
1149
1150defm XSBH : ExtendByteHalfword;
1151
1152// Sign extend halfwords to words:
1153
1154class XSHWInst<dag OOL, dag IOL, list<dag> pattern>:
1155    RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc",
1156            IntegerOp, pattern>;
1157
1158class XSHWVecInst<ValueType in_vectype, ValueType out_vectype>:
1159    XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc),
1160             [(set (out_vectype VECREG:$rDest),
1161                   (sext (in_vectype VECREG:$rSrc)))]>;
1162
1163class XSHWInRegInst<RegisterClass rclass, list<dag> pattern>:
1164    XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc),
1165             pattern>;
1166
1167class XSHWRegInst<RegisterClass rclass>:
1168    XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc),
1169             [(set rclass:$rDest, (sext R16C:$rSrc))]>;
1170
1171multiclass ExtendHalfwordWord {
1172  def v4i32: XSHWVecInst<v8i16, v4i32>;
1173
1174  def r16:   XSHWRegInst<R32C>;
1175
1176  def r32:   XSHWInRegInst<R32C,
1177                          [(set R32C:$rDest, (sext_inreg R32C:$rSrc, i16))]>;
1178  def r64:   XSHWInRegInst<R64C, [/* no pattern */]>;
1179}
1180
1181defm XSHW : ExtendHalfwordWord;
1182
1183// Sign-extend words to doublewords (32->64 bits)
1184
1185class XSWDInst<dag OOL, dag IOL, list<dag> pattern>:
1186    RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc",
1187              IntegerOp, pattern>;
1188
1189class XSWDVecInst<ValueType in_vectype, ValueType out_vectype>:
1190    XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
1191             [/*(set (out_vectype VECREG:$rDst),
1192                   (sext (out_vectype VECREG:$rSrc)))*/]>;
1193
1194class XSWDRegInst<RegisterClass in_rclass, RegisterClass out_rclass>:
1195    XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc),
1196             [(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>;
1197
1198multiclass ExtendWordToDoubleWord {
1199  def v2i64: XSWDVecInst<v4i32, v2i64>;
1200  def r64:   XSWDRegInst<R32C, R64C>;
1201
1202  def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc),
1203                          [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;
1204}
1205
1206defm XSWD : ExtendWordToDoubleWord;
1207
1208// AND operations
1209
1210class ANDInst<dag OOL, dag IOL, list<dag> pattern> :
1211    RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB",
1212           IntegerOp, pattern>;
1213
1214class ANDVecInst<ValueType vectype>:
1215    ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1216             [(set (vectype VECREG:$rT), (and (vectype VECREG:$rA),
1217                                              (vectype VECREG:$rB)))]>;
1218
1219class ANDRegInst<RegisterClass rclass>:
1220    ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1221             [(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>;
1222
1223multiclass BitwiseAnd
1224{
1225  def v16i8: ANDVecInst<v16i8>;
1226  def v8i16: ANDVecInst<v8i16>;
1227  def v4i32: ANDVecInst<v4i32>;
1228  def v2i64: ANDVecInst<v2i64>;
1229
1230  def r128:  ANDRegInst<GPRC>;
1231  def r64:   ANDRegInst<R64C>;
1232  def r32:   ANDRegInst<R32C>;
1233  def r16:   ANDRegInst<R16C>;
1234  def r8:    ANDRegInst<R8C>;
1235
1236  //===---------------------------------------------
1237  // Special instructions to perform the fabs instruction
1238  def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
1239                      [/* Intentionally does not match a pattern */]>;
1240
1241  def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
1242                      [/* Intentionally does not match a pattern */]>;
1243
1244  def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1245                       [/* Intentionally does not match a pattern */]>;
1246
1247  //===---------------------------------------------
1248
1249  // Hacked form of AND to zero-extend 16-bit quantities to 32-bit
1250  // quantities -- see 16->32 zext pattern.
1251  //
1252  // This pattern is somewhat artificial, since it might match some
1253  // compiler generated pattern but it is unlikely to do so.
1254
1255  def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
1256                      [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;
1257}
1258
1259defm AND : BitwiseAnd;
1260
1261
1262def vnot_cell_conv : PatFrag<(ops node:$in),
1263                             (xor node:$in, (bitconvert (v4i32 immAllOnesV)))>;
1264
1265// N.B.: vnot_cell_conv is one of those special target selection pattern
1266// fragments,
1267// in which we expect there to be a bit_convert on the constant. Bear in mind
1268// that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
1269// constant -1 vector.)
1270
1271class ANDCInst<dag OOL, dag IOL, list<dag> pattern>:
1272    RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB",
1273           IntegerOp, pattern>;
1274
1275class ANDCVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
1276    ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1277             [(set (vectype VECREG:$rT),
1278                   (and (vectype VECREG:$rA),
1279                        (vnot_frag (vectype VECREG:$rB))))]>;
1280
1281class ANDCRegInst<RegisterClass rclass>:
1282    ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1283             [(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>;
1284
1285multiclass AndComplement
1286{
1287  def v16i8: ANDCVecInst<v16i8>;
1288  def v8i16: ANDCVecInst<v8i16>;
1289  def v4i32: ANDCVecInst<v4i32>;
1290  def v2i64: ANDCVecInst<v2i64>;
1291
1292  def r128: ANDCRegInst<GPRC>;
1293  def r64:  ANDCRegInst<R64C>;
1294  def r32:  ANDCRegInst<R32C>;
1295  def r16:  ANDCRegInst<R16C>;
1296  def r8:   ANDCRegInst<R8C>;
1297
1298  // Sometimes, the xor pattern has a bitcast constant:
1299  def v16i8_conv: ANDCVecInst<v16i8, vnot_cell_conv>;
1300}
1301
1302defm ANDC : AndComplement;
1303
1304class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>:
1305    RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val",
1306             ByteOp, pattern>;
1307
1308multiclass AndByteImm
1309{
1310  def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1311                       [(set (v16i8 VECREG:$rT),
1312                             (and (v16i8 VECREG:$rA),
1313                                  (v16i8 v16i8U8Imm:$val)))]>;
1314
1315  def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
1316                    [(set R8C:$rT, (and R8C:$rA, immU8:$val))]>;
1317}
1318
1319defm ANDBI : AndByteImm;
1320
1321class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> :
1322    RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val",
1323             ByteOp, pattern>;
1324
1325multiclass AndHalfwordImm
1326{
1327  def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
1328                       [(set (v8i16 VECREG:$rT),
1329                             (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
1330
1331  def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
1332                     [(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>;
1333
1334  // Zero-extend i8 to i16:
1335  def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val),
1336                      [(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>;
1337}
1338
1339defm ANDHI : AndHalfwordImm;
1340
1341class ANDIInst<dag OOL, dag IOL, list<dag> pattern> :
1342    RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val",
1343             IntegerOp, pattern>;
1344
1345multiclass AndWordImm
1346{
1347  def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
1348                      [(set (v4i32 VECREG:$rT),
1349                            (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;
1350
1351  def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
1352                    [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;
1353
1354  // Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32
1355  // pattern below.
1356  def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
1357                      [(set R32C:$rT,
1358                            (and (zext R8C:$rA), i32ImmSExt10:$val))]>;
1359
1360  // Hacked form of ANDI to zero-extend i16 quantities to i32. See the
1361  // zext 16->32 pattern below.
1362  //
1363  // Note that this pattern is somewhat artificial, since it might match
1364  // something the compiler generates but is unlikely to occur in practice.
1365  def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
1366                       [(set R32C:$rT,
1367                             (and (zext R16C:$rA), i32ImmSExt10:$val))]>;
1368}
1369
1370defm ANDI : AndWordImm;
1371
1372//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
1373// Bitwise OR group:
1374//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
1375
1376// Bitwise "or" (N.B.: These are also register-register copy instructions...)
1377class ORInst<dag OOL, dag IOL, list<dag> pattern>:
1378    RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB",
1379           IntegerOp, pattern>;
1380
1381class ORVecInst<ValueType vectype>:
1382    ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1383           [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
1384                                           (vectype VECREG:$rB)))]>;
1385
1386class ORRegInst<RegisterClass rclass>:
1387    ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1388           [(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>;
1389
1390
1391multiclass BitwiseOr
1392{
1393  def v16i8: ORVecInst<v16i8>;
1394  def v8i16: ORVecInst<v8i16>;
1395  def v4i32: ORVecInst<v4i32>;
1396  def v2i64: ORVecInst<v2i64>;
1397
1398  def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1399                    [(set (v4f32 VECREG:$rT),
1400                          (v4f32 (bitconvert (or (v4i32 VECREG:$rA),
1401                                                 (v4i32 VECREG:$rB)))))]>;
1402
1403  def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1404                    [(set (v2f64 VECREG:$rT),
1405                          (v2f64 (bitconvert (or (v2i64 VECREG:$rA),
1406                                                 (v2i64 VECREG:$rB)))))]>;
1407
1408  def r128: ORRegInst<GPRC>;
1409  def r64:  ORRegInst<R64C>;
1410  def r32:  ORRegInst<R32C>;
1411  def r16:  ORRegInst<R16C>;
1412  def r8:   ORRegInst<R8C>;
1413
1414  // OR instructions used to copy f32 and f64 registers.
1415  def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
1416                  [/* no pattern */]>;
1417
1418  def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
1419                  [/* no pattern */]>;
1420}
1421
1422defm OR : BitwiseOr;
1423
1424//===----------------------------------------------------------------------===//
1425// SPU::PREFSLOT2VEC and VEC2PREFSLOT re-interpretations of registers
1426//===----------------------------------------------------------------------===//
1427def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)),
1428          (COPY_TO_REGCLASS R8C:$rA, VECREG)>;
1429
1430def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)),
1431          (COPY_TO_REGCLASS R16C:$rA, VECREG)>;
1432
1433def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)),
1434          (COPY_TO_REGCLASS R32C:$rA, VECREG)>;
1435
1436def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)),
1437          (COPY_TO_REGCLASS R64C:$rA, VECREG)>;
1438
1439def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)),
1440          (COPY_TO_REGCLASS R32FP:$rA, VECREG)>;
1441
1442def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)),
1443          (COPY_TO_REGCLASS R64FP:$rA, VECREG)>;
1444
1445def : Pat<(i8 (SPUvec2prefslot (v16i8 VECREG:$rA))),
1446          (COPY_TO_REGCLASS (v16i8 VECREG:$rA), R8C)>;
1447
1448def : Pat<(i16 (SPUvec2prefslot (v8i16 VECREG:$rA))),
1449          (COPY_TO_REGCLASS (v8i16 VECREG:$rA), R16C)>;
1450
1451def : Pat<(i32 (SPUvec2prefslot (v4i32 VECREG:$rA))),
1452          (COPY_TO_REGCLASS (v4i32 VECREG:$rA), R32C)>;
1453
1454def : Pat<(i64 (SPUvec2prefslot (v2i64 VECREG:$rA))),
1455          (COPY_TO_REGCLASS (v2i64 VECREG:$rA), R64C)>;
1456
1457def : Pat<(f32 (SPUvec2prefslot (v4f32 VECREG:$rA))),
1458          (COPY_TO_REGCLASS (v4f32 VECREG:$rA), R32FP)>;
1459
1460def : Pat<(f64 (SPUvec2prefslot (v2f64 VECREG:$rA))),
1461          (COPY_TO_REGCLASS (v2f64 VECREG:$rA), R64FP)>;
1462
1463// Load Register: This is an assembler alias for a bitwise OR of a register
1464// against itself. It's here because it brings some clarity to assembly
1465// language output.
1466
1467let hasCtrlDep = 1 in {
1468    class LRInst<dag OOL, dag IOL>
1469              : SPUInstr<OOL, IOL, "lr\t$rT, $rA", IntegerOp> {
1470      bits<7> RA;
1471      bits<7> RT;
1472
1473      let Pattern = [/*no pattern*/];
1474
1475      let Inst{0-10} = 0b10000010000;   /* It's an OR operation */
1476      let Inst{11-17} = RA;
1477      let Inst{18-24} = RA;
1478      let Inst{25-31} = RT;
1479    }
1480
1481    class LRVecInst<ValueType vectype>:
1482        LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
1483
1484    class LRRegInst<RegisterClass rclass>:
1485        LRInst<(outs rclass:$rT), (ins rclass:$rA)>;
1486
1487    multiclass LoadRegister {
1488      def v2i64: LRVecInst<v2i64>;
1489      def v2f64: LRVecInst<v2f64>;
1490      def v4i32: LRVecInst<v4i32>;
1491      def v4f32: LRVecInst<v4f32>;
1492      def v8i16: LRVecInst<v8i16>;
1493      def v16i8: LRVecInst<v16i8>;
1494
1495      def r128:  LRRegInst<GPRC>;
1496      def r64:   LRRegInst<R64C>;
1497      def f64:   LRRegInst<R64FP>;
1498      def r32:   LRRegInst<R32C>;
1499      def f32:   LRRegInst<R32FP>;
1500      def r16:   LRRegInst<R16C>;
1501      def r8:    LRRegInst<R8C>;
1502    }
1503
1504    defm LR: LoadRegister;
1505}
1506
1507// ORC: Bitwise "or" with complement (c = a | ~b)
1508
1509class ORCInst<dag OOL, dag IOL, list<dag> pattern>:
1510    RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB",
1511           IntegerOp, pattern>;
1512
1513class ORCVecInst<ValueType vectype>:
1514    ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1515            [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
1516                                            (vnot (vectype VECREG:$rB))))]>;
1517
1518class ORCRegInst<RegisterClass rclass>:
1519  ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1520          [(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>;
1521
1522multiclass BitwiseOrComplement
1523{
1524  def v16i8: ORCVecInst<v16i8>;
1525  def v8i16: ORCVecInst<v8i16>;
1526  def v4i32: ORCVecInst<v4i32>;
1527  def v2i64: ORCVecInst<v2i64>;
1528
1529  def r128:  ORCRegInst<GPRC>;
1530  def r64:   ORCRegInst<R64C>;
1531  def r32:   ORCRegInst<R32C>;
1532  def r16:   ORCRegInst<R16C>;
1533  def r8:    ORCRegInst<R8C>;
1534}
1535
1536defm ORC : BitwiseOrComplement;
1537
1538// OR byte immediate
1539class ORBIInst<dag OOL, dag IOL, list<dag> pattern>:
1540    RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val",
1541             IntegerOp, pattern>;
1542
1543class ORBIVecInst<ValueType vectype, PatLeaf immpred>:
1544    ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1545             [(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA),
1546                                           (vectype immpred:$val)))]>;
1547
1548multiclass BitwiseOrByteImm
1549{
1550  def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>;
1551
1552  def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
1553                   [(set R8C:$rT, (or R8C:$rA, immU8:$val))]>;
1554}
1555
1556defm ORBI : BitwiseOrByteImm;
1557
1558// OR halfword immediate
1559class ORHIInst<dag OOL, dag IOL, list<dag> pattern>:
1560    RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val",
1561             IntegerOp, pattern>;
1562
1563class ORHIVecInst<ValueType vectype, PatLeaf immpred>:
1564    ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1565              [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
1566                                              immpred:$val))]>;
1567
1568multiclass BitwiseOrHalfwordImm
1569{
1570  def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>;
1571
1572  def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
1573                    [(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>;
1574
1575  // Specialized ORHI form used to promote 8-bit registers to 16-bit
1576  def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val),
1577                      [(set R16C:$rT, (or (anyext R8C:$rA),
1578                                          i16ImmSExt10:$val))]>;
1579}
1580
1581defm ORHI : BitwiseOrHalfwordImm;
1582
1583class ORIInst<dag OOL, dag IOL, list<dag> pattern>:
1584    RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val",
1585             IntegerOp, pattern>;
1586
1587class ORIVecInst<ValueType vectype, PatLeaf immpred>:
1588    ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1589            [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
1590                                            immpred:$val))]>;
1591
1592// Bitwise "or" with immediate
1593multiclass BitwiseOrImm
1594{
1595  def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>;
1596
1597  def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
1598                   [(set R32C:$rT, (or R32C:$rA, i32ImmSExt10:$val))]>;
1599
1600  // i16i32: hacked version of the ori instruction to extend 16-bit quantities
1601  // to 32-bit quantities. used exclusively to match "anyext" conversions (vide
1602  // infra "anyext 16->32" pattern.)
1603  def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
1604                      [(set R32C:$rT, (or (anyext R16C:$rA),
1605                                          i32ImmSExt10:$val))]>;
1606
1607  // i8i32: Hacked version of the ORI instruction to extend 16-bit quantities
1608  // to 32-bit quantities. Used exclusively to match "anyext" conversions (vide
1609  // infra "anyext 16->32" pattern.)
1610  def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
1611                     [(set R32C:$rT, (or (anyext R8C:$rA),
1612                                         i32ImmSExt10:$val))]>;
1613}
1614
1615defm ORI : BitwiseOrImm;
1616
1617// ORX: "or" across the vector: or's $rA's word slots leaving the result in
1618// $rT[0], slots 1-3 are zeroed.
1619//
1620// FIXME: Needs to match an intrinsic pattern.
1621def ORXv4i32:
1622    RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1623      "orx\t$rT, $rA, $rB", IntegerOp,
1624      []>;
1625
1626// XOR:
1627
1628class XORInst<dag OOL, dag IOL, list<dag> pattern> :
1629    RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB",
1630           IntegerOp, pattern>;
1631
1632class XORVecInst<ValueType vectype>:
1633    XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1634             [(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA),
1635                                              (vectype VECREG:$rB)))]>;
1636
1637class XORRegInst<RegisterClass rclass>:
1638    XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1639             [(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>;
1640
1641multiclass BitwiseExclusiveOr
1642{
1643  def v16i8: XORVecInst<v16i8>;
1644  def v8i16: XORVecInst<v8i16>;
1645  def v4i32: XORVecInst<v4i32>;
1646  def v2i64: XORVecInst<v2i64>;
1647
1648  def r128:  XORRegInst<GPRC>;
1649  def r64:   XORRegInst<R64C>;
1650  def r32:   XORRegInst<R32C>;
1651  def r16:   XORRegInst<R16C>;
1652  def r8:    XORRegInst<R8C>;
1653
1654  // XOR instructions used to negate f32 and f64 quantities.
1655
1656  def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
1657                     [/* no pattern */]>;
1658
1659  def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
1660                     [/* no pattern */]>;
1661
1662  def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1663                      [/* no pattern, see fneg{32,64} */]>;
1664}
1665
1666defm XOR : BitwiseExclusiveOr;
1667
1668//==----------------------------------------------------------
1669
1670class XORBIInst<dag OOL, dag IOL, list<dag> pattern>:
1671    RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val",
1672             IntegerOp, pattern>;
1673
1674multiclass XorByteImm
1675{
1676  def v16i8:
1677    XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1678              [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;
1679
1680  def r8:
1681    XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
1682              [(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>;
1683}
1684
1685defm XORBI : XorByteImm;
1686
1687def XORHIv8i16:
1688    RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
1689      "xorhi\t$rT, $rA, $val", IntegerOp,
1690      [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
1691                                      v8i16SExt10Imm:$val))]>;
1692
1693def XORHIr16:
1694    RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
1695      "xorhi\t$rT, $rA, $val", IntegerOp,
1696      [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;
1697
1698def XORIv4i32:
1699    RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val),
1700      "xori\t$rT, $rA, $val", IntegerOp,
1701      [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
1702                                     v4i32SExt10Imm:$val))]>;
1703
1704def XORIr32:
1705    RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
1706      "xori\t$rT, $rA, $val", IntegerOp,
1707      [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;
1708
1709// NAND:
1710
1711class NANDInst<dag OOL, dag IOL, list<dag> pattern>:
1712    RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB",
1713           IntegerOp, pattern>;
1714
1715class NANDVecInst<ValueType vectype>:
1716    NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1717             [(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA),
1718                                                    (vectype VECREG:$rB))))]>;
1719class NANDRegInst<RegisterClass rclass>:
1720    NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1721             [(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>;
1722
1723multiclass BitwiseNand
1724{
1725  def v16i8: NANDVecInst<v16i8>;
1726  def v8i16: NANDVecInst<v8i16>;
1727  def v4i32: NANDVecInst<v4i32>;
1728  def v2i64: NANDVecInst<v2i64>;
1729
1730  def r128:  NANDRegInst<GPRC>;
1731  def r64:   NANDRegInst<R64C>;
1732  def r32:   NANDRegInst<R32C>;
1733  def r16:   NANDRegInst<R16C>;
1734  def r8:    NANDRegInst<R8C>;
1735}
1736
1737defm NAND : BitwiseNand;
1738
1739// NOR:
1740
1741class NORInst<dag OOL, dag IOL, list<dag> pattern>:
1742    RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB",
1743           IntegerOp, pattern>;
1744
1745class NORVecInst<ValueType vectype>:
1746    NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1747            [(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA),
1748                                                  (vectype VECREG:$rB))))]>;
1749class NORRegInst<RegisterClass rclass>:
1750    NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1751            [(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>;
1752
1753multiclass BitwiseNor
1754{
1755  def v16i8: NORVecInst<v16i8>;
1756  def v8i16: NORVecInst<v8i16>;
1757  def v4i32: NORVecInst<v4i32>;
1758  def v2i64: NORVecInst<v2i64>;
1759
1760  def r128:  NORRegInst<GPRC>;
1761  def r64:   NORRegInst<R64C>;
1762  def r32:   NORRegInst<R32C>;
1763  def r16:   NORRegInst<R16C>;
1764  def r8:    NORRegInst<R8C>;
1765}
1766
1767defm NOR : BitwiseNor;
1768
1769// Select bits:
1770class SELBInst<dag OOL, dag IOL, list<dag> pattern>:
1771    RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC",
1772            IntegerOp, pattern>;
1773
1774class SELBVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
1775  SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
1776           [(set (vectype VECREG:$rT),
1777                 (or (and (vectype VECREG:$rC), (vectype VECREG:$rB)),
1778                     (and (vnot_frag (vectype VECREG:$rC)),
1779                          (vectype VECREG:$rA))))]>;
1780
1781class SELBVecVCondInst<ValueType vectype>:
1782  SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
1783           [(set (vectype VECREG:$rT),
1784                 (select (vectype VECREG:$rC),
1785                         (vectype VECREG:$rB),
1786                         (vectype VECREG:$rA)))]>;
1787
1788class SELBVecCondInst<ValueType vectype>:
1789  SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC),
1790           [(set (vectype VECREG:$rT),
1791                 (select R32C:$rC,
1792                         (vectype VECREG:$rB),
1793                         (vectype VECREG:$rA)))]>;
1794
1795class SELBRegInst<RegisterClass rclass>:
1796  SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC),
1797           [(set rclass:$rT,
1798                 (or (and rclass:$rB, rclass:$rC),
1799                     (and rclass:$rA, (not rclass:$rC))))]>;
1800
1801class SELBRegCondInst<RegisterClass rcond, RegisterClass rclass>:
1802  SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC),
1803           [(set rclass:$rT,
1804                 (select rcond:$rC, rclass:$rB, rclass:$rA))]>;
1805
1806multiclass SelectBits
1807{
1808  def v16i8: SELBVecInst<v16i8>;
1809  def v8i16: SELBVecInst<v8i16>;
1810  def v4i32: SELBVecInst<v4i32>;
1811  def v2i64: SELBVecInst<v2i64, vnot_cell_conv>;
1812
1813  def r128:  SELBRegInst<GPRC>;
1814  def r64:   SELBRegInst<R64C>;
1815  def r32:   SELBRegInst<R32C>;
1816  def r16:   SELBRegInst<R16C>;
1817  def r8:    SELBRegInst<R8C>;
1818
1819  def v16i8_cond: SELBVecCondInst<v16i8>;
1820  def v8i16_cond: SELBVecCondInst<v8i16>;
1821  def v4i32_cond: SELBVecCondInst<v4i32>;
1822  def v2i64_cond: SELBVecCondInst<v2i64>;
1823
1824  def v16i8_vcond: SELBVecCondInst<v16i8>;
1825  def v8i16_vcond: SELBVecCondInst<v8i16>;
1826  def v4i32_vcond: SELBVecCondInst<v4i32>;
1827  def v2i64_vcond: SELBVecCondInst<v2i64>;
1828
1829  def v4f32_cond:
1830        SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
1831                 [(set (v4f32 VECREG:$rT),
1832                       (select (v4i32 VECREG:$rC),
1833                               (v4f32 VECREG:$rB),
1834                               (v4f32 VECREG:$rA)))]>;
1835
1836  // SELBr64_cond is defined in SPU64InstrInfo.td
1837  def r32_cond:   SELBRegCondInst<R32C, R32C>;
1838  def f32_cond:   SELBRegCondInst<R32C, R32FP>;
1839  def r16_cond:   SELBRegCondInst<R16C, R16C>;
1840  def r8_cond:    SELBRegCondInst<R8C,  R8C>;
1841}
1842
1843defm SELB : SelectBits;
1844
1845class SPUselbPatVec<ValueType vectype, SPUInstr inst>:
1846   Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)),
1847       (inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
1848
1849def : SPUselbPatVec<v16i8, SELBv16i8>;
1850def : SPUselbPatVec<v8i16, SELBv8i16>;
1851def : SPUselbPatVec<v4i32, SELBv4i32>;
1852def : SPUselbPatVec<v2i64, SELBv2i64>;
1853
1854class SPUselbPatReg<RegisterClass rclass, SPUInstr inst>:
1855   Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC),
1856       (inst rclass:$rA, rclass:$rB, rclass:$rC)>;
1857
1858def : SPUselbPatReg<R8C,   SELBr8>;
1859def : SPUselbPatReg<R16C,  SELBr16>;
1860def : SPUselbPatReg<R32C,  SELBr32>;
1861def : SPUselbPatReg<R64C,  SELBr64>;
1862
1863// EQV: Equivalence (1 for each same bit, otherwise 0)
1864//
1865// Note: There are a lot of ways to match this bit operator and these patterns
1866// attempt to be as exhaustive as possible.
1867
1868class EQVInst<dag OOL, dag IOL, list<dag> pattern>:
1869    RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB",
1870           IntegerOp, pattern>;
1871
1872class EQVVecInst<ValueType vectype>:
1873    EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1874            [(set (vectype VECREG:$rT),
1875                  (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
1876                      (and (vnot (vectype VECREG:$rA)),
1877                           (vnot (vectype VECREG:$rB)))))]>;
1878
1879class EQVRegInst<RegisterClass rclass>:
1880    EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1881            [(set rclass:$rT, (or (and rclass:$rA, rclass:$rB),
1882                                  (and (not rclass:$rA), (not rclass:$rB))))]>;
1883
1884class EQVVecPattern1<ValueType vectype>:
1885  EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1886          [(set (vectype VECREG:$rT),
1887                (xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>;
1888
1889class EQVRegPattern1<RegisterClass rclass>:
1890  EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1891          [(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>;
1892
1893class EQVVecPattern2<ValueType vectype>:
1894  EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1895          [(set (vectype VECREG:$rT),
1896                (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
1897                    (vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>;
1898
1899class EQVRegPattern2<RegisterClass rclass>:
1900  EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1901          [(set rclass:$rT,
1902                (or (and rclass:$rA, rclass:$rB),
1903                    (not (or rclass:$rA, rclass:$rB))))]>;
1904
1905class EQVVecPattern3<ValueType vectype>:
1906  EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
1907          [(set (vectype VECREG:$rT),
1908                (not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>;
1909
1910class EQVRegPattern3<RegisterClass rclass>:
1911  EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
1912          [(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>;
1913
1914multiclass BitEquivalence
1915{
1916  def v16i8: EQVVecInst<v16i8>;
1917  def v8i16: EQVVecInst<v8i16>;
1918  def v4i32: EQVVecInst<v4i32>;
1919  def v2i64: EQVVecInst<v2i64>;
1920
1921  def v16i8_1: EQVVecPattern1<v16i8>;
1922  def v8i16_1: EQVVecPattern1<v8i16>;
1923  def v4i32_1: EQVVecPattern1<v4i32>;
1924  def v2i64_1: EQVVecPattern1<v2i64>;
1925
1926  def v16i8_2: EQVVecPattern2<v16i8>;
1927  def v8i16_2: EQVVecPattern2<v8i16>;
1928  def v4i32_2: EQVVecPattern2<v4i32>;
1929  def v2i64_2: EQVVecPattern2<v2i64>;
1930
1931  def v16i8_3: EQVVecPattern3<v16i8>;
1932  def v8i16_3: EQVVecPattern3<v8i16>;
1933  def v4i32_3: EQVVecPattern3<v4i32>;
1934  def v2i64_3: EQVVecPattern3<v2i64>;
1935
1936  def r128:  EQVRegInst<GPRC>;
1937  def r64:   EQVRegInst<R64C>;
1938  def r32:   EQVRegInst<R32C>;
1939  def r16:   EQVRegInst<R16C>;
1940  def r8:    EQVRegInst<R8C>;
1941
1942  def r128_1: EQVRegPattern1<GPRC>;
1943  def r64_1:  EQVRegPattern1<R64C>;
1944  def r32_1:  EQVRegPattern1<R32C>;
1945  def r16_1:  EQVRegPattern1<R16C>;
1946  def r8_1:   EQVRegPattern1<R8C>;
1947
1948  def r128_2: EQVRegPattern2<GPRC>;
1949  def r64_2:  EQVRegPattern2<R64C>;
1950  def r32_2:  EQVRegPattern2<R32C>;
1951  def r16_2:  EQVRegPattern2<R16C>;
1952  def r8_2:   EQVRegPattern2<R8C>;
1953
1954  def r128_3: EQVRegPattern3<GPRC>;
1955  def r64_3:  EQVRegPattern3<R64C>;
1956  def r32_3:  EQVRegPattern3<R32C>;
1957  def r16_3:  EQVRegPattern3<R16C>;
1958  def r8_3:   EQVRegPattern3<R8C>;
1959}
1960
1961defm EQV: BitEquivalence;
1962
1963//===----------------------------------------------------------------------===//
1964// Vector shuffle...
1965//===----------------------------------------------------------------------===//
1966// SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
1967// See the SPUshuffle SDNode operand above, which sets up the DAG pattern
1968// matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
1969// the SPUISD::SHUFB opcode.
1970//===----------------------------------------------------------------------===//
1971
1972class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>:
1973    RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC",
1974            ShuffleOp, pattern>;
1975
1976class SHUFBVecInst<ValueType resultvec, ValueType maskvec>:
1977    SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
1978              [(set (resultvec VECREG:$rT),
1979                    (SPUshuffle (resultvec VECREG:$rA),
1980                                (resultvec VECREG:$rB),
1981                                (maskvec VECREG:$rC)))]>;
1982
1983class SHUFBGPRCInst:
1984    SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC),
1985              [/* no pattern */]>;
1986
1987multiclass ShuffleBytes
1988{
1989  def v16i8     : SHUFBVecInst<v16i8, v16i8>;
1990  def v16i8_m32 : SHUFBVecInst<v16i8, v4i32>;
1991  def v8i16     : SHUFBVecInst<v8i16, v16i8>;
1992  def v8i16_m32 : SHUFBVecInst<v8i16, v4i32>;
1993  def v4i32     : SHUFBVecInst<v4i32, v16i8>;
1994  def v4i32_m32 : SHUFBVecInst<v4i32, v4i32>;
1995  def v2i64     : SHUFBVecInst<v2i64, v16i8>;
1996  def v2i64_m32 : SHUFBVecInst<v2i64, v4i32>;
1997
1998  def v4f32     : SHUFBVecInst<v4f32, v16i8>;
1999  def v4f32_m32 : SHUFBVecInst<v4f32, v4i32>;
2000
2001  def v2f64     : SHUFBVecInst<v2f64, v16i8>;
2002  def v2f64_m32 : SHUFBVecInst<v2f64, v4i32>;
2003
2004  def gprc      : SHUFBGPRCInst;
2005}
2006
2007defm SHUFB : ShuffleBytes;
2008
2009//===----------------------------------------------------------------------===//
2010// Shift and rotate group:
2011//===----------------------------------------------------------------------===//
2012
2013class SHLHInst<dag OOL, dag IOL, list<dag> pattern>:
2014    RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB",
2015           RotShiftVec, pattern>;
2016
2017class SHLHVecInst<ValueType vectype>:
2018    SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2019             [(set (vectype VECREG:$rT),
2020                   (SPUvec_shl (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
2021
2022multiclass ShiftLeftHalfword
2023{
2024  def v8i16: SHLHVecInst<v8i16>;
2025  def r16:   SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
2026                      [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;
2027  def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
2028                        [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;
2029}
2030
2031defm SHLH : ShiftLeftHalfword;
2032
2033//===----------------------------------------------------------------------===//
2034
2035class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>:
2036    RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val",
2037            RotShiftVec, pattern>;
2038
2039class SHLHIVecInst<ValueType vectype>:
2040    SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
2041              [(set (vectype VECREG:$rT),
2042                    (SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
2043
2044multiclass ShiftLeftHalfwordImm
2045{
2046  def v8i16: SHLHIVecInst<v8i16>;
2047  def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
2048                     [(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>;
2049}
2050
2051defm SHLHI : ShiftLeftHalfwordImm;
2052
2053def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
2054          (SHLHIv8i16 VECREG:$rA, (TO_IMM16 uimm7:$val))>;
2055
2056def : Pat<(shl R16C:$rA, (i32 uimm7:$val)),
2057          (SHLHIr16 R16C:$rA, (TO_IMM16 uimm7:$val))>;
2058
2059//===----------------------------------------------------------------------===//
2060
2061class SHLInst<dag OOL, dag IOL, list<dag> pattern>:
2062    RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB",
2063           RotShiftVec, pattern>;
2064
2065multiclass ShiftLeftWord
2066{
2067  def v4i32:
2068      SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2069              [(set (v4i32 VECREG:$rT),
2070                    (SPUvec_shl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
2071  def r32:
2072      SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
2073              [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;
2074}
2075
2076defm SHL: ShiftLeftWord;
2077
2078//===----------------------------------------------------------------------===//
2079
2080class SHLIInst<dag OOL, dag IOL, list<dag> pattern>:
2081    RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val",
2082            RotShiftVec, pattern>;
2083
2084multiclass ShiftLeftWordImm
2085{
2086  def v4i32:
2087    SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
2088             [(set (v4i32 VECREG:$rT),
2089                   (SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;
2090
2091  def r32:
2092    SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
2093             [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;
2094}
2095
2096defm SHLI : ShiftLeftWordImm;
2097
2098//===----------------------------------------------------------------------===//
2099// SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
2100// register) to the left. Vector form is here to ensure type correctness.
2101//
2102// The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift
2103// of 7 bits is actually possible.
2104//
2105// Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI
2106// to shift i64 and i128. SHLQBI is the residual left over after shifting by
2107// bytes with SHLQBY.
2108
2109class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>:
2110    RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB",
2111           RotShiftQuad, pattern>;
2112
2113class SHLQBIVecInst<ValueType vectype>:
2114    SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2115               [(set (vectype VECREG:$rT),
2116                     (SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>;
2117
2118class SHLQBIRegInst<RegisterClass rclass>:
2119    SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2120               [/* no pattern */]>;
2121
2122multiclass ShiftLeftQuadByBits
2123{
2124  def v16i8: SHLQBIVecInst<v16i8>;
2125  def v8i16: SHLQBIVecInst<v8i16>;
2126  def v4i32: SHLQBIVecInst<v4i32>;
2127  def v4f32: SHLQBIVecInst<v4f32>;
2128  def v2i64: SHLQBIVecInst<v2i64>;
2129  def v2f64: SHLQBIVecInst<v2f64>;
2130
2131  def r128:  SHLQBIRegInst<GPRC>;
2132}
2133
2134defm SHLQBI : ShiftLeftQuadByBits;
2135
2136// See note above on SHLQBI. In this case, the predicate actually does then
2137// enforcement, whereas with SHLQBI, we have to "take it on faith."
2138class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
2139    RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val",
2140            RotShiftQuad, pattern>;
2141
2142class SHLQBIIVecInst<ValueType vectype>:
2143    SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
2144                [(set (vectype VECREG:$rT),
2145                      (SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>;
2146
2147multiclass ShiftLeftQuadByBitsImm
2148{
2149  def v16i8 : SHLQBIIVecInst<v16i8>;
2150  def v8i16 : SHLQBIIVecInst<v8i16>;
2151  def v4i32 : SHLQBIIVecInst<v4i32>;
2152  def v4f32 : SHLQBIIVecInst<v4f32>;
2153  def v2i64 : SHLQBIIVecInst<v2i64>;
2154  def v2f64 : SHLQBIIVecInst<v2f64>;
2155}
2156
2157defm SHLQBII : ShiftLeftQuadByBitsImm;
2158
2159// SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
2160// not by bits. See notes above on SHLQBI.
2161
2162class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>:
2163    RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB",
2164            RotShiftQuad, pattern>;
2165
2166class SHLQBYVecInst<ValueType vectype>:
2167    SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2168               [(set (vectype VECREG:$rT),
2169                     (SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>;
2170
2171multiclass ShiftLeftQuadBytes
2172{
2173  def v16i8: SHLQBYVecInst<v16i8>;
2174  def v8i16: SHLQBYVecInst<v8i16>;
2175  def v4i32: SHLQBYVecInst<v4i32>;
2176  def v4f32: SHLQBYVecInst<v4f32>;
2177  def v2i64: SHLQBYVecInst<v2i64>;
2178  def v2f64: SHLQBYVecInst<v2f64>;
2179  def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
2180                       [(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>;
2181}
2182
2183defm SHLQBY: ShiftLeftQuadBytes;
2184
2185class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
2186    RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val",
2187            RotShiftQuad, pattern>;
2188
2189class SHLQBYIVecInst<ValueType vectype>:
2190    SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
2191                [(set (vectype VECREG:$rT),
2192                      (SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>;
2193
2194multiclass ShiftLeftQuadBytesImm
2195{
2196  def v16i8: SHLQBYIVecInst<v16i8>;
2197  def v8i16: SHLQBYIVecInst<v8i16>;
2198  def v4i32: SHLQBYIVecInst<v4i32>;
2199  def v4f32: SHLQBYIVecInst<v4f32>;
2200  def v2i64: SHLQBYIVecInst<v2i64>;
2201  def v2f64: SHLQBYIVecInst<v2f64>;
2202  def r128:  SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val),
2203                         [(set GPRC:$rT,
2204                               (SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>;
2205}
2206
2207defm SHLQBYI : ShiftLeftQuadBytesImm;
2208
2209class SHLQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
2210    RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB",
2211           RotShiftQuad, pattern>;
2212
2213class SHLQBYBIVecInst<ValueType vectype>:
2214    SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2215                [/* no pattern */]>;
2216
2217class SHLQBYBIRegInst<RegisterClass rclass>:
2218    SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2219                 [/* no pattern */]>;
2220
2221multiclass ShiftLeftQuadBytesBitCount
2222{
2223  def v16i8: SHLQBYBIVecInst<v16i8>;
2224  def v8i16: SHLQBYBIVecInst<v8i16>;
2225  def v4i32: SHLQBYBIVecInst<v4i32>;
2226  def v4f32: SHLQBYBIVecInst<v4f32>;
2227  def v2i64: SHLQBYBIVecInst<v2i64>;
2228  def v2f64: SHLQBYBIVecInst<v2f64>;
2229
2230  def r128:  SHLQBYBIRegInst<GPRC>;
2231}
2232
2233defm SHLQBYBI : ShiftLeftQuadBytesBitCount;
2234
2235//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2236// Rotate halfword:
2237//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2238class ROTHInst<dag OOL, dag IOL, list<dag> pattern>:
2239    RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB",
2240           RotShiftVec, pattern>;
2241
2242class ROTHVecInst<ValueType vectype>:
2243    ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2244             [(set (vectype VECREG:$rT),
2245                   (SPUvec_rotl VECREG:$rA, (v8i16 VECREG:$rB)))]>;
2246
2247class ROTHRegInst<RegisterClass rclass>:
2248    ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
2249             [(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>;
2250
2251multiclass RotateLeftHalfword
2252{
2253  def v8i16: ROTHVecInst<v8i16>;
2254  def r16: ROTHRegInst<R16C>;
2255}
2256
2257defm ROTH: RotateLeftHalfword;
2258
2259def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
2260                          [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;
2261
2262//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2263// Rotate halfword, immediate:
2264//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2265class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>:
2266    RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val",
2267            RotShiftVec, pattern>;
2268
2269class ROTHIVecInst<ValueType vectype>:
2270    ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
2271              [(set (vectype VECREG:$rT),
2272                    (SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>;
2273
2274multiclass RotateLeftHalfwordImm
2275{
2276  def v8i16: ROTHIVecInst<v8i16>;
2277  def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
2278                     [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;
2279  def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
2280                         [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;
2281}
2282
2283defm ROTHI: RotateLeftHalfwordImm;
2284
2285def : Pat<(SPUvec_rotl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
2286          (ROTHIv8i16 VECREG:$rA, (TO_IMM16 imm:$val))>;
2287
2288//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2289// Rotate word:
2290//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2291
2292class ROTInst<dag OOL, dag IOL, list<dag> pattern>:
2293    RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB",
2294           RotShiftVec, pattern>;
2295
2296class ROTVecInst<ValueType vectype>:
2297    ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2298            [(set (vectype VECREG:$rT),
2299                  (SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>;
2300
2301class ROTRegInst<RegisterClass rclass>:
2302    ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2303            [(set rclass:$rT,
2304                  (rotl rclass:$rA, R32C:$rB))]>;
2305
2306multiclass RotateLeftWord
2307{
2308  def v4i32: ROTVecInst<v4i32>;
2309  def r32:   ROTRegInst<R32C>;
2310}
2311
2312defm ROT: RotateLeftWord;
2313
2314// The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or
2315// 32-bit register
2316def ROTr32_r16_anyext:
2317    ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB),
2318            [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>;
2319
2320def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))),
2321          (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
2322
2323def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))),
2324          (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
2325
2326def ROTr32_r8_anyext:
2327    ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB),
2328            [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>;
2329
2330def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))),
2331          (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
2332
2333def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))),
2334          (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
2335
2336//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2337// Rotate word, immediate
2338//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2339
2340class ROTIInst<dag OOL, dag IOL, list<dag> pattern>:
2341    RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val",
2342            RotShiftVec, pattern>;
2343
2344class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>:
2345    ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
2346             [(set (vectype VECREG:$rT),
2347                   (SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>;
2348
2349class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>:
2350    ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
2351             [(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>;
2352
2353multiclass RotateLeftWordImm
2354{
2355  def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>;
2356  def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>;
2357  def v4i32_i8:  ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>;
2358
2359  def r32:       ROTIRegInst<R32C, u7imm_i32, i32, uimm7>;
2360  def r32_i16:   ROTIRegInst<R32C, u7imm, i16, uimm7>;
2361  def r32_i8:    ROTIRegInst<R32C, u7imm_i8, i8, uimm7>;
2362}
2363
2364defm ROTI : RotateLeftWordImm;
2365
2366//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2367// Rotate quad by byte (count)
2368//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2369
2370class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>:
2371    RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB",
2372           RotShiftQuad, pattern>;
2373
2374class ROTQBYGenInst<ValueType type, RegisterClass rc>:
2375    ROTQBYInst<(outs rc:$rT), (ins rc:$rA, R32C:$rB),
2376               [(set (type rc:$rT),
2377                     (SPUrotbytes_left (type rc:$rA), R32C:$rB))]>;
2378
2379class ROTQBYVecInst<ValueType type>:
2380    ROTQBYGenInst<type, VECREG>;
2381
2382multiclass RotateQuadLeftByBytes
2383{
2384  def v16i8: ROTQBYVecInst<v16i8>;
2385  def v8i16: ROTQBYVecInst<v8i16>;
2386  def v4i32: ROTQBYVecInst<v4i32>;
2387  def v4f32: ROTQBYVecInst<v4f32>;
2388  def v2i64: ROTQBYVecInst<v2i64>;
2389  def v2f64: ROTQBYVecInst<v2f64>;
2390  def i128:  ROTQBYGenInst<i128, GPRC>;
2391}
2392
2393defm ROTQBY: RotateQuadLeftByBytes;
2394
2395//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2396// Rotate quad by byte (count), immediate
2397//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2398
2399class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
2400    RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val",
2401            RotShiftQuad, pattern>;
2402
2403class ROTQBYIGenInst<ValueType type, RegisterClass rclass>:
2404    ROTQBYIInst<(outs rclass:$rT), (ins rclass:$rA, u7imm:$val),
2405                [(set (type rclass:$rT),
2406                      (SPUrotbytes_left (type rclass:$rA), (i16 uimm7:$val)))]>;
2407
2408class ROTQBYIVecInst<ValueType vectype>:
2409    ROTQBYIGenInst<vectype, VECREG>;
2410
2411multiclass RotateQuadByBytesImm
2412{
2413  def v16i8: ROTQBYIVecInst<v16i8>;
2414  def v8i16: ROTQBYIVecInst<v8i16>;
2415  def v4i32: ROTQBYIVecInst<v4i32>;
2416  def v4f32: ROTQBYIVecInst<v4f32>;
2417  def v2i64: ROTQBYIVecInst<v2i64>;
2418  def vfi64: ROTQBYIVecInst<v2f64>;
2419  def i128:  ROTQBYIGenInst<i128, GPRC>;
2420}
2421
2422defm ROTQBYI: RotateQuadByBytesImm;
2423
2424// See ROTQBY note above.
2425class ROTQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
2426    RI7Form<0b00110011100, OOL, IOL,
2427      "rotqbybi\t$rT, $rA, $shift",
2428      RotShiftQuad, pattern>;
2429
2430class ROTQBYBIVecInst<ValueType vectype, RegisterClass rclass>:
2431    ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift),
2432      [(set (vectype VECREG:$rT),
2433            (SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>;
2434
2435multiclass RotateQuadByBytesByBitshift {
2436  def v16i8_r32: ROTQBYBIVecInst<v16i8, R32C>;
2437  def v8i16_r32: ROTQBYBIVecInst<v8i16, R32C>;
2438  def v4i32_r32: ROTQBYBIVecInst<v4i32, R32C>;
2439  def v2i64_r32: ROTQBYBIVecInst<v2i64, R32C>;
2440}
2441
2442defm ROTQBYBI : RotateQuadByBytesByBitshift;
2443
2444//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2445// See ROTQBY note above.
2446//
2447// Assume that the user of this instruction knows to shift the rotate count
2448// into bit 29
2449//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2450
2451class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>:
2452    RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB",
2453           RotShiftQuad, pattern>;
2454
2455class ROTQBIVecInst<ValueType vectype>:
2456    ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2457               [/* no pattern yet */]>;
2458
2459class ROTQBIRegInst<RegisterClass rclass>:
2460    ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2461               [/* no pattern yet */]>;
2462
2463multiclass RotateQuadByBitCount
2464{
2465  def v16i8: ROTQBIVecInst<v16i8>;
2466  def v8i16: ROTQBIVecInst<v8i16>;
2467  def v4i32: ROTQBIVecInst<v4i32>;
2468  def v2i64: ROTQBIVecInst<v2i64>;
2469
2470  def r128:  ROTQBIRegInst<GPRC>;
2471  def r64:   ROTQBIRegInst<R64C>;
2472}
2473
2474defm ROTQBI: RotateQuadByBitCount;
2475
2476class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
2477    RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val",
2478            RotShiftQuad, pattern>;
2479
2480class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype,
2481                     PatLeaf pred>:
2482    ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
2483                [/* no pattern yet */]>;
2484
2485class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
2486                     PatLeaf pred>:
2487    ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
2488                [/* no pattern yet */]>;
2489
2490multiclass RotateQuadByBitCountImm
2491{
2492  def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>;
2493  def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>;
2494  def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>;
2495  def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>;
2496
2497  def r128:  ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>;
2498  def r64:   ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>;
2499}
2500
2501defm ROTQBII : RotateQuadByBitCountImm;
2502
2503//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2504// ROTHM v8i16 form:
2505// NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
2506//          so this only matches a synthetically generated/lowered code
2507//          fragment.
2508// NOTE(2): $rB must be negated before the right rotate!
2509//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2510
2511class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>:
2512    RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB",
2513           RotShiftVec, pattern>;
2514
2515def ROTHMv8i16:
2516    ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2517              [/* see patterns below - $rB must be negated */]>;
2518
2519def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
2520          (ROTHMv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>;
2521
2522// ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
2523// Note: This instruction doesn't match a pattern because rB must be negated
2524// for the instruction to work. Thus, the pattern below the instruction!
2525
2526def ROTHMr16:
2527    ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
2528              [/* see patterns below - $rB must be negated! */]>;
2529
2530def : Pat<(srl R16C:$rA, R32C:$rB),
2531          (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
2532
2533def : Pat<(srl R16C:$rA, R16C:$rB),
2534          (ROTHMr16 R16C:$rA,
2535                    (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2536
2537def : Pat<(srl R16C:$rA, R8C:$rB),
2538          (ROTHMr16 R16C:$rA,
2539                    (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
2540
2541// ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
2542// that the immediate can be complemented, so that the user doesn't have to
2543// worry about it.
2544
2545class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>:
2546    RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val",
2547            RotShiftVec, pattern>;
2548
2549def ROTHMIv8i16:
2550    ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
2551               [/* no pattern */]>;
2552
2553def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)),
2554          (ROTHMIv8i16 VECREG:$rA, imm:$val)>;
2555
2556def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)),
2557         (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;
2558
2559def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)),
2560         (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;
2561
2562def ROTHMIr16:
2563    ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
2564               [/* no pattern */]>;
2565
2566def: Pat<(srl R16C:$rA, (i32 uimm7:$val)),
2567         (ROTHMIr16 R16C:$rA, uimm7:$val)>;
2568
2569def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
2570         (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
2571
2572def: Pat<(srl R16C:$rA, (i8 uimm7:$val)),
2573         (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
2574
2575// ROTM v4i32 form: See the ROTHM v8i16 comments.
2576class ROTMInst<dag OOL, dag IOL, list<dag> pattern>:
2577    RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB",
2578           RotShiftVec, pattern>;
2579
2580def ROTMv4i32:
2581    ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2582             [/* see patterns below - $rB must be negated */]>;
2583
2584def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)),
2585          (ROTMv4i32 VECREG:$rA, (SFIvec VECREG:$rB, 0))>;
2586
2587def ROTMr32:
2588    ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
2589             [/* see patterns below - $rB must be negated */]>;
2590
2591def : Pat<(srl R32C:$rA, R32C:$rB),
2592          (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
2593
2594def : Pat<(srl R32C:$rA, R16C:$rB),
2595          (ROTMr32 R32C:$rA,
2596                   (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2597
2598def : Pat<(srl R32C:$rA, R8C:$rB),
2599          (ROTMr32 R32C:$rA,
2600                   (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
2601
2602// ROTMI v4i32 form: See the comment for ROTHM v8i16.
2603def ROTMIv4i32:
2604    RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
2605      "rotmi\t$rT, $rA, $val", RotShiftVec,
2606      [(set (v4i32 VECREG:$rT),
2607            (SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>;
2608
2609def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i16 uimm7:$val)),
2610          (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;
2611
2612def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i8 uimm7:$val)),
2613          (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;
2614
2615// ROTMI r32 form: know how to complement the immediate value.
2616def ROTMIr32:
2617    RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
2618      "rotmi\t$rT, $rA, $val", RotShiftVec,
2619      [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;
2620
2621def : Pat<(srl R32C:$rA, (i16 imm:$val)),
2622          (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;
2623
2624def : Pat<(srl R32C:$rA, (i8 imm:$val)),
2625          (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;
2626
2627//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2628// ROTQMBY: This is a vector form merely so that when used in an
2629// instruction pattern, type checking will succeed. This instruction assumes
2630// that the user knew to negate $rB.
2631//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2632
2633class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>:
2634    RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB",
2635           RotShiftQuad, pattern>;
2636
2637class ROTQMBYVecInst<ValueType vectype>:
2638    ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2639                [/* no pattern, $rB must be negated */]>;
2640
2641class ROTQMBYRegInst<RegisterClass rclass>:
2642    ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2643                [/* no pattern */]>;
2644
2645multiclass RotateQuadBytes
2646{
2647  def v16i8: ROTQMBYVecInst<v16i8>;
2648  def v8i16: ROTQMBYVecInst<v8i16>;
2649  def v4i32: ROTQMBYVecInst<v4i32>;
2650  def v2i64: ROTQMBYVecInst<v2i64>;
2651
2652  def r128: ROTQMBYRegInst<GPRC>;
2653  def r64:  ROTQMBYRegInst<R64C>;
2654}
2655
2656defm ROTQMBY : RotateQuadBytes;
2657
2658def : Pat<(SPUsrl_bytes GPRC:$rA, R32C:$rB),
2659          (ROTQMBYr128  GPRC:$rA,
2660                        (SFIr32 R32C:$rB, 0))>;
2661
2662class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>:
2663    RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val",
2664            RotShiftQuad, pattern>;
2665
2666class ROTQMBYIVecInst<ValueType vectype>:
2667    ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
2668                 [/* no pattern */]>;
2669
2670class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
2671                      PatLeaf pred>:
2672    ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
2673                 [/* no pattern */]>;
2674
2675// 128-bit zero extension form:
2676class ROTQMBYIZExtInst<RegisterClass rclass, Operand optype, PatLeaf pred>:
2677    ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val),
2678                 [/* no pattern */]>;
2679
2680multiclass RotateQuadBytesImm
2681{
2682  def v16i8: ROTQMBYIVecInst<v16i8>;
2683  def v8i16: ROTQMBYIVecInst<v8i16>;
2684  def v4i32: ROTQMBYIVecInst<v4i32>;
2685  def v2i64: ROTQMBYIVecInst<v2i64>;
2686
2687  def r128:  ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>;
2688  def r64:   ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>;
2689
2690  def r128_zext_r8:  ROTQMBYIZExtInst<R8C, rotNeg7imm, uimm7>;
2691  def r128_zext_r16: ROTQMBYIZExtInst<R16C, rotNeg7imm, uimm7>;
2692  def r128_zext_r32: ROTQMBYIZExtInst<R32C, rotNeg7imm, uimm7>;
2693  def r128_zext_r64: ROTQMBYIZExtInst<R64C, rotNeg7imm, uimm7>;
2694}
2695
2696defm ROTQMBYI : RotateQuadBytesImm;
2697
2698//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2699// Rotate right and mask by bit count
2700//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2701
2702class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
2703    RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB",
2704           RotShiftQuad, pattern>;
2705
2706class ROTQMBYBIVecInst<ValueType vectype>:
2707    ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2708                  [/* no pattern, */]>;
2709
2710multiclass RotateMaskQuadByBitCount
2711{
2712  def v16i8: ROTQMBYBIVecInst<v16i8>;
2713  def v8i16: ROTQMBYBIVecInst<v8i16>;
2714  def v4i32: ROTQMBYBIVecInst<v4i32>;
2715  def v2i64: ROTQMBYBIVecInst<v2i64>;
2716  def r128: ROTQMBYBIInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
2717                           [/*no pattern*/]>;
2718}
2719
2720defm ROTQMBYBI: RotateMaskQuadByBitCount;
2721
2722//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2723// Rotate quad and mask by bits
2724// Note that the rotate amount has to be negated
2725//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2726
2727class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>:
2728    RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB",
2729           RotShiftQuad, pattern>;
2730
2731class ROTQMBIVecInst<ValueType vectype>:
2732    ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
2733                [/* no pattern */]>;
2734
2735class ROTQMBIRegInst<RegisterClass rclass>:
2736    ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
2737                [/* no pattern */]>;
2738
2739multiclass RotateMaskQuadByBits
2740{
2741  def v16i8: ROTQMBIVecInst<v16i8>;
2742  def v8i16: ROTQMBIVecInst<v8i16>;
2743  def v4i32: ROTQMBIVecInst<v4i32>;
2744  def v2i64: ROTQMBIVecInst<v2i64>;
2745
2746  def r128:  ROTQMBIRegInst<GPRC>;
2747  def r64:   ROTQMBIRegInst<R64C>;
2748}
2749
2750defm ROTQMBI: RotateMaskQuadByBits;
2751
2752def : Pat<(srl GPRC:$rA, R32C:$rB),
2753          (ROTQMBYBIr128 (ROTQMBIr128  GPRC:$rA,
2754                                       (SFIr32 R32C:$rB, 0)),
2755                         (SFIr32 R32C:$rB, 0))>;
2756
2757
2758//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2759// Rotate quad and mask by bits, immediate
2760//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2761
2762class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>:
2763    RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val",
2764            RotShiftQuad, pattern>;
2765
2766class ROTQMBIIVecInst<ValueType vectype>:
2767   ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
2768                 [/* no pattern */]>;
2769
2770class ROTQMBIIRegInst<RegisterClass rclass>:
2771   ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val),
2772                 [/* no pattern */]>;
2773
2774multiclass RotateMaskQuadByBitsImm
2775{
2776  def v16i8: ROTQMBIIVecInst<v16i8>;
2777  def v8i16: ROTQMBIIVecInst<v8i16>;
2778  def v4i32: ROTQMBIIVecInst<v4i32>;
2779  def v2i64: ROTQMBIIVecInst<v2i64>;
2780
2781  def r128:  ROTQMBIIRegInst<GPRC>;
2782  def r64:   ROTQMBIIRegInst<R64C>;
2783}
2784
2785defm ROTQMBII: RotateMaskQuadByBitsImm;
2786
2787//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2788//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2789
2790def ROTMAHv8i16:
2791    RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2792      "rotmah\t$rT, $rA, $rB", RotShiftVec,
2793      [/* see patterns below - $rB must be negated */]>;
2794
2795def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
2796          (ROTMAHv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>;
2797
2798def ROTMAHr16:
2799    RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
2800      "rotmah\t$rT, $rA, $rB", RotShiftVec,
2801      [/* see patterns below - $rB must be negated */]>;
2802
2803def : Pat<(sra R16C:$rA, R32C:$rB),
2804          (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
2805
2806def : Pat<(sra R16C:$rA, R16C:$rB),
2807          (ROTMAHr16 R16C:$rA,
2808                     (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2809
2810def : Pat<(sra R16C:$rA, R8C:$rB),
2811          (ROTMAHr16 R16C:$rA,
2812                     (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
2813
2814def ROTMAHIv8i16:
2815    RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
2816      "rotmahi\t$rT, $rA, $val", RotShiftVec,
2817      [(set (v8i16 VECREG:$rT),
2818            (SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;
2819
2820def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)),
2821          (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;
2822
2823def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)),
2824          (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;
2825
2826def ROTMAHIr16:
2827    RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
2828      "rotmahi\t$rT, $rA, $val", RotShiftVec,
2829      [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;
2830
2831def : Pat<(sra R16C:$rA, (i32 imm:$val)),
2832          (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
2833
2834def : Pat<(sra R16C:$rA, (i8 imm:$val)),
2835          (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
2836
2837def ROTMAv4i32:
2838    RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2839      "rotma\t$rT, $rA, $rB", RotShiftVec,
2840      [/* see patterns below - $rB must be negated */]>;
2841
2842def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)),
2843          (ROTMAv4i32 VECREG:$rA, (SFIvec (v4i32 VECREG:$rB), 0))>;
2844
2845def ROTMAr32:
2846    RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
2847      "rotma\t$rT, $rA, $rB", RotShiftVec,
2848      [/* see patterns below - $rB must be negated */]>;
2849
2850def : Pat<(sra R32C:$rA, R32C:$rB),
2851          (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
2852
2853def : Pat<(sra R32C:$rA, R16C:$rB),
2854          (ROTMAr32 R32C:$rA,
2855                    (SFIr32 (XSHWr16 R16C:$rB), 0))>;
2856
2857def : Pat<(sra R32C:$rA, R8C:$rB),
2858          (ROTMAr32 R32C:$rA,
2859                    (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
2860
2861class ROTMAIInst<dag OOL, dag IOL, list<dag> pattern>:
2862    RRForm<0b01011110000, OOL, IOL,
2863      "rotmai\t$rT, $rA, $val",
2864      RotShiftVec, pattern>;
2865
2866class ROTMAIVecInst<ValueType vectype, Operand intop, ValueType inttype>:
2867    ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val),
2868      [(set (vectype VECREG:$rT),
2869            (SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>;
2870
2871class ROTMAIRegInst<RegisterClass rclass, Operand intop, ValueType inttype>:
2872    ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val),
2873      [(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>;
2874
2875multiclass RotateMaskAlgebraicImm {
2876  def v2i64_i32 : ROTMAIVecInst<v2i64, rotNeg7imm, i32>;
2877  def v4i32_i32 : ROTMAIVecInst<v4i32, rotNeg7imm, i32>;
2878  def r64_i32 : ROTMAIRegInst<R64C, rotNeg7imm, i32>;
2879  def r32_i32 : ROTMAIRegInst<R32C, rotNeg7imm, i32>;
2880}
2881
2882defm ROTMAI : RotateMaskAlgebraicImm;
2883
2884//===----------------------------------------------------------------------===//
2885// Branch and conditionals:
2886//===----------------------------------------------------------------------===//
2887
2888let isTerminator = 1, isBarrier = 1 in {
2889  // Halt If Equal (r32 preferred slot only, no vector form)
2890  def HEQr32:
2891    RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
2892      "heq\t$rA, $rB", BranchResolv,
2893      [/* no pattern to match */]>;
2894
2895  def HEQIr32 :
2896    RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
2897      "heqi\t$rA, $val", BranchResolv,
2898      [/* no pattern to match */]>;
2899
2900  // HGT/HGTI: These instructions use signed arithmetic for the comparison,
2901  // contrasting with HLGT/HLGTI, which use unsigned comparison:
2902  def HGTr32:
2903    RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
2904      "hgt\t$rA, $rB", BranchResolv,
2905      [/* no pattern to match */]>;
2906
2907  def HGTIr32:
2908    RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
2909      "hgti\t$rA, $val", BranchResolv,
2910      [/* no pattern to match */]>;
2911
2912  def HLGTr32:
2913    RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
2914      "hlgt\t$rA, $rB", BranchResolv,
2915      [/* no pattern to match */]>;
2916
2917  def HLGTIr32:
2918    RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
2919      "hlgti\t$rA, $val", BranchResolv,
2920      [/* no pattern to match */]>;
2921}
2922
2923//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2924// Comparison operators for i8, i16 and i32:
2925//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
2926
2927class CEQBInst<dag OOL, dag IOL, list<dag> pattern> :
2928  RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB",
2929         ByteOp, pattern>;
2930
2931multiclass CmpEqualByte
2932{
2933  def v16i8 :
2934    CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2935      [(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
2936                                       (v8i16 VECREG:$rB)))]>;
2937
2938  def r8 :
2939    CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
2940             [(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>;
2941}
2942
2943class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> :
2944  RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val",
2945           ByteOp, pattern>;
2946
2947multiclass CmpEqualByteImm
2948{
2949  def v16i8 :
2950    CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
2951              [(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA),
2952                                               v16i8SExt8Imm:$val))]>;
2953  def r8:
2954    CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
2955             [(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>;
2956}
2957
2958class CEQHInst<dag OOL, dag IOL, list<dag> pattern> :
2959  RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB",
2960         ByteOp, pattern>;
2961
2962multiclass CmpEqualHalfword
2963{
2964  def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2965                       [(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
2966                                                        (v8i16 VECREG:$rB)))]>;
2967
2968  def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
2969                     [(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>;
2970}
2971
2972class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> :
2973  RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val",
2974           ByteOp, pattern>;
2975
2976multiclass CmpEqualHalfwordImm
2977{
2978  def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
2979                        [(set (v8i16 VECREG:$rT),
2980                              (seteq (v8i16 VECREG:$rA),
2981                                     (v8i16 v8i16SExt10Imm:$val)))]>;
2982  def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
2983                      [(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>;
2984}
2985
2986class CEQInst<dag OOL, dag IOL, list<dag> pattern> :
2987  RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB",
2988         ByteOp, pattern>;
2989
2990multiclass CmpEqualWord
2991{
2992  def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
2993                      [(set (v4i32 VECREG:$rT),
2994                            (seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
2995
2996  def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
2997                    [(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>;
2998}
2999
3000class CEQIInst<dag OOL, dag IOL, list<dag> pattern> :
3001  RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val",
3002           ByteOp, pattern>;
3003
3004multiclass CmpEqualWordImm
3005{
3006  def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3007                       [(set (v4i32 VECREG:$rT),
3008                             (seteq (v4i32 VECREG:$rA),
3009                                    (v4i32 v4i32SExt16Imm:$val)))]>;
3010
3011  def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
3012                    [(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>;
3013}
3014
3015class CGTBInst<dag OOL, dag IOL, list<dag> pattern> :
3016  RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB",
3017         ByteOp, pattern>;
3018
3019multiclass CmpGtrByte
3020{
3021  def v16i8 :
3022    CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3023      [(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
3024                                       (v8i16 VECREG:$rB)))]>;
3025
3026  def r8 :
3027    CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
3028             [(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>;
3029}
3030
3031class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
3032  RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val",
3033           ByteOp, pattern>;
3034
3035multiclass CmpGtrByteImm
3036{
3037  def v16i8 :
3038    CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
3039              [(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA),
3040                                               v16i8SExt8Imm:$val))]>;
3041  def r8:
3042    CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
3043              [(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>;
3044}
3045
3046class CGTHInst<dag OOL, dag IOL, list<dag> pattern> :
3047  RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB",
3048         ByteOp, pattern>;
3049
3050multiclass CmpGtrHalfword
3051{
3052  def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3053                       [(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
3054                                                        (v8i16 VECREG:$rB)))]>;
3055
3056  def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
3057                     [(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>;
3058}
3059
3060class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
3061  RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val",
3062           ByteOp, pattern>;
3063
3064multiclass CmpGtrHalfwordImm
3065{
3066  def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3067                        [(set (v8i16 VECREG:$rT),
3068                              (setgt (v8i16 VECREG:$rA),
3069                                     (v8i16 v8i16SExt10Imm:$val)))]>;
3070  def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
3071                      [(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>;
3072}
3073
3074class CGTInst<dag OOL, dag IOL, list<dag> pattern> :
3075  RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB",
3076         ByteOp, pattern>;
3077
3078multiclass CmpGtrWord
3079{
3080  def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3081                      [(set (v4i32 VECREG:$rT),
3082                            (setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
3083
3084  def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
3085                    [(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>;
3086}
3087
3088class CGTIInst<dag OOL, dag IOL, list<dag> pattern> :
3089  RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val",
3090           ByteOp, pattern>;
3091
3092multiclass CmpGtrWordImm
3093{
3094  def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3095                       [(set (v4i32 VECREG:$rT),
3096                             (setgt (v4i32 VECREG:$rA),
3097                                    (v4i32 v4i32SExt16Imm:$val)))]>;
3098
3099  def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
3100                    [(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>;
3101
3102  // CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence:
3103  def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3104                       [(set (v4i32 VECREG:$rT),
3105                             (setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))),
3106                                    (v4i32 v4i32SExt16Imm:$val)))]>;
3107
3108  def f32:   CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val),
3109                      [/* no pattern */]>;
3110}
3111
3112class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> :
3113  RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB",
3114         ByteOp, pattern>;
3115
3116multiclass CmpLGtrByte
3117{
3118  def v16i8 :
3119    CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3120      [(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
3121                                       (v8i16 VECREG:$rB)))]>;
3122
3123  def r8 :
3124    CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
3125             [(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>;
3126}
3127
3128class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
3129  RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val",
3130           ByteOp, pattern>;
3131
3132multiclass CmpLGtrByteImm
3133{
3134  def v16i8 :
3135    CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
3136              [(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA),
3137                                               v16i8SExt8Imm:$val))]>;
3138  def r8:
3139    CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
3140             [(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>;
3141}
3142
3143class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> :
3144  RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB",
3145         ByteOp, pattern>;
3146
3147multiclass CmpLGtrHalfword
3148{
3149  def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3150                       [(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
3151                                                        (v8i16 VECREG:$rB)))]>;
3152
3153  def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
3154                     [(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>;
3155}
3156
3157class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
3158  RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val",
3159           ByteOp, pattern>;
3160
3161multiclass CmpLGtrHalfwordImm
3162{
3163  def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3164                         [(set (v8i16 VECREG:$rT),
3165                               (setugt (v8i16 VECREG:$rA),
3166                                       (v8i16 v8i16SExt10Imm:$val)))]>;
3167  def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
3168                       [(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>;
3169}
3170
3171class CLGTInst<dag OOL, dag IOL, list<dag> pattern> :
3172  RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB",
3173         ByteOp, pattern>;
3174
3175multiclass CmpLGtrWord
3176{
3177  def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3178                      [(set (v4i32 VECREG:$rT),
3179                            (setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
3180
3181  def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
3182                     [(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>;
3183}
3184
3185class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> :
3186  RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val",
3187           ByteOp, pattern>;
3188
3189multiclass CmpLGtrWordImm
3190{
3191  def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
3192                       [(set (v4i32 VECREG:$rT),
3193                             (setugt (v4i32 VECREG:$rA),
3194                                    (v4i32 v4i32SExt16Imm:$val)))]>;
3195
3196  def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
3197                     [(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>;
3198}
3199
3200defm CEQB   : CmpEqualByte;
3201defm CEQBI  : CmpEqualByteImm;
3202defm CEQH   : CmpEqualHalfword;
3203defm CEQHI  : CmpEqualHalfwordImm;
3204defm CEQ    : CmpEqualWord;
3205defm CEQI   : CmpEqualWordImm;
3206defm CGTB   : CmpGtrByte;
3207defm CGTBI  : CmpGtrByteImm;
3208defm CGTH   : CmpGtrHalfword;
3209defm CGTHI  : CmpGtrHalfwordImm;
3210defm CGT    : CmpGtrWord;
3211defm CGTI   : CmpGtrWordImm;
3212defm CLGTB  : CmpLGtrByte;
3213defm CLGTBI : CmpLGtrByteImm;
3214defm CLGTH  : CmpLGtrHalfword;
3215defm CLGTHI : CmpLGtrHalfwordImm;
3216defm CLGT   : CmpLGtrWord;
3217defm CLGTI  : CmpLGtrWordImm;
3218
3219//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3220// For SETCC primitives not supported above (setlt, setle, setge, etc.)
3221// define a pattern to generate the right code, as a binary operator
3222// (in a manner of speaking.)
3223//
3224// Notes:
3225// 1. This only matches the setcc set of conditionals. Special pattern
3226//    matching is used for select conditionals.
3227//
3228// 2. The "DAG" versions of these classes is almost exclusively used for
3229//    i64 comparisons. See the tblgen fundamentals documentation for what
3230//    ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern
3231//    class for where ResultInstrs originates.
3232//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3233
3234class SETCCNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
3235                      SPUInstr xorinst, SPUInstr cmpare>:
3236  Pat<(cond rclass:$rA, rclass:$rB),
3237      (xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>;
3238
3239class SETCCNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
3240                      PatLeaf immpred, SPUInstr xorinst, SPUInstr cmpare>:
3241  Pat<(cond rclass:$rA, (inttype immpred:$imm)),
3242      (xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>;
3243
3244def : SETCCNegCondReg<setne, R8C, i8, XORBIr8,  CEQBr8>;
3245def : SETCCNegCondImm<setne, R8C, i8, immSExt8, XORBIr8, CEQBIr8>;
3246
3247def : SETCCNegCondReg<setne, R16C, i16, XORHIr16,     CEQHr16>;
3248def : SETCCNegCondImm<setne, R16C, i16, i16ImmSExt10, XORHIr16, CEQHIr16>;
3249
3250def : SETCCNegCondReg<setne, R32C, i32, XORIr32, CEQr32>;
3251def : SETCCNegCondImm<setne, R32C, i32, i32ImmSExt10, XORIr32, CEQIr32>;
3252
3253class SETCCBinOpReg<PatFrag cond, RegisterClass rclass,
3254                    SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
3255    Pat<(cond rclass:$rA, rclass:$rB),
3256        (binop (cmpOp1 rclass:$rA, rclass:$rB),
3257               (cmpOp2 rclass:$rA, rclass:$rB))>;
3258
3259class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
3260                    ValueType immtype,
3261                    SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
3262    Pat<(cond rclass:$rA, (immtype immpred:$imm)),
3263        (binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)),
3264               (cmpOp2 rclass:$rA, (immtype immpred:$imm)))>;
3265
3266def : SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>;
3267def : SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>;
3268def : SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>;
3269def : SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>;
3270def : Pat<(setle R8C:$rA, R8C:$rB),
3271          (XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
3272def :  Pat<(setle R8C:$rA, immU8:$imm),
3273           (XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
3274
3275def : SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>;
3276def : SETCCBinOpImm<setge, R16C, i16ImmSExt10, i16,
3277                    ORr16, CGTHIr16, CEQHIr16>;
3278def : SETCCBinOpReg<setlt, R16C, NORr16, CGTHr16, CEQHr16>;
3279def : SETCCBinOpImm<setlt, R16C, i16ImmSExt10, i16, NORr16, CGTHIr16, CEQHIr16>;
3280def : Pat<(setle R16C:$rA, R16C:$rB),
3281          (XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
3282def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm),
3283          (XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
3284
3285def : SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>;
3286def : SETCCBinOpImm<setge, R32C, i32ImmSExt10, i32,
3287                    ORr32, CGTIr32, CEQIr32>;
3288def : SETCCBinOpReg<setlt, R32C, NORr32, CGTr32, CEQr32>;
3289def : SETCCBinOpImm<setlt, R32C, i32ImmSExt10, i32, NORr32, CGTIr32, CEQIr32>;
3290def : Pat<(setle R32C:$rA, R32C:$rB),
3291          (XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
3292def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm),
3293          (XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
3294
3295def : SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>;
3296def : SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>;
3297def : SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>;
3298def : SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>;
3299def : Pat<(setule R8C:$rA, R8C:$rB),
3300          (XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
3301def :  Pat<(setule R8C:$rA, immU8:$imm),
3302           (XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
3303
3304def : SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>;
3305def : SETCCBinOpImm<setuge, R16C, i16ImmSExt10, i16,
3306                    ORr16, CLGTHIr16, CEQHIr16>;
3307def : SETCCBinOpReg<setult, R16C, NORr16, CLGTHr16, CEQHr16>;
3308def : SETCCBinOpImm<setult, R16C, i16ImmSExt10, i16, NORr16,
3309                    CLGTHIr16, CEQHIr16>;
3310def : Pat<(setule R16C:$rA, R16C:$rB),
3311          (XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
3312def :  Pat<(setule R16C:$rA, i16ImmSExt10:$imm),
3313           (XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
3314
3315def : SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>;
3316def : SETCCBinOpImm<setuge, R32C, i32ImmSExt10, i32,
3317                    ORr32, CLGTIr32, CEQIr32>;
3318def : SETCCBinOpReg<setult, R32C, NORr32, CLGTr32, CEQr32>;
3319def : SETCCBinOpImm<setult, R32C, i32ImmSExt10, i32, NORr32, CLGTIr32, CEQIr32>;
3320def : Pat<(setule R32C:$rA, R32C:$rB),
3321          (XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
3322def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm),
3323          (XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
3324
3325//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3326// select conditional patterns:
3327//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3328
3329class SELECTNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
3330                       SPUInstr selinstr, SPUInstr cmpare>:
3331  Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
3332              rclass:$rTrue, rclass:$rFalse),
3333      (selinstr rclass:$rTrue, rclass:$rFalse,
3334                (cmpare rclass:$rA, rclass:$rB))>;
3335
3336class SELECTNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
3337                       PatLeaf immpred, SPUInstr selinstr, SPUInstr cmpare>:
3338  Pat<(select (inttype (cond rclass:$rA, immpred:$imm)),
3339              rclass:$rTrue, rclass:$rFalse),
3340      (selinstr rclass:$rTrue, rclass:$rFalse,
3341                (cmpare rclass:$rA, immpred:$imm))>;
3342
3343def : SELECTNegCondReg<setne, R8C, i8, SELBr8, CEQBr8>;
3344def : SELECTNegCondImm<setne, R8C, i8, immSExt8, SELBr8, CEQBIr8>;
3345def : SELECTNegCondReg<setle, R8C, i8, SELBr8, CGTBr8>;
3346def : SELECTNegCondImm<setle, R8C, i8, immSExt8, SELBr8, CGTBr8>;
3347def : SELECTNegCondReg<setule, R8C, i8, SELBr8, CLGTBr8>;
3348def : SELECTNegCondImm<setule, R8C, i8, immU8, SELBr8, CLGTBIr8>;
3349
3350def : SELECTNegCondReg<setne, R16C, i16, SELBr16, CEQHr16>;
3351def : SELECTNegCondImm<setne, R16C, i16, i16ImmSExt10, SELBr16, CEQHIr16>;
3352def : SELECTNegCondReg<setle, R16C, i16, SELBr16, CGTHr16>;
3353def : SELECTNegCondImm<setle, R16C, i16, i16ImmSExt10, SELBr16, CGTHIr16>;
3354def : SELECTNegCondReg<setule, R16C, i16, SELBr16, CLGTHr16>;
3355def : SELECTNegCondImm<setule, R16C, i16, i16ImmSExt10, SELBr16, CLGTHIr16>;
3356
3357def : SELECTNegCondReg<setne, R32C, i32, SELBr32, CEQr32>;
3358def : SELECTNegCondImm<setne, R32C, i32, i32ImmSExt10, SELBr32, CEQIr32>;
3359def : SELECTNegCondReg<setle, R32C, i32, SELBr32, CGTr32>;
3360def : SELECTNegCondImm<setle, R32C, i32, i32ImmSExt10, SELBr32, CGTIr32>;
3361def : SELECTNegCondReg<setule, R32C, i32, SELBr32, CLGTr32>;
3362def : SELECTNegCondImm<setule, R32C, i32, i32ImmSExt10, SELBr32, CLGTIr32>;
3363
3364class SELECTBinOpReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
3365                     SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
3366                     SPUInstr cmpOp2>:
3367  Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
3368              rclass:$rTrue, rclass:$rFalse),
3369      (selinstr rclass:$rFalse, rclass:$rTrue,
3370                (binop (cmpOp1 rclass:$rA, rclass:$rB),
3371                       (cmpOp2 rclass:$rA, rclass:$rB)))>;
3372
3373class SELECTBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
3374                     ValueType inttype,
3375                     SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
3376                     SPUInstr cmpOp2>:
3377    Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))),
3378                rclass:$rTrue, rclass:$rFalse),
3379        (selinstr rclass:$rFalse, rclass:$rTrue,
3380                  (binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)),
3381                         (cmpOp2 rclass:$rA, (inttype immpred:$imm))))>;
3382
3383def : SELECTBinOpReg<setge, R8C, i8, SELBr8, ORr8, CGTBr8, CEQBr8>;
3384def : SELECTBinOpImm<setge, R8C, immSExt8, i8,
3385                     SELBr8, ORr8, CGTBIr8, CEQBIr8>;
3386
3387def : SELECTBinOpReg<setge, R16C, i16, SELBr16, ORr16, CGTHr16, CEQHr16>;
3388def : SELECTBinOpImm<setge, R16C, i16ImmSExt10, i16,
3389                     SELBr16, ORr16, CGTHIr16, CEQHIr16>;
3390
3391def : SELECTBinOpReg<setge, R32C, i32, SELBr32, ORr32, CGTr32, CEQr32>;
3392def : SELECTBinOpImm<setge, R32C, i32ImmSExt10, i32,
3393                     SELBr32, ORr32, CGTIr32, CEQIr32>;
3394
3395def : SELECTBinOpReg<setuge, R8C, i8, SELBr8, ORr8, CLGTBr8, CEQBr8>;
3396def : SELECTBinOpImm<setuge, R8C, immSExt8, i8,
3397                     SELBr8, ORr8, CLGTBIr8, CEQBIr8>;
3398
3399def : SELECTBinOpReg<setuge, R16C, i16, SELBr16, ORr16, CLGTHr16, CEQHr16>;
3400def : SELECTBinOpImm<setuge, R16C, i16ImmUns10, i16,
3401                     SELBr16, ORr16, CLGTHIr16, CEQHIr16>;
3402
3403def : SELECTBinOpReg<setuge, R32C, i32, SELBr32, ORr32, CLGTr32, CEQr32>;
3404def : SELECTBinOpImm<setuge, R32C, i32ImmUns10, i32,
3405                     SELBr32, ORr32, CLGTIr32, CEQIr32>;
3406
3407//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
3408
3409let isCall = 1,
3410  // All calls clobber the non-callee-saved registers:
3411  Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
3412          R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
3413          R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
3414          R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
3415          R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
3416          R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
3417          R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
3418          R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
3419  // All of these instructions use $lr (aka $0)
3420  Uses = [R0]  in {
3421  // Branch relative and set link: Used if we actually know that the target
3422  // is within [-32768, 32767] bytes of the target
3423  def BRSL:
3424    BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops),
3425      "brsl\t$$lr, $func",
3426      [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;
3427
3428  // Branch absolute and set link: Used if we actually know that the target
3429  // is an absolute address
3430  def BRASL:
3431    BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops),
3432      "brasl\t$$lr, $func",
3433      [(SPUcall (SPUaform tglobaladdr:$func, 0))]>;
3434
3435  // Branch indirect and set link if external data. These instructions are not
3436  // actually generated, matched by an intrinsic:
3437  def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
3438  def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
3439  def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
3440  def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;
3441
3442  // Branch indirect and set link. This is the "X-form" address version of a
3443  // function call
3444  def BISL:
3445    BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
3446}
3447
3448// Support calls to external symbols:
3449def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)),
3450          (BRSL texternalsym:$func)>;
3451
3452def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)),
3453          (BRASL texternalsym:$func)>;
3454
3455// Unconditional branches:
3456let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
3457  let isBarrier = 1 in {
3458    def BR :
3459      UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
3460        "br\t$dest",
3461        [(br bb:$dest)]>;
3462
3463    // Unconditional, absolute address branch
3464    def BRA:
3465      UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
3466        "bra\t$dest",
3467        [/* no pattern */]>;
3468
3469    // Indirect branch
3470    let isIndirectBranch = 1 in {
3471      def BI:
3472        BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;
3473    }
3474  }
3475
3476  // Conditional branches:
3477  class BRNZInst<dag IOL, list<dag> pattern>:
3478    RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest",
3479             BranchResolv, pattern>;
3480
3481  class BRNZRegInst<RegisterClass rclass>:
3482    BRNZInst<(ins rclass:$rCond, brtarget:$dest),
3483             [(brcond rclass:$rCond, bb:$dest)]>;
3484
3485  class BRNZVecInst<ValueType vectype>:
3486    BRNZInst<(ins VECREG:$rCond, brtarget:$dest),
3487             [(brcond (vectype VECREG:$rCond), bb:$dest)]>;
3488
3489  multiclass BranchNotZero {
3490    def v4i32 : BRNZVecInst<v4i32>;
3491    def r32   : BRNZRegInst<R32C>;
3492  }
3493
3494  defm BRNZ : BranchNotZero;
3495
3496  class BRZInst<dag IOL, list<dag> pattern>:
3497    RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest",
3498             BranchResolv, pattern>;
3499
3500  class BRZRegInst<RegisterClass rclass>:
3501    BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
3502
3503  class BRZVecInst<ValueType vectype>:
3504    BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
3505
3506  multiclass BranchZero {
3507    def v4i32: BRZVecInst<v4i32>;
3508    def r32:   BRZRegInst<R32C>;
3509  }
3510
3511  defm BRZ: BranchZero;
3512
3513  // Note: LLVM doesn't do branch conditional, indirect. Otherwise these would
3514  // be useful:
3515  /*
3516  class BINZInst<dag IOL, list<dag> pattern>:
3517   BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>;
3518
3519  class BINZRegInst<RegisterClass rclass>:
3520    BINZInst<(ins rclass:$rA, brtarget:$dest),
3521             [(brcond rclass:$rA, R32C:$dest)]>;
3522
3523  class BINZVecInst<ValueType vectype>:
3524    BINZInst<(ins VECREG:$rA, R32C:$dest),
3525             [(brcond (vectype VECREG:$rA), R32C:$dest)]>;
3526
3527  multiclass BranchNotZeroIndirect {
3528    def v4i32: BINZVecInst<v4i32>;
3529    def r32:   BINZRegInst<R32C>;
3530  }
3531
3532  defm BINZ: BranchNotZeroIndirect;
3533
3534  class BIZInst<dag IOL, list<dag> pattern>:
3535    BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>;
3536
3537  class BIZRegInst<RegisterClass rclass>:
3538    BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>;
3539
3540  class BIZVecInst<ValueType vectype>:
3541    BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>;
3542
3543  multiclass BranchZeroIndirect {
3544    def v4i32: BIZVecInst<v4i32>;
3545    def r32:   BIZRegInst<R32C>;
3546  }
3547
3548  defm BIZ: BranchZeroIndirect;
3549  */
3550
3551  class BRHNZInst<dag IOL, list<dag> pattern>:
3552    RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv,
3553             pattern>;
3554
3555  class BRHNZRegInst<RegisterClass rclass>:
3556    BRHNZInst<(ins rclass:$rCond, brtarget:$dest),
3557              [(brcond rclass:$rCond, bb:$dest)]>;
3558
3559  class BRHNZVecInst<ValueType vectype>:
3560    BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>;
3561
3562  multiclass BranchNotZeroHalfword {
3563    def v8i16: BRHNZVecInst<v8i16>;
3564    def r16:   BRHNZRegInst<R16C>;
3565  }
3566
3567  defm BRHNZ: BranchNotZeroHalfword;
3568
3569  class BRHZInst<dag IOL, list<dag> pattern>:
3570    RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv,
3571             pattern>;
3572
3573  class BRHZRegInst<RegisterClass rclass>:
3574    BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
3575
3576  class BRHZVecInst<ValueType vectype>:
3577    BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
3578
3579  multiclass BranchZeroHalfword {
3580    def v8i16: BRHZVecInst<v8i16>;
3581    def r16:   BRHZRegInst<R16C>;
3582  }
3583
3584  defm BRHZ: BranchZeroHalfword;
3585}
3586
3587//===----------------------------------------------------------------------===//
3588// setcc and brcond patterns:
3589//===----------------------------------------------------------------------===//
3590
3591def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest),
3592          (BRHZr16 R16C:$rA, bb:$dest)>;
3593def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest),
3594          (BRHNZr16 R16C:$rA, bb:$dest)>;
3595
3596def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
3597          (BRZr32 R32C:$rA, bb:$dest)>;
3598def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest),
3599          (BRNZr32 R32C:$rA, bb:$dest)>;
3600
3601multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
3602{
3603  def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3604                  (brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
3605
3606  def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3607                (brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>;
3608
3609  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3610                   (brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
3611
3612  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3613                (brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;
3614}
3615
3616defm BRCONDeq : BranchCondEQ<seteq, BRHNZr16, BRNZr32>;
3617defm BRCONDne : BranchCondEQ<setne, BRHZr16, BRZr32>;
3618
3619multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
3620{
3621  def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3622                   (brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
3623
3624  def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3625                (brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
3626
3627  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3628                   (brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
3629
3630  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3631                (brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
3632}
3633
3634defm BRCONDugt : BranchCondLGT<setugt, BRHNZr16, BRNZr32>;
3635defm BRCONDule : BranchCondLGT<setule, BRHZr16, BRZr32>;
3636
3637multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
3638                           SPUInstr orinst32, SPUInstr brinst32>
3639{
3640  def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3641                  (brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val),
3642                                      (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
3643                            bb:$dest)>;
3644
3645  def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3646               (brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB),
3647                                   (CEQHr16 R16C:$rA, R16:$rB)),
3648                         bb:$dest)>;
3649
3650  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3651                   (brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val),
3652                                       (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
3653                             bb:$dest)>;
3654
3655  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3656                (brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB),
3657                                    (CEQr32 R32C:$rA, R32C:$rB)),
3658                          bb:$dest)>;
3659}
3660
3661defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZr16, ORr32, BRNZr32>;
3662defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZr16, ORr32, BRZr32>;
3663
3664multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
3665{
3666  def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3667                   (brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
3668
3669  def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3670                (brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
3671
3672  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3673                   (brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
3674
3675  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3676                (brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
3677}
3678
3679defm BRCONDgt : BranchCondGT<setgt, BRHNZr16, BRNZr32>;
3680defm BRCONDle : BranchCondGT<setle, BRHZr16, BRZr32>;
3681
3682multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
3683                          SPUInstr orinst32, SPUInstr brinst32>
3684{
3685  def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
3686                  (brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val),
3687                                      (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
3688                            bb:$dest)>;
3689
3690  def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
3691               (brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB),
3692                                   (CEQHr16 R16C:$rA, R16:$rB)),
3693                         bb:$dest)>;
3694
3695  def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
3696                   (brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val),
3697                                       (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
3698                             bb:$dest)>;
3699
3700  def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
3701                (brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB),
3702                                    (CEQr32 R32C:$rA, R32C:$rB)),
3703                          bb:$dest)>;
3704}
3705
3706defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZr16, ORr32, BRNZr32>;
3707defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZr16, ORr32, BRZr32>;
3708
3709let isTerminator = 1, isBarrier = 1 in {
3710  let isReturn = 1 in {
3711    def RET:
3712        RETForm<"bi\t$$lr", [(retflag)]>;
3713  }
3714}
3715
3716//===----------------------------------------------------------------------===//
3717// Single precision floating point instructions
3718//===----------------------------------------------------------------------===//
3719
3720class FAInst<dag OOL, dag IOL, list<dag> pattern>:
3721    RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB",
3722           SPrecFP, pattern>;
3723
3724class FAVecInst<ValueType vectype>:
3725    FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3726             [(set (vectype VECREG:$rT),
3727                   (fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
3728
3729multiclass SFPAdd
3730{
3731  def v4f32: FAVecInst<v4f32>;
3732  def f32:   FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
3733                    [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;
3734}
3735
3736defm FA : SFPAdd;
3737
3738class FSInst<dag OOL, dag IOL, list<dag> pattern>:
3739    RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB",
3740           SPrecFP, pattern>;
3741
3742class FSVecInst<ValueType vectype>:
3743    FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3744           [(set (vectype VECREG:$rT),
3745                 (fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
3746
3747multiclass SFPSub
3748{
3749  def v4f32: FSVecInst<v4f32>;
3750  def f32:   FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
3751                    [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;
3752}
3753
3754defm FS : SFPSub;
3755
3756class FMInst<dag OOL, dag IOL, list<dag> pattern>:
3757    RRForm<0b01100011010, OOL, IOL,
3758      "fm\t$rT, $rA, $rB", SPrecFP,
3759      pattern>;
3760
3761class FMVecInst<ValueType type>:
3762    FMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3763           [(set (type VECREG:$rT),
3764                 (fmul (type VECREG:$rA), (type VECREG:$rB)))]>;
3765
3766multiclass SFPMul
3767{
3768  def v4f32: FMVecInst<v4f32>;
3769  def f32:   FMInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
3770                     [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>;
3771}
3772
3773defm FM : SFPMul;
3774
3775// Floating point multiply and add
3776// e.g. d = c + (a * b)
3777def FMAv4f32:
3778    RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
3779      "fma\t$rT, $rA, $rB, $rC", SPrecFP,
3780      [(set (v4f32 VECREG:$rT),
3781            (fadd (v4f32 VECREG:$rC),
3782                  (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;
3783
3784def FMAf32:
3785    RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
3786      "fma\t$rT, $rA, $rB, $rC", SPrecFP,
3787      [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
3788
3789// FP multiply and subtract
3790// Subtracts value in rC from product
3791// res = a * b - c
3792def FMSv4f32 :
3793    RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
3794      "fms\t$rT, $rA, $rB, $rC", SPrecFP,
3795      [(set (v4f32 VECREG:$rT),
3796            (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
3797                  (v4f32 VECREG:$rC)))]>;
3798
3799def FMSf32 :
3800    RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
3801      "fms\t$rT, $rA, $rB, $rC", SPrecFP,
3802      [(set R32FP:$rT,
3803            (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;
3804
3805// Floating Negative Mulitply and Subtract
3806// Subtracts product from value in rC
3807// res = fneg(fms a b c)
3808//     = - (a * b - c)
3809//     = c - a * b
3810// NOTE: subtraction order
3811// fsub a b = a - b
3812// fs a b = b - a?
3813def FNMSf32 :
3814    RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
3815      "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
3816      [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
3817
3818def FNMSv4f32 :
3819    RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
3820      "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
3821      [(set (v4f32 VECREG:$rT),
3822            (fsub (v4f32 VECREG:$rC),
3823                  (fmul (v4f32 VECREG:$rA),
3824                        (v4f32 VECREG:$rB))))]>;
3825
3826
3827
3828
3829// Floating point reciprocal estimate
3830
3831class FRESTInst<dag OOL, dag IOL>:
3832  RRForm_1<0b00110111000, OOL, IOL,
3833           "frest\t$rT, $rA", SPrecFP,
3834           [/* no pattern */]>;
3835
3836def FRESTv4f32 :
3837    FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
3838
3839def FRESTf32 :
3840    FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>;
3841
3842// Floating point interpolate (used in conjunction with reciprocal estimate)
3843def FIv4f32 :
3844    RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
3845      "fi\t$rT, $rA, $rB", SPrecFP,
3846      [/* no pattern */]>;
3847
3848def FIf32 :
3849    RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
3850      "fi\t$rT, $rA, $rB", SPrecFP,
3851      [/* no pattern */]>;
3852
3853//--------------------------------------------------------------------------
3854// Basic single precision floating point comparisons:
3855//
3856// Note: There is no support on SPU for single precision NaN. Consequently,
3857// ordered and unordered comparisons are the same.
3858//--------------------------------------------------------------------------
3859
3860def FCEQf32 :
3861    RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
3862      "fceq\t$rT, $rA, $rB", SPrecFP,
3863      [(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>;
3864
3865def : Pat<(setoeq R32FP:$rA, R32FP:$rB),
3866          (FCEQf32 R32FP:$rA, R32FP:$rB)>;
3867
3868def FCMEQf32 :
3869    RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
3870      "fcmeq\t$rT, $rA, $rB", SPrecFP,
3871      [(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
3872
3873def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)),
3874          (FCMEQf32 R32FP:$rA, R32FP:$rB)>;
3875
3876def FCGTf32 :
3877    RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
3878      "fcgt\t$rT, $rA, $rB", SPrecFP,
3879      [(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>;
3880
3881def : Pat<(setogt R32FP:$rA, R32FP:$rB),
3882          (FCGTf32 R32FP:$rA, R32FP:$rB)>;
3883
3884def FCMGTf32 :
3885    RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
3886      "fcmgt\t$rT, $rA, $rB", SPrecFP,
3887      [(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
3888
3889def : Pat<(setogt (fabs R32FP:$rA), (fabs R32FP:$rB)),
3890          (FCMGTf32 R32FP:$rA, R32FP:$rB)>;
3891
3892//--------------------------------------------------------------------------
3893// Single precision floating point comparisons and SETCC equivalents:
3894//--------------------------------------------------------------------------
3895
3896def : SETCCNegCondReg<setune, R32FP, i32, XORIr32, FCEQf32>;
3897def : SETCCNegCondReg<setone, R32FP, i32, XORIr32, FCEQf32>;
3898
3899def : SETCCBinOpReg<setuge, R32FP, ORr32, FCGTf32, FCEQf32>;
3900def : SETCCBinOpReg<setoge, R32FP, ORr32, FCGTf32, FCEQf32>;
3901
3902def : SETCCBinOpReg<setult, R32FP, NORr32, FCGTf32, FCEQf32>;
3903def : SETCCBinOpReg<setolt, R32FP, NORr32, FCGTf32, FCEQf32>;
3904
3905def : Pat<(setule R32FP:$rA, R32FP:$rB),
3906          (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
3907def : Pat<(setole R32FP:$rA, R32FP:$rB),
3908          (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
3909
3910// FP Status and Control Register Write
3911// Why isn't rT a don't care in the ISA?
3912// Should we create a special RRForm_3 for this guy and zero out the rT?
3913def FSCRWf32 :
3914    RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
3915      "fscrwr\t$rA", SPrecFP,
3916      [/* This instruction requires an intrinsic. Note: rT is unused. */]>;
3917
3918// FP Status and Control Register Read
3919def FSCRRf32 :
3920    RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
3921      "fscrrd\t$rT", SPrecFP,
3922      [/* This instruction requires an intrinsic */]>;
3923
3924// llvm instruction space
3925// How do these map onto cell instructions?
3926// fdiv rA rB
3927//   frest rC rB        # c = 1/b (both lines)
3928//   fi rC rB rC
3929//   fm rD rA rC        # d = a * 1/b
3930//   fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
3931//   fma rB rB rC rD            # b = b * c + d
3932//                              = -(d *b -a) * c + d
3933//                              = a * c - c ( a *b *c - a)
3934
3935// fcopysign (???)
3936
3937// Library calls:
3938// These llvm instructions will actually map to library calls.
3939// All that's needed, then, is to check that the appropriate library is
3940// imported and do a brsl to the proper function name.
3941// frem # fmod(x, y): x - (x/y) * y
3942// (Note: fmod(double, double), fmodf(float,float)
3943// fsqrt?
3944// fsin?
3945// fcos?
3946// Unimplemented SPU instruction space
3947// floating reciprocal absolute square root estimate (frsqest)
3948
3949// The following are probably just intrinsics
3950// status and control register write
3951// status and control register read
3952
3953//--------------------------------------
3954// Floating Point Conversions
3955// Signed conversions:
3956def CSiFv4f32:
3957    CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
3958      "csflt\t$rT, $rA, 0", SPrecFP,
3959      [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;
3960
3961// Convert signed integer to floating point
3962def CSiFf32 :
3963    CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
3964      "csflt\t$rT, $rA, 0", SPrecFP,
3965      [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;
3966
3967// Convert unsigned into to float
3968def CUiFv4f32 :
3969    CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
3970      "cuflt\t$rT, $rA, 0", SPrecFP,
3971      [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;
3972
3973def CUiFf32 :
3974    CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
3975      "cuflt\t$rT, $rA, 0", SPrecFP,
3976      [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;
3977
3978// Convert float to unsigned int
3979// Assume that scale = 0
3980
3981def CFUiv4f32 :
3982    CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
3983      "cfltu\t$rT, $rA, 0", SPrecFP,
3984      [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;
3985
3986def CFUif32 :
3987    CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
3988      "cfltu\t$rT, $rA, 0", SPrecFP,
3989      [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;
3990
3991// Convert float to signed int
3992// Assume that scale = 0
3993
3994def CFSiv4f32 :
3995    CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
3996      "cflts\t$rT, $rA, 0", SPrecFP,
3997      [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;
3998
3999def CFSif32 :
4000    CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
4001      "cflts\t$rT, $rA, 0", SPrecFP,
4002      [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;
4003
4004//===----------------------------------------------------------------------==//
4005// Single<->Double precision conversions
4006//===----------------------------------------------------------------------==//
4007
4008// NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
4009// v4f32, output is v2f64--which goes in the name?)
4010
4011// Floating point extend single to double
4012// NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
4013// operates on two double-word slots (i.e. 1st and 3rd fp numbers
4014// are ignored).
4015def FESDvec :
4016    RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
4017      "fesd\t$rT, $rA", SPrecFP,
4018      [/*(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))*/]>;
4019
4020def FESDf32 :
4021    RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
4022      "fesd\t$rT, $rA", SPrecFP,
4023      [(set R64FP:$rT, (fextend R32FP:$rA))]>;
4024
4025// Floating point round double to single
4026//def FRDSvec :
4027//    RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
4028//      "frds\t$rT, $rA,", SPrecFP,
4029//      [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;
4030
4031def FRDSf64 :
4032    RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
4033      "frds\t$rT, $rA", SPrecFP,
4034      [(set R32FP:$rT, (fround R64FP:$rA))]>;
4035
4036//ToDo include anyextend?
4037
4038//===----------------------------------------------------------------------==//
4039// Double precision floating point instructions
4040//===----------------------------------------------------------------------==//
4041def FAf64 :
4042    RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
4043      "dfa\t$rT, $rA, $rB", DPrecFP,
4044      [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;
4045
4046def FAv2f64 :
4047    RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
4048      "dfa\t$rT, $rA, $rB", DPrecFP,
4049      [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
4050
4051def FSf64 :
4052    RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
4053      "dfs\t$rT, $rA, $rB", DPrecFP,
4054      [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;
4055
4056def FSv2f64 :
4057    RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
4058      "dfs\t$rT, $rA, $rB", DPrecFP,
4059      [(set (v2f64 VECREG:$rT),
4060            (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
4061
4062def FMf64 :
4063    RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
4064      "dfm\t$rT, $rA, $rB", DPrecFP,
4065      [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;
4066
4067def FMv2f64:
4068    RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
4069      "dfm\t$rT, $rA, $rB", DPrecFP,
4070      [(set (v2f64 VECREG:$rT),
4071            (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
4072
4073def FMAf64:
4074    RRForm<0b00111010110, (outs R64FP:$rT),
4075                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
4076      "dfma\t$rT, $rA, $rB", DPrecFP,
4077      [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
4078    RegConstraint<"$rC = $rT">,
4079    NoEncode<"$rC">;
4080
4081def FMAv2f64:
4082    RRForm<0b00111010110, (outs VECREG:$rT),
4083                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
4084      "dfma\t$rT, $rA, $rB", DPrecFP,
4085      [(set (v2f64 VECREG:$rT),
4086            (fadd (v2f64 VECREG:$rC),
4087                  (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
4088    RegConstraint<"$rC = $rT">,
4089    NoEncode<"$rC">;
4090
4091def FMSf64 :
4092    RRForm<0b10111010110, (outs R64FP:$rT),
4093                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
4094      "dfms\t$rT, $rA, $rB", DPrecFP,
4095      [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
4096    RegConstraint<"$rC = $rT">,
4097    NoEncode<"$rC">;
4098
4099def FMSv2f64 :
4100    RRForm<0b10111010110, (outs VECREG:$rT),
4101                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
4102      "dfms\t$rT, $rA, $rB", DPrecFP,
4103      [(set (v2f64 VECREG:$rT),
4104            (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
4105                  (v2f64 VECREG:$rC)))]>;
4106
4107// DFNMS: - (a * b - c)
4108// - (a * b) + c => c - (a * b)
4109
4110class DFNMSInst<dag OOL, dag IOL, list<dag> pattern>:
4111    RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB",
4112           DPrecFP, pattern>,
4113    RegConstraint<"$rC = $rT">,
4114    NoEncode<"$rC">;
4115
4116class DFNMSVecInst<list<dag> pattern>:
4117    DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
4118              pattern>;
4119
4120class DFNMSRegInst<list<dag> pattern>:
4121    DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
4122             pattern>;
4123
4124multiclass DFMultiplySubtract
4125{
4126  def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT),
4127                                 (fsub (v2f64 VECREG:$rC),
4128                                       (fmul (v2f64 VECREG:$rA),
4129                                             (v2f64 VECREG:$rB))))]>;
4130
4131  def f64 : DFNMSRegInst<[(set R64FP:$rT,
4132                               (fsub R64FP:$rC,
4133                                     (fmul R64FP:$rA, R64FP:$rB)))]>;
4134}
4135
4136defm DFNMS : DFMultiplySubtract;
4137
4138// - (a * b + c)
4139// - (a * b) - c
4140def FNMAf64 :
4141    RRForm<0b11111010110, (outs R64FP:$rT),
4142                          (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
4143      "dfnma\t$rT, $rA, $rB", DPrecFP,
4144      [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
4145    RegConstraint<"$rC = $rT">,
4146    NoEncode<"$rC">;
4147
4148def FNMAv2f64 :
4149    RRForm<0b11111010110, (outs VECREG:$rT),
4150                          (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
4151      "dfnma\t$rT, $rA, $rB", DPrecFP,
4152      [(set (v2f64 VECREG:$rT),
4153            (fneg (fadd (v2f64 VECREG:$rC),
4154                        (fmul (v2f64 VECREG:$rA),
4155                              (v2f64 VECREG:$rB)))))]>,
4156    RegConstraint<"$rC = $rT">,
4157    NoEncode<"$rC">;
4158
4159//===----------------------------------------------------------------------==//
4160// Floating point negation and absolute value
4161//===----------------------------------------------------------------------==//
4162
4163def : Pat<(fneg (v4f32 VECREG:$rA)),
4164          (XORfnegvec (v4f32 VECREG:$rA),
4165                      (v4f32 (ILHUv4i32 0x8000)))>;
4166
4167def : Pat<(fneg R32FP:$rA),
4168          (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;
4169
4170// Floating point absolute value
4171// Note: f64 fabs is custom-selected.
4172
4173def : Pat<(fabs R32FP:$rA),
4174          (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;
4175
4176def : Pat<(fabs (v4f32 VECREG:$rA)),
4177          (ANDfabsvec (v4f32 VECREG:$rA),
4178                      (IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>;
4179
4180//===----------------------------------------------------------------------===//
4181// Hint for branch instructions:
4182//===----------------------------------------------------------------------===//
4183def HBRA :
4184    HBI16Form<0b0001001,(ins hbrtarget:$brinst, brtarget:$btarg), "hbra\t$brinst, $btarg">;
4185
4186//===----------------------------------------------------------------------===//
4187// Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
4188// in the odd pipeline)
4189//===----------------------------------------------------------------------===//
4190
4191def ENOP : SPUInstr<(outs), (ins), "nop", ExecNOP> {
4192  let Pattern = [];
4193
4194  let Inst{0-10} = 0b10000000010;
4195  let Inst{11-17} = 0;
4196  let Inst{18-24} = 0;
4197  let Inst{25-31} = 0;
4198}
4199
4200def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> {
4201  let Pattern = [];
4202
4203  let Inst{0-10} = 0b10000000000;
4204  let Inst{11-17} = 0;
4205  let Inst{18-24} = 0;
4206  let Inst{25-31} = 0;
4207}
4208
4209//===----------------------------------------------------------------------===//
4210// Bit conversions (type conversions between vector/packed types)
4211// NOTE: Promotions are handled using the XS* instructions.
4212//===----------------------------------------------------------------------===//
4213def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
4214def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
4215def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
4216def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
4217def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;
4218
4219def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
4220def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
4221def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
4222def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
4223def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;
4224
4225def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
4226def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
4227def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
4228def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
4229def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;
4230
4231def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
4232def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
4233def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
4234def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
4235def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;
4236
4237def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
4238def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
4239def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
4240def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
4241def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;
4242
4243def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
4244def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
4245def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
4246def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
4247def : Pat<(v2f64 (bitconvert (v4f32 VECREG:$src))), (v2f64 VECREG:$src)>;
4248
4249def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))),
4250          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4251def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))),
4252          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4253def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))),
4254          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4255def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))),
4256          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4257def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))),
4258          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4259def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))),
4260          (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
4261
4262def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))),
4263          (v16i8 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4264def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))),
4265          (v8i16 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4266def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))),
4267          (v4i32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4268def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))),
4269          (v2i64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4270def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))),
4271          (v4f32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4272def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))),
4273          (v2f64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
4274
4275def : Pat<(i32 (bitconvert R32FP:$rA)),
4276          (COPY_TO_REGCLASS R32FP:$rA, R32C)>;
4277
4278def : Pat<(f32 (bitconvert R32C:$rA)),
4279          (COPY_TO_REGCLASS R32C:$rA, R32FP)>;
4280
4281def : Pat<(i64 (bitconvert R64FP:$rA)),
4282          (COPY_TO_REGCLASS R64FP:$rA, R64C)>;
4283
4284def : Pat<(f64 (bitconvert R64C:$rA)),
4285          (COPY_TO_REGCLASS R64C:$rA, R64FP)>;
4286
4287
4288//===----------------------------------------------------------------------===//
4289// Instruction patterns:
4290//===----------------------------------------------------------------------===//
4291
4292// General 32-bit constants:
4293def : Pat<(i32 imm:$imm),
4294          (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;
4295
4296// Single precision float constants:
4297def : Pat<(f32 fpimm:$imm),
4298          (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;
4299
4300// General constant 32-bit vectors
4301def : Pat<(v4i32 v4i32Imm:$imm),
4302          (IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
4303                     (LO16_vec v4i32Imm:$imm))>;
4304
4305// 8-bit constants
4306def : Pat<(i8 imm:$imm),
4307          (ILHr8 imm:$imm)>;
4308
4309//===----------------------------------------------------------------------===//
4310// Zero/Any/Sign extensions
4311//===----------------------------------------------------------------------===//
4312
4313// sext 8->32: Sign extend bytes to words
4314def : Pat<(sext_inreg R32C:$rSrc, i8),
4315          (XSHWr32 (XSBHr32 R32C:$rSrc))>;
4316
4317def : Pat<(i32 (sext R8C:$rSrc)),
4318          (XSHWr16 (XSBHr8 R8C:$rSrc))>;
4319
4320// sext 8->64: Sign extend bytes to double word
4321def : Pat<(sext_inreg R64C:$rSrc, i8),
4322          (XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>;
4323
4324def : Pat<(i64 (sext R8C:$rSrc)),
4325          (XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>;
4326
4327// zext 8->16: Zero extend bytes to halfwords
4328def : Pat<(i16 (zext R8C:$rSrc)),
4329          (ANDHIi8i16 R8C:$rSrc, 0xff)>;
4330
4331// zext 8->32: Zero extend bytes to words
4332def : Pat<(i32 (zext R8C:$rSrc)),
4333          (ANDIi8i32 R8C:$rSrc, 0xff)>;
4334
4335// zext 8->64: Zero extend bytes to double words
4336def : Pat<(i64 (zext R8C:$rSrc)),
4337          (COPY_TO_REGCLASS (SELBv4i32 (ROTQMBYv4i32
4338                                    (COPY_TO_REGCLASS
4339                                       (ANDIi8i32 R8C:$rSrc,0xff), VECREG),
4340                                    0x4),
4341                                  (ILv4i32 0x0),
4342                                  (FSMBIv4i32 0x0f0f)), R64C)>;
4343
4344// anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits
4345def : Pat<(i16 (anyext R8C:$rSrc)),
4346          (ORHIi8i16 R8C:$rSrc, 0)>;
4347
4348// anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits
4349def : Pat<(i32 (anyext R8C:$rSrc)),
4350          (COPY_TO_REGCLASS R8C:$rSrc, R32C)>;
4351
4352// sext 16->64: Sign extend halfword to double word
4353def : Pat<(sext_inreg R64C:$rSrc, i16),
4354          (XSWDr64_inreg (XSHWr64 R64C:$rSrc))>;
4355
4356def : Pat<(sext R16C:$rSrc),
4357          (XSWDr64 (XSHWr16 R16C:$rSrc))>;
4358
4359// zext 16->32: Zero extend halfwords to words
4360def : Pat<(i32 (zext R16C:$rSrc)),
4361          (ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>;
4362
4363def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
4364          (ANDIi16i32 R16C:$rSrc, 0xf)>;
4365
4366def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
4367          (ANDIi16i32 R16C:$rSrc, 0xff)>;
4368
4369def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
4370          (ANDIi16i32 R16C:$rSrc, 0xfff)>;
4371
4372// anyext 16->32: Extend 16->32 bits, irrespective of sign
4373def : Pat<(i32 (anyext R16C:$rSrc)),
4374          (COPY_TO_REGCLASS R16C:$rSrc, R32C)>;
4375
4376//===----------------------------------------------------------------------===//
4377// Truncates:
4378// These truncates are for the SPU's supported types (i8, i16, i32). i64 and
4379// above are custom lowered.
4380//===----------------------------------------------------------------------===//
4381
4382def : Pat<(i8 (trunc GPRC:$src)),
4383          (COPY_TO_REGCLASS
4384            (SHUFBgprc GPRC:$src, GPRC:$src,
4385                       (IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)), R8C)>;
4386
4387def : Pat<(i8 (trunc R64C:$src)),
4388          (COPY_TO_REGCLASS
4389            (SHUFBv2i64_m32
4390              (COPY_TO_REGCLASS R64C:$src, VECREG),
4391              (COPY_TO_REGCLASS R64C:$src, VECREG),
4392              (IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)), R8C)>;
4393
4394def : Pat<(i8 (trunc R32C:$src)),
4395          (COPY_TO_REGCLASS
4396            (SHUFBv4i32_m32
4397               (COPY_TO_REGCLASS R32C:$src, VECREG),
4398               (COPY_TO_REGCLASS R32C:$src, VECREG),
4399               (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;
4400
4401def : Pat<(i8 (trunc R16C:$src)),
4402          (COPY_TO_REGCLASS
4403            (SHUFBv4i32_m32
4404               (COPY_TO_REGCLASS R16C:$src, VECREG),
4405               (COPY_TO_REGCLASS R16C:$src, VECREG),
4406               (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;
4407
4408def : Pat<(i16 (trunc GPRC:$src)),
4409          (COPY_TO_REGCLASS
4410            (SHUFBgprc GPRC:$src, GPRC:$src,
4411                       (IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)), R16C)>;
4412
4413def : Pat<(i16 (trunc R64C:$src)),
4414          (COPY_TO_REGCLASS
4415            (SHUFBv2i64_m32
4416              (COPY_TO_REGCLASS R64C:$src, VECREG),
4417              (COPY_TO_REGCLASS R64C:$src, VECREG),
4418              (IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)), R16C)>;
4419
4420def : Pat<(i16 (trunc R32C:$src)),
4421          (COPY_TO_REGCLASS
4422            (SHUFBv4i32_m32
4423               (COPY_TO_REGCLASS R32C:$src, VECREG),
4424               (COPY_TO_REGCLASS R32C:$src, VECREG),
4425               (IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)), R16C)>;
4426
4427def : Pat<(i32 (trunc GPRC:$src)),
4428          (COPY_TO_REGCLASS
4429            (SHUFBgprc GPRC:$src, GPRC:$src,
4430                       (IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)), R32C)>;
4431
4432def : Pat<(i32 (trunc R64C:$src)),
4433          (COPY_TO_REGCLASS
4434            (SHUFBv2i64_m32
4435              (COPY_TO_REGCLASS R64C:$src, VECREG),
4436              (COPY_TO_REGCLASS R64C:$src, VECREG),
4437              (IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)), R32C)>;
4438
4439//===----------------------------------------------------------------------===//
4440// Address generation: SPU, like PPC, has to split addresses into high and
4441// low parts in order to load them into a register.
4442//===----------------------------------------------------------------------===//
4443
4444def : Pat<(SPUaform tglobaladdr:$in, 0),  (ILAlsa tglobaladdr:$in)>;
4445def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>;
4446def : Pat<(SPUaform tjumptable:$in, 0),   (ILAlsa tjumptable:$in)>;
4447def : Pat<(SPUaform tconstpool:$in, 0),   (ILAlsa  tconstpool:$in)>;
4448
4449def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0),
4450                       (SPUlo tglobaladdr:$in, 0)),
4451          (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
4452
4453def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0),
4454                       (SPUlo texternalsym:$in, 0)),
4455          (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
4456
4457def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0),
4458                       (SPUlo tjumptable:$in, 0)),
4459          (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
4460
4461def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0),
4462                       (SPUlo tconstpool:$in, 0)),
4463          (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
4464
4465def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)),
4466          (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
4467
4468def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)),
4469          (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
4470
4471def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)),
4472          (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
4473
4474def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)),
4475          (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
4476
4477// Intrinsics:
4478include "CellSDKIntrinsics.td"
4479// Various math operator instruction sequences
4480include "SPUMathInstr.td"
4481// 64-bit "instructions"/support
4482include "SPU64InstrInfo.td"
4483// 128-bit "instructions"/support
4484include "SPU128InstrInfo.td"
4485